
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/241036448

Spatial	prediction	of	soil	properties	in	a
watershed	scale	through	maximum	likelihood
approach

ARTICLE		in		ENVIRONMENTAL	EARTH	SCIENCES	·	APRIL	2012

Impact	Factor:	1.77	·	DOI:	10.1007/s12665-011-1185-7

CITATIONS

5

READS

130

3	AUTHORS,	INCLUDING:

Priyabrata	Santra

ICAR-Central	Arid	Zone	Research	Institute	(…

23	PUBLICATIONS			123	CITATIONS			

SEE	PROFILE

B	S	Das

IIT	Kharagpur

54	PUBLICATIONS			589	CITATIONS			

SEE	PROFILE

Available	from:	B	S	Das

Retrieved	on:	25	March	2016

https://www.researchgate.net/publication/241036448_Spatial_prediction_of_soil_properties_in_a_watershed_scale_through_maximum_likelihood_approach?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_2
https://www.researchgate.net/publication/241036448_Spatial_prediction_of_soil_properties_in_a_watershed_scale_through_maximum_likelihood_approach?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Priyabrata_Santra3?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Priyabrata_Santra3?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_5
https://www.researchgate.net/profile/Priyabrata_Santra3?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/B_S_Das?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/B_S_Das?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/IIT_Kharagpur?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/B_S_Das?enrichId=rgreq-f901cef3-f544-4896-bcbc-a33cc0bb5704&enrichSource=Y292ZXJQYWdlOzI0MTAzNjQ0ODtBUzoxMDMwMjI4MDU5MTM2MTRAMTQwMTU3Mzk1OTg4Mg%3D%3D&el=1_x_7


ORIGINAL ARTICLE

Spatial prediction of soil properties in a watershed scale
through maximum likelihood approach

Priyabrata Santra • Bhabani Sankar Das •

Debashish Chakravarty

Received: 8 May 2010 / Accepted: 2 July 2011 / Published online: 26 July 2011

� Springer-Verlag 2011

Abstract Surface map of soil properties plays an

important role in various applications in a watershed.

Ordinary kriging (OK) and regression kriging (RK) are

conventionally used to prepare these surface maps but

generally need large number of regularly girded soil sam-

ples. In this context, REML-EBLUP (REsidual Maximum

Likelihood estimation of semivariogram parameters fol-

lowed by Empirical Best Linear Unbiased Prediction)

shown capable but not fully tested in a watershed scale. In

this study, REML-EBLUP approach was applied to prepare

surface maps of several soil properties in a hilly watershed

of Eastern India and the performance was compared with

conventionally used spatial interpolation methods: OK and

RK. Evaluation of these three spatial interpolation methods

through root-mean-squared residuals (RMSR) and mean

squared deviation ratio (MSDR) showed better perfor-

mance of REML-EBLUP over the other methods. Reduc-

tion in sample size through random selection of sampling

points from full dataset also resulted in better performance

of REML-EBLUP over OK and RK approach. The detailed

investigation on effect of sample number on performance

of spatial interpolation methods concluded that a minimum

sampling density of 4/km2 may successfully be adopted for

spatial prediction of soil properties in a watershed scale

using the REML-EBLUP approach.

Keywords Residual maximum likelihood �
Best linear unbiased prediction � Kriging � Semivariogram �
Soil hydraulic properties � Elevation

Introduction

Modeling runoff and sediment loss from a watershed

through physically based distributed hydrological model

needs information on soil properties especially the soil

hydraulic properties, e.g., saturated hydraulic conductivity

(Ks) and water retention parameters describing the rela-

tionship between volumetric water contents (h) and matric

potential head (h) (Du et al. 2009; Santra et al. 2011).

Preparation of surface map of these properties through

direct measurements at several locations within a water-

shed is time consuming and expensive. Spatial interpola-

tion techniques serve as an alternative to create desired

surface maps from a few measured values. Inverse distance

weighting (Uygur et al. 2010) and several geostatistical

methods (Goovaerts 1997) are generally used for preparing

thematic soil maps. Recently, Baskan et al. (2010) and

Rakhmatullaev et al. (2010) have proposed a sequential

Gaussian simulation (SGS) (also, called as turning band

interpolation) to interpolate soil properties. Despite con-

tinued innovations on interpolation approaches, the kriging

approach continues to be one of the most common

approaches to obtain the surface maps of soil properties

from point-based measurements (Goovaerts 1998; Goova-

erts 1999; Iqbal et al. 2005; Robinson and Metternicht

2006; Santra et al. 2008; Dong et al. 2011).
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The kriging approach requires a semivariogram that

describes the spatial correlation structure for the variable to

be interpolated. Precise estimation of semivariogram

parameters is a key step for this purpose. The most com-

mon approach of estimating semivariogram parameters is

the calculation of experimental semivariogram from raw

data and fitting it to standard semivariogram models, such

as exponential model, spherical model, Gaussian model,

etc. The experimental semivariogram is commonly com-

puted through the Matheron’s (Matheron 1965) methods of

moment (MoM) approach, which needs at least 100–150

sampling sites (Webster and Oliver 1992). A sample of this

size is often beyond the budget of many geostatistical

applications especially in a watershed-scale. As an alter-

native to the MoM approach, the maximum likelihood

(ML) approach has been proposed for better estimation of a

semivariogram structure from limited spatial data with

sample sizes even below 90 (Pardo-Igúzquiza 1998; Lark

2000; Kerry and Oliver 2007). Besides the issue of sample

size, the available standard semivariogram models may not

adequately describe an experimental semivariogram over

small lags. To fulfill this shortcoming, a more flexible

model, the Matérn semivariogram model has been pro-

posed (Matérn 1960; Stein 1999; Diggle et al. 2003;

Minasny and McBratney 2005). In this approach, the spa-

tial correlation structures of soil properties are more con-

veniently described using a smoothness parameter (m) in

the Matérn model, specifically when soil properties are

influenced by several auxiliary variables (Stein 1999;

Minasny and McBratney 2007). The smoothness parameter

is also important for determining the semivariogram esti-

mator from irregularly located observations.

Among different kriging methods, ordinary kriging

(OK) is considered as the best method (Issaks and Sri-

vastava 1989) and is most suitable for preparing soil maps

(Goovaerts 1999). When two soil properties are correlated,

co-kriging is observed to be a better approach than OK

(Basaran et al. 2010). In case of interrelations between

spatial attributes, multivariate geostatistical methods such

as factorial kriging may be a better option (Goovaerts

1992, 1994; Lin 2002). If the goal of geostatistical analysis

is to detect the spatial patterns of extreme values, such as

hot spots of pollutants in soil, indicator kriging (IK) or

sequential indicator simulation (SIS) are the suitable

options (Juang et al. 2004). Recently, the kriging approach

was integrated with triangular network interpolation for

severely skewed data with several peak values (Wu et al.

2010). In the presence of trend in dataset, regression kri-

ging (RK) is popular among pedometricians because it is

easy to use and performs better than OK and co-kriging

(Odeh et al. 1995; Baxter and Oliver 2005; Herbst et al.

2006; Simbahan et al. 2006). However, Cressie (1993) and

Lark et al. (2006) pointed out the theoretical biasness of

RK in estimating the semivariogram from the residuals and

therefore suggested the pedometricians to use a statistically

sound method called REML-EBLUP (REsidual Maximum

Likelihood estimation of semivariogram parameters fol-

lowed by Empirical Best Linear Unbiased Prediction of a

variable). The REML approach is capable of handling

spatial data with presence of trend and estimates the

semivariogram parameters and trend parameters directly

from the data (Patterson and Thompson 1971; Kitanidis

1983; Stein 1999). The trend in spatial data could be

because of geographical coordinates (internal trend) or

ancillary variables (external trend). Moreover, the REML-

EBLUP will be advantageous when the external trend

variable is relatively cheap to measure, such as topo-

graphical indices derived from a digital elevation model, or

a remotely sensed measurement of the land surface (Lark

et al. 2006). Recently, Minasny and McBratney (2007)

reported the superiority of the REML-EBLUP approach to

OK and RK for spatial data with presence of trend.

Therefore, in a hilly watershed, where sampling in regular

grid is a difficult task, REML-EBLUP approach may be a

good option for spatial prediction of soil properties. In hill

slope pedogenic processes, there is also chance of soil

variation due to topography, which may be taken as

ancillary information in REML-EBLUP approach. There-

fore, in this study, the REML-EBLUP approach was

evaluated for preparation of surface map of several soil

properties in a hilly watershed of Eastern India. The per-

formance of REML-EBLUP was compared with conven-

tionally used spatial interpolation methods such as OK and

RK. Another problem for geostatistical applications is

identification of the optimum number of samples required

to apply them in a watershed scale. It was reported in

earlier literature that in case of small number of soil

samples, REML-EBLUP performs better than OK and RK

(Lark et al. 2006; Minasny and McBratney 2007). There-

fore, we have also tested the comparative performance of

OK, RK, and REML-EBLUP with different sample sizes in

a hilly watershed.

Materials and methods

Study area

The present study was carried out at the Dengei Pahad

Watershed (DPW), which is a part of the western catch-

ment of Chilika Lake system in Orissa, India, and falls

within the Northeastern Ghat agro-climatic zone under hot

and sub-humid climate (Fig. 1). It is located between

19�4904800–19�5208.400N and 85�13055.200–85�14034.800E.

The average annual rainfall of the study area is 1,130 cm,

of which the major portion occurs during the monsoon
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season from June to September. The area is a hilly terrain

with the mean sea level varying from 5 to more than

451 m. The hills and isolated rocky knobs break the

watershed into small but well-cultivated fields.

Soil sampling

A total of 100 surface soil samples was collected from the

DPW from an area of 6 9 7 km. Out of all soil samples, 23

samples were collected on a 200 m 9 600 m grid during

first sampling campaign and rest of the samples were col-

lected on an average grid size of 1.5 km 9 1.5 km. Geo-

graphical coordinates and elevation of each sampling

location was recorded using a handheld global positioning

system (GPS). A few locations were also cross-checked

with a differential GPS (DGPS). During each sampling,

undisturbed soil cores (5 cm internal diameter and 6 cm

long) and approximately 500 g of surface soil (*10 cm

deep top soil) were collected from each site. After sam-

pling, soil cores were carried to the laboratory and stored in

a refrigerator and the loose soil was air dried, ground, and

passed through a 2 mm mesh sieve. These sieved soils

were analyzed for different soil properties. The digital

elevation model of the DPW was extracted from the shuttle

radar topography mission (SRTM) data of the area, which

was downloaded from http://srtm.csi.cgiar.org/.

Measurement of soil properties

Soil particle size distribution, pH, water retention behavior

(w–h), and saturated hydraulic conductivity (Ks) of col-

lected soil samples were determined in the laboratory using

standard procedures (Tables 1, 2). Pressure head-water

content (w–h) data of each soil sample was fitted to the van

Fig. 1 Location of the Dengei

Pahad Watershed (DPW) at the

western catchment of Chilika

Lake and the sampling points

within the watershed

Environ Earth Sci (2012) 65:2051–2061 2053
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Genuchten (VG) water retention model (van Genuchten

1980):

Se ¼
h� hr

hs � hr

� �
¼ 1

1þ a wj jð Þn
� �1�1

n

ð1Þ

where Se is the relative saturation, hr is the residual soil

water content (cm3 cm-3), hs is the saturated soil water

content (cm3 cm-3), w is the matric potential head (cm)

and a (cm-1) and n are shape parameters of the water

retention curve. Measured water retention data were fitted

in a VG model through optimization of hr, a, and n for each

soil sample using the Solver function of MS-EXCEL

spreadsheet program. Parameter hs was equated with soil

porosity and was provided as a constant to the VG model.

Identification of trend in spatial data

The presence of trend in spatial data was identified through

modeling the trend in the following linear functions:

zðx; yÞ ¼ b0 þ b1 � xþ b2 � y ð2Þ
zðx; yÞ ¼ b0 þ b1 � t ð3Þ

where z(x, y) is the soil property at a spatial coordinate

(x, y), and b0, b1 are coefficients of trend function, and t is

the external variable. The coefficients of this trend model

were computed through least square fitting and were fur-

ther used to formulate the trend design matrix in RK and

REML-EBLUP.

Spatial interpolation of soil properties

Three spatial interpolation methods were evaluated for

preparation of surface map of soil properties within the

sampling area of the DPW: OK, RK, and REML-EBLUP.

The OK, RK, and REML-EBLUP methods were executed

using Matlab codes available from the personal website

of Dr. B. Minasny (http://www.usyd.edu.au/su/agric/acpa/

software). Performance of these three interpolation meth-

ods was evaluated in the spatial dataset from DPW to

explore whether the REML-EBLUP approach performs

better than OK and RK in a watershed scale.

In the OK and RK approaches, experimental semivari-

ogram values were calculated from directly measured

(hereinafter referred as to original data) and de-trended

data (hereinafter referred as to residuals), respectively,

using MoM approach (Matheron 1965):

ĉðhÞ ¼ 1

2NðhÞ
XNðhÞ
i¼1

zðxiÞ � zðxi þ hÞf g2 ð4Þ

Table 1 Laboratory determination of soil properties of the collected soil samples from Dengei Pahad watershed (DPW)

Soil properties Methodology Reference

Soil particle size distribution in three

size fractions: sand, silt and clay

International pipette method Gee and Bauder (1986)

Soil pH Measuring pH of soil water slurry (1:2.5) –

Soil water retention at potential from

10 to 80 kPa

Tempe cell apparatus connected to a

pressure manifold

Klute (1986)

Saturated hydraulic conductivity Constant head permeameter (Eijelkamp

Agrisearch Equipment, Netherlands)

Klute and Dirrksen (1986)

Table 2 Descriptive statistics of measured soil properties from Dengei Pahad watershed (DPW)

Soil propertiesa Min Max Mean rb CVc Skewness Kurtosis

Sand 7.85 84.60 48.71 17.80 36.53 -0.11 -0.72

Clay 4.60 63.97 34.99 14.93 42.71 0.00 -0.99

pH 3.44 8.72 6.83 1.20 19.14 -0.63 -0.42

ln(Ks) -0.82 6.26 3.09 1.77 53.21 -0.28 -0.58

ln(a) -5.81 1.51 -2.24 1.48 63.72 -0.04 -0.13

n 1.03 1.54 1.23 0.09 34.53 0.76 0.98

Clay, clay content (%); pH, soil reaction; ln(Ks), natural log of saturated hydraulic conductivity (Ks, cm day-1); ln(a), natural log of van

Genuchten parameter, (a, cm-1); n, van Genuchten parameter
a Sand, sand content (%)
b r, Standard deviation
c CV, Coefficient of variation calculated as (r/mean) 9 100
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where, N(h) is the number of sample pairs at a given lag h,

z(xi) and z(xi ? h) are the measured values of the

random variable z at place xi and place separated by h

from xi, respectively. During calculation of experimental

semivariogram values, maximum separation distance was

fixed as half of the extent of the sampling area. The

calculated experimental semivariogram values were then

fitted in a standard semivariogram model. In the OK

approach, the fitted semivariogram parameters from the

original data were used for prediction of soil properties at

unsampled locations. In the RK approach, residuals were

kriged first followed by summing the kriging results

with output from trend function, which is generally known

as the RK of type C (Odeh et al. 1995). In case of

REML-EBLUP approach, semivariogram parameters were

estimated directly from the data through REML approach by

minimizing the negative log-likelihood function and the

detailed equations are given in Minasny and McBratney

(2007). The fundamental assumption of the REML approach

is that the spatial data follows a multivariate Gaussian

distribution with the joint probability density function (pdf)

of the measurements:

pðz=b; hÞ ¼ ð2pÞ�
n
2 Kj j

1
2exp � 1

2
ðz�MbÞT K�1ðz�MbÞ

� �

ð5Þ

where, z is a vector that contains n data, h contains the

parameters of the covariance matrix, K (n 9 n) is the

variance–covariance matrix, and Mb represents the trend

(M is the design matrix for trend and b is the coefficients).

In the REML approach, semivariogram parameters were

estimated according to Matern model:

cðhÞ ¼ c0 þ c1 1� 1

2m�1CðmÞ
h

r

� �m

Km
h

r

� �� �
ð6Þ

where, Km is a modified Bessel function of the second kind

of order m (Abramowitz and Stegun 1972), C is the gamma

function, and m is smoothness parameter (m[ 0). The

REML estimated semivariogram parameters were then

used to predict soil properties at unsampled locations using

BLUP method.

Comparison of spatial interpolation methods

Each spatial interpolation method was evaluated through a

leave-one-out cross-validation approach (Davis 1987). The

performance of each spatial interpolation method was

assessed using the root-mean-squared residual (RMSR) and

mean squared deviation ratio (MSDR):

RMSR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

zðxiÞ � ẑðxiÞ½ �2
vuut ð7Þ

MSDR ¼ 1

n

Xn

i¼1

fzðxiÞ � ẑðxiÞg2

r2
i

 !
ð8Þ

where z(xi) is the observed values of the variable at the

location xi, ẑðxiÞ is the predicted values with variance ri
2 at

the location xi, and n is the number of sampling location. The

RMSR estimates the accuracy of prediction (e.g., larger

RMSR values indicate less accuracy of prediction). The

MSDR measures the goodness of fit of the theoretical esti-

mate of error (Bishop and Lark 2008). If the correct semi-

variogram model is used, the MSDR values should be close

to 1 (Lark 2000; Minasny and McBratney 2005; Kerry and

Oliver 2007).

Effect of sample number

A few recent reports stated that REML-EBLUP method is

best suited for limited spatial data (Lark et al. 2006; Minasny

and McBratney 2007). In the present study the spatial data

consisting of 100 sampling locations in a watershed may be

considered as limited data set. Since, sampling in a water-

shed is tedious even to collect 100 samples; we wanted to test

the performance of OK, RK, and REML-EBLUP with spatial

data smaller than 100 samples. For this purpose, two subsets

from the full dataset of 100 (hereinafter referred as S1) were

created in two subsequent steps through random selection of

sampling points. The criteria followed during random

selection was to maintain a specific minimum distance

between sampling pairs, which is greater than that originally

adopted in this study and thus resulted into spatial data sets

with different sampling density. During creation of the first

subset, minimum separation distance between samples was

considered as 250 m, which resulted in 78 soil samples

(hereinafter referred as S2). During creation of the second

subset, minimum separation distance between samples was

considered as 500 m, which resulted in 54 soil samples

(hereinafter referred as S3). The sampling locations for the

dataset S1, S2, and S3 are depicted in Fig. 1. The performance

of OK, RK, and REML-EBLUP were tested with the spatial

data S1, S2, and S3 for spatial prediction of different soil

properties.

Results and discussions

Descriptive statistics of spatial data

The average sampling density for this study was 2.4 km-2.

The average sampling distance between sampling pairs was

2,213 m with a highest and lowest separation distance of

26 and 7,423 m, respectively. Thus, the sampling strategy

adopted in this study was considered as irregularly dis-

tributed samples.

Environ Earth Sci (2012) 65:2051–2061 2055

123



Different physical and chemical properties of soils col-

lected from the DPW watershed are summarized in Table 2.

Soils at this site had wide variation in physical and chemical

properties as is expected in a hill slope catena. Sand and clay

contents varied widely within the watershed. Sand contents

were observed to increase with elevation and the reverse was

true for clay contents. A total of seven different textural

classes was observed in this watershed although the majority

of soil samples had either light clay texture having clay

content [25% (N = 36) or heavy clay texture having clay

content [45% (N = 25) indicating the presence of fine-

textured soils in the study area. Soils were generally acidic

with pH values being as low as 3.44 because of the presence

of Fe- and Al-oxides. Saturated hydraulic conductivity also

showed wide variation (Ks [ 1,000 cm day-1 for coarse

textured soils and Ks \ 0.1 cm day-1 for heavily textured

soils). The van Genuchten parameter, a was log-normally

distributed with a mean value of -2.26. The mean value for

the other van Genuchten parameter, n was 1.22. The Kol-

mogorov–Smirnov test revealed that except for EC, Ks, and

a, all other soil properties were normally distributed at 5%

level of significance.

Particle density (qp), bulk density (qb) and organic carbon

content of DPW were also measured as auxiliary variables.

Soil qp ranged from 2.40 to 3.00 g cm-3 with the mean qp

(2.55 g cm-3) less than the particle density (2.65 g cm-3)

generally assumed for mineral soils. Similarly, the mean

qb was 1.51 g cm-3 with the range between 1.80 and

2.00 g cm-3 for the red-colored soils of high-elevation areas

and pastures. Very loose soils of sandy clay loam texture with

qb as low as 1.00–1.20 g cm-3 were also observed for few

cultivated areas. Mean OC content of the soil samples was

high ([0.75%) as per the rating for Indian soils (ICAR 2006).

Trend in spatial data

The directional trend due to easting and northing was found

negligible in the present dataset according to Eq. (2). Log

transformed elevation (m) had significant trend on most

soil properties. Sand content, clay content, pH, and ln(Ks)

specifically showed significant trend. Such trend was

mainly due to the undulating topography which finally

affected the soil forming processes. The sampling locations

with high elevations were associated with high sand con-

tent whereas locations with low elevations had high clay

content, and pH. Eroded finer soil particles from surface

soil were carried by runoff water and deposited in low-

lying areas, which resulted in high clay content at low

elevation. Soils at high-elevation areas of the watershed

were rich in sesquioxide (Fe- and Al-oxides), which

resulted into low pH for those areas.

Semivariogram parameters of soil properties

The semivariogram parameters of soil properties computed

through MoM approach and REML approach are presented

in Table 3. The range parameter of most soil properties was

found in between 200 and 300 m except for pH and

n. Similar to original variables, the range parameter for de-

trended data on pH and n was quite high. Here it is noted

that fitting semivariogram models for de-trended data on

ln(Ks) was not possible. The REML estimated Matérn

semivariogram parameters were quite similar with the

semivariogram parameters of residuals for most soil

properties. The m parameter of Matérn model was 6 for

sand and clay content, which indicated the smooth spatial

variation of these two soil properties.

Table 3 Semivariogram parameters of soil properties derived through method of moment (MoM) approach on original variables and de-trended

residuals and through residual maximum likelihood (REML) approach

Soil

propertiesa
MoM estimated semivariogram parameters REML estimated semivariogram

parameters (Matérn model)
Original variables (exponential model) Residuals (exponential model)

C0 C1 Range (m) C0 C1 Range (m) C0 C1 Range (m) m

Sand 86.10 227.4 288 153.2 101.4 459 173.57 105.04 191 6

Clay 190.1 30.25 229 129.2 46.08 107 139.29 48.54 196 6

pH 0.813 8.894 22384 0.75 19.92 50000 0.98 0.99 640 2

Ln(Ks) 1.933 1.141 248 – – – 2.004 0.354 187 3

Ln(a) 0.583 1.665 232 0 2.048 132 0 2.106 131 0.5

n 0.002 0.009 1892 0.002 0.009 2184 0.001 0.008 527 0.5

–, Semivariogram model can not be fitted for this property; C0, nugget; C1, Sill; m, smoothness parameter of the Matérn model; Clay, clay content

(%); pH, soil pH; ln(Ks), natural log of saturated hydraulic conductivity (Ks) (cm day-1); ln(a), natural log of van Genuchten parameter, a
(cm-1); n, van Genuchten parameter
a Sand = sand content (%)
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Comparisons of spatial interpolation methods

The RMSR of predicted soil properties through OK, RK,

and REML-EBLUP is presented in Table 4. The REML-

EBLUP approach showed smallest RMSR values for all

soil properties. This was expected because REML is sta-

tistically sound and we had further combined this approach

with the Matérn model, which was considered as a more

flexible semivariogram model than the other standard

models. The OK and RK methods were next in perfor-

mance to the REML-EBLUP method. The RMSR values

from Table 4 revealed that REML-EBLUP was 4.41%

better than OK and 2.93% better than RK. Almost similar

magnitude of improvement (about 4–6%) by REML-EB-

LUP approach over OK was reported by Chai et al. (2008).

The goodness of fit of the prediction error in terms of

MSDR values for OK, RK, and REML-EBLUP approach are

presented in Table 4. The REML-EBLUP approach showed

the MSDR values very near to 1 for all soil properties. The

deviation of MSDR values from 1 was more for OK and RK

approaches than for REML-EBLUP approach. Therefore,

the REML-EBLUP approach was revealed as the more

reliable method than OK and RK. The MSDR values for

REML-EBLUP approach, which are presented in Table 4

also matches with the previously reported values (Minasny

and McBratney 2007; Kerry and Oliver 2007; Chai et al.

2008). The cross-validation results revealed that the REML-

EBLUP approach may be preferred over RK and OK for

spatial prediction of soil properties in a watershed scale.

Sample number versus prediction performance

of REML-EBLUP

In the above discussions, the performance of REML-EB-

LUP was shown better than OK and RK in predicting soil

properties within the DPW. This improved performance of

REML-EBLUP was obtained from a spatial data with

N = 100 from a watershed of 42 km2 area, which was

tedious to generate through sample collection followed by

laboratory analysis. Moreover, the improvement of REML-

EBLUP over OK and RK was around only 4%. Therefore,

we wanted to explore the capability of REML-EBLUP even

with less number of soil samples (\100), where OK or RK

may not be a suitable option (Webster and Oliver 1992;

Kerry and Oliver 2007). The comparative performance of

REML-EBLUP, OK, and RK in two smaller datasets, S1

(N = 78) and S2 (N = 54) was therefore further tested. With

reduction in sample number, the predictive performance of

REML-EBLUP was better than OK and RK across all soil

properties (Fig. 2a). With the spatial dataset S2 (N = 78),

the REML-EBLUP approach was 6.56% and 3.72% better

than OK and RK, respectively. With further decrease in

sample number to N = 54 (S3), the improvement of REML-

EBLUP over OK and RK approach was 15.48% and 5.55%,

respectively. The improvement of REML-EBLUP over OK

was found quite significant but not so much over RK. This is

because of the presence of trend in the present spatial dataset

and RK approach generally performs better in case of spatial

data with trend. It is also hereby noted that decrease in

sample number from 100 to 54 had resulted in average

increase of RMSR by 19.27 and 7.28% for OK and RK,

respectively, whereas for REML-EBLUP it was an average

decrease by 4.25%. Besides the improvement in RMSR

values, the deviation of MSDR from 1 was also less for

REML-EBLUP than OK and RK (Fig. 2b). With the spatial

dataset S1 (N = 100), the average deviation of MSDR from

1 was 0.03 for REML-EBLUP, whereas for OK and RK, it

was 0.18 and 0.12, respectively. When the sample number

was decreased to N = 54, the average deviation of MSDR

from 1 was 0.04 for REML-EBLUP, and was quite high for

OK and RK (0.23 and 0.28, respectively). These results

suggested that REML-EBLUP approach may effectively be

Table 4 Root-mean-squared residual (RMSR) and mean squared

deviation ratio (MSDR) of predicted soil properties through ordinary

kriging (OK), regression kriging (RK), and residual maximum

likelihood estimation of covariance parameter followed by empirical

best linear unbiased prediction (REML-EBLUP)

Soil propertiesa Root-mean-squared residual (RMSR) Mean squared deviation ratio (MSDR)

OK RK REML-EBLUP OK RK REML-EBLUP

Sand 15.62 15.07 14.43 1.045 0.991 0.964

Clay 14.18 13.43 12.45 0.915 1.009 0.960

pH 1.12 1.11 1.11 1.159 1.173 0.997

Ln(Ks) 1.57 1.54 1.48 0.888 0.982 0.966

Ln(a) 1.37 1.40 1.37 1.068 1.005 0.988

n 0.08 0.08 0.08 1.606 1.526 1.051

Clay, clay content (%); pH, soil pH; ln(Ks), natural log of saturated hydraulic conductivity (Ks) (cm day-1); ln(a), natural log of van Genuchten

parameter, a (cm-1); n, van Genuchten parameter
a Sand, sand content (%)
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implemented in watershed scale with minimum sampling

separation distance of 500 m, which is equivalent to maxi-

mum sampling density of 4 km-2.

Surface map of soil properties

Evaluation of OK, RK, and REML-EBLUP in the present

spatial data from a hilly watershed showed REML-EBLUP

as the best method. Therefore, surface map of each soil

property within the sampling area of the DPW was prepared

through REML-EBLUP approach and is presented in

Figs. 3 and 4. Spatial pattern of sand and clay content

within the sampling area was closely related with elevation

grid. The top soil from high-elevation areas, especially in

the northern part, was eroded by water and thus exposed the

coarse-textured subsurface layer, which resulted in higher

sand content for those areas. Reversely, the deposition of

eroded finer particles in low-lying areas resulted in higher

clay content. Soil pH varied greatly within the sampling

area and ranged from 4.5 to 8.1. Saturated hydraulic con-

ductivity (Ks) within the sampling area ranged from as low

as *1.5 cm day-1 to as high as *640 cm day-1. The low-

lying areas at the southeast corner were high in clay content

and low in sand content and thus resulted in very low Ks

(\10 cm day-1). On the contrary, rocky outcrops and

coarse-textured soil in hilly areas, which mostly occur in the

northern parts of the sampling area, were high in Ks

([50 cm day-1). The VG parameter, a, which is the inverse

of air entry potential of soil, showed erratic spatial distri-

bution within the sampling area as it was influenced by

several basic soil properties. The VG parameter n, which

indicates the steepness of water release curve upon drying

from its saturation, ranged from 1.103 to 1.449 within the

sampling area. The higher the value of n, the steeper the

curve, indicating quicker release of water from soil pore

spaces after applying a little amount of suction.

Fig. 2 Sampling points with different simulated grid sizes a S1 =

sampling points with all 100 soil samples, b S2 = sampling points

with assumption of sampling in a minimum of 250 m sampling grid

(N = 78); c S3 = sampling points with assumption of sampling in a

minimum of 500 m sampling grid (N = 54)

Fig. 3 Effect of sample number on prediction performance of

ordinary kriging, regression kriging, and REML-EBLUP; a root

mean-squared residual (RMSR) vs sample number, b mean squared

deviation ratio (MSDR) versus sample number
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Summary and conclusion

The REML-EBLUP approach was applied to a sparse

dataset (N = 100) collected over an irregular grid from the

DPW (area = 42 km2) in the Catchment area of Chilika

Lake, India, for generating surface maps of different soil

physical and physicochemical properties. Wide variation in

soil properties was observed in the dataset due to undu-

lating topography within the sampling area. Removal of

surface soils through runoff and deposition of fine clays at

Fig. 4 Surface map of soil properties within the sampling area of Dengei Pahad Watershed (DPW) as predicted through REML-EBLUP

approach on spatial data S1 with sample number 100
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depression areas in the watershed is a regular process

during monsoon season (June–September). Hence, the

trend of elevation on most soil properties was observed in

the dataset. Previous literatures had shown the REML-

EBLUP approach as a potential method to interpolate soil

properties in a limited dataset with trend but mostly were

reported from a small scale study. In the present study, the

REML-EBLUP approach was tested in a microwatershed

having three most frequently observed features of water-

shed-scale spatial data: irregular distribution of sampling

points, limited number of data and the existence of strong

spatial trends in the datasets. The performance of REML-

EBLUP in the dataset was also compared with commonly

used geostatistical methods such as RK and OK. The

REML-EBLUP was found better than OK and RK by an

average improvement of 4%. Even in the reduced dataset

(N = 54), which was created through random removal of

sampling points, the REML-EBLUP approach was found

15.48% better than OK and 5.55% better than RK. The

uncertainty of prediction was also lower for REML-EB-

LUP approach than OK and RK. Therefore, it may be

concluded that REML-EBLUP approach may successfully

be used to generate surface map of soil properties in a

watershed scale specifically when the availability of larger

datasets is a difficult task. Results also show that the

minimum separation distance in watershed-scale studies

should be at least 500 m (equivalent to the sampling den-

sity of 4 km-2) for spatial interpolation of soil properties

through REML-EBLUP approach.
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