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Abstract

A 16‐week indoor culture trial was conducted to evaluate the effect of varying C:N

ratio on growth performance, physico‐chemical parameters, microbial dynamics, feed

utilization, and immunological parameters. The experiment comprised of five biofloc

treatment groups (with varying C:N ratio 5:1, 10:1, 15:1, 20:1) and a control with

three replicates each, having 100 nos/m3 as stocking density in 500 L tanks with

constant aeration. The C:N ratios of the treatments were manipulated using

molasses as an organic carbon source whereas there was no carbon source added in

control. The water quality parameters monitored throughout the experiment were

found to be within permissible limits in shrimp culture. At the end of the experi-

ment, it was observed that there were significant differences between the treat-

ment groups and the control regarding absolute growth, SGR, FCR, PER, and FER.

Furthermore, a considerable difference in immunological parameters, namely, THC,

phagocytosis, and PO activity (17.5 × 106 cells per ml, 43.5%, 0.112 Units min−1 mg

min−1), was recorded among the treatments compared to that of the control groups

(6.2 × 106 cells per ml, 31.5%, 0.051 Units min−1 mg min−1) respectively. Enhanced

growth and survival with substantial disease resistance were recorded in C15 treat-

ment. The results indicate that the CN15 ratio coupled with minimal water

exchange is optimal for improved survival, growth, and immune activity.
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1 | INTRODUCTION

Availability of specific pathogen‐free shrimp has resulted in increased

shrimp farming in terms of culture as well as production. The choice

of Litopenaeus vannamei over Penaeus monodon is primarily due to

enhanced production, SPF availability, higher yield after processing,

and higher market demand. Of late, biofloc technology (BFT) has

gained momentum and positive response in shrimp and tilapia

farming. In India, farmed shrimp production increased from <1 lakh

tonnes in 2009 to 3.5 lakh tonnes in 2014. In 2016–2017, the pro-

duction was over 5 lakh tonnes, accounting for 38% in quantity and

64.5% in value (Rs. 24,426 crores) of the total Indian seafood export

worth 5.78 billion dollars (Rs. 37,870 crores) (MPEDA, 2017). The

expanding culture system influences water quality and environmental

factors. Due to intensification with higher stocking densities, there is
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more use of water, feed, and fertilizers which leads to increased pro-

duction of waste and disease (Beveridge, Phillips, & Macintosh,

1997; Moss, Moss, Arce, Lightner, & Lotz, 2012; Otta et al., 2014;

Robledo, Navarro‐Angulo, Lozano, & Freile‐Pelegrín, 2012). Several
studies in the past have highlighted the low‐cost eco‐based technol-

ogy and its improvement strategies (Avnimelech, 1999, 2007 ; Hari,

Madhusoodan, Johny, Schrama, & Verdegem, 2004; Panigrahi et al.,

2018; Panigrahi, Sundaram, Ravichandran, & Gopal, 2014), which

seem to be a promising option for farmers adopting sustainable

shrimp culture. The Pacific white shrimp, Litopenaeus vannamei, is

one of the most preferred species worldwide due to its fast growth,

high survival, and is the most compatible shrimp for the biofloc sys-

tem (Ballester et al., 2010; Panigrahi et al., 2018; Xu & Pan, 2012).

Sustainable shrimp production with greater emphasis on environ-

ment and high disease resistance is the need of the hour. However,

intensive shrimp culture with improper management leads to

eutrophication in the receiving water bodies, due to the overrichness

of nutrients in the drained water which promotes diseases and accu-

mulation of nitrogen metabolites (Robledo et al., 2012).

Biofloc is naturally dynamic, artificially cultivated, natural food

agglomerate composed of bacteria, algae, protozoa, rotifers, nema-

todes, hypotrichs, dead organisms, uneaten feed, and shell moults.

These microbial communities are formed by adding organic carbon

to a water body, with the C:N ratio maintained at a stable level

(Haslun, Correia, Strychar, Morris, & Samocha, 2012; Jorand et al.,

1995; Schryver, Crab, Defoirdt, Boon, & Verstraete, 2008). One of

the primary requisites of biofloc formation is to maintain the carbon

and nitrogen ratio in the culture system. For the development of

biofloc, the C:N ratio should be within the range from 10:1 to 20:1

(Abreu, 2007; Asaduzzaman et al., 2010; Avnimelech, 1999; Ballester

et al., 2010; Emerenciano, Ballester, Cavalli, & Wasielesky, 2012).

The C:N ratio manipulation can improve the water quality by utilizing

the nitrogen and regenerate new bacterial cells thereby reducing the

waste effluent from the culture system.

Aquaculture production often gets crippled due to deterioration

of water quality, particularly due to nitrogen metabolites from unuti-

lized feed and the waste metabolite of the animal. By adding a

source of carbon, this problem is addressed. Inclusion of carbon sup-

ports the formation of biofloc that results in the improvement of

water quality (Avnimelech, 2007; Crab, Avnimelech, Defoirdt, Bos-

sier, & Verstraete, 2007; Hargreaves, 2006; Hari et al., 2004; McIn-

tosh, 2000) and increase in dissolved oxygen in the system (Lananan

et al., 2014; Lananan, Jusoh, Ali, Lam, & Endut, 2013). Biofloc is cor-

sortium of heterotrophic microorganism which helps in maintaining

water quality by reducing ammonia and other nitrogenous metabo-

lites from the system. Earlier studies suggest that optimum C:N ratio

can also help in increasing the nitrogen retention from feed by 7%–
13% (Hari et al., 2004; Schneider, Sereti, Eding, & Verreth, 2005). In

turn, the microbial floc so developed can also act as supplementary

food to the culture species (Avnimelech, 1999; Browdy, Bratvold,

Stokes, & McIntosh, 2001; Burford & Lorenzen, 2004; Moss, Pruder,

& Samocha, 1999; Xu & Pan, 2013).

Manipulation of C:N ratio helps in improving the immune activity

as well as the antioxidant capacity of shrimp, both of which enhance

the resistance against pathogens (Panigrahi et al., 2017; Vazquez

et al., 2009). Biofloc contains rich bioactive compounds which

increase the tolerance to stress and helps in activating the antioxi-

dant activity in shrimp (Babin, Biard, & Moret, 2010). Furthermore,

earlier studies have shown that biofloc‐reared shrimps exhibit a

higher proPhenoloxidase activity, phagocytic activity, and total

haemocyte count (THC) compared to nonbiofloc control group (Eka-

sari et al., 2014; Kumar et al., 2015; Xu & Pan, 2013). The total

haemocyte count in shrimp and natural immunostimulant in the bio-

floc system enhances protection against the pathogen (Smith, Brown,

& Hauton, 2003). Recent studies have revealed that biofloc reduces

the occurrence of acute hepatopancreatic necrosis disease (AHPND),

also called as EMS (NACA, 2012). Experiments carried out at ICAR‐
Central Institute of Brackishwater Aquaculture (CIBA) revealed that

constituents of bacterial cell walls in biofloc contain components

that activate a cascade of reactions leading to the production of

proPhenoloxidase and several other biochemical pathways (Panigrahi

et al., 2017, 2018 ). Biofloc comprises beneficial bacteria that alter

the biological and immunological status of shrimp by colonizing

microbiota in the gut (Zhao et al., 2012).

The biofloc system can be a more cost‐effective by fixing effec-

tive C:N ratio for sustainable shrimp production. As this system

diminishes, the toxic nitrogenous metabolites through in situ biore-

mediation, it is a key tool for eco‐friendly culture practices with

zero‐water exchange approach. This study evaluated different ratios

of carbon and nitrogen levels on the physico‐chemical parameters,

growth, floc volume, and microbial dynamics along with growth

and immune responses of the shrimp in the grow‐out rearing of

L. vannamei in a biofloc environment.

Highlights

� Growth, physico‐chemical, and microbiological parame-

ters were substantially higher in carbon and nitrogen

(CN) ratio treatments compared to control.
� Optimization of C:N ratio in L. vannamei culture revealed

an optimum ratio of 15 to be ideal for a biofloc‐based
system.

� Challenge study revealed higher mortality in control

compared to CN‐treated groups when challenged with

the pathogen Vibrio parahaemolyticus (MTCC 451).
� Carbon supplementation appears to influence hetero-

trophic bacteria and provides immunity and protective

response under BFT‐based rearing.
� Immune responses like THC, phagocytic activity, and

proPhenoloxidase activity were higher in treatments

compared to control. The elevated immune response in

CN15 indicates enhanced immune regulatory function.
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2 | MATERIALS AND METHODS

2.1 | Experimental design

The experiment was carried out at the Muttukkadu Experimental

Station (MES) of CIBA, about 35 km away from Chennai. L. van-

namei was cultured in FRP tanks with minimal water exchange @

10% of total volume, on a weekly basis. The protocol involved a

conventional system without biofloc and a biofloc system with dif-

ferent C:N ratios. The combinations were control (C), C:N ratio 5:1

(CN5), C:N ratio 10:1 (CN10), C:N ratio 15:1 (CN15), and C:N ratio

20:1(CN20). The control tank was maintained autotrophically with-

out the addition of any carbon source. Feed containing 35% crude

protein with no additional carbon source was provided to the con-

trol. In the treatment groups, molasses was added as a carbon

source to raise the C:N ratio to 5, 10, 15, and 20 to promote bio-

floc development. The experiment was run in triplicate in 500 L

FRP circular tanks located in the indoor facility with diffused sun-

light for a culture period of 120 days. Sea water was used during

the entire experimental period. Initially, sea water was filled in FRP

tanks and treated with chlorine @ 30 ppm. The next day, agricul-

tural lime was applied to all the tanks @ 10 g/m−3, after which the

remaining ingredients such as urea, dolomite, and triple superphos-

phate (TSP) @ 10 g, 10 g, and 10 g/m−3, respectively, were added

to aid fertilization and generation of autotrophs. The biofloc inocu-

lum was prepared by fermenting molasses (80 ml) and Bacillus sub-

tilis (MTCC 2756) and Saccharomyces cerevisiae (IAM 14383 T)

(40 ml: 108 cells per ml) in 4 litres of autoclaved seawater. The

fermentation lasted 24 hrs. The biofloc inoculum was prepared and

added to all the treatment tanks @ 1,000 ml/m−3, whereas the

control was maintained in an autotrophic manner, devoid of biofloc

inoculum. Continuous aeration was provided to all the tanks. After

generation of biofloc, 50 numbers of L. vannamei juveniles (avg.

wt. 1.0 g) @ 100 per m3 were stocked in all the treatment and

control tanks.

An experimental diet prepared at the feed mill of CIBA was used;

the details of which are listed in Table 1. The ingredients were pow-

dered using a two‐stage hammer mill, multipulverized, and thereafter

sieved through a 300‐micron mesh screen. All the ingredients includ-

ing liquids were thoroughly mixed in a batch mixer. The mixture was

then pelleted in a Ring‐Die pellet mill with 16% moisture, at 95°C

under steam as described by Panigrahi et al., 2017. Pellet feed of

varying sizes as per shrimp's body size, namely, juveniles: 800–1,000
micron (crumble 2), subadults: 1.2–1.5 mm, and adults: 2.2 mm was

prepared. The feed was provided manually till apparent satiation

three times daily at 06:00, 14:00, and 22:00 hrs. The daily feeding

rate was gradually reduced from approximately 5% of total body

weight and biomass to 1.5% by the end of the experiment, and it

was moderated daily according to feed intake, by hand net, to make

sure that the diets were entirely consumed. Daily diet inputs were

recorded in all the treatments (Hargreaves, 2006; McIntosh, 2001;

Xu & Pan, 2012) and molasses was applied on a daily basis at

09.00 hrs in the morning.

2.2 | Manipulation and maintenance of C:N ratio

The C:N ratio was calculated considering the feed protein/nitrogen

and input carbon used in shrimp culture (Avnimelech, 1999; Avnim-

elech, Diab, & Kochva, 1992; Avnimelech, Kochva, & Diab, 1994;

Avnimelech, Mokady, & Schroeder, 1989; De Schryver et al., 2008;

Kochva, Diab, & Avnimelech, 1994). The carbon and nitrogen con-

tents were calculated by the assumption of feed protein (35% pro-

tein feed) and the addition of various levels of carbon. Addition of

molasses to one gram of feed depends on the assimilation and

assumption of nitrogen in the system. In this study, molasses was

used @ 0.32, 0.64, 0.96, and 1.28 g for CN 5, CN 10, CN 15, and

CN 20, respectively, for one gram of feed (Anand et al., 2013; Avn-

imelech, 1999; Panjaitan, 2010). Water exchange (@10%) and

removal of faecal matter were carried out in the CN treatment tanks

once a week considering the evaporation loss. In the control tank,

water was exchanged @ 50% twice a week, without the addition of

carbon source.

2.3 | Growth performance

The average body weight (ABW), survival, SGR, and nutritional

parameters (FCR, PER, FER) of the shrimps were determined fort-

nightly until the completion of culture. The total body weight (W)

was recorded from each experimental container along with the num-

ber of live shrimps (N). The amount of feed used in each tank (Wf)

TABLE 1 Ingredients and proximate composition (g/100 g) of
experimental diet formulated with 35% crude protein for culture of
Litopenaeus vannamei

Composition 35% CP

Fish meala 23.6

Acetesa 11.8

Soybean meala 17.7

Gingelly oil cakea 5.9

Wheatb 13.92

Broken riceb 6.96

Maidab 13.92

Fish oil 2.2

Lecithin 1

Vitamin and Mineral Mixc 2

Binderd 1

aProtein base: Fish meal: Acetes sp.: Soya cake: Gingelly oil cake in the

ratio of 4:2:3:1.
bCarbohydrate base: Wheat: Broken rice: Maida in the ratio of 4:2:3.
cVitamins (mg/kg): Vitamin A 20.0, Vitamin D 4.0, Vitamin E 120.0, Vita-

min K 60.0, Choline chloride 6000.0, Thiamine 180.0, Riboflavin 240.0,

Pyridoxine 180.0, Niacin 1080.0, Pantothenic acid 720.0, Biotin 2.0, Folic

acid 30.0, Vitamin B12 0.150, Inositol 1500.0, Vitamin C 9000.0. Miner-

als (g/kg): CaCO3 28.0, K2SO4 10.0, MgSO4 12.5, CuSO4 0.2, FeCl3 0.5,

MnSO4 0.5, KI 0.01; ZnSO4 1.0, CoSO4 0.01, Cr2SO4 0.05, Bread flour

7.14.
dPoly MethylolCarbamide.
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was recorded. The ABW was computed from W and N. The overall

average values of survival (%), the growth rate of shrimp (gm/day),

percentage weight gain, and feed conversion ratios (FCR) were com-

puted as follows (Panigrahi et al., 2017).

SR% ¼ Nt N0 � 100%=

where SR = the survival (%), Nt = the number of shrimp that sur-

vived until the end of the experiment, N0 = the number of animals

that were available at the beginning of the experiment.

SGR ¼ ðln finalweight� ln initialweightÞ=day of culture� 100

FCR ¼ Total feed used

ðDryweightÞ=Totalweight of the harvested shrimps ðwetweightÞ

PER ¼ Netweight gain ðgÞ=Protein applied in feed ðgÞ

FER ¼ Weight gain=feed intake

2.4 | Assessment of water quality parameters

Physico‐chemical parameters, namely, temperature (using a ther-

mometer), salinity (hand refractometer, Otago, Japan), pH (Eutech,

Singapore), and electrical conductivity (Eutech Singapore) were

recorded daily. Total dissolved solids (TDS), total suspended solids

(TSS) dissolved oxygen, ammonia (TAN), nitrite (NO2‐N), nitrate

(NO3‐N), turbidity, chemical oxygen demand, phosphate, total alkalin-

ity, and chlorophyll a were measured following APHA (1998). The

biofloc volume was determined from a litre of water in each experi-

mental tank using Imhoff cones (Avnimelech & Kochva, 2009).

2.5 | Assessment of microbial load

The total heterotrophic bacteria were determined by counting the

colonies which grew on Zobell Marine Agar (ZMA) plates with 1.0%

NaCl (Jorgensen, Mørk, Høgåsen, & Rørvik, 2005). Before plating

each sample onto agar medium, serial dilutions were made in a phys-

iological saline solution composed of 0.9% NaCl (Sohier & Bianchi,

1985). The total Vibrio in water samples was counted using TCBS

media (Hi‐Media grade) by the spread plate technique after Harris,

Owens, and Smith (1996). Levels of bacteria were expressed in col-

ony‐forming units per ml of water (CFU ml−1).

2.6 | Challenge study

The bacterial pathogen Vibrio parahaemolyticus (MTCC 451) from

Institute of Microbial Type Culture Collection (IMTCC), Chandigarh,

India, used for challenge study was spread on TCBS agar and incu-

bated for 24 hr at 30°C to form colonies. After that, a single colony

was transferred to a 10‐ml tryptic soy broth supplemented with 1%

NaCl and incubated overnight at 30°C. The broth culture was then

centrifuged at 7500xg for 10 min at 4°C. The precipitate was rinsed

with sterile 0.9% saline, resuspended in sterile normal saline, and

used as bacterial suspensions. A total of 10 healthy intermoult ani-

mals were used for the experiment, conducted in triplicate. Shrimps

in the weight range of 15–18 g were injected intramuscularly in the

third abdominal segment with 20 μl of bacterial suspension and

transferred to 100 L FRP tanks. Control shrimp were also maintained

which were injected with 20 μl of 0.9% saline. The shrimps were clo-

sely monitored for mortality.

2.7 | Immunological parameters

2.7.1 | Total haemocyte count

Healthy intermoult stage shrimp were collected, and about 100 μl of

haemolymph from control and CN‐treated shrimps was withdrawn

using a syringe containing 900 μl of ice‐cold anticoagulant saline

(ACS). The syringe was shaken gently for rapid mixing of haemo-

lymph and ACS. A drop of haemolymph suspension was introduced

into an improved Neubauer haemocytometer, and the number of

haemocytes was determined microscopically. The THC was com-

puted after Söderhӓll, (1982):

Total hemocyte count

¼ Total number of cells counted � dilution factor � 104

Number of fields counted

2.7.2 | Phenoloxidase activity

The haemolymph collected from the animal was allowed to clot for

30 min at room temperature (28°C). After that, the clot was dis-

turbed and centrifuged at 1,500 g for 7 min. The clear supernatant

(serum) was collected. The serum collected from each experimental

group animal was used for measuring the phenoloxidase (PO) activity

spectrophotometrically (Shimadzu, Japan) from the formation of

dopachrome from L‐dihydroxyphenylalanine (L‐DOPA) as described

by Asokan, Arumugam, and Mullainadhan (1998). Briefly, 0.01 mol/L

solution of L‐DOPA was prepared in 0.1 mol/L phosphate buffer

(0.2 mol/L Na2HPO4, 0.2 mol/L NaH2PO4, pH 6.0). An equal volume

of serum and L‐DOPA (100 μl each) was added to a spectropho-

tometer cuvette (10 mm) containing 3 ml of phosphate buffer. The

mixture was agitated at 2‐min intervals for 60 min. The optical den-

sity (OD) was measured at 490 nm. Phenoloxidase activity was

determined from the increase in OD per min. Total haemolymph pro-

tein was determined spectrophotometrically as per Lowry, Rose-

brough, Farr, and Randall (1951) using bovine serum albumin as a

standard.

2.7.3 | Phagocytosis

Haemolymph (100 μl) was collected in 2 ml of trisodium citrate buf-

fer (30 mmol/L trisodium citrate, 340 mmol/L NaCl, 10 mmol/L

EDTA, 120 mmol/L dextrose; pH 7.55). It was spread on an alcohol‐
washed, clean, dry glass slide over an area of 2 cm2 and kept in a

moist chamber for 30 min at 23°C to obtain haemocyte monolayer
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(50 μl). For calculating the viability of haemocytes in monolayers, the

procedure by Garvey, Cremer, and Sussdorf (1979) was followed

using the trypan blue dye exclusion technique. Human A blood col-

lected in Alsever's solution was fixed in glutaraldehyde following the

method of Nowak, Haywood, and Barondes (1976).

Phagocytosis of human A erythrocyte in five haemocyte mono-

layers was prepared using haemolymph samples obtained from L.

vannamei. The first and second pair of monolayers were overlaid

with 200 μl human A erythrocyte (0.5%) and observed at 5 min

interval for 1 hr. The mean of five determinations was recorded and

values computed as below:

Phagocytosisð%Þ
¼ ðNo:of phagocytotic hemocytes=Total no: of hemocytesÞ � 100

2.8 | Statistical analysis

Water quality parameters, growth, and immunological assessment

were subjected to ANOVA following Duncan Multiple range test.

The correlation between water quality and growth as well as related

parameters was computed. The analysis was carried out using SPSS

package 22.

3 | RESULTS

3.1 | Survival and growth

Survival of C:N‐treated shrimp was higher than that of control. At

the end of the experiment, the survival was highest in CN15 (99%)

followed by CN20 (96%), CN10 (89%), and CN5 (81%) whereas it

was lowest in control (77%) (Table 2). Average body weight was sig-

nificantly (p < 0.001) higher in C:N treatments compared to control

(Figure 1). Highest ABW (24.71 ± 2.61 g) was achieved in CN15

compared to control (11.8 ± 2.93 g). Specific growth rate (SGR), pro-

tein efficiency ratio (PER), feed conversion ratio (FCR), and feed effi-

ciency ratio (FER) showed significantly higher values among the

treatments (p < 0.01) compared to those of control (Table 2). A

higher FCR was observed in CN15 and CN20 compared to other

treatments and control (Table 2). The FER values revealed no

significant difference between CN15 and 20 treatments whereas sig-

nificant differences were observed in CN5 and CN10 treatments

compared to control (Table 2). However, there was no significant dif-

ference among other CN treatment groups. The PER was signifi-

cantly (p < 0.001) higher in CN15, CN20, CN10, and CN5 compared

to control (Table 2).

3.2 | Water quality parameters

The water quality parameters like salinity, pH, and temperature did

not differ between the treatments and control. The EC and turbid-

ity levels increased proportionately with the progress of culture

(Table 3). Similarly, TDS and TSS values significantly (p < 0.001)

increased in CN treatments compared to control. However, TAN,

NO2‐N, and NO3‐N levels significantly (p < 0.001) decreased in

CN20 followed by other CN treatments whereas in control, higher

values were recorded (Table 3). Phosphate levels were significantly

(p < 0.001) higher in the water samples of C:N treatments com-

pared to control where the values were low. The DO levels varied

significantly (p < 0.05) between the treatments and control

(Table 3). Total alkalinity levels were not significantly different

among the treatments and control, as the alkalinity was maintained

by adding lime. However, chlorophyll a increased in the treatments

TABLE 2 Average body weight, survival, specific growth rate, protein efficiency ratio, feed conversion ratio, and feed efficiency ratio of
Litopenaeus vannamei in a 16‐week trial comparing effect of different CN ratio in a biofloc‐based, zero‐exchange tank system stocked with
juveniles at a density of 100 shrimp m−3

Treatments ABW (gm) Survival rate (%) SGR PER FCR FER

Control 11.85a ± 2.93 76.50a ± 2.12 2.01a ± 0.04 1.35a ± 0.04 2.32c ± 0.08 0.43a ± 0.02

CN 5:1 19.01b ± 2.74 81.05b ± 1.41 2.40b ± 0.05 2.99b±0.09 1.03b ± 0.09 0.86b±0.17

CN 10:1 20.77b ± 3.19 88.55c ± 0.78 2.49b ± 0.07 3.47c ± 0.03 0.90a ± 0.03 1.11c ± 0.05

CN 15:1 24.71c ± 2.61 99.00d ± 1.45 2.68c ± 0.05 3.84d ± 0.02 0.81a ± 0.04 1.23d ± 0.04

CN 20:1 20.26b ± 4.52 96.00d ± 1.48 2.49b ± 0.06 3.83d ± 0.01 0.82a ± 0.02 1.23d ± 0.07

p value 0.003* 0.001** 0.001** 0.001** 0.001** 0.001**

Note. The value indicates mean ±standard deviation of biofloc measured in treatments and control groups.

Different superscripts like a,b,c,d are depicted for significant difference at p value mentioned based on DMR test.
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CN20, CN15, CN10, and CN5, and it was significantly higher in all

the treatments compared to control (p < 0.001). The biofloc vol-

ume gradually increased over the period in the treatments, and low

values were recorded in control, significant difference (p < 0.03)

(Table 3).

3.3 | Assessment of microbial load

The microbial load in the culture system, as revealed by total hetero-

trophic count, was significantly higher (p < 0.001) in the water sam-

ples of the treated groups compared to control. Mean values of total

heterotrophic bacterial counts were comparatively higher in CN20

(Figure 2). The total presumptive Vibrio count significantly increased

(p < 0.001) in water samples of control proportionate to the culture

period but gradually decreased in samples of various CN treatments.

Vibrio load was higher in the water samples of than control the CN

treatments (Figure 3).

3.4 | Challenge study

Survival of shrimp challenged with V. parahaemolyticus was signifi-

cantly (p < 0.05) higher in CN treatment groups compared to con-

trol. The cumulative mortality was 100% in control group followed

by 80% (CN5 and CN10) and 70% (CN15 and CN20). Mortality

increased after 5 days postchallenge in control whereas, in the

biofloc treatments, mortality decreased after fifth day (Figure 4).

3.5 | Immunological parameters

The total haemocyte count was significantly (p < 0.05) higher in

CN15 compared to control (Figure 5). Similarly, THC was signifi-

cantly (p < 0.01) different in CN20, CN10, and CN5 treatments,

(12.2 ± 0.24, 11.1 ± 0.43, and 10.8 ± 0.35) X 106 cells ml−1, respec-

tively. Phenoloxidase activity of serum C:N‐treated shrimps was sig-

nificantly higher (p < 0.05) in CN15 followed by CN20, CN10, and

CN5 compared to control (Figure 6). Phagocytosis percentage

showed significantly (p < 0.05) higher values for CN15 (43.5 ± 2.8)

and CN20 (41.0 ± 3.1) compared to that of CN10 and CN5 whereas

the control group (31.5 ± 2.9) exhibited the least value (Figure 7).

4 | DISCUSSION

4.1 | Growth performance

Biofloc technology enhances water quality through microbial manip-

ulation, thereby facilitating healthy growth of cultured shrimp. BFT

being a zero‐water exchange system, the addition of carbohydrate

promotes the development of diverse and balanced microbial com-

munities originating from the rearing water (Haslun et al., 2012).

These active and dense microorganisms together with suspended

organic particles tend to form the biofloc, which can continuously be

consumed by the shrimp as a natural food source (Burford, Thomp-

son, McIntosh, Bauman, & Pearson, 2004; Kent, Browdy, & Leffler,

TABLE 3 Mean values of physico‐chemical parameters of water samples from control and four C:N treatments. The values are means (±SD,
N = 15) of three replications and five sampling date for the treatment and control

Water quality parameters Control CN 5:1 CN 10:1 CN 15:1 CN 20:1 p Value

Salinity (ppt) 30.15a ± 4.74 30.10a ± 3.25 30.15a ± 3.32 30.32a ± 5.48 30.77a ± 4.57 NS

Temperature (°C) 28.45a ± 5.58 28.90a ± 2.12 28.80a ± 1.41 28.45a ± 2.76 28.54a ± 2.83 NS

pH 8.58 a ± 1.64 8.15ab ± 1.65 8.15b ± 1.61 8.07 b ± 1.65 7.87c ± 1.13 NS

EC (mS) 26.90 a ± 2.40 31.01b ± 1.97 33.03b ± 2.08 38.45c ± 2.90 41.65c ± 5.87 0.001**

Turbidity (NTU) 10.44 a ± 1.15 12.27a ± 3.24 18.56b ± 2.80 23.21c ± 3.75 26.47d ± 3.13 0.001**

TDS (ppm) 8.41 a ± 1.20 12.85b ± 2.90 15.25b ± 2.33 20.60c ± 3.11 22.38c ± 2.57 0.001**

TSS (ppm) 60.58 a ± 16.94 123.53b ± 35.51 152.15b ± 37.26 317.05 c ± 54.52 328.55c ± 36.84 0.001**

TAN (ppm) 1.45 d ± 0.11 0.86c ± 0.06 0.60b ± 0.07 0.55ab ± 0.01 0.46a ± 0.01 0.001**

NO2‐N (ppm) 0.75d ± 0.14 0.39c ± 0.13 0.24b ± 0.12 0.21ab ± 0.08 0.14a ± 0.09 0.001**

NO3‐N (ppm) 0.67 c ± 0.15 0.22b ± 0.04 0.21b ± 0.04 0.11a ± 0.02 0.10a ± 0.02 0.001**

PO4‐P (ppm) 0.43 a ± 0.12 0.52a ± 0.10 0.69b ± 0.09 0.80b ± 0.03 0.98c ± 0.32 0.001**

DO (ppm) 6.94 a ± 1.05 5.95ab ± 2.19 5.00b ± 1.13 4.85bc ± 1.42 4.67d ± 0.81 0.002*

COD (ppm) 32.03 a ± 13.39 54.65b ± 8.70 59.65b ± 7.85 58.25b ± 10.15 58.55b ± 6.24 0.001**

Total Alkalinity (ppm) 150.25 a ± 25.10 140.25a ± 39.24 135.80a ± 28.57 130.22a ± 22.55 124.10a ± 10.35 NS

Chlorophyll a (mg/m3) 32.25 a ± 6.01 62.08 b ± 5.26 85.35 c ± 7.28 121.50d ± 12.36 137.13e ± 12.10 0.001**

Biofloc volume (ml/L) 4.53 a ± 1.82 16.03b ± 5.95 18.05b ± 3.45 23.58b ± 6.54 24.84b ± 4.84 0.003*

THB (CFU/ml) 4.55 a ± 1.81 8.68b ± 1.14 10.27bc ± 1.13 12.14cd ± 1.78 13.31d ± 1.23 0.001**

TVC (CFU/ml) 16.66a ± 1.21 7.84b ± 2.12 6.08bc ± 1.08 3.04 c ± 1.80 3.80c ± 1.28 0.001**

Note. Mean values within a row with the same superscripts are not significantly different (p < 0.05).

Different superscripts like a,b,c,d are depicted for significant difference at p < 0.05 based on DMR test and NS—Non‐significant.
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2011; Wasielesky, Atwood, Stokes, & Browdy, 2006). It also

improves water quality, microbial dynamics, and immunological

parameters of the cultured L. vannamei and P. monodon (Burford

et al., 2004; Epp, Ziemann, & Schell, 2002; Moss & Pruder, 1995;

Tacon et al., 2002; Kumar et al., 2004). Although the underlying

mechanisms of BFT in promoting shrimp growth are mostly
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unknown, it is expected that the beneficial effect of BFT has several

interrelated causes. Furthermore, many studies have demonstrated

the beneficial effects of biofloc on shrimp culture (Ballester et al.,

2010; Haslun et al., 2012; Ray, Dillon, & Lotz, 2011; Wasielesky

et al., 2006; Xu & Pan, 2012; Zhao et al., 2012). Several researchers

suggested that apart from maintaining clean and stable water quality,

the established biofloc in the culture system can improve feed uti-

lization, thereby increasing growth performance. Similar findings

were reported on different shrimp species, namely, Penaeus monodon

(Arnold, Coman, Jackson, & Groves, 2009), P. semisulcatus (Megahed,

2010), Farfantepenaeus paulensis (Ballester et al., 2010), L. vannamei

(Xu & Pan, 2012), and Marsupenaeus japonicus (Zhao et al., 2012).

The present study confirmed the significant role of C:N ratio

levels in the biofloc‐based shrimp culture system in promoting

growth. Our results revealed that survival was significantly higher in

CN treatments (82%–99%) compared to that of the control (77%).

Moreover, higher growth was observed in CN15 and other treat-

ments compared to control. Similarly, related studies have shown

that survival of shrimp in CN treatments ranged from 80% to 100%

compared to control (Anand et al., 2013; Panjaitan, 2011; Xu, Morris,

& Samocha, 2016). Ju, Forster, and Dominy & W. G. (2009) sug-

gested that microalgae in the microbial floc may play a key role in

improving shrimp growth. Our results indicate that growth, SGR,

FER, and PER significantly (p < 0.05) increased in all the CN treat-

ment shrimps compared to that of control. The FCR varied signifi-

cantly in CN treatments (0.81–1.03) compared to control (2.32). The

FCR was higher in CN5 treatment although no significant differences

between different biofloc groups could be observed. Wasielesky

et al. (2013) reported an FCR of 0.95–1.61 in the BFT system.

Improved FCR values were observed with biofloc treatments sug-

gesting that biofloc improved feed utilization (Megahed, 2010; Ray

et al., 2011; Xu &Pan, 2013).

4.2 | Water quality parameters

Our results revealed no significant differences between the treat-

ments and control with regard to salinity and temperature. The pH

levels recorded were significantly low compared to that in control

because of the inclusion of carbon sources. We maintained the opti-

mum level by adding lime. Organic/nitrogenous metabolites are con-

verted into bacterial biomass by addition/balancing with carbon and

nitrogen to reduced ammonium concentration in the biofloc‐based
shrimp culture system (Schneider et al., 2005). By adding carbohy-

drates to the pond, bacterial growth is stimulated, and nitrogen

uptake through the production of microbial proteins takes place

(Avnimelech, 1999). This enhanced nitrogen uptake by bacterial

growth decreases the ammonium concentration more rapidly than

nitrification (Hargreaves, 2006). Our results revealed that TAN levels

reduced gradually when the addition of carbon sources increased.

The CHO addition to CN20 reduced TAN concentration significantly.

Similarly, NO2‐N and NO3‐N were reduced in the water of all the

CN treatments, whereas in control, the values recorded were signifi-

cantly (p < 0.05) higher. The TAN level was negatively correlated

(r = −0.868; p < 0.01), indicating that the presence of ammonia in

the system strongly influences the survival and also affects the body

weight and hence the growth in shrimp (r = −0.789; p < 0.01),

(r = −0.899; p < 0.01 respectively). These studies revealed that

phosphate concentration was higher in the water of the CN treat-

ments whereas in control, the value was low. The PO4‐P concentra-

tions remained below the 40 mg/L obtained by Ray, Lewis, Browdy,

and Leffler (2010) but were higher than the values in other BFT sys-

tems (Krummenauer, 2008; McIntosh et al., 2000). The accumulation

of phosphorus is due to noningested feed and decomposition of exc-

reta which favours eutrophication (Peñaflorida, 1999). This accumu-

lation does not directly affect the development of shrimp but may

cause favourable conditions for the proliferation of filamentous

cyanobacteria, which could obstruct the shrimp gills and produce

harmful toxins (Wasielesky et al., 2006). Silva (2009) reported that

the nitrogen and phosphorus dynamics in L. vannamei and Farfante-

penaeus paulensis culture in BFT system affirms that the accumula-

tion of phosphorus and the microbial floc inability to retain great

quantities of the same make excess phosphorus removal necessary.

Wurts (2002) has reported that the phosphorus level in the system

will enhance the growth of the phytoplankton. In the present study,

the PO4 was positively and significantly correlated with the chloro-

phyll and growth rate (r = 0.861 and 0.652 respectively). Electrical

conductivity was recorded to be higher in CN treatments whereas in

control, the value was low. Similarly, turbidity levels were signifi-

cantly (p < 0.05) higher in the CN15 and 20 compared to other

treatments and control because of biofloc abundance. Total dis-

solved solids were significantly (p < 0.05) higher in the water of CN

treatments whereas in control, the values were low. The TSS levels

increased in the CN15, CN20, and other treatments compared to

control because of higher density of microbial abundance in the bio-

floc system. According to Schveitzer et al. (2013), when L. vannamei

were cultured in zero‐exchange superintensive tank systems with

TSS concentration higher than 800 mg/L, the final shrimp yield was

lower than those cultured in the concentration of 200–600 mg/L.

These results indicate that the addition of carbon source promotes

higher natural bacterial protein biomass and increases the TSS and

improves shrimp growth in the biofloc systems. Similarly, biofloc vol-

ume was significantly (p < 0.05) higher when carbon sources were

increased whereas, in control, lower volume was recorded. Bioflocs

are a good source of vitamins and minerals, especially phosphorus,

they may also have probiotic effects. Maintaining settleable solids

concentration of 25–50 ml/L provides good functionality in biofloc

systems for tilapia (Avnimelech, 1999). In lined biofloc shrimp ponds,

10–15 ml/L is the typical target range (Hargreaves, 2013). Allan,

Moriarty, and Maguire (1995) recorded faster growth of prawns in

well‐prepared ponds with an abundant meiofauna. The present study

showed significantly higher chlorophyll a concentration in the CN

treatment water samples. Utilization of microbial protein depends on

the ability of the target animal to harvest the bacteria and to digest

and utilize the microbial protein (Avnimelech, 1999; Burford et al.,

2004; Burford, Thompson, McIntosh, Bauman, & Pearson, 2003; Hari

et al., 2004). Reported lethal levels of dissolved oxygen for L.
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vannamei are far below 1.0 mg/L (Hopkins, Hamilton, Sandifer,

Browdy, & Stokes, 1993) and 0.5 mg/L (Zhang, Zhang, Li, & Huang,

2006). The COD concentrations were significantly higher in all the

CN treatments compared to control (Table 3). Total alkalinity levels

were significantly reduced in the water of the CN treatments

whereas in control, they were higher (Ebeling, Timmons, & Bisogni,

2006).

4.3 | Microbial dynamics

Xu et al. (2016) reported that the addition of molasses to the biofloc

treatment increased the CN ratio and promoted the development of

heterotrophic bacteria in the culture tank water. The TAN was

assimilated by utilization of heterotrophic bacteria to promote/con-

vert microbial biomass in the biofloc‐based system (Ebeling et al.,

2006; Hargreaves, 2006). In heterotrophic biofloc‐based shrimp cul-

ture systems, the driving force is dense populations of active hetero-

trophic bacteria which can be promoted by increasing the CN ratio

of feed input. Assimilating the waste nitrogen from culture water

resulted in the production of new microbial biomass (cellular pro-

teins) (Avnimelech, 2006; Crab et al., 2007; Ebeling et al., 2006). The

present study revealed that CN treatments exhibited significantly

(p < 0.05) higher ranges of THB compared to control (Table 3).

Moreover, Vibrio load as significantly (p < 0.05) reduced in the water

samples of CN treatments whereas in control, it was high. It is

observed that stressed shrimp can be more susceptible to facultative

pathogenic microorganisms, part of their natural microbial flora and

aquatic environment (Lightner, 2005). Moriarty (1998) reported that

Vibrio sp. detected in the control group was higher than the probi-

otic‐treated group. However, some Vibrio species are the potential

causative agents for diseases in aquaculture systems (Immanuel, Vin-

cybai, Sivaram, Palavesam, & Marian, 2004; Mohney, Lightner, &

Bell, 1994). Balcazar (2003) demonstrated that the administration of

a mixture of bacterial strains (Bacillus and Vibrio sp.) positively influ-

enced the growth and survival of juveniles of white shrimp and pre-

sented a protective effect against the pathogen Vibrio harveyi. The

present study confirmed these findings based on the fact that Vibrio

levels were significantly (p < 0.001) lower in the water samples for

CN treatments compared to control.

4.4 | Challenge study

The C:N ratio plays a critical role in the development of the micro-

bial community (Panigrahi et al., 2018), which enhances the immu-

nity of the cultured organisms. (Crab, Chielens, Wille, Bossier, &

Verstraete, 2010; Haslun et al., 2012; Xu & Pan, 2013; Xu et al.,

2016; Zhao et al., 2012). In the biofloc system, carbohydrates are

added to promote diverse microbial growth (Haslun et al., 2012). As

the biofloc is manipulated to an appropriate C:N ratio, the health of

the animal is maintained. However, nitrogen is required to produce

the protein‐rich microbial cells. Inorganic nitrogen is immobilized into

bacterial cells when the metabolized organic substrates have high C:

N ratio (McCarty & Rittmann, 2001). Carbon is used for the

utilization of microorganisms, especially heterotrophic bacteria to

assimilate the nitrogen metabolites in the culture system under aero-

bic conditions. The C:N ratio in an aquaculture system can be

increased by adding different locally available cheap carbon sources

and a reduction in protein content in the feed (Avnimelech, 1999;

Hargreaves, 2006). Our study suggests that the defensive action of

biofloc‐reared shrimps against V. parahaemolyticus resulted in lower

mortality in CN15 and CN20 compared to other treatments. Our

results are in agreement with those reported by Xu and Pan et al.,

(2012) who worked in the biofloc system and challenged the biofloc‐
based shrimps against pathogenic organisms.

4.5 | Immunological assessment

Biofloc is a mechanism that provides shrimp with pattern recognition

and other molecules that lead to stimulation of the nonspecific

immune system. There is an energy cost associated with constant

immunostimulation although it is difficult to conclude whether this

effect is deleterious or not. Biofloc enhances the immune system,

but it is not fully activated until a pathogen is encountered. Avnim-

elech (2007) reported that biofloc could reduce pathogenic bacteria

compared to clear water. Antagonistic activity between the pathogen

and other bacteria might limit the pathogens. A similar effect may

occur between dense heterotrophic bacteria and V. parahaemolyticus

as the causative agent. Although biofloc has been confirmed as being

rich in natural microorganisms and bioactive compounds, not much

effort has been made to study the effect of biofloc on the physio-

logical health of cultured shrimp, particularly concerning immune and

antioxidant defence systems (Panigrahi et al., 2018; Xu et al., 2013).

Jang et al. (2011) found that the expression of a proPhenoloxidase

activating enzyme (lvPPAE1) in haemocytes of L. vannamei was

enhanced significantly when shrimps were reared in biofloc water

over the long term. The present study revealed that total haemo-

cytes count significantly (p < 0.05) increased in CN15 and other CN

treatments compared to control. Phagocytosis percentage was found

to be highly elevated in the CN15 group followed by CN20 com-

pared to control, but no significant differences were discernible in

other/lower CN treatments.

5 | CONCLUSION

The relationship of carbon and nitrogen is an essential phenomenon

of biofloc‐based shrimp culture systems. The ability to degrade the

nitrogen metabolites and maintain the water quality through manipu-

lation of C:N ratio influences the environment and productivity

immensely in the biofloc‐based system. Also, recycling the waste

product excreted/additives can be regenerated/converted to useful

microbial product for shrimp as a natural diet, thereby maintaining a

cleaner environment. Addition of carbohydrates for reduction in

ammonia promotes biofloc concentration and heterotrophic bacterial

generation/production of microbial proteins, improves shrimp immu-

nity, and reduces pathogenic strains. The present study revealed that

CN treatments had a significant effect on growth, water quality,
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microbial dynamics, and immunological parameters compared to con-

trol, and it could, therefore, be inferred that the treatment CN15

ratio exhibited an optimal range for maintaining a biofloc system in

L. vannamei culture.
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