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Assessment of vulnerability of Indian agriculture to rainfall
variability — Use of NOAA-AVHRR (8 km) and MODIS
(250 m) time-series NDVI data products
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Abstract Advanced Very High Resolution Radiometer
(AVHRR) (8 km) Normalized Differential Vegetation Index
(NDVI) data and Moderate Resolution Imaging
Spectroradiometer (MODIS) (16-day, 250m) NDVI data
products were considered to analyze vulnerability of Indian
agriculture to rainfall variability under climate change impact
studies. Predicted higher temperature and altered rainfall
patterns accompanied by extreme weather events would
impact vegetation growth in natural forest, open scrub,
agricultural land and plantations. NDVI derived from 2-band
information (Red and Near-infra Red) of multi-spectral
imagery of AVHRR (1982 to 2006) and from MODIS (2000-
2010) were analysed to understand spatial and temporal
variability. Coefficient of Variation (CV) of maximum NDVI
from 15-day composites for the total length of the study
period was used to assess vulnerability of rain-fed agriculture
and results were corroborated with the Standard Precipitation
Index (SPI) rather than actual rainfall received during the
study period. AVHRR time-series data helped to identify
vulnerable areas at regional-scale, i.e., agro-ecological sub-
regions (AESR) due to coarser ground resolution while
MODIS data products with 250m pixel resolution helped
identify vulnerability at the district level. It was estimated
that over 241 Mha areas in the country may not be vulnerable
to rainfall variability-induced climate change, whereas over
81.3 Mha in arid, semi-arid and dry sub-humid regions in
the country may be vulnerable to extreme weather events.
Study indicated that over 12.1 and 1.81 Mha of Kharif
cropland would be mildly and severely vulnerable, whereas
6.86 and 0.5 Mha of Rabi cropland may be adversely affected
in a similar manner. Of the remaining agricultural lands,
29.93 and 5.24 Mha would also be vulnerable to climate
change in a similar manner. Studies also indicated a decrease

in length of Kharif and Rabi seasons and a delay in the start
of Kharif season based on preliminary findings.

Keywords MODIS, AVHRR, NDVI, AESR, Rain-fed
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Introduction

Climate Change research has come to occupy centre
stage in the last three decades due to the increasing
occurrence of extreme climatic events with impacts felt by
millions across the world. The general perception among
the scientific community that anthropogenic causes such as
increasing GHG emissions are behind growing weather
aberrations has been underlined by the IPCC report (2008)
and prompt real-time media reporting of the impact of
extreme climate events, such as drought, heat-wave, flood,
frost, cold-wave, gale, cyclones, tornadoes and hurricanes,
have made the population alert to variations in weather
conditions that may purport climate change.

To scientifically investigate the impacts of aforesaid
weather aberrations on the bio-physical mantel of the earth,
such as the vegetation, techniques and tools of remote
sensing have been used for more than three decades now
and have supplied interesting insights on the issue. Studies
on the changes in Land Use/Land Cover (LCCS) and on the
state and vigour of vegetation (Normalized Difference
Vegetation Index — NDVI) can greatly help in understanding
these two processes. Use of precipitation and temperature
data help in further understanding the genesis and impact of
extreme weather events and their impact on LULC and
NDVI. To study the impact of variations in weather and its
impact on agriculture, a temporal analysis of NDVI data
products obtained from NOAA-AVHRR (8 km resolution)
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data and NASA-MODIS (250 m)-based NDVI data products
was used. Time-series NDVI datasets from NOAA-AVHRR
and MODIS-TERRA were downloaded from their respective
websites and used for assessing agricultural vulnerability in
India. Global Inventory Modelling and Mapping Studies
(GIMMS) dataset of NOAA-AVHRR with 8 km resolution
was used to analyse agricultural vulnerability across the
country at state- and agro-eco-sub-region (AESR) levels
during the 1982-2006 period, whereas MODIS (16-day, 250
m resolution) NDVI data products were used to understand
agricultural vulnerability trends at the district level in the
country during the period 2001-2011. SPI instead of actual
rainfall (Saikia and Kumar, 2011) was used to corroborate
extreme weather events with variations in NDVI. In fact,
readily available NDVI data products dictated the length of
temporal analysis undertaken and reported in this paper.

Study Area

India is a vast country, with reported total geographical
area of 328 Mha, extending from tropical climate in the
Andaman & Nicobar Islands and the southern tip of mainland

India to temperate climate in Jammu & Kashmir in the north,
and from per-humid climate in the Brahmaputra valley with
over 10,000 mm annual rainfall in the east, to arid desert in
Jaisalmer with <100mm annual rainfall in Rajasthan in the
west. For the present study, we undertook to analyse Land
Use & Land Cover Change (LCCS) and impact of weather
variability in the whole of India. According to Land Use —
Land Cover (LULC) Atlas of India available at the NRSC
(ISRO) web portal http://bhuvan-noeda.nrsc.gov.in (NRSC,
2011), the net sown area under agriculture in 2010-2011
was 144.33 Mha, out of which 52.6 Mha was under double
crop, 4.8 Mha under triple crop and 7.3 Mha under plantation.
Area under Kharif cultivation extended to over 54.1 Mha
and for Rabi over 24 Mha. The statistics provided by NRSC
is based on NDVI and digital interpretation of satellite data.
Figure 1 indicates the extent of various LULC classes in
1986 and in 2011 in the country. Current and Long Fallow
accounted for 36.7 Mha, whereas forests and plantations
covered 61.29 Mha and scrub-forest occupied 9.32 Mha.
According to the Ministry of Agriculture, Govt. of India,
where land utilization data is generated based on traditional
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enumeration methods, the net sown area in 2006 was reported
as 141.364 Mha, which included 63.196 Mha under irrigated
cultivation and 78.168 Mha under rain-fed agriculture.
Rainfall variability impacts all these types of vegetation in
the various agro-climatic zones in India especially in the
arid, semi-arid and sub-humid regions and also in other zones
that may experience change as reported by Rajeevan et al
(2008) and Rupa Kumar et al (2006) in their studies on
rainfall trends in India. Use of sensor-based data such as
NOAA-AVHRR 8 km NDVI data and MODIS 16-day 250
m NDVI data product has enabled an objective analysis of
the vulnerability of vegetation cover across India owing to
variations in rainfall.

Material and Methods

Satellite-based NDVI Data Products

Time-series NDVI data products of AVHRR space-
borne sensor of NOAA polar-orbiting satellites were used.
The first two bands out of the five, i.e., Red (0.58-0.68 pm)
and Near-Infrared (0.75—1.1um) that are useful for mapping
clouds, land surface and delineate surface water bodies,
respectively, when combined, were found useful for
monitoring vegetation (Tucker ef al., 2004, 2005) and was
hence used in the present study to assess agricultural
vulnerability in the country. AVHRR NDVI data product is
a part of Global Inventory Modelling and Mapping Studies
(GIMMS) dataset and was obtained from the AVHRR
instrument on board NOAA satellite series 7, 9, 11, 14, 16
and 17 for the period 1981 till 2006. The data was corrected
for calibration, view geometry, volcanic aerosols and other
effects not related to vegetation change and was made
available for download from the Global Land Cover Facility
(GLCF) website at www.landcover.org (http://
www.glcf.umd.edu/data/gimms/ at 15-day Maximum-Value
Composite).

In addition, NASA-operated sensor Moderate
Resolution Imaging Spectroradiometer (MODIS) on board
TERRA and AQUA earth observation research satellites with
a sweeping swath of 2330 km and covering the earth in 1-2
days in 36 discreet spectral bands supplemented earth
observation seamlessly with a higher-resolution NDVI
dataset (http://terra.nasa.gov/). MODIS data has been found
to be ideal for monitoring large-scale changes in the
biosphere and was hence deemed useful for assessing
agricultural vulnerability at a relatively higher scale like
district within the country. MODIS — 250 m NDVI composite
products are freely available from the Land Processes —
Distributed Active Archive Centre (LPDAAC) website of
USGS <http://mrtweb.cr.usgs.gov/>. The Indian
subcontinent is covered in 13 tiles and NDVI data is available
from February 2000 onwards.

NDVI is derived from 2-band information (Red and
Near-infra Red) of a multi-spectral imagery of a satellite
data and is a contrast-stretch ratio calculated from the Red
band and Near-Infrared band (NIR) of sensors such as
LANDSAT — TM; AVHRR; IRS-1B, 1C, 1D, P6: LISS-3/
LISS-4; and MODIS besides several others. NDVI from
AVHRR and MODIS data with Red reflectance in Band 1
and NIR reflectance in Band 2 is calculated as [band 2-band
1/(band 2 + band 1)]. The NDVI takes advantage of the
typical low-reflectance values of vegetation in the Red
wavelength range, which corresponds to chlorophyll
absorption and high-reflectance values in the NIR range,
which signifies leaf structure, thereby enhancing the contrast
between vegetated, unvegetated and sparsely vegetated areas.
Land Use and Land Cover (LULC) analysis helps in
identifying NDVI variations in agriculture, forest and open
scrubland. Correlating rainfall pattern with NDVI time-series
data can indicate which areas are vulnerable to climate
change owing to higher temperature and rainfall. Use of
NDVI is particularly advantageous in the sub-tropical
regions in Asia and Africa where dependence of agriculture
is high among developing economies and study of vegetation
response to rainfall and temperature in the event of scarce
climate data can help in drawing strategies to manage and
adapt to weather aberrations.

Standardized Precipitation Index

SPI, which represents the total difference of precipitation
for a given period of time from its climatological Mean and
then normalized by Standard Deviation (SD) of precipitation
for the same period, provides an improved tool to assess
variations in precipitation and the impacts associated with it
(Saikia & Kumar, 2011). Hence, SPI instead of actual rainfall
data was used for this study. India Meteorological
Department (IMD) provides daily rainfall data of more than
100 years for many stations from its archives. Daily gridded
rainfall data set for the period 1901-2007, developed by
Rajeevan et al (2008) for 1384 stations, was used for the
present study. The gridded rainfall data on a regular grid of
19 Latitude x 1° Longitude was used to calculate SPI value
using the following formula:

a-A

N

SPI =

where

a is the current precipitation for a given period

A the long-term normal of precipitation for the same period

sd the Standard deviation of precipitation for the given period
The long-term precipitation record was fitted to a

probability distribution, which was then transformed into a

normal distribution, so that Mean SPI for a location and

desired period is equal to zero. Positive SPI values indicated
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greater than Median precipitation, whereas negative values
indicated less than Median precipitation. As SPI is
normalized, both wetter and drier climates can be presented
in a similar manner, and both wet and dry periods denoting
flood and drought can be monitored using SPI, thus making
it location- and time-independent. McKee et al. (1993) used
SPI values to define drought intensities in the US.
Accordingly, SPI of < 1.00 for any given period is considered
as the beginning of the reduced rainfall period, which could
lead to drought, if prolonged. Thus, drought is said to occur
at any time when SPI is continuously negative and reaches
—1.0 or less. Drought event is said to end when SPI becomes
positive. Thus, using SPI instead of actual rainfall data for
the time period 1901-2007, rainfall data was analyzed to
identify drought and flood events and their corresponding
AVHRR-based NDVI data. Figure 2 indicates the
methodology used for this study.

Review of Literature

Early studies reporting the use of AVHRR data pertained
to analysing global vegetation phenology in temperate and

sub-arctic region in the northern hemisphere during the
period 1981-1991 (Myneni et al., 1997), thus establishing
its utility for temporal analysis. Since then, several studies
on global biophysical land surface, land use/land cover
identification (Jakubauskas et al., 2000), harmonic
periodicity of NDVI change in global vegetation mapping,
global continuous fields of percentage of woody vegetation,
herbaceous vegetation and bare ground from AVHRR 8 km
NDVI data have been reported (Defries et al., 2000), thus
firmly establishing its use for vegetation mapping. AVHRR
1 km data for global land cover classification was used to
calibrate the MODIS sensor (Hansen et al., 2000), thus
providing a seamless transition with improved resolution
capability for future applications as mentioned earlier. Since
then, both AVHRR and MODIS have been the main
workhorses for studies on vegetation across the globe
(Bacour et al., 2006; Chen et al., 2003; Friedl et al., 2002;
Huete et al., 2002; Hensen et al., 2002; Nemani ef al., 2003;
Krishnaswamy et al., 2004; Thenkabail et al., 2004, 2007,
Celis et al., 2007; Heumann et al., 2007, Jain et al., 2009;
Sehgal ef al., 2011). For topographically complex terrains
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such as the Himalayan ranges in Jammu & Kashmir and in
Arunachal Pradesh in India, downscaling of real-time
vegetation dynamics by fusing multi-temporal MODIS and
Landsat NDVI has been recommended (Hwang et al., 2011).
However, for the present study we have omitted these snow-
clad regions from analysis due to extreme variability in
Maximum NDVI values. Global evaluation of AVHRR-
NDVI datasets (Beck er al., 2011) and temporal composting
for LULC mapping in semi-arid ecosystems (Huettich et al.,
2011) for understanding vegetation dynamics have guided
the present study in assessing the vulnerability of Indian
agriculture to rainfall variations. Several studies have also
been undertaken to model time series data such as NDVI
and integrate it with climate change research (Qiangyi et
al., 2012; Lhermitte ef al., 2008; Lei & Bian 2010; Beaurs
& Henebry 2010; Yang et al., 2011). For the present study, a
functional interdisciplinary cross-scale framework was used
to help improve our understanding of temporal change in
the Vegetation Index in India based on AVHRR and MODIS
time series datasets (Chen 2004; Justice ef al., 1985; Rouse
et al., 1973; Tarnavsky et al., 2008; Wunderle 2003).

Results

Climate change is an insidious process and hence long-
term studies are essential for understanding the trends and
magnitude of the problem. In India where agriculture is
largely rain-dependant, more so in the rain-fed arid, semi-
arid and sub-humid regions where vegetation growth is
sparse and slow, discerning change in vegetation growth is
difficult. However, this change, as indicated by temporal
variations in NDVI, could be invaluable to the understanding
of dynamics of vegetation growth both seasonal and
permanent, namely crop and forest cover, respectively. This
information is critical for planning strategies and adaptation
mechanisms to mitigate or reduce agricultural vulnerability
to rainfall variations and extreme weather events that may
lead to climate change.

Rainfall and Temperature Pattern During 1982-2006

Figures 3 and 4 indicate the variations in rainfall and
temperature across the country in both time and space.
Although 1982 was a wet year as 205.28 Mha in India
received rainfall > 800mm, the SW monsoon period was

India - Annual Rainfall{ 1982)

India - Annual Rainfall (2008)

India - SW- Rainfail (2006)

Figure 3 Variations in annual and SW monsoon rainfall in 1982 and 2006
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Mirimum Temperature (1982)

Minimum Temperature (2005)

Maximum Temperature (1982)

Maximum Temperature (2005)

Figure 4 Variations in minimum and maximum temperature in 1982 and 2006

drier as 87.76Mha land received <500mm rainfall, 74.5 Mha
between 500-800mm and over 124.35 Mha over 800mm.
On the contrary, in 2006, both annual rainfall and SW
monsoon season saw copious and well-distributed rainfall.
Whereas the annual maximum rainfall was 4700mm in 1982,
it was over 4883mm in 2006. During 2006, over 134.46 Mha
received rainfall ranging from 200 to 800mm, whereas over
193.43 Mha received a seasonal rainfall of over 800-
1100mm. Maximum rainfall during the SW monsoon period
in 1982 was 4521mm along the western Konkan coast and
the north-eastern region; however, over 32.1 Mha area in
western Rajasthan, Kutch, southern Punjab and western
Kashmir received <200mm rainfall. On the contrary, in 2006
only over 0.82 Mha received a seasonal rainfall of <200mm,
whereas over 274.70 Mha received an annual rainfall of over
800mm.

Temperature-wise not much variation was observed in
the two years considered for this study. Using gridded temp
data (1°x 1") available from 1982 to 2005, temperature
variations were studied. It was seen that both in 1982 and in
2005, maximum temperature ranging from 31 to 34°C was
experienced in over 250 Mha in the country (see Figure 4).

st
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Minimum temperature of <10°C was felt in over 19 Mha in
both years. Such low temperature adversely affected Rabi
and other winter crops, fruits and vegetables.

Rain-fed agriculture face aberrant weather conditions
such as decrease in duration of the crop-growing period due
to early onset or withdrawal of monsoon, increase in intense
rainfall events with reduction in the number of rainy days as
studies do not indicate any significant reduction in actual
rainfall received, monsoon failure with attendant drought
or floods with more intense rainfall events accompanied by
a general shift in spatial pattern. For instance, analysis of
rainfall pattern in the last 107 years (Rajeevan ef al., 2008)
has shown an increase in rainfall in the drought-prone
Anantapur district in Rayalseema region in Andhra Pradesh
but a decline in the north-eastern region in India
(Ravindranath ef al., 2011). This could spell disaster in the
country as the two typical ecosystems cannot cope with the
surplus or deficit rainfall. Even irrigated agriculture may
not be immune to these variations as snow cover and glaciers
shrink and perennial rivers receive lesser water-flow on the
one hand, while on the other hand, groundwater recharge
would decrease. Hence, rainfall pattern was analysed and
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SPI was used to understand the trend in NDVI time-series
data for the country.

Trends in SPI and Resultant NDVI

There are large variations in vegetation dynamics in the
country owing to climatic variability. In arid regions in
western Rajasthan and Gujarat and south-central India in
Bellary and Anantapur districts, where sparse vegetation and
large livestock population prevail, the dependence of
livestock on this sparse vegetation cover makes it critical
for wvulnerability monitoring and evaluation as
implementation of any adaptative mechanism would depend
on it. In the semi-arid and sub-humid zones, which account
for a large area under rain-fed agriculture, the poor natural
resource base like poor shallow soil cover and falling
groundwater table in addition to the large number of marginal
and small farm holdings that depend on SW monsoon rainfall
for carrying out agricultural operations, vulnerability
increases. In humid regions where two or three cropping
seasons may be possible, floods or drought could be
devastating, whereas in per-humid regions as in northeast
India, a decline in rainfall, as indicated in our study, could
be devastating. Figure 5 shows the temporal trend in NDVI
and actual rainfall during the study period.

As indicated in Figure 5, maximum NDVI values are
essentially outlier values and are bound to be unamenable
to smoothing. Hence, the R? in this case is seen to be 0.29,
or explaining nearly 30% of variations. On the other hand,
the time-series data of Mean NDVI shows a smooth trend
and with an R? of 0.56 or 56%. To understand the trend in

annual rainfall, a 2-year moving average was taken to
understand its impact on the Vegetation Index.

Spatiotemporal Pattern of NDVI and SPI in India

AVHRR NDVI product, which is available for the whole
of the Indian subcontinent, was a subset from the global
coverage in the form of one tile for each year. Bimonthly
NDVI images were stacked and pre-processed, followed by
identification of pixel-wise maximum NDVI for arriving at
Maximum Greenness for any pixel during the corresponding
year from 1982 to 2006. This was followed by estimation of
Mean and SD for maximum NDVI. To understand variability
in Greenness as an Indicator of Vulnerability, CV of
maximum NDVI was calculated, which formed the basis of
the Vulnerability Analysis presented in this paper. Pattern
of AVHRR (8 km) based on maximum NDVI value helped
in identifying AESR that was vulnerable to rainfall variability
and climate change. This exercise also helped in the
estimation of spatial extent of vulnerable regions in the
country.

Spatial pattern of rainfall (1982 and 2006) was mapped
by interpolating 1° % 1° rainfall grid data by kriging to obtain
8-km resolution to correspond with the ground resolution
of AVHRR NDVI data. SPI was calculated from 107-year
daily rainfall records for each grid point. This data was used
to interpolate SPI data at 8-km resolution. Analysis revealed
that rainfall was the highest during the months of July—
August and occurrence of maximum NDVI followed during
the months of September—October annually. Analysis of
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annual and SW monsoon rainfall data was used for the study,
with 1982 taken as the base year. Figure 6 indicates the
pattern of Mean and maximum NDVI in India during 1982
and 2006 in addition to the corresponding SPI distribution
in each year. Mean NDVI ranged from 0.0 to 0.79 while
maximum NDVI ranged from 0.014 to 0.995. Although the
country saw normal rainfall across various ecozones, SP1
indicated a moderate drying condition in West Bengal,
eastern Bihar and Jharkhand, in a small part in Vidharba
and southern Madhya Pradesh and around National Capital
Region, southeast Punjab, southern Himachal Pradesh and
southwest Uttarkhand, which is an important sugarcane-
producing belt in northern India.

In 2006 (see Figure 6), the upper limit of Mean NDVI
fell to 0.75 when compared to the base-year. Range of
maximum NDVI showed a decrease at the lower limit, i.e.,
0.012 as against 0.014 in 1982 while the upper limit increased
to 1.0 instead of 0.995 as in 1982. Analysis of rainfall data
revealed good rainfall in large parts of the country; however,
SPI revealed large parts of Maharashtra, Gujarat and western
Rajasthan besides a small part in north Andhra Pradesh and
adjoining Orissa reeling under floods. The infamous Mumbai

floods also occurred during the same year, although a part
of the country like northern Chattisgarh suffered from
drought during this period.

Changing Trend of NDVI During Kharif and Rabi
Seasons in an Annual Cycle of 19821983 and 2005-2006

Seasonal NDVI was studied using mean and maximum
NDVI values for Kharif and Rabi seasons during a cropping
system continuum during 1982-83 and 2005-2006. The
Kharif cropping season in 1982-83 started in the 1% week
of May instead of June as is normal and ended in the first
week of November in 1982, whereas the Rabi season started
in the 1 week of November and ended in the last week of
March in 1983. In 2005 the Kharif season started in the 2™
week of June and ended in the last week of November. The
Rabi season started in the 1% week of December and ended
in the last week of March in 2006. Thus, we see a delay in
the start of both Kharif and Rabi cropping seasons in 2005~
2006 and an effective reduction in the length of both cropping
seasons (see Figure 7).

There is a need to study the annual trend in maximum
NDVI for each year during the period 1982-2006 to

Max NDVI - 1987 =
0 %0 50 1go0mm  J

SPi-1987
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Figure 6 Mean, maximum NDVI and SPI in 1982 and 2006
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conclude with a degree of certainty if there is a discernable
trend in the reduction of length of cropping season in
the country. A corresponding fall in area under food
grain production was however seen; in 2005-2006 the area
under food crops production decreased to 122.05 Mha
from 125.56 Mha in 19821983 (www.eands.dacnet.nic.in).
However, food grain production registered an increase
from 129.519 Mt to 208.60 Mt in the intervening period,
indicating the role of improved hybrids, irrigation facilities
and better crop management practices (CMIE Database) in
increasing food crop production. NDVI from permanent
vegetation like forest cover, seasonal vegetation and
plantations has not been segregated and accounted for in
the present study.

NDVI change and trend in Maximum and Mean NDVI
and Actual Rainfall During Two Typical Years — 1982 and
2006

Quantitative analysis of the relationship between
AVHRR (8 km) NDVI — Mean and Maximum with actual
rainfall occurrence in the whole of India in two typical years
— 1982 and 2006 revealed the following trends. While
standard deviation among NDVI was less, STDEV in rainfall
was nearly 60 mm. CV of Mean NDVI explained the 8.1%
variation between the years. Between 1982 and 2006, there
was only 5% variation in all-India rainfall and 10% in Mean
NDVI and 5% in maximum NDVI; hence, no conclusive
trends were seen on a national scale. This necessitated a
detailed study of the spatio-temporal pattern as described in
the subsequent section in this paper.

Statistics Mean Maximum Actual
NDVI NDVI Rainfall
SD 0.028 0.021 59.39
CV 0.0808 0.0404 0.036
CV (%) 8.1% 4% 3.6%

Spatiotemporal Pattern of NDVI and SPI in Typical
Regions Across India

Due to the complexity of climate, weather and
vegetation phenology across the country, it was deemed fit
to analyse the correlation of NDVI, SPI and actual rainfall
in typical regions across the country. Table 1 indicates the
variations in NDVI and actual rainfall trends to explain trends
in SPL

Trend in NDVI and SPI in Typical Drought and Flood
Years

Analysis of SPI indicated that 1987 was a typical
Drought Year in India when Gujarat and western Uttar
Pradesh experienced severe drought (SPI<-2, extremely
dry). In Rajasthan, SPI ranged from —1.0to—2.0 (moderately
to severely dry). Moderate drought prevailed in central India
(SPI -1 to —1.49). During the year, maximum NDVI in
Gujarat ranged from 0.15 to 0.73 while Mean NDVI was
0.11-0.43. In Rajasthan, maximum NDVI ranged from 0.11
to 0.54 and Mean NDVI between 0.08 and 0.33. In western
Uttar Pradesh, maximum NDVI ranged from 0.48 to 0.70
and Mean from 0.31 to 0.49. In case of central India where
moderate drought occurred, maximum NDVI ranged from
0.12 to 0.72 and Mean NDVI from 0.09 to 0.50.

ron)
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Table 1 Spatiotemporal pattern of NDVI and SPI in typical agro-ecological regions in India

District 1982 2006
SPI Annual SW Maximum  Mean SPI Annual SW Maximum Mean
rainfall monsoon NDVI NDVI rainfall monsoon NDVI NDVI
(mm) (mm) (mm) (mm)

Himachal Pradesh - Outer Himalayas - Shivaliks

Kangra 0.36 1680.0 832.0 0.60 037 -0.81 9182 517.8 0.57 0.39
Mandi 0.61 1399.1 615.7 0.73 0.48 -0.57 979.3 625.6 0.67 0.49
Una 0.05 1279.9 688.8 0.67 0.48 -0.56 901.6 580.8 0.67 0.51
Solan 0.01 1108.2 557.9 0.72 0.49 -0.30 1017.7 698.7 0.68 0.50

Reasons: Incidence of flood in Himachal Pradesh in 1982, leading to negative correlation between SW monsoon rainfall and Maximum
NDVI (—94%). In 2006 there was a positive correlation of 85%.

Hoshiarpur —0.06 1157.3 603.0 0.66 0.44 -0.47 861.1 565.5 0.65 0.48

Reasons: The district has irrigation facility and hence despite negative SPI it shows a positive NDVL.

Western Rajasthan

Jaisalmer -0.11 143.9 103.2 0.13 0.09 2.18 624.2 603.3 0.17 0.11
Jodhpur 0.09 330.6 1843 0.20 0.14 1.04 462.8 495.9 0.23 0.16
Barmer -0.16 239.5 159.3 0.15 0.11 1.50 612.3 589.7 0.20 0.14

Reasons: In 1982 high correlation among Maximum NDVI and SPI (82%) and with SW monsoon rainfall (94%) was seen. Flood in arid
parts of western Rajasthan in 2006 resulted in negative correlation between Maximum NDVI and SPI (-99%) & SW monsoon (-92%).

Gujarat Plains

Surendranagar —0.32 552.7 3379 0.32 0.22 1.19 938.3 949.0 0.45 0.29
Rajkot —0.23 567.3 3744 0.37 0.23 1.01 835.0 848.8 0.54 0.33
Amreli -0.29 580.8 3355 0.45 0.26 0.84 964.0 1010.5 0.51 0.33
Junagadh -0.30 685.4 435.7 0.54 0.33 0.78 912.2 935.8 0.60 0.40

Reasons: Irrigated agriculture predominates arid and semi-arid tracts in Gujarat. In 1982 there was a positive correlation between SW
monsoon and Maximum NDVI (71%) while in 2006 there was a negative correlation between SPI & Maximum NDVI (—81%) due to
floods.

Tamil Nadu

Periyar (Erode) -1.03 614.6 287.7 0.64 0.47 0.72 1384.7 726.0 0.67 0.52
Dindigal (Anna) -1.03 508.0 124.5 0.58 0.43 0.48 1255.8 473.4 0.62 0.50
Tiruchchirappalli -1.00 528.4 181.8 0.58 0.45 0.40 997.0 263.3 0.62 0.50
Thiruvanamalai -1.22 678.1 3154 0.60 0.48 0.03 1019.1 313.0 0.60 0.50

Reasons: The region receives rainfall from NE returning monsoon. In 1982 a negative correlation was seen between SPI and annual rainfall
(—82%) due to drought. In 2006 there was a positive correlation among SPI, annual rainfall & Maximum NDVI (85%).

Central India

Garhchiroli —0.58 1170.4 1012.7 0.69 0.47 -0.10 1233.8 987.6 0.65 0.49
Adilabad —0.47 1028.7 818.9 0.60 0.39 0.28 1136.7 899.7 0.61 0.43
Dantewada —0.60 1250.8 1145.4 0.70 0.50 0.37 1364.6 1039.5 0.68 0.53
Bastar —0.68 1134.5 1052.5 0.66 0.44 0.21 1395.1 1127.5 0.63 0.47

Reasons: Predominantly deciduous forest region in central India. In 1982 there was a positive correlation between Maximum NDVI & SW
monsoon rainfall (90%). In 2006 there was a low correlation between SPI, SW monsoon & Maximum NDVI (11%) as normal conditions
prevailed.
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Eastern India — Chottanagpur Plateau

Puruliya —1.17 9733 751 0.50
Bankura —1.36 1027.4 762.5 0.54
Singhbhum =59 1083.4 888.6 0.62
Mednapur ~1.28 1277.8 9442 0.60
Mayurbhanj -1.08 1110.3 860.3 0.65

0.34 0.35 1502.6 1268.1 0.56 0.37
0.36 0.13 1495.4 1240.1 0.58 0.39
0.43 0.37 1548.2 1295.3 0.63 0.44
0.40 0.17 1564.7 1301.6 0.66 0.43
0.45 0.30 1599.6 13299 0.65 0.48

Reasons: The region covers agricultural area in West Bengal and forested area in Jharkhand and Orissa. In 1982 there was a positive
correlation between SW monsoon rainfall & Maximum NDVI (74%). In 2006 with a 40% increase in rainfall, a positive correlation (81%)

was seen.

Northeastern region — Middle Brahmaputra Valley

Sibsagar =019 2491.3 1747.1 0.59
Papumpare -0.36 2047.3 1331.6 0.81
Lakhimpur -0.24 2348.1 1566.1 0.68
Dibrugarh —0.18 29345 2052.6 0.56

0.39 -0.54 24628 17245 0.59 0.41
0.53 -0.30  2486.7 1678.4 0.73 0.58
0.46 027 2579.7 1748.2 0.66 0.50
0.39 046 27114 1853.0 0.57 039

Reasons: The broad riverbed and water logging in 1982 imparted negative NDVI and a negative correlation between SPI & Maximum
NDVI (-99%). In 2006 there was a decrease in waterlogging and hence a positive correlation between the two (80%).

Semi-arid tract in Deccan region

Anantapur —0.42 S19.7 2717 0.41
Bellary 0.00 591.2 338.2 0.44
Raichur -0.10 596.8 405.5 0.43
Koppal 0.08 557.3 304.3 0.39

0.27 0.36 il b7 429.7 0.49 0.33
0.31 0.97 946.5 687.6 0.53 0.35
0.29 1.00 874.6 597.4 0.53 0.35
0.26 1115 1002.5 715.8 0.44 0.30

Reasons: In the semi-arid tract, rain-fed agriculture with livestock rearing is predominant. In 1982 there was a low positive correlation
between SW monsoon & Maximum NDVI (71%) while in 2006 it was mildly negative (—15%) due to floods in Koppal, in Karnataka.

SPI analysis indicated 2005 as a Flood Year when flood
occurred extensively in Andhra Pradesh, Karnataka, Tamil
Nadu and the southwest parts of Maharashtra when SPI
ranged from very wet to extremely wet (SPI>1.5). In 2005,
maximum NDVI ranged from 0.47 to 0.72 and Mean NDVI
ranged from 0.30 to 0.55 in Andhra Pradesh and Karnataka.

Discussion

To understand the dynamics of weather aberrations, a
temporal analysis was carried out for each year during the
study period. CV of maximum NDVI from AVHRR (8 km)
data was calculated for a period of 25 years (1982-2006)
and one CV of maximum NDVI value was arrived at, which
was used to plot Vulnerability Map at a pixel-level for each
state and AESR in the country (see Figure 8). As shown Fig.
8, there is a clear north—south axis to the spatial distribution
of agricultural vulnerability to rainfall variability in the
country. The vulnerable zones indicated therein correspond
to arid and semi-arid regions, which include a transition belt
between semi-arid and dry sub-humid zones. The map
reveals that over 210 Mha in the country may be negligibly
affected by climate change due to rainfall variability, whereas

76.56 Mha and 2.85 Mha would be moderately and severely
affected, respectively; these zones have been termed as
vulnerable to climate change. These regions are essentially
located in the arid and semi-arid tracts in Rajasthan and
Gujarat. Thus, while livestock in western Rajasthan may be
critically vulnerable, prosperous farmers from the cotton-
and groundnut-growing belt in Gujarat may also face severe
economic hardships and losses due to climate change.

As stated earlier, vulnerability was analysed in tandem
with land use/land cover based on LULC Atlas of NRSC
(2011). Table 2 indicates that over 1.81 and 12.1 Mha of
Kharif cropland may be severely and moderately vulnerable,
respectively, to climate change. Additionally, over 0.5 and
6.86 Mha of Rabi cropland may be severely and moderately
vulnerable, respectively. Rest of the agricultural land,
including double- and triple-cropped area, current fallow,
plantation and orchards in 5.24 Mha would be adversely
affected, whereas 29.93 Mha may be only marginally
vulnerable to climate change due to rainfall variability.

Analysis of vulnerability at agro-ecological sub-regions
level (AESR) indicates that the Thar desert and the Kacchh
Peninsula besides Malwa plateau, Vindhyan scrubland

rhu
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Bl <10 (210.00)

[ 10-20 (78.56)

I 2030 (0285)

Bl 3040 (<1) §*°7

CZ3 AESR No. 0

&3 Snow- clad mountains

‘$

Author: CRIDA GIS §

Source: Global Inventory Modeling & Mapping Studies (GIMMS) NOAA-AVHRR (8-km) NDVI Bimonthly (1981-2006) Product

Figure 8 Coefficient of variation of Maximum NDVI across various AESR in India

Table 2 Extent of vulnerability in various LULC classes in India

Land use / Land cover in India (Source of NDVI)

Vulnerability (CV of Maximum NDVI)

<10 10 -20 20-30 30-40
Extent of Vulnerability (Area, M ha)

Agriculture (incl. double- and triple-cropped area, 80.23 29.93 478 0.46
current fallow, plantation, orchard)
Forest (evergreen and deciduous forest) 59.84 477 0.07 0.006
Kharif only 34.99 12.1 1.63 0.19
Rabi only 14.96 6.86 0.49 0.01
Wasteland 10.06 6.72 3.08 0.69
Open scrub 10.86 4.78 227 0.66

Map source: LULC, NRSC (2007 - 08)

and Narmada river valley may be severely vulnerable to
climate change followed by central India and northern
Gujarat (see Table 3). As mentioned earlier, MODIS 16-day
250 m NDVI data was used to refine the vulnerability
analysis further (see Figure 9) to district level, which would
help in translating adaptation strategies at the local

e
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administration level. Geostatistical analysis indicated that
instead of 210 Mha as estimated using AVHRR 8-km NDVI
data, over 239.14 Mha may be marginally affected by climate
change-induced vulnerability. Over 55 Mha may be
moderately vulnerable, whereas over 8 Mha may be severely
affected.
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Table 3 Vulnerability to climate change in various ASERs in India

Geographical region
in India

Climate

type

Geog.
area
(M ha)

Vulnerability
(CV of Maximum NDVI)
10-20  20-30  30-40
Extent (Area in M ha)

<10

Thar desert & Kacchh
Peninsula

Plains of Rajasthan,
N Gujarat & SW Punjab

S Kacchh, N Kathiawar &
Karnataka Plateau

N Punjab Plain; Ganga-
Yamuna Doab; Rajasthan
Upland

N Gujarat Plain (incl.
Aravalli & E Rajasthan
Uplands); Central Kathiawar;
S Telangana & N Karnataka
Plateau & E Ghat;

SW Maharashtra

5.2 & 5.3 Plateaus of Central India,
W Malwa, W & E
Mabharashtra, N Karnataka
& NW Telangana;

E Gujarat plain; Vindhyan
& Satpura ranges;
Narmada valley

10.1 Malwa plateau; Vindhyan
hills & Narmada valley

Hot hyper-
arid

Hot Typic
arid

Hot arid

Hot semi-
arid

Hot dry
semi-arid

Hot moist
semi-arid

Hot dry

sub-humid

14.3

42.1

8.1

Shallow to deep sandy 0.82 36l 5:52 4.02
desertic; deep loam;

saline & alkali

Deep loamy desertic

Deep loamy; saline &
alkali; mixed red & black

Deep loamy alluvium-
derived

Deep loamy grey brown

& alluvium-derived; Shallow
to medium loam; clayey
black; mixed red & black;
shallow - medium loam

Medium to deep clayey 2993 11,59 0.18 0.31
black; Deep loamy coastal

alluvium; Shallow to

medium loam; clayey

black; Deep loamy to clay;

mixed red & black

0.48 329

[
b
(%]

Medium and deep clayey
black; shallow loamy black

Table 4 List of vulnerable districts in India based on variability of MODIS data

State

District

CV of Maximum NDVI (10-20%)

Andhra Pradesh Anantapur, Kurnool, Mahbubnagar, Prakasam

Bihar Gaya, Jahanabad, Nawada

Gujarat Ahmadabad, Jamnagar, Rajkot, Surendranagar

Karnataka Belgaum, Bijapur, Chitradurga, Dharwad, Gadag, Gulbarga, Haveri, Koppal, Raichur
Madhya Pradesh Barwani, Bhind, Dhar, Guna, Ratlam, Sheopur, West Nimar

Mabharashtra Ahmednagar, Aurangabad, Pune, Sangli, Satara, Solapur

Rajasthan Ajmer, Alwar, Bhilwara, Ganganagar, Jaipur, Jhunjunu, Karauli, Sawai Madhopur, Tonk
Uttar Pradesh Jhansi

CV of Maximum NDVI (20-30%)

Gujarat Kacchh

Rajasthan Barmer, Bikaner, Churu, Hanumangarh, Jodhpur, Nagaur

CV of Maximum NDVI (30 — 40 %)

Rajasthan Jaisalmer

s
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Figure 9 Vulnerability of agriculture in India based on MODIS (250m) NDVI data product

In most parts of the country, vulnerability based on CV
of maximum NDVI ranged from 10 to 20% only. However,
western Rajasthan was seen to be the most vulnerable, with
an estimated CV of 30-40%. As mentioned earlier, the snow-
clad Himalayan regions were excluded from this study. Table
4 describes the list of districts that were identified as
vulnerable to climate change owing to rainfall variability at
various degrees of intensity.

Conclusion

This study revealed that AVHRR and MODIS NDVI
time-series data are useful for investigating the slow process
of climate change due to rainfall variability. Satellite sensor-
based products provide an authentic spatial reference to the

Ind%f] ournals.com

analysis of vulnerability to climate change. As these data
are readily available, their inclusion in planning for
adaptation and mitigation strategies is essential. Due to
restriction in ground resolution, AVHRR 8 km data was used
to arrive at a synoptic view of vulnerability across the country
in various AESRs. MODIS 250 m NDVI products helped in
observing vulnerability at a district level, which would help
in drawing actual implementable strategies at the local level.
The study was strengthened by use of SPI instead of actual
rainfall data. Although nearly 241 Mha of India may be safe
from climate change, 81.3 Mha may be vulnerable in
Rajasthan, Gujarat, Marathwada and Vidharbha regions in
addition to the semi-arid tracts of Karnataka and Andhra
Pradesh, where rain-fed agriculture is widely practiced.
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It was seen that in both 1982 and 2005,maximum
temperature ranging from 31 to 34°C was experienced in
over 250 Mha in the country, whereas minimum temperature
of <10°C was felt in more than 19 Mha in both years. Such
low temperatures adversely affected Rabi and other winter
crops, fruits and vegetables.

Rain-fed agriculture faces aberrant weather conditions
such as decrease in length of crop-growing period due to
early onset or withdrawal of monsoon, increase in intense
rainfall events with a decline in the number of rainy days.
As this study indicates, no significant reduction in actual
rainfall received, monsoon failure with attendant drought
or floods with more intense rainfall events accompanied by
a general shift in spatial pattern is evident. Delay in start of
both Kharif and Rabi cropping seasons in 2005-2006 and
an effective reduction in length of both cropping seasons
resulted in a decrease in area under food production from
125.56 Mha in 1982-1983 to 122.05 Mha. Between 1982
and 2006, there was only 5% variation in all-India rainfall
and 10% in Mean NDVI and 5% in maximum NDVT; hence,
no conclusive trends were seen on a national scale. However,
NDVI and SPI could be used as good robust indicators for
analysis of agricultural vulnerability.
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