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SUMMARY
The importance of reliability theory has grown out of the demands of modern technology and particularly out of the experiences complex 

military systems. The present investigation focus on importance of application of Weibull distribution in reliability theory as it is frequently used 
based on the assumption of a special type of non-homogeneous Poisson process. Also discussed some of the important inferential statistics of Weibull 
process in application to reliability theory. 
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1.	 INTRODUCTION

The mathematical theory of reliability has 
grown out of the demands of modern technology and 
particularly out of the experiences in World War–II 
with complex military systems. One of the first areas 
of reliability to be approached with any mathematical 
sophistication was the area of machine maintains 
Gertsbakh (2013). Reliability and survival analysis are 
interchangeable terms. These are considered different 
in the sense that the term reliability is used while 
performing experiments on man-made systems and 
the term survival analysis for experimenting on God 
made or natural systems. The system is defined as an 
arbitrary device performing an activity.

Suppose that we make a statement that a particular 
electrical component is reliable, then by this we mean 
that the component will behave in a manner that is 
expected of it. But if a particular component happens 
to fail unexpectedly, we accept it as a chance, failure. 
Thus the expected behavior under some assumed 
conditions forms the basis for defining the word 
reliability. For more discussion one may refer to 

Santosh et al. (2018), Wanga et al. (2016), Zhai and 
Lin (2015) and Cui et al. (2014).

Reliability is the probability of a device performing 
its purpose adequately for the period intended under 
the given operating conditions. 

Mathematically, the definition of reliability R (t) 
or survival function S (t) can be put as

( ) ( ) [ ]S R Pt t T t= = >

[ ]1 P T t= − ≤

( )1 F t− ; 0t >

Where F (t) is the c.d.f. of the random variable t 
representing the life time.

Clearly, since

( ) ( )
0

lim 10
t

S S t
→

= =

( ) ( )lim 0
t

S S t
→∞

= =∞
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We conclude that S(t) is a decreasing function 
in t. In other words, “the reliability of a system is 
the probability that when operating under stated 
environmental Conditions, the system will perform its 
intended function adequately for a specified interval 
of time.”

The latest task on modeling and analysis of 
repairable systems is based on the assumption of a 
special type of non-homogeneous Poisson process 
known as Weibull process [Baln and Englehhardt 
(1991)]. This model is also called a power law process 
in literature. The name Weibull process derives 
primarily from the resemblance of the intensity 
function of the process to the hazard function of a 
Weibull distribution.

Particularly the intensity function is given by

( )
1tV t

ββ
θ θ

−
   =        � … (1.1)

The notions of hazard rate, should not to be 
confused the intensity with one another in notions. 
The latter is a relative rate of failure for non-repairable 
systems, whereas the former is an absolute rate of 
failure for repairable system. Ascher and Feingold 
(1984, p.33) provided the further discussion on this 
point.

The mean value function of a Weibull process has 
the form

( ) tm t
β

θ
 =    � … (1.2)

here ( )0θ >  is scale parameter and ( )0β >  is 
shape parameter. Another parameterization that is 

sometimes used is ( )m t tβλ= 	
1taking  βλ

θ
 = 
 

here l is called the intensity parameter. 

With parameterization

If b = 1, it yields an homogeneous poisson process.

If b > 1, it yields a deteriorating system,

if b < 1, it provides a model for reliability growth.

It is necessary to cease taking further observations 
at same point, in order to obtain data. Such action is 
usually referred to as truncation of the process. In 

general, the process is said to be failure truncated if it is 
observed until a fixed number of failures have ocurred, 
and it is said to be time truncated if it is observed for 
a fixed length of time. With failure truncation, the data 
consists simply of the set of observed failure times, 
whereas with time truncation the number of occurences 
in the interval of observation is also part of the data.

2.	 �MATHEMATICAL DEVELOPMENT OF 
WEIBULL PROCESS

Let 1 2, ,...... nT T T  be the n successive occurences of 

non-homogeneous Poisson process and ( ) tm t
β

θ
 =   

 

denote the mean function of the process and let m(t) is 

continuous. If j
TjZ

β

θ
 =     then 1 2 ...... nz z z< < <  are 

distributed as the first n successive occurence times of 
an homogeneous Poisson process with intensity 1,λ =  
i.e.

( ) 1 2~ exp 1 , 0 ......i
j n

T
Z z z z

β

θ
 = < < < < < ∞  

Note that Zj’s are not independent. If we let Z0 = 0 
and define

1, 1,2,...,j j jX Z Z j n−= − =

Then by a well known property of HPP there 
differences are independently and identically 
distributed as exponential with mean unity. i.e. the 
joint density of 1 2, ,......, nx x x  is

( )
1

1
1 2, ,......, , 0

n

j

x

n jf x x x e x=

−∑
= < < ∞ � … (2.1)

Now consider

1 1z x=

2 2 1z x x= +

… … … … …

… … … … …

… … … … …

1 1......n n nz x x x−= + + +

so that the Jacobian of the transformation is

1J =
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then the joint density of 1 2, ,......, nZ Z Z  becomes

( )
( )1

1
1 2, ,......, .

n

j j
j

z z

nf z z z e J
−

=

− −∑
=

1, 0 ......nz
ne z z−= < < < < ∞ � …(2.2)

Now for the joint density of 1 2, ,......, nT T T , consider

1
1

TZ
β

θ
 =   

2
2

TZ
β

θ
 =   

… … … … … …

… … … … … …

… … … … … …

n
n

T
Z

β

θ
 =   

so that the jocabian of the transformation

( )
( )

( )

1

2

1

1

1

0 0 0

0 0 0

0 0 0 n

T

T

T

J

ββ
θ θ

ββ
θ θ

ββ
θ θ

−

−

−

=





    



( ) ( ) 1

1

j
nn T

j

ββ
θ θ

−

=

= ∏

Thus the joint density function of 1 2, ,......, nT T T  is

( )1 2, ,......, .
nT

nf t t t e J
β

θ
 −  =

( ) ( ) ( )
1

1 2
1

.exp , 0 ...j n
n t t

n
j

t t t
β

ββ
θ θ θ

−

=

   = − < < < < < ∞     
∏

 
� …(2.3)

This density seems to be quite simple. It denotes 
the liklihood of the sample 1 2, ,......, nt t t . Now we 
proceed to obtain the maximum likelihood estimates 
of b and q.

2.1	 Maximum Likelihood Estimates of b and q

Taking the logarithm of eq. (2.3) and differentiate 
w.r.t. b and q, and then equating then to zero, we get,

( )
1

log log 1 log
n

j n

j

t t
f n

ββ β
θ θ θ=

    = + − −        ∑

log 1. log .log 0j n nt t tf n βθ
β β θ θ θ θ

 ∂    = + Σ − =        ∂  

� … (2.1.1)

( )
1log 1 0ntf n n β

β β
θ θ θ θ

−∂   = − − − + =      ∂

⇒	
1. . 0n

n
tn t

ββ β
θ θ

−
 − + =  

⇒	 1.ntn β

θ θ θ
 =   

⇒	 ˆ1
ˆ nt

n β
θ = � … (2.1.2)

Putting the value of θ̂  from (4.7) in (4.6), we 
obtain

log .log 0j n nt t tn β

β θ θ θ
     + Σ − =         

⇒	
ˆ1

ˆ1log log 0j
n

n nt n n
t

β
β

β
+ Σ − =

⇒	
1

log log log 0
n

n

j j

tn n nn n
tβ β β=

 
− + − =  
∑

⇒	

1

ˆ

log
n

n

j j

n
t
t

β

=

=
 
  

∑

⇒	 1

1

ˆ

log
n

n

j j

n
t
t

β
−

=

=
 
  

∑
� {since log 1 = 0} … (2.1.3)

The equation (2.1.2) and (2.1.3) give the MLE’s 
β̂  and θ̂  of b and q respectively.
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2.2	 SUFFICIENT STATISTIC

The density in equation (2.2) shows that 
1

,
n

n j
j

t t
−

 
  ∏  

is a joint sufficient statistic for (q, b). Note that the 
MLE’s are one to one functions of the joint sufficient 
statistic. Therefore the m.l.e.’s are also sufficient 
statistics, and they also possess the same desirable 
and useful properties as enjoyed by the MLE’s under 
ordinary random sampling. Some more remarks 
regarding β̂  and θ̂  are given at the end of section 
(2.1).

3.	 �DISTRIBUTION OF THE MAXIMUM 
LIKLIHOOD ESTIMATES

Consider

n
n

T
Z

β

θ
 =   

⇒	
1

n nT Z βθ=

1

1

n

j
j

X
β

θ
=

 
=  

 
∑

⇒	
1

n
n

j
j

T
X

β

θ=

 =   ∑
But from the section (2.2), Xj’s are i.i.d. exponential 

with mean unity. Therefore, jXΣ  is distributed as 
gamma with shape parameter as n and scale parameter 
as unity.

This implies that

2
22 2 ~n

j n
T

U X
β

χ
θ

 = Σ =    � … (3.1)

Again make the transformations

1
1

log n
n

Z
W

Z−

 
=   

2
2

log n
n

Z
W

Z−

 
=   

… … … … … …

… … … … … …

… … … … … …

1
1

log n

n

Z
W

Z −

 
=   

n nW Z=

which yields
1

1 . nW
nZ W e −−=

2
2 . nW

nZ W e −−=

… … … … … …

… … … … … …

… … … … … …
1

1 . W
n nZ W e−

− =

n nZ W=

so that, the jacobian of the transformation is

1 1

2 2

1 2

1 1

0 0 .
0 0 . 0

0 . 0 0 0
. 0 0 0 0
0 0 0 0 0 1

n n

n n

W W
n

W W
n

W W
n

W W
n

W e e
W e e

J
W e e

W e e

− −

− −

− −

− −

− −

− −

=











1
1

1

n
n

j n
j

W W

J e

−
−

=

−∑
=

The joint density of 1 2, ,......, nZ Z Z  is from (2.2)

( )1 2 1 2, ,......, , 0 ......nz
n nf z z z e z Z z−= < < < < ∞

Therefore the joint density of 1 2, ,......, nw w w  is

( )1 2, ,......, .nw
nf w w w e J−=

( ) 1 111 ! . .

n

j
j n

w
wn

nn e w e
n

= −−
 ∑ = −
  Γ
 

� … (3.2)

1 2 10 .....  and 0n nw w w w−< < < < < ∞ < < ∞

( ) ( )1 2, ,..., .n ng w w w h w=



161Anil Kumar et al. / Journal of the Indian Society of Agricultural Statistics 72(2) 2018   157–163

where ( ) ( )
1

1
1 2, ,..., 1 !

n

j
j

w

ng w w w n e

−

=

− ∑ = −
 
 

� … (3.3)

1 2 10 ..... nw w w −< < < < < ∞

is the density of (n–1) exponential order static 
from a sample of size (n–1) and

( ) 11 . ,  0nwn
n n nh w w e w

n
−−= < < ∞

Γ
� … (3.4)

is the gamma density with shape parameter n. thus,
2
22 ~n nW χ

⇒	 2
22 ~n nZ χ

⇒	 2
22 ~n

n
T

U
β

χ
θ

 =   
� … (3.5)

which is the same as (3.1).

Also nw  is independent of the set of variables 
( )1 2 1, ,...... nW W W − .

We know that the sum of exponential order static 
is a gamma variate.

( )
1

1

~ 1
n

i
i

W n
−

=

∴ Γ −∑

( )

1
2
2 1

1

2 ~
n

i n
i

W χ
−

−
=

⇒ ∑ � … (3.6)

Now consider

1

2 2 logˆ
nTnV

t
β β

β
 

= = Σ   

1

1

. 12 log 2 . log

.

n n

i
i

Z Z
Z

Z

β

β

θ
β β

β
θ

= Σ = Σ

= ( )
2
2 12 ~i nw χ −Σ � {from (3.6)}

Also note that U is a function of Wn only and V is 
a function of 1 2 1, ,....., nW W W −  and is free from Wn and 
Wn is independent of ( )1 2 1, ,....., nw w w − . Thus V and U 
are independent.

Now note that

( )ˆ1ˆˆ ˆlog log
nT n β

θβ β
θ θ

    =       

1ˆ ˆlog . logˆ
nT

nβ β
θ β

 = −  

1ˆ. log 2. 2 log
n

nT nβ
θβ

  = −     

( )
212 . .log 2. 2 logˆ2 /

nTn n
n θβ β

  = −     

( )log / 2
2 . log

U
n n

V
= − � … (3.7)

where	 2
2~ nU χ 	 and	 ( )

2
2 1~ nV χ −

∴ U and V are independent. It is also useful 

to consider the distribution of 
ˆˆ log θβ
θ

 
  

. Bain 

and Englehardt (1991) show that the asymptotic 
distribution of 

ˆˆ log

log

n
Z

n

θβ
θ

 
Γ   

= � … (3.8)

is standard normal. They have also tabulated the 
percentage qk such that

ˆˆ log

log

n
P q

n α

θβ
θ

α

  
Γ    ≤ =  

� … (3.9)

for various values of a and n.

Since log n
j

j

T
w

T
=  is also distributed independently 

of  q, the distribution of the ratios n

j

T
T  is also independent 

of q. For fixed b, Tn is a complete sufficient statistic 
for q. Thus Tn and such ratios are stochastically 
independent. In particular Tn and β̂  are independent.
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4.	 SOME MORE INFERENCES ON β  AND θ

UNBIASEDNESS OF β̂ : 

( )
( )

2
2 1

1ˆ 2
n

E n Eβ β
χ −

 
=  

 

( )
2 .

2 2 1
n n

n n
β β= =
− −

Thus the bias of β̂  is

( ) ( )ˆ ˆB Eβ β β= −

2 0
2 2

n
n n

β β β= − = >
− −

\ β̂  is slightly positively biased.

Also note that 2 ˆn
n

β−  is unbiased for b.

4.1	 TESTING AND CONFIDENCE INTERVAL 
OF β

To test 0 0:H β β≤  against 1 0:H β β>  the test 
statistic is

1
0

0
1

2
2 logˆ

n
n

j j

n T
T

β β
β

−

=

 
=   

∑

which follows the chi–square distribution with 
( )2 1n −  degrees of freedom. Thus to test the above 

hypothesis the size critical region is given by

( )2 1

1

0
1

2 log n

n
n

j j

T
P

T α
β χ α−

−

=

  
≤ =     

∑ � … (4.1.1)

where ( )2 1nα
χ −  is the lower a. 100% point of 2χ  

distribution with 2(n–1) degrees of freedom.

Using the statistic a lower (1–a).100% confidence 
interval for b is 

( )2 1
2

ˆ
0, ,

2 nn α

β χ −

 
 
   .

4.2	 TESTING AND CONFIDENCE INTERVAL 
FOR θ

To test 0 0:H θ θ≤  against 1 0:H θ θ> , the test 
statistic is 

( )0
1

ˆlogˆ
log

n q
n α

θ θ
β −≥

Using this statistic a lower (1–a) 100% confidence 
interval for q is

{ }1
ˆˆ0, exp logq n nαθ β−

 −  

Hence q1 – a may be obtained from table 1 in Bain 
and Engelhardt (1991; p. 419).

5.	 COMPOUND WEIBULL PROCESSES

An alternative to the standard Poisson distribution 
for count data is a compound or mixed Poisson 
distribution. Such a compound distribution, which has 
a negative binomial form occurs when the population 
consists of components with Poisson distribution 
failure times but with intensities that vary from 
component to component according to a gamma 
distribution. For example, the intensities can differ 
from one component to the next in a population of 
repairable components by the reason of fluctuations in 
manufacturing or by some other reasons.

Engelhardt and Bain (1987) derived a compound 
Weibull process with intensity parameter l and shape 
parameter b

( ) 1 : 0I t Iβν λβ −= > � … (5.1)

A Weibull process with fixed values at the 
parameters in an appropriate model when data are 
obtained from, a single system and inferences are made 
only for that system. A mixed model is more suitable 
when the intensity parameter varies from system to 
system. Consider the assumptions–

the failures of each system are distributed 
according to a Poisson process because the population 
is hetrogeneous, but with intensity functions it differs 
from system to system.

the counting process for the number of failures in 
time t for each individual system has density at the 
form q
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( ) ( ) ( )exp
| . 0,1,2,...

!

n
t t

f n n
n

β βλ λ
λ

−
= = � … (5.2)

In the population each system has the same 
parameter b, but the intensity parameter l varies 
according to a gamma density

( ) ( )
0

,f n f n dλ λ
∞

= ∫

( ) ( )
0

| .f n g dλ λ λ
∞

= ∫

( ) ( )
1

0

expexp
. 0

!

Kn

K

t t
d

n K

β
λλλ λ γ

λ λ
γ

−
∞

 
− −  

= >
Γ∫

( )
( )

1
, 0,1...

1

n

n K

tn K
n

n t

β

β

γ

γ
+

+ − 
= =   +

� … (5.3)

If b = 1, then (5.3) is same as the equation 

( )
( )

0,1,2,...
1

, 0
1 0

x

x

x
x l

x l κ

κ γ
κ

γ γ
+

=
+ − 

= < < ∞   + < < ∞
, with l as n and 

t as I.

In this case the mean and variance are given by

( )E N t k tβγ  = 

( ) ( )var 1N t K t tβ βγ γ  = + 

The distribution given (5.3) is a special form of 
Negative binomial distribution with parameters K and 

( )
1

1
P

tβγ
=

+
.

6.	 CONCLUSION

 In the comparison of Poisson distribution, the 
Weibull distribution is greater flexible because it is a 
two parameter model and thus may be a useful model 
for consideration whenever the Poisson distribution 
is inadequate. However, it is clear that the compound 
Weibull development is an alternative to the standard 
Poisson distribution for count data is a compound 
or mixed Poisson distribution. In some compound 
Poisson situations a distribution other than the gamma 
may be more appropriate for the density of failure 
rates. 
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