
1.	 INTRODUCTION
The theory and analysis of diallel crosses 

were developed by Hayman (1954a, 1954b and 
1958 and 1960), Griffing (1956a and 1956b) and 
Kempthorne (1956). There are four main types of 
diallel mating designs viz., Type I [F1’s, reciprocal 
crosses and selfings], Type II [F1’s and reciprocal 
crosses], Type III [F1’s and parents] and Type IV 
[Only F1’s] as suggested by Griffing (1956b). For 
more details on diallel cross experiments and 
analysis one may refer to (Kempthorne 1969 and 
Narain 1990). Experimental design issues in the 
context of diallel cross experiments has received 
considerable attention in the literature; see for 
reference, Curnow (1963), Gupta et al. (1994), 
Das and Ghosh (1999) and Hinkelmann and 
Kempthorne (2005).

Most of the work on designs for diallel cross 
experiments are done by taking only F1’s into 
consideration (i.e., Type IV). For an experimenter, 
the interest may not lie only in comparing the 
F1’s but in comparing F1’s along with its parents. 
Furthermore, most of the work on diallel/ partial 
diallel cross experiments has been done under the 
assumption that the specific combining ability 

(sca) is negligible. Apart from inferring on general 
combining abilities (gca), often an experimenter 
is also interested in inference on gca effects free 
from “cross effects” or, “sca effects”. This is 
possible when sca effect is included in the model. 
Chai and Mukerjee (1999) studied the optimality 
aspect of diallel cross experiments when “sca 
effects” are also included in the model. Choi et 
al. (2002), Das and Dey (2004) and Dey (2010) 
investigated optimality of orthogonally blocked 
complete diallel crosses (CDC) for estimating 
gca’s when the model also includes sca’s. 

Heterogeneity in the experimental material 
is the most important problem to be reckoned 
with designing of scientific experiments. When 
heterogeneity is present in the experimental 
material in two directions, row-column                    
(two-way blocking) designs will be useful. 
Varghese et al. (2015) proposed some classes 
of Mating-Environmental Row-Column designs 
which ensures balanced estimation of contrasts 
pertaining to gca effects free from sca effects. 
Varghese and Varghese (2016) investigated the 
problem of comparing t test lines with a control 
line under a row-column set up in complete diallel 
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cross experiments when sca effect is included in 
the model.

In this paper, a methodology has been develop-
ed for estimating gca effects free from sca effects 
under a row-column set up for Type III complete 
diallel mating designs. A class of Mating-
Environmental Row-Column (MERC) designs 
has been constructed that is variance balanced for 
estimating the contrasts pertaining to gca effects 
free from sca effects. 

2.	 EXPERIMENTAL SETUP AND 
METHODOLOGY

Consider a row-column setup with p rows and 

q columns. Let t be the number of inbred lines 

resulting in v’ = v + t = [t(t + 1)/2] crosses, where  

[v = t(t – 1)/2] (F1’s) are of the form i × j,  
i < j = 1, 2, …, t and t parents (Griffing’s Type 

III mating design). The row-column fixed effects 

model for mating experiments can be expressed in 

the form

( ) ( ) ( )k ikl m ij m kl my eµ t a b= + + + +  

(I , )i j t≤ ≤ 	 (1)

where ykl(m)
 is the response from mth cross (m = 1, 

2, …, v’) in the (kl)th cell, µ is the grand mean, tij(m) 

is the effect of mth cross of the form i×j, ak is the 

kth row effect (k = 1, 2, …, p),  ib  is the lth column 

effect (l = 1, 2, …, q) and ekl(m)
  is random error 

assumed to be iid N(0, s2). 

The model (1) can be rewritten as

1 21 ,′ ′= + D + + +'Y D D eµ t a b 	 (2)

where Y is a n × 1 vector of observations, 1 is a  n×1 
vector of ones, D is a n × v' matrix of observations 
versus crosses, t  is a v' × 1 vector of cross effects, 
D'

1 
is a n × p matrix of observations versus rows, 

α is a p × 1 vector of row effects, D'
2 

 is a n × 
q matrix of observations versus columns, β is a  
q × 1 vector of column effects and e is a n × 1 vector 
of errors. Now, the design matrix Xn×(v'+p+q+1) with  
n > v' + p + q + 1 can be partitioned into parameters 
of interest (X

1
) and nuisance parameters (X

2
).

[ ]1 ,′X = D  	 [ ]2 1 2′ ′X = 1 D D .

The information matrix for estimating τ 
(parents + cross effects) can be obtained as

1 1 1 2 2 2 2 1′ ′ ′ ′-C = X X - X X (X X ) X Xt
11 12

12 22

 
 ′ 

C C
=

C C , 

where v × v matrix C is symmetric, non-negative 
definite with zero row and column sums.  Further, 
the information matrix for estimating the 
elementary contrasts pertaining to cross effects 
can be obtained as

cross 22 21 11 12
−C = C - C C C

Now, the cross effect tij can be expressed as

( )1 ,ij i j ijg g s i j tt t= + + + ≤ ≤ 	 (3)

where t  is the mean effect of crosses,	  {gi} 

denotes the gca effects and {sij} 
denotes the sca 

effects such that 

 = 1

0
t

i
i

g =∑ 	 (4)

< =1

0, (1 )
t

ij
i j

s i t= ≤ ≤∑ 	 (5)

We arrange the crosses in the order (1,2), 

(1,3), …, (1, t), (2, 3), …, (2, t), …, (t-1, t). Let 

′= 1 2 t(g ,g ,...,g )g  and let t and s be v × 1 vectors 

with elements { }ijt  and { }ijs  respectively. We 

follow Chai and Mukerjee (1999) and Das and 

Dey (2004) to express the general and specific 

combining abilities, i.e., g and s in terms of τ. We 

define Q to be a t × v matrix with rows indexed 

by 1, 2, …, t  and columns by the pairs (i, j),  

(1 ≤ i, j ≤ t), such that the { }th
, ( , )u i j

 
entry of Q is 

1 if ( , )u i j∈  and zero, otherwise. We then have,

QQ' = (t–2) It + Jtt

(QQ')–1 = (t–2)–1 {It – [2(t – 1)]–1 Jtt}	 (6)

Q1v = (t – 1)1, and Q'1
t
= 21v	 (7)
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where for positive integers c and d, 1c is the cth 
order identity matrix, 1c is the c×1 vector of all ones 
and Jcd = 1c1’d. Therefore (3) can be represented in 
matrix notation as 

τ = τ 1v + Q'g + s,	 (8)

where from (4) and (5), we have

1tg = 0 and Qs = 0	 (9)

Pre-multiplying (8) by Q and using (4), (5) 
and (9), one has

g = H
1
τ and s = τ – τ 1v – Q' g = H2τ,	 (10)

where

H
1 
= (QQ')–1Q – (2v)–1(2v)–4 Jtv

     = (t – 2)–1 (Q – 2t–1 Jtv),	  (11)

and

H
2 
= Iv – Q' (QQ')–1 Q

     = Iv – (t – 2)–1 (Q'Q – 2(t – 1)–1 Jvv).	  (12)

Here, H
1 
1v = 0, H

2 
1v = 0, H

1 
H'

2 
= 0,

Rank (H
1
) = t – 1 and

Rank (H
2
) = t (t – 1)/2 – t	  (13)

It is clear from (13) that g and s represent t – 1 
and t(t – 1)/2 – t linearly independent treatment 
contrasts respectively. But for t = 3, s = 0 and 
hence t should be greater than 3.

Now, under (2), the joint information matrix 

for 
1

2

t
 
 
 

H
H  is given by

1 cross 1 1 cross 2

2 cross 1 2 cross 2

′ ′ 
 ′ ′ 

H C H H C H
C = 

H C H H C H  with 1 cross 2′H C H = 0. 

Thus, the contrasts representing g are 
orthogonal to those representing s.  

For CDC experiments, we define

M = 

1 1 0

1 0 1

0 1 1

 
 
 
  

, then 1 +1
t

1 1

t v t

t t

− −

− −

′ ′ 
=  

 

1 0
Q

I Q
 where 

3 3
4

3

′ ′ 
=  

 

1 0
Q

I M  then QQ' = (t – 2)It + Jtt ,

 
1 1

= ( 2) + , ( ) =
( 2)t ttt 
t 

−′ ′−
−

QQ I J QQ  
2( 1)

tt
t t 

 
− − 

JI

Hence,  1

1
, if 1

t -1
{( ) } =

1
, if 0

(t -1)(t -2)

ij

ij

ij

−

 =′ 
− =


Q
QQ Q

Q

i = 1, 2, …, t and j = 1, 2, …, t.

Therefore, 1

1
, if 1

t
{ } =

2
, if 0

t(t -2)

ij

ij

ij

 =

− =


Q
H

Q

3.	 METHOD OF CONSTRUCTION
Construct a standard Latin square of size  

t ( t must be odd). Develop another array of size t 
by adding values 0, 1 …, t – 1 to each row of the 
standard Latin square consecutively and by taking 
modulo t. Now, superimpose the generated array 
on the standard Latin square and form crosses 
between the corresponding elements of the array. 
This arrangement leads to a MERC design with 

parameters v = ( 1)

2

t t + , p = q = t, r
1 
 (replication of 

selfings) = 1 and r
2 
(replication of F

1
’s) = 2. 

For this class of MERC designs, the crosses are 
partially balanced following a two associate class 
triangular association scheme. The information 
matrix for estimating the contrasts pertaining to 

gca is 2

2 ( 3)

(  2) ( 1)  gca
t t

t t t
−  − − −  

JC = I . The variance of 

elementary treatment contrasts pertaining to gca 
effects is given by

ˆ ˆV( )i jg g−  = 
2

2( 2) ( 1)

( 3)

t t 
t t 

s− −
−

; i × j = 1, 2, …, t.

Example 1: For t = 5, the MERC design (including 

selfings) with parameters v = 15, p = q = 5, r1 = 1 

and r2 = 2 is obtained as follows:

Standard Latin square of order 5

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3
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can be obtained by  cross 1 cross 1 cross( )−′ ′Q H C H Q
 and 

cross 2 cross 2 cross( )−′ ′Q H C H Q  respectively, where Q
cross

 

is the adjusted total for cross effects. The split-up 
degrees of freedom is as follows:

Source DF

Row t – 1

Column t – 1

Entries
( 1)

2

t t +
 – 1

Parents t – 1

Parents vs. Crosses 1

Crosses
( 1)

2

t t −
  – 1

gca t – 1

sca
( 3)

2

t t −

Error (t – 1)2 – 
( 1)

2

t t +

 
+ 1

Total t2 – 1

Remark: The developed designs are minimal with 
respect to the number of experimental units. This 
may lead to non-estimability of some of the sca 
effects. This can be sorted out by either repeating 
the design or suitably repeating the crosses while 
doing the experimentation.

For the easy accessibility of these designs to 
the users, a Macro (given in the end) has been 
developed using PROC IML of SAS software 
which generates randomized layout of the designs. 

5.	 EFFICIENCY

Considering a row-column model, the per 

cross canonical efficiency of these designs as 
compared to an orthogonal design with same 
number of crosses has been studied by developing 
a SAS code in PROC IML and listed along with 
other parameters in Table 1.

Array developed by adding 0, 1 ..., 4 (mod 5) 
to the rows of the standard Latin square

0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

MERC design

0 × 0 1 × 1 2 × 2 3 × 3 4 × 4
1 × 2 2 × 3 3 × 4 4 × 0 0 × 1
2 × 4 3 × 0 4 × 1 0 × 2 1 × 3
3 × 1 4 × 2 0 × 3 1 × 4 2 × 0
4 × 3 0 × 4 1 × 0 2 × 1 3 × 2

The variance of elementary treatment contrasts 
pertaining to gca effects is given by

	 i jˆ ˆV(g g )−  = 23.6s  ; i ≠ j = 1, 2, …, 5.	

Note: It may be noted here that superimposing 

any two orthogonal Latin squares (if the same 

exist for a given t) and forming crosses with the 

corresponding elements of each of the array results 

in a MERC design with parameters v = 
( 1)

2

t t +
   

p = q = t, r
1 

(replication of selfings) = 1 and r
2 

(replication of F
1
’s) = 2. Hence, MERC designs 

for even t can also be obtained as a special case.

4.	 OUTLINE OF ANALYSIS 

Under the linear model (2) with p = q = t, sum 

of squares corresponding to the three sources of 

variability viz., rows, columns and entries (F
1
’s 

+ parents/selfings) can be obtained as a a a′ -Q C Q ,

−
b b b′Q C Q  and 

−
t t t′Q C Q  respectively where Qa, Qb 

and Qt 
are the adjusted totals for rows, columns 

and entries Ca, Cb and Ct are the information 
matrices for estimating the contrasts pertaining 
to rows, columns and entries respectively. The 
sum of squares due to parents and crosses can 
be obtained by appropriately partitioning the 
information matrix for estimating the contrasts 
of entries. Sum of squares due to parents Vs 
crosses can be obtained by developing a suitable 
contrast. Now, sum of squares for gca and sca 
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Table 1. List of designs obtained

S.N. t v p q r1 r2 V
(i,i)

Ecanonical

1 5 15 5 5 1 2 3.60 0.7692

2 7 28 7 7 1 2 5.36 0.8077
3 9 45 9 9 1 2 7.26 0.8654
4 11 66 11 11 1 2 9.20 0.8594
5 13 91 13 13 1 2 11.17 0.8764
6 15 120 15 15 1 2 13.14 0.9023
7 17 153 17 17 1 2 15.13 0.9001
8 19 190 19 19 1 2 17.11 0.9096

Here, V(i,i) = Variance of the estimated 
elementary contrasts pertaining to gca effects 

and E
canonical

 = Canonical efficiency factor, where 

E
canonical

 of the MERC design is computed relative 

to an orthogonal design with the same number of 

crosses by working out the harmonic mean of (1/r) 

times the non-zero eigen values of the information 

matrix pertaining to cross effects. r is the number 

of replications of the crosses and it is assumed that 
2s is the same for the developed MERC design 

and the orthogonal design to which it is compared. 

It can be seen that the efficiency is quite high for 

the class of designs obtained and it increases with 

increase in the number of lines involved in the 

crosses.

6.	 CONCLUSION

When the number crosses becomes large (it 
increases rapidly with the increase in number of 
lines), which leads to a large experimental area, 
and it may be more advantageous to use row-
column (RC) setup to eliminate the effects of 
heterogeneity in the experimental material in 
two directions. RC designs always provide more 
precise comparison among combining ability 
effects as compared to any block design when 
heterogeneity is present in the experimental 
material in two directions. Here, an easy method to 
construct Mating-Environmental Row-Columns 
(MERC) design for Type III complete diallel 
mating designs in smaller number observations 
has been given, which facilitates a more precise 

and variance balanced estimation of gca effects 
free from sca effects.
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SAS MACRO FOR GENERATION AND 
RANDOMIZATION OF TYPE III MATING 
ENVIRONMENTAL ROW-COLUMN 
DESIGN
Macros provided here gives a solution for the 
generation and randomization of designs for 
estimating gca effects free from sca effect under 
a row-column  set  up  for Type  III  complete  

diallel mating  designs  with  parameters = 
( 1)

,
2

t t +
  

p = q = t, r1   (replication  of  selfings) = 1 and r
2  

(replication of F
1
’s) = 2, where t is the number 

of lines. This program was developed using SAS 
IML in the form of a Macro so that user would be 
able to get the design by providing only number 
lines (t, for odd t). User can get the generated 
design and its randomized layout in Rich Text 
Format (RTF) by submitting the following code:

options nodate nonumber;

%let t=5;/*Enter the number of lines (t should 
be an odd number)*/

ods rtf file=”Merc_TypeIII.rtf”;

title ‘MERC designs for type III diallel cross 
experiments’;

proc iml;

eve=mod(&t,2);

if eve=0 then do;

print ‘Entered number is not an odd number’;

end; else do;

c_no=comb(&t,2)+&t;

n_no=&t;

k=1;

d0=j(n_no,n_no,0);

do i=1 to n_no;

do j=1 to n_no;

d0[i,j]=mod((i-1)+j,n_no);

if d0[i,j]=0 then d0[i,j]=n_no;

end;

end;

*print d0;

d01=j(n_no,n_no,0);

do i=1 to n_no;

do j=1 to n_no;

d01[i,j]=mod(d0[i,j]+(i-1),n_no);

if d01[i,j]=0 then d01[i,j]=n_no;

end;

end;

*print d01;

k=1;

d001=j(n_no*n_no,2,0);

do i=1 to n_no;

do j=1 to n_no;

d001[k,1]=d0[i,j];

d001[k,2]=d01[i,j];

k=k+1;

end;

end;

*print d001;

k=1;

x=j((n_no*n_no),2,0);

do i=1 to n_no;

do j=1 to n_no;

x[k,1]=i;



Eldho Varghese et al. /Journal of the Indian Society of Agricultural Statistics 70(2) 2016 123–130 129

x[k,2]=j;

k=k+1;

end;

end;

*print x;

d0001=x||d001;

d002=j(n_no,5,0);

do i=1 to n_no;

do j=1 to 4;

d002[i,j]=d0001[i,j];

end;

d002[i,5]=i;

end;

*print d002;

d00001=j(((n_no-1)*n_no),4,0);

do i=1 to (n_no-1)*n_no;

do j=1 to 4;

d00001[i,j]=d0001[i+n_no,j];

end;

end;

*print d00001;

call sort(d00001, {3 4 1 2}, ); 

*print d00001;

d1=d00001;

do i=1 to (n_no-1)*n_no;

if d00001[i,3]>d00001[i,4] then 

do;

d1[i,3]=d00001[i,4];

d1[i,4]=d00001[i,3];

end; 

end;

*print d1;

call sort(d1, {3 4 1 2}, ); 

*print d1;

vec=j(n_no*(n_no-1),1,0);

d2=d1||vec;

k=1;

do i=1 to ((n_no-1)*n_no)/2;

do j=1 to 2;

d2[k,5]=n_no+i;

k=k+1;

end;

end;

*print d2;

/*****************code for generating 
designs*******/

ww=j(n_no,n_no,0);

do i=1 to n_no;

do j=1 to n_no;

ww[i,j]=d0[i,j];

ww[i,j]=ww[i,j]-1;

end;

end;

print ww;

ww1=j(n_no,n_no,0);

do i=1 to n_no;

do j=1 to n_no;

ww1[i,j]=d01[i,j];

ww1[i,j]=ww1[i,j]-1;

end;

end;

print ww1;

ww_=char(ww,4,0);

ww1_=char(ww1,4,0);
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www=j(nrow(ww),ncol(ww),’ x’);

MERC_design=ww_+www+ww1_;

print MERC_design;

/***********************************
****************/randomization******* 
***********************/
/*****row-randomization*******/
r=j(1,nrow(ww),0);

call randgen(r,’uniform’);

*print r;

rr=rank(r);

*print rr;

ra=j(nrow(ww),ncol(ww),0);

random_row=char(ra,10,0);

do i=1 to nrow(ww);

do j=1 to ncol(ww);

random_row[i,j]= MERC_design[rr[i],j];

end;

end;

*print random_row;

/*******/

/******column-randomization****/

r=j(ncol(ww),1,0);

call randgen(r,’uniform’);

*print r;

rr=rank(r);

*print rr;

Randomized_Layout=char(ra,10,0);

do i=1 to nrow(ww);

do j=1 to ncol(ww);

Randomized_Layout[i,j]= random_
row[i,rr[j]];
end;

end;

print Randomized_Layout;

/******/

end;

run;

ods rtf close;

quit;

SAS Output for V=5

MERC_design

0 x 0 1 x 1 2 x 2 3 x 3 4 x 4

1 x 2 2 x 3 3 x 4 4 x 0 0 x 1

2 x 4 3 x 0 4 x 1 0 x 2 1 x 3

3 x 1 4 x 2 0 x 3 1 x 4 2 x 0

4 x 3 0 x 4 1 x 0 2 x 1 3 x 2

Randomized_Layout

2 x 3 3 x 4 1 x 2 4 x 0 0 x 1

1 x 1 2 x 2 0 x 0 3 x 3 4 x 4

0 x 4 1 x 0 4 x 3 2 x 1 3 x 2

3 x 0 4 x 1 2 x 4 0 x 2 1 x 3

4 x 2 0 x 3 3 x 1 1 x 4 2 x 0


