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Characterization of soil hydraulic properties is an important step for assessing soil water regime in
agricultural fields. Because direct measurement of soil hydraulic properties at multiple locations is costly and
time-consuming, pedotransfer functions (PTF) are conveniently used to estimate these properties from easily
measurable basic soil properties. Over the last two decades, several studies have demonstrated that basic soil
properties of surface soils may be rapidly estimated by measuring soil spectral reflectance. In this study, we
evaluated a PTF approach to use proximal spectral reflectance over the visible, near-infrared, and shortwave-
infrared (VIS–NIR–SWIR) region (350–2500 nm) as predictor variable in place of basic soil properties. To
develop these transfer functions, spectral reflectance of air-dried and sieved soil samples was measured using
a handheld spectroradiometer equipped with a contact probe. Transfer functions in the form of multiple
linear regression relationships between soil hydraulic properties and different attributes of measured
spectral reflectance were developed. These new transfer functions are called spectrotransfer functions (STF).
Both the parametric PTFs and STFs for the parameters of van Genuchten water retention model (α and n) and
point PTF for saturated hydraulic conductivity (Ks) were evaluated using the root-mean-squared error
(RMSE). Results show that STFs have the similar accuracy as PTFs for estimating hydraulic properties.
Specifically, STFs developed with the absorption features of proximal spectral reflectance performed better
than the PTFs for estimating α. Among three hydraulic parameters for which the STFs were developed, van
Genuchten parameter n is well predicted with comparatively lower values of RMSE. Thus, this study shows
that proximal spectral reflectance of soil may be used for rapid estimation of soil hydraulic properties in a
large area with accuracy comparable to PTFs. A rigorous testing in different geographical regions is warranted
to establish the utility of STFs as a method for estimating soil hydraulic properties.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Water retention characteristics (relationship between volumetric
water content, θ and matric potential head, h) and saturated hydraulic
conductivity (Ks) are two soil hydraulic parameters required for
assessing water regime in saturated and unsaturated soils. These two
properties also serve as critical inputs for detailed hydrological models
that are used for making water resource planning at various scales.
Both these soil properties are spatially and temporally variable (Hills
et al., 1992) and depend on a specific measurement method (Lee et al.,
1985; Paige and Hillel, 1993). Estimation of hydraulic properties at
multiple locations evenwithin an agricultural field is time-consuming
and costly (Romano and Palladino, 2002). Over the last few decades,

the pedotransfer function (PTF) approach has been advocated as an
alternative method for estimating soil hydraulic properties (Bouma,
1989; Rawls et al., 1991; Schaap et al., 1998; Wösten et al., 2001;
McBratney et al., 2002; Pachepsky et al., 2006).

Typically, PTFs are expressed in terms of linear (Rawls et al., 1982;
Vereecken et al., 1989; Tomasella and Hodnett, 1998) or non-linear
(Scheinost et al., 1997; Wösten et al., 1999; Hodnett and Tomasella,
2002) regression equations using basic soil properties as predictor
variables (Rawls et al., 1982; Vereecken et al., 1989; Tomasella and
Hodnett, 1998; Wösten et al., 1999; Schaap et al., 2001). Recently,
topographic features (Pachepsky et al., 2001; Romano and Palladino,
2002) and vegetation indices (Sharma et al., 2006) have also been
considered as predictor variables in PTFs. Similarly, advanced model-
ing techniques such as artificial neural network (ANN) (Schaap et al.,
1998; Tamari and Wösten, 1999; Schaap et al., 2001; Minasny and
McBratney, 2002; Minasny et al., 2004; Jana et al., 2008) or k-nearest
neighborhood (Nemes et al., 2006) approaches have been proposed.
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The performance of several PTFs has also been compared with
available measurement methods. For example, Šimunek et al. (1998)
compared the hydraulic properties measured with the tension
infiltrometer with those obtained from class PTFs (Carsel and Parrish,
1988) and ANN-based predictions (Schaap et al., 1998) and observed
that the ANN-based approach may be used as an alternative to direct
measurement of soil hydraulic properties. Similarly, Cornelis et al.
(2001) showed that the PTFs developed by Vereecken et al. (1989) are
better than nine different PTFs published in the literature. More
recently, Jana et al. (2007) coupled the Bayesian ANN with a non-
linear bias correction approach to predict soil hydraulic properties
across multiple spatial scales. Despite these developments, large sets
of input data are still needed to develop reliable PTFs. In addition, the
PTFs also needed to be locally developed (Hodnett and Tomasella,
2002; Li et al., 2007). Creation of large soil database for region-
specific PTF development is time-consuming and costly.

Over the last two decades, proximal spectral reflectance in the
visible, near-infrared, and shortwave-infrared (VIS–NIR–SWIR) region
(350–2500 nm) has been successfully used for accurate and rapid
estimation of soil properties such as particle size distributions, organic
matter contents, electrical conductivity, etc. (Henderson et al., 1989;
Ben-Dor and Banin, 1995; Ben-Dor et al., 1997; Ben-Dor et al., 1999;
Chang et al., 2001; Dunn et al., 2002; McCarty et al., 2002; Reeves et
al., 2002; Shepherd andWalsh, 2002; Islam et al., 2003; Stevens et al.,
2006; Viscara Rosel et al., 2006; Brown et al., 2006; Nanni and
Demattê, 2006; Lagacherie et al., 2008). Estimation of soil properties
via proximal spectral reflectance is a convenient and rapid field-scale
measurement approach although it is applicable only to surface soil
characterization (Ben-Dor et al., 1999). Recently, Ben Dor et al. (2008)
reported the use of frequency domain electromagnetic radiation
(FDEM) and ground penetrating radar (GPR) in addition to the VIS–
NIR–SWIR spectral data for assessing soil salinity of subsurface soil.
Inasmuch as basic soil properties may be estimated from proximal
spectral reflectance, it is hypothesized that soil hydraulic properties
may be related to spectral reflectance. Thus, similar to PTFs, spectro-
transfer functions (STFs) may be developed to estimate hydraulic
properties from spectral reflectance. However, STFs are also required
to be locally developed and should be based on large training datasets
on soil hydraulic properties and spectral reflectance data.

Only two studies indicate that hydraulic properties may be related
to proximal spectral reflectance (Thine et al., 2004; Janik et al., 2007).
Both of these studies do not explicitly provide STFs. Thine et al. (2004)
characterized soil degradation using relationships between soil
hydraulic properties and spectral reflectance over the VNIR region
through the partial least square regression (PLSR) technique. Recently,
Janik et al. (2007) have calibrated reflectance spectra in mid-infrared
(MIR) region to estimate soil water content at various matric pressure
heads using the PLSR technique. They also did not include the
parametric approach for estimating soil water retention behaviour.
Thus, the objective of the present study was to develop STFs for soil
hydraulic properties from the proximal spectral reflectance data over
the VIS–NIR–SWIR region and test their performance with PTFs.

2. Materials and methods

2.1. Study area and soil sampling

The experimental data used in this study were collected from the
‘Dengei Pahad micro-watershed’ (DPMW) (~42 km2), which is a part
of the western catchment of Chilika Lake system in Orissa, India
(Santra, 2009). The DPMW lies between 19°49′48″–19°52′8.4″ N and
85°13′55.2″–85°14′34.8″ E. with elevations ranging from 27 to more
than 85m abovemean sea level. The land-use classes of thewatershed
show 42% agricultural land, 22% forested area with evergreen and
deciduous trees, and 36% wetlands with natural shrubs. Soil series
level data for the study area (NBSS&LUP, 2005) at a scale of 1:250,000

show five dominant soil series with the Nuagarh series occupying
about 62% area of the watershed. Soils of this watershed are classified
as Typic Haplustalfs. Surface (0–10 cm depth) soil samples were
collected from the DPMW in five sampling campaigns. Out of a total of
100 soil samples collected, 23 samples were collected on a
200 m×600 m grid during the first sampling campaign and the rest
of the samples were collected on a 1–2 km×1–2 km grid. Soils at this
site are generally sandy at high elevation areas and heavy clays at low-
lying depression area. Agricultural land is confined to the lower reach
of the watershed. Hill tops within the watershed are covered with
sparse to dense vegetation.

During each sampling, undisturbed soil cores (5 cm internal
diameter and 6 cm long) and approximately 500 g of loose soil from
top 10 cm layer were collected from each grid point. Soils were air-
dried, ground and shifted through a 2 mm sieve and stored for
chemical, physical, and spectral analysis. Processed soils were
analyzed to determine particle density (ρp), bulk density (ρb), organic
carbon contents (OC) and particle size distribution using pycnometer
method (Flint and Flint, 2002), core method (Blake and Hartge, 1986),
the chromic acid digestion method (Walkley and Black, 1934), and the
international pipette method (Gee and Bauder, 1986), respectively.
Soil pH and electrical conductivity (EC) were measured in 1:2.5 soil:
water slurry. Saturated hydraulic conductivity (Ks) was determined
using a constant head permeameter (Eijelkamp Agrisearch Equip-
ment, Netherlands) (Klute and Dirksen, 1986). Measurements were
taken both in ‘constant head’ and ‘falling head’ modes depending on
soil texture. For heavy clay soils, only the falling head method was
adopted. For each soil sample, Ks measurements were repeated three
times.

Water retention behaviour of each soil sample was determined
using a tempecell setup connected to a pressure plate manifold. Water
contents were measured in soil cores (5 cm in diameter, 6 cm long) at
successive equilibrium pressures of 10, 20, 30, 40, 50, 60, 70 and
80 kPa. Pressure head-water content (h−θ) data for different soil
samples were fitted to the van Genuchtenwater retention model (Van
Genuchten, 1980):

Se =
θ − θr
θs − θr

� �
=

1
1 + α jh jð Þn

� �1− 1
n ð1Þ

where Se is the relative saturation, θr is the residual soil water content
(cm3 cm−3), θs is the saturated soil water content (cm3 cm−3), h is
the matric potential head (cm) and α (cm−1) and n are shape
parameters of the water retention curve. Eq. (1) was used to estimate
the van Genuchten retention model parameters θr, α and n for each
soil sample using the SOLVER function of the EXCEL spreadsheet
Program. Parameter θs was equated to soil porosity and was used as a
constant in Eq. (1).

2.2. Spectral reflectance of soil in VIS–NIR–SWIR region

Proximal spectral reflectance of processed soil samples (air-dried
and ground soil samples sifted through 2 mm sieve) were recorded in
the VIS–NIR–SWIR region (350–2500 nm) in the laboratory using a
portable spectroradiometer (Model: Field spec®3 FR, Analytical
Spectral Devices Inc., USA). All spectral measurements were recorded
using a contact probe having 10 mm spot size and its own light source
with a 1500 h halogen bulb. The use of contact probe minimizes errors
associated with stray light during measurements under solar
illumination. Proximal spectral reflectance of each soil sample was
recorded with respect to a 5″×5″ white reference (spectralon) panel
(Labsphere, North Sutton, USA). Spectral reflectance data for each soil
sample was generated by arithmetic averaging of 60 replicated
measurements for that sample. The reference panel reflectance was
measured before each sample measurement. Three main features of
the proximal spectral reflectance spectra were used for analysis: a)

339P. Santra et al. / Geoderma 152 (2009) 338–349



Author's personal copy

individual proximal spectral reflectance values [R(λ)] for each
wavelength, b) integrated proximal spectral reflectance values (here-
inafter, referred to as band reflectance) for a selected wave bands, and
c) continuum removal (CR) factor around absorption bands. The band
reflectance values were estimated by integrating R(λ) values over the
bandwidths used in the Enhanced Thematic Mapper Plus (ETM+)
sensor onboard Landsat-7 satellite. The ETM+ sensors collect data
over six VIS–NIR–SWIR regions and one thermal region. The spectral
bands corresponding to ETM+ bands used in this study are: 450–
520 nm (ETM+1), 520–600 nm (ETM+2), 630–690 nm (ETM+3),
760–900nm(ETM+4),1550–1750nm(ETM+5), and 2080–2350nm
(ETM+7). Hereinafter, these six bands are referred to as band-1 to
band-6, respectively. The spectroradiometer-measured R(λ) values
were integrated over these six bands using the following relationship:

Ri =

Pλli
λui

R λð Þ/i λð Þ

Pλli
λui

/i λð Þ
ð2Þ

whereRi is the calculated ith band reflectance,λui is the upper boundary
of band i, λli is the lower boundary of band i, R(λ) is the reflectance for
wavelength i, ϕ(λ) is the spectral response function of band i.

The raw soil spectra followed the same basic shape as described by
other researchers (Ben-Dor et al., 1999; Shepherd and Walsh, 2002)
with prominent absorption features around 1400, 1900, and 2200 nm
(Chang et al., 2001; Shepherd andWalsh, 2002; Lagacherie et al., 2008).
Significant variation in these three absorption features among soil
samples was also observed. The absorption features around 1400 and
1900 nm are associated with OH functional group of free water
(Shepherd and Walsh, 2002) and the absorption around 2200 nm is
associated with OH functional group of clay lattice (Chabrillat et al.,
2002; Lagacherie et al., 2008). As these three absorption features are
strongly related with either free water or lattice water, therefore, these
may not suitably be used in remotely sensed data where atmospheric
water vapour may weaken the signal/noise ratio or in field condition
where soil water content is highly variable. However, these absorption
features for a grounded and air-dried soil may be characteristic of
specific soil type and, hence, may be linked with the typical water
retention behaviour of a soil. Therefore, we have selected these three
absorption features to be included as predictor variables for estimation
of soil hydraulic properties. The CR factors are a unique way to
characterize these absorption features (Lagacherie et al., 2008). Before
calculating the CR factors, λpeak, λmin, and λmax of each absorption
feature and corresponding reflectance [R(λpeak), R(λmin) and R(λmax)]
were identified. The first derivative of spectral reflectance around
absorption features of each soil sample showed spikes and lowwithdR/
dλ≈0 for a particular wavelength, which is considered as peak
wavelength (λpeak). The mean of λpeak for all soil samples showed the
absorption peaks at 1414 nm, 1913 nm, and 2207 nmwavelengths with
standard deviation of ±2 nm. For each absorption feature, two local
maxima (λmin and λmax) on both sides of λpeak were identified using the
inflection point of the reflectance spectra (d2R/dλ2). The mean local
maxima corresponding to each absorption feature were observed to be
1329 and 1615 nm, 1860 and 2125 nm, and 2125 and 2257 nm,
respectively. After identification of λpeak, λmin, and λmax, corresponding
reflectance valueswere extracted from spectral data of each soil sample.
The position of λpeak, λmin, and λmax for each absorption feature in few
selected reflectance spectra is shown in Fig. 1. The CR factor was
calculated from R(λpeak), R(λmin) and R(λmax) of each absorption band
using the following relationship:

CRλ = min 1;
R λpeak

� �

R λmaxð Þ + λmin − λpeak
λmin − λmax

R λminð Þ− R λmaxð Þ½ �

2
4

3
5 ð3Þ

where, R(λpeak) is the reflectance at λpeak, R(λmin) is the reflectance at
λmin, and R(λmax) is the reflectance at λmax. The calculated CR factors for
threeabsorptionpeaksat1414nm,1913nm, and2207nmare referred to
as CR1414, CR1913, and CR2207.

2.3. Development of PTF

Before proceeding to PTF development, descriptive statistics of the
measured soil properties, band reflectance, andCR factorswere calculated.
Each variable was checked for normality at 5% level of significance using
the Kolmogorov–Smirnov (K–S) test statistics. Necessary transformations
were made for the variable, which did not follow normal distribution.
Basic soil properties, proximal spectral reflectance, integrated band
reflectance, and CR factors were correlated with soil hydraulic properties
using Spearman correlation statistics. Basic soil properties, proximal
spectral reflectance, integrated band reflectance, andCR factorswere used
as separate set of predictor variables for PTF/STF development. Besides
these four sets, integrated band reflectance and CR factors were taken
together in a separate set. Therefore, a total of five sets of predictor
variables were formulated for PTF/STF development.

To reduce the heterodasticity in the dataset, stepwise regression
analysis and principal component analysis (PCA)were done. In stepwise
regression analysis, important predictor variables were identified at 5%
level of significance. Principal component analysis is generally applic-
able for data with high dimension and large interdependency between
data dimensions. Therefore, application of PCA with proximal spectral
reflectance and integrated band reflectance spectra is moremeaningful.
But to maintain similarity in the analysis, PCAwas applied to each set of
predictor variables. Principal components, which describe about 95% of
the total variation in data, were considered in final reduced data. The
Eigen value of each principal component indicates the amount of
variation in the dataset explained by that particular principal compo-
nent. To establish the physical significance of the principal components,
relationship between original variables and Eigenvectors, commonly
referred to as factor loadings, were checked (Hair et al., 1995). The
original variables with large absolute value of factor loadings for a given
principal component determine its physical significance. As a result of
the stepwise regression and PCA analysis, each set of predictor variables
was divided into three subsets. The first subset consists of all predictor
variables of main set. The second subset consists of important predictor
variables in stepwise analysis. The third subset consists of major
principal components obtained after PCAof all predictor variables in the
main set. With full reflectance spectra, only the set of major principal
components obtained through PCA were used as predictor variables.
Therefore, a total of thirteen subsets of predictor variables (three subsets
from each of the first, second, third and fourth set and one from the fifth
set) were formulated for PTF development.

The total dataset (N =100)was randomly divided into development
dataset and validation dataset at a ratio of 3:1. The development dataset
was used for developing the PTFs whereas the validation dataset was
used for testing the performance of the PTFs. A point PTF for ln(Ks) and
parametric PTFs for the van Genuchten parameters, α and n, were
developed through multiple linear regression equation of the form,

Y = a0 +
Xk
k=1

akXk ð4Þ

where Y is the dependent variable, Xk is the kth independent variable
(input), a0, a1, a2, …, ak are regression coefficients and k is the
number of independent variable in regression equation. The basic soil
properties and spectral information were taken as independent
variable and the hydraulic properties [In(Ks), ln(α), and n] were
taken as dependent variables in the Eq. (4) for developing PTFs/STFs.
The multiple linear regression equations were developed using the
regress function of MATLAB software.
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To reduce the uncertainty of the predicted hydraulic parameters,
PTFs were developed from 500 realizations of the development
dataset through boot-strapping (Efron and Tibshirani, 1993). In this
procedure, random subsets of the original development database of
the same size are created through sampling with replacement. Each
sample has a chance of 1− [(N−1)/N]N to be selected once or
multiple times for a particular subset resulting in subsets that
contain about 63% unique cases from the original data. Thus, each
boot-strapped database may be viewed as a subset of the original
development database containing 47 unique samples and 28
repeated samples from the original database. Multiple linear
regression equations were developed for each replica database.
Thus, for a given hydraulic parameter we obtained 500 regression
equations:

Yj = a0j +
Xk
k=1

akjXk ð5Þ

where j ranged from 1 to 500. The coefficients a0 and ak were
obtained from arithmetic average of 500 coefficients:

a0 =
1

500

X500
j=1

a0j and ak =
1

500

X500
j=1

akj: ð6Þ

Following the multiple linear regression approach with boot-
strapping as stated above, PTFs were developed with thirteen subsets
of predictor variables that were initially formulated.

Performance of PTFs was evaluated in validation dataset. Root-
mean-squared error (RMSE) was used as the evaluation index:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − p

XN
i=1

Yi−Ŷ i

� �2

vuut ð7Þ

where, p is the number of independent variables used in the PTF
model. To test the efficacy of VIS–NIR–SWIR reflectance spectra as

Fig. 1. Reflectance spectra of soil samples (a) for two soil textural classes with similar OC content and pH and (b) for different organic carbon content with similar soil texture and pH,
and (c) for different pH with similar soil texture and OC content.
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predictor for estimating hydraulic properties, performance of reflec-
tance spectra-based PTFs were compared with basic soil property-
based PTFs. Hereinafter, the reflectance spectra-based PTFs are
referred to as spectrotransfer functions (STF) for soil hydraulic
properties as suggested by Lagacherie et al. (2008).

3. Results and discussion

3.1. Soil properties and spectral information

Different physical, chemical, and spectral properties of soils
collected from the DPMW watershed are summarized in Table 1.
Soils at this site hadwide variation in physical and chemical properties
as is expected in a hillslope catena. For example, soil ρp ranged from
2.40 to 3.00 g cm−3 with the mean ρp (2.55 g cm−3) less than the
particle density (2.65 g cm−3) generally assumed for mineral soils.
Similarly, themeanρbwas1.51 g cm−3whileρb ranged from1.80 to2.00 g
cm−3 for the red colored soils of high elevation areas and pastures. Very
loose soils of sandy clay loam texture with ρb as low as 1.00–1.20 g cm−3

were also observed for few cultivated areas. Mean OC content of the soil
samples was high (N0.75%) as per the rating for Indian soils (ICAR, 2006).
Sand and clay contents also varied widely within the watershed. Sand
contents were observed to increase with elevation and the reverse was
true for clay contents. Particle density showed the same trend with
elevation possibly because of a strong correlation between ρp and sand
content. A total of seven different textural classes were observed in this
watershed although the majority of soil samples had either light clay
texture having clay content N25% (N=36) or heavy clay texture having
claycontentN45%(N=25) indicating thepresenceoffine textured soils in
the study area. Soils were generally acidic with pH values being as low as
3.44 because of the presence of Fe- and Al-oxides. Saturated hydraulic
conductivity also showed wide variation (KsN1000 cm day−1 for coarse
textured soils and Ksb0.1 cm day−1 for heavily textured soils). The van
Genuchten parameter, αwas log-normally distributed with a mean value
of−2.26. The mean value for the other van Genuchten parameter, nwas
1.22. Kolmogorov–Smirnov test revealed that except for EC, Ks, and α, all
other soil properties were normally distributed at 5% level of significance.

Proximal spectral reflectance for each soil sample generally increases
in the visible range and plateaus to amaximumvalue between 1500 and
1700nmbefore it again decreases in the SWIR range. Each spectrumalso
shows characteristic reduction in spectral reflectance around 1414,1913,
and 2207 nm wavelength. Fig. 1 shows the specific change in these
characteristics as influenced by texture (Fig. 1a), OC content (Fig. 1b),
and pH (Fig. 1c). These figures show that the overall brightness

decreases with the increase in fineness in soil texture (Fig. 1a) and pH
(Fig.1c). The increase in brightnesswith increase in fineness of particles
was also reported by previous researchers (Ben-Dor et al., 2003;
Goldshleger et al., 2004). Greater brightness of the reflection spectra for
acidic soils may be due to the red coloration imparted by chromophores
like Fe- andAl-oxides (Leone and Sommer, 2000). Fig.1b shows that soil
OC content influences the reflection spectra primarily in the 1000–
1900 nm because of absorption of shortwave infrared (SWIR) radiation
by OC content.

Both band reflectance and CR factors obtained from proximal
spectral reflectance data were normally distributed as observed from
results of Kolmogorv–Smirnov test. Wide variation in each of six band
reflectance and three CR factor was observed. Lower value of CR factor
was observed for CR1913 compared to CR1414 and CR2207. Variation of
CR1913 among soil samples is also highest among three CR factors. This
indicates that CR1913 is the most prominent absorption feature in the
reflectance spectra.

3.2. Correlation among reflectance spectra, basic soil properties, and
hydraulic properties

The effects of different soil properties on the proximal spectral
reflectance are further explored using correlation analysis. Fig. 2
shows that soil ρp shows maximum correlation (r=−0.49) with the
spectral reflectance at 415 nm (Fig. 2a). Beyond 600 nm, ρp does not
show any correlation with the exception in absorption bands.
Similarly, OC contents show maximum correlation (r=0.18) with
the spectral reflectance at 1829 nm. The amount of coarse (sand) and
fine (silt and clay) soil particles present in a soil shows good
correlation with spectral reflectance (Fig. 2b); the correlation
coefficients were positive for the coarse fraction and negative for
the fine fractions. Fig. 2b shows that an increase in fineness of soil
texture due to dominance of silt and clay particles in soil may decrease
spectral reflectance. Similar trend may also be seen in Fig. 1a. Stronger
correlation may also be observed between soil separates and the
absorption bands (Fig. 2b). This result suggests that the proximal
spectral reflectance may be used as a substitute variable for sand, silt,
and clay content of soil. Similarly, Fig. 2c shows that both soil pH and
EC are positively correlatedwith spectral reflectance at the blue region
and negatively correlated for the rest of the spectrum. This figure also
indicates that a decrease in pH and EC may increase spectral
reflectance beyond 700 nm wavelength. The correlation of spectral
reflectancewith soil pH and EC also indicates the possible substitution
of soil physiochemical properties with proximally measured spectral

Table 1
Descriptive statistics of soil properties and spectral information.

Soil properties and spectral information Minimum Maximum Mean Standard deviation Skewness Kurtosis

Particle density (g cm−3) 2.30 3.03 2.55 0.14 1.08 4.66
Bulk density (g cm−3) 1.11 2.00 1.51 0.18 0.09 2.81
Organic carbon content (%) 0.07 2.10 0.93 0.38 0.39 3.46
Sand content (%) 7.85 84.66 48.71 17.80 −0.11 2.26
Silt content (%) 4.40 37.38 16.70 6.02 0.36 3.15
Clay content (%) 4.60 63.97 34.59 14.77 0.00 2.00
pH (−) 3.44 8.72 6.76 1.29 −0.62 2.55
ln(EC) (dS m−1) 0.002 1.31 0.14 1.13 −1.11 6.53
ln(Ks) (cm day−1) −0.82 6.26 3.19 1.69 −0.28 2.39
ln(α) (cm−1) −5.81 1.51 −2.26 1.44 −0.04 2.82
n (−) 1.03 1.54 1.22 0.09 1.00 4.42
Band-1 (450–520 nm) 5.11 21.55 13.25 3.71 −0.05 2.68
Band-2 (520–600 nm) 8.73 32.34 19.02 5.01 0.36 3.09
Band-3 (630–690 nm) 11.83 42.59 24.61 6.21 0.62 3.38
Band-4 (760–900 nm) 16.96 50.85 32.04 7.29 0.35 2.77
Band-5 (1550–1750 nm) 19.63 60.40 43.07 8.83 −0.14 2.38
Band-6 (2080–2350 nm) 16.47 54.27 37.50 8.35 −0.20 2.48
CR1414 0.55 0.93 0.83 0.06 −1.32 6.79
CR1913 0.46 0.87 0.70 0.07 0.13 3.64
CR2207 0.54 0.91 0.81 0.07 −1.12 4.71
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data. Similar observationwas also pointed out earlier from Fig.1c as an
effect of soil pH on reflectance spectra. High correlation between basic
soil properties and proximal spectral reflectance is also reported by
several researchers (Leone and Sommer, 2000; McCarty et al., 2002;
Odlare et al., 2005; Mouazen et al., 2007).

Because we intend to estimate soil hydraulic properties from
proximal spectral reflectance data, correlation between spectral reflec-
tance and soil hydraulic parameters was also explored. Among three soil
hydraulic parameters, ln(Ks) shows good correlation with spectral
reflectance in the blue region whereas van Genuchten parameters (In
(α) and n) showgood correlation at 700–2500 nmwavelength (Fig. 2d).
Another significant observation from correlation analysis (Fig. 2) is that
both basic and soil hydraulic properties show large correlation
coefficients (Table 2) with the proximal spectral reflectance values

over a wide range (band) of wavelength suggesting the possibility of
characterizing soil properties based on band reflectance in addition to
reflectance at each wavelength values. Specifically, we observed high
correlation of basic soil andhydraulic properties over blue, green, red, IR,
SWIR, and 2000–2300 nm wavelength bands. The ETM+ sensor uses
all these six bands (ETM+1 to ETM+5 and ETM+7). Correlation
coefficients listed inTable 2 suggest that theband reflectance in ETM+1
and ETM+2 bands are significantly correlated with ln(Ks); band
reflectance at all six bands were significantly correlated with van
Genuchten parameters, ln(α) and n. Similarly, we also observed good
correlation between soil hydraulic properties and absorption bands.
Among CR factors of three absorption bands, CR1913 was significantly
correlated with most soil properties (rN0.35); CR1414 and CR2207 were
also correlatedwithρp (r=0.42 and 0.20, respectively) and clay content
(r=−0.36 and −0.19, respectively). Overall, correlation analysis
suggests that spectral information is comparable to basic soil properties
in terms of correlation with soil hydraulic properties.

3.3. Stepwise regression and principal component analysis

Scatter plots and correlation analyses showed that several input
variables are correlated among themselves which is generally termed
as heterodasticity. Such heterodasticity in the data was eliminated
through the stepwise regression analysis and PCA before PTF/STF
development. Results of the stepwise regression analysis at 5%
significance level showed that out of all the basic soil properties clay
contents, ρb, and ρp are the important predictor variables for ln(Ks).
Similarly, integratedband reflectance values corresponding to ETM+1
and ETM+7bands (band-1 and band-6)were the important predictor
variables for ln(Ks) out of six band reflectance and band reflectance
plus 3 CR factors. It was also observed that none of the three CR factors
were significant predictor variables for ln(Ks) at 5% significance level,
but CR1913 and CR2207 were significant at 10% level of significance. The
stepwise regression analysis for ln(α) showed that ρb, ln(EC), and pH
are important predictor variables among basic soil properties;
integrated band reflectance corresponding to ETM+2 (band-2) was

Fig. 2. Correlation coefficients between soil properties and proximal spectral reflectance at different wavelengths.

Table 2
Correlation coefficient of basic soil properties, band reflectance, and continuum removal
factors with soil hydraulic parameters.

Soil properties and spectral information ln(Ks) ln(a) n

Particle density (g cm−3) 0.43⁎⁎ 0.07 0.41⁎⁎
Bulk density (g cm−3) −0.25⁎ −0.46⁎⁎ 0.21⁎
Organic carbon content (%) −0.05 0.00 −0.16
Sand content (%) 0.50⁎⁎ −0.03 0.56⁎⁎
Silt content (%) −0.21⁎ −0.03 −0.35⁎⁎
Clay content (%) −0.51⁎⁎ 0.05 −0.54⁎⁎
pH (−) −0.14 0.19 −0.46⁎⁎
ln(EC) (dS m−1) −0.26⁎ −0.14 −0.23⁎
Band-1 (450–520 nm) −0.37⁎⁎ −0.24⁎⁎ 0.20
Band-2 (520–600 nm) −0.25⁎ −0.29⁎⁎ 0.42⁎⁎
Band-3 (630–690 nm) −0.11 −0.29⁎⁎ 0.53⁎⁎
Band-4 (760–900 nm) −0.09 −0.29⁎⁎ 0.53⁎⁎
Band-5 (1550–1750 nm) 0.00 −0.22⁎ 0.38⁎⁎
Band-6 (2080–2350 nm) −0.02 −0.24⁎ 0.50⁎⁎
CR1414 0.06 −0.12 0.46⁎⁎
CR1913 0.19 −0.19 0.60⁎⁎
CR2207 −0.07 −0.13 0.36⁎⁎

⁎, and ⁎⁎ indicate correlation coefficients which are significant at 5%, and 1% level of
significance respectively.
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the only important predictor variable out of six band reflectance and
their combination with the CR factors. In case of CR factors for ln(α),
none was selected at 5% level except CR1913 was important at 10% level
of significance. Similarly, sand content and pHwere observed to be the
important predictor variables for n among the basic soil properties;
band reflectance corresponding to ETM+3 and ETM+1 (band-3 and
band-1) were important predictor variables among the six band
reflectance values; and CR1913 and integrated band reflectance for
ETM+4 (band-4) were the important predictor variables out of the
combination of band reflectance and CR factors. In case of CR factors
for n, CR1913 was only selected at 5% level of significance.

Major principal components along with the associated factor
loadings for each variable i.e. integrated band reflectance values, CR
factors, band reflectance plus CR factors, and proximal spectral
reflectance in VIS–NIR–SWIR region are presented in Fig. 3. The factor
loadings of variables for each principal component indicate the
importance of that variable to the said principal component. The PCA
of eight basic soil properties showed six major principal components
(data not shown in Fig. 3) suggesting thatmeasured basic soil properties
are almost orthogonal (linearly independent) to each other. In contrast,
six band reflectance values were reduced to two major principal
components explaining94.7%variation of thedataset as indicated by the
associatedEigenvalues. Thefirst principal componentof band reflectance

values had positive and similar loading for each band. Therefore, the
reflectance for each wavelength contributes equally to the first major
principal component and hence may be considered as representation of
the height of reflectance spectra or the overall spectral brightness.
Similarly, the second principal component represents the slope of
reflectance spectra by showing maximum value corresponding to
band-1 and band-5. Previous investigations also reported that the first
two major principal components of spectral reflectance describe the
overall brightness and slope of the reflectance spectra (Leone and
Sommer, 2000). The PCAwith three CR factors resulted in two principal
components explaining 99.4% variation of dataset. The first principal
component of three CR factors represents CR1913 and CR2207 factors,
whereas the second principal component represents all the three factors.
Combination of band reflectance and CR factors were reduced to three
principal components explaining 96.7% variation of data. The first
principal component was equally contributed by six band reflectance
and three CR factors as shown by equal amount of factor loadings in
Fig. 3c. The proximal spectral reflectance data of 2150 dimensions were
reduced to three major principal components explaining 98.5% variation
of the dataset. Similar to the principal components of integrated band
reflectance, the first and second principal components of proximal
spectral reflectance indicate the overall brightness and slope of
reflectance spectra, respectively. The third principal component captures

Fig. 3. Factor loadings of (a) band reflectance, (b) CR factors, (c) band reflectance plus CR factors, and (d) spectral reflectance at each wavelength for major principal components
obtained after principal component analysis.
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absorption features of reflectance spectra as shown by comparatively
higher loadings corresponding to absorption peak. Thus, the major
principal components of proximal spectral data and the derived spectral
indices represent the characteristic features of the reflectance spectra i.e.
overall brightness of the spectral reflectance curve, slope of the spectral
reflectance curve, and absorption features of the spectral reflectance
curve. Similar typeof relationshipbetweenprincipal components and the
characteristics features of spectral reflectance curve were reported by
Leone and Sommer (2000).

3.4. Transfer functions and their performance

The stepwise regression analysis and PCA allowed us to develop
PTFs and STFs using three critical subsets (without stepwise
regression and PCA, with stepwise regression, and with PCA) of five
main sets of input variables i.e. basic soil properties, band reflectance,
CR actors, band reflectance plus CR factors, and spectral reflectance.
Performance of PTFs/STFs were evaluated using the validation dataset
(N=25) in terms of RMSE. Results are summarized in Fig. 4. The first

Fig. 4. Root-mean-squared error (RMSE) for pedotransfer functions and spectrotransfer functions for (a) saturated hydraulic conductivity [ln(Ks)], (b) van Genuchten parameter [ln
(α)], and (c) van Genuchten parameter (n), developed with different combination of predictor variables from basic soil properties, band reflectance, CR factors, band reflectance plus
CR factors, and spectral reflectance. The suffixes “all”, “stepwise” and “PCA” of the X-axis labels indicate the PTFs/STFs developedwith all predictor variables, after stepwise regression
analysis, and after principal component analysis.
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group (placed between two vertical line below X-axis) in the left side
of Fig. 4 shows the performances of the PTFs, whereas remaining four
groups show the performances of STFs. For estimating ln(Ks), PTFs
perform better than STFs. This was expected because Ks is largely
dependent on ρb and spectral information was poorly correlated with
ρb in our study (Fig. 2). The PTFs developed with basic soil properties
obtained through the stepwise regression analysis perform best
among all PTFs/STFs. The STFs developed with CR factors perform
next to PTFs in estimating ln(Ks). For estimating ln(α), the STFs
developedwith CR factors performed better than other PTFs/STFs. The
best performance in estimating ln(α) was observed when all three CR
factors were used for the development of STF. The PTF developed with
basic soil properties obtained through the stepwise regression
analysis performed next to STFs developed with CR factors. For
estimating n, the PTF developed with basic soil properties obtained
through the stepwise regression performed best. The STFs developed
with CR factors performed next to the best PTF in estimating n.
Overall, the performances of STFs developed with CR factors
performed better than other PTFs/STFs. In general, the best perfor-
mance was achieved when all three CR factors were considered for
PTF development. The PTFs/STFs developed with the set of predictor
variables consisting of both band reflectance and CR factors performed
worst because of over-fitting of redundant data.

Comparative study on performance of PTFs/STFs developed with
reduced number of predictor variables through the stepwise regres-
sion analysis and PCA revealed that the stepwise regression yielded
better result than PCA in most cases. Better performance of PTFs/STFs
developed with predictor variables obtained in the stepwise regres-
sion may be due to removal of predictor variables which are not
significantly correlated with hydraulic properties and, therefore,
eliminating the insignificant variables in the dataset. Although, there
is a possibility of removing theoretically highly correlated variables in
stepwise analysis, it is preferred for dataset with low dimension.
Whenever data dimension is very large, PCA or partial least square
regression may be preferred (e.g., in cases of full reflectance spectra).

In this study, PTFs/STFs were developed with five different sets of
predictor variables keeping in mind their availability from different
sources for future applications. The PTFs may be used where dataset
on specific soil properties are available. For developing countries
where soil database is scarce, STFs may be used by utilizing the band
reflectance data collected by the remote sensing satellites. But such
application may be restricted in arid or semi-arid regions or for region
where large portions of land kept under ploughing condition for
certain period of time (Leone and Sommer, 2000). Specifically, the

STFs based on the CR factors obtained from proximally measured
spectral reflectance curve may not be translated with remote sensing
data on spectral because two CR factors (CR1414nm and CR1913nm)
considered in this study correspond to water absorption bands and
will be affected by the presence of water vapour in atmosphere.
Therefore, CR factors or full reflection spectra may be used as predictor
variables when reflectance spectra are available from the handheld or
in some cases, from air-borne sensors. In case of application of STFs
involving principal components as predictor variables, it may be
calculated first by calculating matrix of standard normal variate of
original variables followed bymultiplying it with corresponding factor
loadings matrix. With this anticipation, we have listed, the best PTF/
STF from each five set of predictor variables in Table 3.

The prediction of hydraulic properties through PTFs/STFs may
sometimes be insensitive to predictor variables evenwith lower value
of RMSE in an independent dataset. Therefore, visual inspection of 1:1
plot of observed and predicted values of hydraulic properties is
important to test the performance of PTFs. In our study, we have
shown scatter plots of observed and predicted values with two
extreme cases in performances for each hydraulic property (Fig. 5).
The PTFs/STFs with best and worst performances were selected based
on RMSE of each hydraulic property in validation dataset. From Fig. 5,
it is found that scatter points of observed and predicted values of
hydraulic properties are close to 1:1 line for cases with the best
performances of PTFs/STFs and reasonable spread around1:1 line even
for cases with worst performances of PTFs/STFs. Among three
hydraulic parameters, ln(α) was not estimated well by either PTF or
STF even with the best cases. The developed PTFs from the same soil
database in a previous study also showedpoor performance of ln(α) in
comparison to In(Ks), and n (Santra and Das, 2008). The performance
of the best PTFs/STFs developed in this study was also compared with
reported established PTFs and was found better in each case.

4. Summary and conclusions

This study was carried out to develop transfer functions for soil
hydraulic properties using spectral reflectance data collected over
visible, near-infrared, and shortwave-infrared region of electromag-
netic spectrum. One hundred surface soil samples collected from a
micro-watershed near Chilika Lake were used for this study. Because
these soils were collected from a hillslope, there was wide variation in
soil properties. For example, soils contained seven dominant textural
classes, had organic carbon contents ranging from 0.07 to 2.10%, pH
ranging from 3.44 to 8.72 among others. Similarly, saturated hydraulic

Table 3
Pedotransfer and spectrotransfer functions for estimating saturated hydraulic conductivity and van Genuchten parameters from basic soil properties, and spectral reflectance of soil
in visible and near-infrared region.

Hydraulic parameter Predictor variables in PTF/STF Pedotransfer and spectrotransfer functions

ln(Ks) Basic soil properties 1.5988−0.0408×Clay−3.171×ρb−3.0153×ρp
Band reflectance+CR 3.041−0.1549×PC1+0.117×PC2−0.8867×PC3
Band reflectance 4.7038−0.3397×Band-1+0.0754×Band-6
CR factors 3.925+10.7504×CR1414+3.3991×CR1913−15.0937×CR2207
ASD full spectrum 3.0416−0.006×PC1+0.0673×PC2−0.0453×PC3

ln(α) Basic soil properties 3.9112−3.8758×ρb+4.3657×ln(EC)+0.4012×pH
Band reflectance+CR 0.4533−0.1439×Band-2
Band reflectance 0.4533−0.1439×Band-2
CR factors −0.0969+35.5831×CR1414−20.2724×CR1913−22.0356×CR2207
ASD full spectrum −2.2427−0.0158×PC1+0.0238×PC2+0.004×PC3

n Basic soil properties 1.298+0.0022×Sand−0.0265×pH
Band reflectance+CR 0.6623+0.5928×CR1913+0.0047×Band-4
Band reflectance 1.2238+0.0232×PC1+0.0166×PC2
CR factors 0.614+0.8818×CR1913
ASD full spectrum 1.225+0.0013×PC1−0.0002×PC2−0.0041×PC3

Sand = sand content (%); Clay = clay content (%); ρb = bulk density (g cm−3); ρp = particle density (g cm−3); EC = electrical conductivity of soil (dS m−1); pH= soil reaction in
1:2.5 soil solution; Band-1, Band-2, Band-4, and Band-6 are the band reflectance in 450–520 nm, 520–600 nm, 760–900 nm, and 2080–2350 nm, respectively; PC1, PC2, and PC3 are
first, second, and third principal components respectively obtained after principal component analysis of respective high dimensional predictor variables; CR1414nm, CR1913, and
CR2207 are continuum removal factors at 1414 nm, 1913 nm, and 2207 nm respectively.
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conductivity of soils varied in four orders of magnitude. The van
Genuchten parameter, α was log-normally distributed with a mean
value of −2.26 with a coefficient of variation 63.72%. The mean value
for the other van Genuchten parameter, n was 1.22 with a coefficient
of variation 7.11%. Such wide variation in basic and soil hydraulic
properties are ideal for developing transfer functions for soil hydraulic
properties (Santra and Das, 2008).

Proximal spectral reflectance of soils at VIS–NIR–SWIR region of
the spectrum showed three characteristics features: overall brightness
of the reflectance spectra, slope of the reflectance spectra from visible
to near infrared, and three prominent absorption features at 1414 nm,
1913 nm, and 2207 nm. These features were well correlated to basic
soil properties. For example, percent reflectance at the wavelength for
most regions of reflectance spectra was significantly correlated (|r|=
0.3 to 0.6) with particle size distribution, pH, EC, and van Genuchten
parameters. Specifically, we observed high correlation of basic soil and

hydraulic properties with spectral reflectance over blue, green, red, IR,
SWIR, and 2000–2300 nmwavelength bands. Such correlation results
allowed us to develop pedotransfer and spectrotransfer functions for
soil hydraulic properties. Both point PTFs/STFs [for ln(Ks)] and
parametric PTFs/STFs [for van Genuchten parameter ln(α) and n]
were developed by combining advanced statistical techniques such as
stepwise multiple regression, boot-strapping, and principal compo-
nent analyses. Developed PTFs/STFs were validated using a validation
dataset. Results show that although the performance of STFs is not
comparablewith the PTFs for estimating hydraulic properties, butmay
be applied in case of unavailability of PTFs. In some cases, the STFs
perform comparable to PTFs. Specifically, STFs developed with CR1414,
CR1913, and CR2207 performed similar to PTFs developed with basic soil
properties; STF developed with CR factors performed better than the
PTFs for estimating α. Among three hydraulic properties studied here,
van Genuchten parameter n is well predicted by STFs. With

Fig. 5.Observed and predicted values of saturated hydraulic conductivity [ln(Ks)] (a and b), and van Genuchten parameters, ln(α) (c and d), and van Genuchten parameter, n (e and f)
with the best performances (left side) and worst performances (right side) among pedotransfer functions and spectrotransfer functions developed with different combination of
predictor variables for each hydraulic property.
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comparable performance of STFs with PTFs, STFs have the added
advantage of being more easily developed because of the possibility of
rapidly collecting spectral data compared to basic soil data. Moreover,
spectral data may be collected over a large surface area and may be
suitable for getting area-averages of hydraulic properties.

A specific limitation of this study is that the STFs were developed
using air-dried and disturbed soil samples collected from top 10 cm
soil surface. True structural attributes of soil are typically not fully
retained in loose and disturbed soil samples. Thus, the STFs developed
in this may be applicable only to surface soils. Future work is needed
to examine if the STFs may be developed from undisturbed soil
samples. Second, it may be possible that the transfer functions for soil
hydraulic properties may be developed from the signatures of non-
invasive methods such as FDEM and GPR sensors, which can measure
soil properties in deeper soils (Ben Dor et al., 2008). Furthermore, the
six wave bands selected for the analysis of the proximal reflectance
data are the wave bands used in the ETM+ sensors onboard remote
sensing satellites. This suggests that, if rigorously evaluated, the
method outlined here may be suitable for large scale applications via
direct measurements through remote sensing. Finally, a rigorous
testing in different geographical regions is warranted to establish the
utility of STFs as a method for estimating soil hydraulic properties.
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