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Abstract

Forecasts of food prices are intended to be useful for farmers, policymakers and agribusiness industries.
In the present era of globalization, management of food security in the agriculture-dominated developing
countries like India needs efficient and reliable food price forecasting models more than ever. Sparse and
time lag in the data availability in developing economies, however, generally necessitate reliance on time
series forecasting models. The recent innovation in Artificial Neural Network (ANN) modelling
methodology provides a potential price forecasting technique that is feasible given the availability of
data in developing economies. In this study, the superiority of ANN over linear model methodology has
been demonstrated using monthly wholesale price series of soybean and rapeseed-mustard. The empirical
analysis has indicated that ANN models are able to capture a significant number of directions of monthly
price change as compared to the linear models. It has also been observed that combining linear and
nonlinear models leads to more accurate forecasts than the performances of these models independently,
where the data show a nonlinear pattern. The present study has aimed at developing a user-friendly ANN

based decision support system by integrating linear and nonlinear forecasting methodologies.

Key words: Hybrid model, neural networks, price forecasting, agriculture

JEL Classification: Q16, Q15

Introduction

Price forecasting is an integral part of commodity
trading and price analysis. Quantitative accuracy with
small errors, along with turning point forecasting power
is important for evaluating forecasting models.
Agricultural commodity production and prices are often
random as they are largely influenced by eventualities
and are highly unpredictable in case of natural
calamities like droughts, floods, and attacks by pests
and diseases. This leads to a considerable risk and
uncertainty in the process of price modelling and
forecasting. Agricultural commodity prices play an
important role in consumers’ access to food as they
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directly influence their real income, especially among
the poor who spend a large proportion of their income
on food. Since food price is an important component
to fight hunger, policymakers need reliable forecasts
of expected food prices in order to manage food
security. Before the onset of liberalization and
globalization, the government was controlling food
prices, thus rendering food price forecasting a low
value-added activity. Presently, the food prices are
determined by the domestic and international market
forces. This leads to increased price variability, and
accords importance to reliable price forecasting
techniques. The price forecasts are important for
farmers also as they base their production and
marketing decisions on the expected prices that may
have financial repercussions many months later.
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Agricultural Price and Time Series Modelling

Agricultural price modelling is different from
modelling of non-farm goods and services due to
certain special features of agricultural product markets.
The characteristic features of agricultural crops include
seasonality of production, derived nature of their
demand, and price-inelastic demand and supply
functions. The biological nature of crop production
plays an important role in agricultural product price
behaviour.

There are two basic approaches of forecasting,
namely structural and time series models. The structural
models proceed from the first principles of consumer
and producer theory to identify the demand and supply
schedules and the equilibrium prices resulting from
their intersection. The structural modelling techniques
provide valuable insights into the determinants of
commodity price movements. The computational and
data demands of structural price forecasting generally
far exceed than what are routinely available in the
developing countries. Consequently, researchers often
rely on parsimonious representations of price processes
for their forecasting needs. Contemporary
parsimonious form of price forecasting relies heavily
on time series modelling. The time series modelling
requires less onerous data input for regular and up-to-
date price forecasting.

In time series modelling, past observations of the
same variable are collected and analyzed to develop a
model describing the underlying relationship. During
the past few decades, much effort has been devoted to
the development and improvement of time series
forecasting models. One of the most important and
widely used time series models is the Auto Regressive
Integrated Moving Average (ARIMA) model. The
popularity of ARIMA model is due to its statistical
properties as well as use of well-known Box-Jenkins
methodology in the model building process.

Recently, Artificial Neural Network (ANN)
modelling has attracted much attention as an alternative
technique for estimation and forecasting in economics
and finance (Zhang et al., 1998; Jha et al., 2009). ANN
is a multivariate non-linear non-parametric data driven
self-adaptive statistical method. The main advantage
of neural network is its flexible functional form and
universal functional approximator. With ANN, there
is no need to specify a particular model form for a given
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data set. ANN has found applications in fields like
biology, engineering, economics, etc. and its use in
economics has been surveyed by Kuan and White
(1994).

Rationale of Research Issue

Very few studies have been undertaken on
agriculture price forecasting using ANN models.
Moreover, the value of neural network models in
forecasting economic time series, has been established
for developed countries like USA, Canada, Germany,
etc., but little work has been undertaken for developing
countries in general and India in particular. Literature
suggests that the performance of a non-linear model
should be evaluated on the basis of percentage of
forecasts that correctly predict the direction of change
instead of measures based on error-terms. The
prediction of turning point is more crucial for any
commodity price forecasting. Lastly, as agricultural
price data often contain both linear and nonlinear
patterns, no single model is capable to identify all the
characteristics of time series data on agricultural prices.
Obviously, there is a need to examine the price
forecasting performance of hybrid model which takes
advantage of the unique strength of both linear ARIMA
method and nonlinear ANN model.

The above facts motivated us to assess the
forecasting accuracy of neural network model and
traditional statistical models for agricultural price
forecasting using real price data by taking into account
the major limitations of previous studies. This paper
has summarized the experience of forecasting price and
direction of change using ANN model with two
monthly wholesale oilseeds price series compared to
other approaches, where one series was linear and the
other was nonlinear in nature. An attempt has also been
made to discuss opportunities and advantages of soft
computing based decision support system in
agricultural price forecasting.

Methodology

Neural Network Model

The time series data can be modelled using ANN
by providing the implicit functional representation of
time, whereby a static neural network like multilayer
perceptron is bestowed with dynamic properties
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Figure 1. Time-Delay Neural Network (TDNN) with one hidden layer

(Haykin, 1999). A neural network can be made dynamic
by embedding either long-term or short-term memory,
depending on the retention time, into the structure of a
static network. One simple way of building short—term
memory into the structure of a neural network is
through the use of time delay, which can be
implemented at the input layer of the neural network.
An example of such an architecture is a Time-Delay
Neural Network (TDNN) (Figure 1), which has been
employed in the present study.

The ANN structure for a particular problem in time
series prediction includes the determination of number
of layers and total number of nodes in each layer. It is
usually determined through experimentation as there
is no theoretical basis for determining these parameters.
It has been proved that neural networks with one hidden
layer can approximate any non-linear function given a
sufficient number of nodes at the hidden layer and
adequate data points for training. In this study, we have
used neural network with one hidden layer. In time
series analysis, the determination of number of input
nodes which are lagged observations of the same
variable plays a crucial role as it helps in modelling
the autocorrelation structure of the data. The
determination of number of output nodes is relatively
easy. In this study, one output node has been used.
Multi-step ahead forecasting is performed using
iterative procedure following Box-Jenkins ARIMA

Time Series modelling methodology. This involves use
of forecast value as an input for forecasting the future
value. It is always better to select the model with a
smaller number of nodes in the hidden layer as it
improves the out-of-sample forecasting performance
and also avoids the problem of over-fitting. The general
expression for the final output value y,, in a multi-
layer feed forward time delay neural network is given
by Equation (1):

Ver1 = Q[Z;Lo X f(Zfzo .Bijyt—i)] ~(1)

where, f and g denote the activation function at the
hidden and output layers, respectively; p is the number
of input nodes (tapped delay); ¢ is the number of hidden
nodes; f3; is the weight attached to the connection
between i input node to the /" node of hidden layer;
o; is the weight attached to the connection from the j*
hidden node to the output node; and y,, is the i input
(lag) of the model. Each node of the hidden layer
receives the weighted sum of all the inputs, including
a bias term for which the value of input variable will
always be one. This weighted sum of input variables
is then transformed by each hidden node using the
activation function f which is usually a non-linear
sigmoid function. In a similar manner, the output node
also receives the weighted sum of the output of all the
hidden nodes and produces an output by transforming
the weighted sum using its activation function g. In
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the time series analysis, / is often chosen as the Logistic
Sigmoid function and g, as an identity function. The
logistic function is expressed as Equation (2):

fO) == -(2)

For p tapped delay nodes, ¢ hidden nodes, one
output node and biases at both hidden and output layers,
the total number of parameters (weights) in a three layer
feed forward neural network is g(p +2) + 1.

For a univariate time series forecasting problem,
the past observations of a given variable serve as input
variables. The TDNN model attempts to map the
following function:

Ver1 = F (Ve Veots vor o Veop+1rW) + Ersq ..(3)

where, y,,, pertains to the observation at time #+1, p is
the number of lagged observation, w is the vector of
network weights, and €,,, is the error-term at time #+1.
Hence, TDNN acts like a non-linear autoregressive
model. The neural network toolbox of MATLAB 7.10
software was used to carry out computation relating to
TDNN model.

The ARIMA Model

In an Auto-Regressive Integrated Moving Average
(ARIMA) model, time series variable is assumed to be
a linear function of the previous actual values and
random shocks. In general, an ARIMA model is
characterized by the notation ARIMA (p, d, q¢), where
p, d and ¢ denote orders of Auto-Regression (AR),
Integration (differencing) and Moving Average (MA),
respectively. ARIMA is a parsimonious approach which
can represent both stationary and non-stationary
processes.

An ARMA (p, g) process is defined by Equation
(4):
Ve=C+ 01y 1+ 02yt +®pyt—p . (4)
+ Et - Glgt—l - gzgt_z —_ = Qqst_q

where, y, and ¢, are the actual value and random error
at time period ¢, respectively, @, (i=1, 2,...... p) and
o, =1, 2,...... ,q) are the model parameters. The
random errors, €, are assumed to be independently and
identically distributed with a mean of zero and a
constant variance of ¢&°.
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The first step in the process of ARIMA modelling
is to check for the stationarity of the series as the
estimation procedure is available only for a stationary
series. A series is regarded stationary if its statistical
characteristics such as the mean and the autocorrelation
structures are constant over time. The stochastic trend
of the series is removed by differencing, while
logarithmic transformation is employed to stabilize the
variance. After appropriate transformation and
differencing, multiple ARMA models are chosen on
the basis of Auto-Correlation Function (ACF) and
Partial Auto- Correlation Function (PACF) that closely
fit the data. Then, the parameters of the tentative models
are estimated through any non-linear optimization
procedure such that the overall measure of errors is
minimized or the likelihood function is maximized.
Lastly, diagnostic checking for model adequacy is
performed for all the estimated models through the plot
of residual ACF and using Portmonteau test. The most
suitable ARIMA model is selected using the smallest
Akaike Information Criterion (AIC) or Schwarz-
Bayesian Criterion (SBC) value and the lowest root
mean square error (RMSE). In this study, all estimations
and forecasting of ARIMA model have been done using
SAS/ETS 9.2.

The Hybrid ARIMA - TDNN Methodology

In this section, the time series decomposition is
proposed in which ARIMA and TDNN models are
combined in order to obtain a robust and efficient
methodology for time series forecasting. Accordingly,
we postulate that our time series data can be
decomposed into a linear and a nonlinear component
(Rojas et al., 2008), viz.

Ye =L+ N ..(5)

where, y, is the observed time series data, L, is the linear
auto-regressive component, and A, is the non-linear
component. In this approach, we apply an ARIMA
model to the data series to fit the linear part and the
residuals are modelled using neural network model
only if there is an evidence of non-linearity for the
series. Figure 2 shows a schematic diagram of this
method. Let 7, be the residual at time ¢ of the linear
component, then

=y, — L, ..(6)
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where, ﬁ, is the estimate of the linear auto-regressive
component. For non-linear components, we apply
neural network model, i.e.

f't = f(rt—l;rt—Z: . ;Tt—p) (7)

where, p is the number of input delays and f'is the
nonlinear function. So the combined forecast is given
by Equation (8):

Yt:Zt+7A't+€t (8)

where, €, is the error-term of the combined model at
time ¢. Here, it is assumed that since ARIMA model
cannot capture the nonlinear structure of the data, the
residual of linear model will contain information about
nonlinearity. Hence, the hybrid architecture is expected
to exploit the feature and strength of both the models
in order to improve the overall forecasting
performance.

In this study, the McLeod and Li test (1983) has
been applied to detect non-linearity in the data. This
test is based on the autocorrelations of the squared
residuals. In this test, the residuals which are obtained
from fitted ARIMA model are utilized to test non-
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Figure 2. Hybrid method that combines both ARIMA
and TDNN models

linearity. The test statistic is given by Equation

O):

h }’2 l

Q=n(n+2)Z—(? ...09)
=1 =1

where, r(i) is the autocorrelation of the squared
residuals, and / is the number of autocorrelations.

Forecast Evaluation Methods

The forecasting ability of different models is
assessed with respect to two common performance
measures, viz. the root mean squared error (RMSE)
and the mean absolute deviation (MAD). The RMSE
measures the overall performance of a model and is
given by Equation (10):

RMSE = [LZ1, 0 = 907 .(10)
where, y, is the actual value for time #, , is the predicted
value for time ¢, and » is the number of predictions.
The second criterion, the mean absolute deviation is a
measure of average error for each point forecast and is
given by Equation (11):

MAD = =30,y — | (11

where the symbols have the same meaning as above.

Data

This paper has used the monthly average wholesale
(nominal) price (rupees per quintal) of two major crops
of oilseeds in India, viz. soybean and rapeseed-mustard,
traded in the Indore (Madhya Pradesh) and Delhi
markets, respectively, to evaluate the prediction ability
of different models. The data on soybean were obtained
from the website of the Soybean Processors Association
of India (SOPA), Indore, and on rapeseed-mustard were
collected from various issues of Agricultural Prices in
India, published by the Directorate of Economics and
Statistics, Government of India, New Delhi. The price
series on soybean covered a period of 228 months
(October, 1991 to September, 2010) and on rapeseed-
mustard covered a period of 372 months (January, 1980
to December, 2010). These series illustrate the
complexity and variation of typical agricultural price
data (Figure 3). These prices were deflated using the
wholesale price index data (2004-05=100) of oilseeds
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estimated by the Office of Economic Advisor, Ministry
of Commerce & Industry, Government of India. The
basic characteristics of the price series used in the study
are presented in Table 1.

Empirical Results and Discussion

Data Preprocessing

The data preprocessing refers to analyzing and
transforming the input and output variables to minimize
noise, highlight important relationships, detect trends,
and flatten the distribution of variables to assist both
traditional and neural network models in the relevant
pattern. The first step in time series analysis is to plot
the data. Figure 3 shows the time series plot of average
monthly price of rapeseed-mustard from January 1980
to December 2010. A perusal of Figure 3 reveals a
positive trend over time which indicates the non-
stationary nature of series. A similar trend was observed
in the case of soybean also.
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In this study, we have applied the natural choice
of logarithmic transformation to the data to stabilize
the variance. The logarithmic transformation is used
for the data which can take both small and large values
and is characterized by an extended right hand tail
distribution. The logarithmic transformation is one of
the data processing techniques which also converts
multiplicative or ratio relationship to additive which
is believed to simplify and improve neural network
training. We have applied the Augmented Dickey Fuller
(ADF) test for each level and transformed series to test
for the unit root and the results have been presented in
Table 2. The values in Table 2 clearly show the non-
stationarity of level and transformed series. Therefore,
we have used first differencing for both the price series.
The first differenced series were found to be stationary
in both cases as indicated in Table 2 and hence further
differencing was not required. The ACF and PACF of
different series have not shown a strong and consistent
seasonal pattern.

Table 1. Descriptive statistics of price series used in the study

Crop Minimum Maximum Mean Standard deviation Skewness Kurtosis
R/ Rl /) Rl

Soybean 646 2680 1256 472 1.21 3.74

Rapeseed-mustard 370 3175 1288 741 0.85 3.02
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Figure 3. Rapeseed-mustard monthly price data from January 1980 to December 2010 (/q)
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Table 2. Augmented Dickey-Fuller stationarity test for different series

Null hypothesis Level series Logarithmic transformed 1% difference of transformed
series series
t-statistic Prob. t-statistic Prob. t-statistic Prob.
Soybean series has -1.951 0.308 -1.557 0.502 -11.666 <0.0001
a unit root
Rapeseed-mustard -0.737 0.830 -1.321 0.621 -17.428 <0.0001

series has a unit root

Nonlinearity Test

For choosing the technique for modelling and
prediction of data, it is important to find whether a
given time series is non-linear or not. If there is an
evidence of nonlinearity in the dynamics underlying
the data generating process, then nonlinear models
should be tried in addition to linear models for
forecasting the data. This also enables us to examine
whether nonlinearity tests provide any reliable guide
for post sample forecast accuracy of neural network
model. In this study, we have applied McLeod and Li
nonlinearity test to the data set. It tests the null
hypothesis of linearity against different types of
possible nonlinearity and is based on the
autocorrelations of squared residuals. In this study,
autocorrelations up to 24 lags have been used for
computing the test. The results of McLeod and Li non-
linearity test presented in Table 3, reveal strong
rejection of linearity in the case of rapeseed-mustard
only. In other words, the analysis has indicated the
existence of some hidden structure left unaccounted
in the residuals of linear model in the case of rapeseed-
mustard. Based on this evidence, we have suggested
suitability of nonlinear model for price forecasting of
rapeseed-mustard.

Neural Network and ARIMA Model

For developing a model, we have divided the data
into two sets, viz. training set and testing set. The last
twelve months price data were retained for testing. The

Table 3. McLeod and Li non-linearity test for different

series
Series Value Prob. value
Soybean 9.73 0.99
Rapeseed-mustard 87.82 less than 0.001

training set was used for modelling procedure and in-
sample prediction and testing set was kept for post-
sample forecasting. The training set for the soybean
and rapeseed-mustard series contained 216 and 360
observations, respectively. After logarithmic
transformation, each series was differenced to make it
stationary as price data are trended and nonstationary
in nature. Then, we modelled the relative change in
the price series which also had a meaningful economic
interpretation.

We have found the ARMA structure of differenced
series, based on the autocorrelation function (ACF),
partial autocorrelation function (PACF) and AIC
information criterion. We obtained the best ARIMA
model for each series based on the lowest AIC and
BIC information criteria as well as the lowest RMSE
and MAD values. We selected the ARIMA (1, 1, 0) for
soybean and ARIMA (2, 1, 0) for rapeseed-mustard
series. Due importance was given to the well-behaved
residuals while selecting the best model.

We have found the best time delay neural network
with single hidden layer for this study. Following the
previous studies, the logistic and identity functions were
used as activation function for the hidden nodes and
output node, respectively. We have focused primarily
on the one-step-ahead forecasting and the multi-step-
ahead forecasting was done using the iterative
procedure; so only one output node was employed.
Hence, the model uncertainty was associated only with
the number of tapped delays (p) which was the number
of lagged observations in this case and the number of
hidden layer nodes (¢). The number of tapped delay
and hidden nodes were determined through
experimentation. We have used multiple starts, with
different random starting points, in order to avoid local
minima and find the global minimum. In particular,
based on the training sample, we have trained each
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neural network model twenty times using twenty
different sets of initial random weights. The overall
performance of each configuration of TDNN model
was evaluated on the basis of mean performance of 20
randomly initialized TDNN. We varied the number of
input nodes from 1 to 6 and the number of hidden nodes
from 2 to 10 with an increment of 2 with basic cross
validation method. Thus, different numbers of neural
network models were tried for each series before
arriving at the final structure of the model.

There are many variations of the backpropagation
algorithm used for training feed-forward networks. In
this study, the Levenberg-Marquardt algorithm (Hagan
and Menhaj, 1994), which has been designed to
approach second-order training speed without
computing the Hessian matrix, has been employed. It
has been shown (Demuth and Beale, 2002) that this
algorithm provides the fastest convergence for
moderately sized feed-forward neural network used on
function approximation problems. A typical TDNN
structure with one hidden layer is denoted by I:Hs:O/,
where I is the number of nodes in the input layer, H is
the number of nodes in the hidden layer, O is the
number of nodes in the output layer, s denotes the
logistic sigmoid transfer function, and / indicates the
linear transfer function. The forecasting ability of both
models is assessed with respect to two common
performance measures, viz. root mean squared error
(RMSE) and mean absolute deviation (MAD). In this
study, our interest was centred on short-term forecasting
and hence we have considered forecast horizon up to
one year. In terms of the forecast horizon, we have
included the results for one month, three months, six
months and twelve months ahead forecast.

The best time lagged neural network with single
hidden layer was found for each series by conducting
experiments with the basic cross validation method.
Table 4 summarizes the forecasting performance of
various TDNN models for rapeseed-mustard in terms
of training and testing root mean square error (RMSE),
respectively. A similar exercise was carried out for
soybean also and the results have not been presented
in the manuscript. Out of a total of 24 neural network
structures, a neural network model with two input nodes
and three hidden nodes (2:3s:1/) performed better than
other competing models in respect of out-of sample
forecasting for soybean series. Similarly, a TDNN with
two lagged observations as input node and eight hidden
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Table 4. Forecasting performance of TDNN models for
rapeseed-mustard price series

Model No. of RMSE RMSE MAD

parameters training testing testing
1:2s:11 7 0.0301 0.0163  0.0082
1:4s:11 13 0.0301 0.0177  0.0092
1:6s:11 19 0.0298 0.0172  0.0090
1:8s:11 25 0.0298 0.0171  0.0088
1:10s:11 31 0.0285 0.0172  0.0098
2:2s:11 9 0.0293 0.0156  0.0105
2:4s:11 17 0.0288 0.0160  0.0106
2:6s:11 25 0.0280 0.0158  0.0092
2:8s:11 33 0.0278 0.0124  0.0087
2:10s:11 41 0.0266 0.0138  0.0085
3:2s:11 11 0.0293 0.0159  0.0106
3:4s:11 21 0.0279 0.0159  0.0098
3:6s:11 31 0.0269 0.0186  0.0126
3:8s:11 41 0.0266 0.0128  0.0091
3:10s:11 51 0.0258 0.0149  0.0089
4:2s:11 13 0.0294 0.0162  0.0106
4:4s:11 25 0.0275 0.0165  0.0107
4:6s:11 37 0.0269 0.0214  0.0138
4:8s:11 49 0.0243 0.0163  0.0125
4:10s:11 61 0.0244 0.0204  0.0145
5:2s:11 15 0.0292 0.0160  0.0106
S:4s:11 29 0.0275 0.0169  0.0118
5:6s:11 43 0.0250 0.0113  0.0096
5:8s:11 57 0.0237 0.0135  0.0098
5:10s:11 71 0.0213 0.0168  0.0116
6:2s:11 17 0.0278 0.0161  0.0105
6:4s:11 33 0.0255 0.0178  0.0091
6:6s:11 49 0.0242 0.0137  0.0096
6:8s:11 65 0.0213 0.0192  0.0141
6:10s:11 81 0.0206  0.01214  0.0158

nodes (2:8s:1/) showed the minimum training and
testing RMSE for a forecasting horizon of 12 months
in Table 4. This means that most accurate price forecast
for the given series is obtained when the price of two
preceding months is used as inputs.

The comparative results for the best ARIMA and
TDNN models with respect to RMSE and MAD for
various horizons are given in Table 5. We can see that
for both the price series, RMSE and MAD values are
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Table 5. Forecasting performance of different models for various horizons

MODEL 1 month ahead 3 months ahead 6 months ahead 12 months ahead

RMSE MAD RMSE MAD RMSE MAD RMSE MAD
Soybean

ARIMA 5.43 1.56 29.13 13.22 37.70 35.00 35.35 27.94

TDNN 33.90 22.90 30.00 22.90 32.07 18.36 19.70 17.80

Hybrid 43.00 23.30 52.80 22.70 40.60 23.90 31.50 25.60

Rapeseed-mustard

ARIMA 3.35 0.97 25.01 10.89 47.08 30.76 72.59 69.81

TDNN 4.79 1.00 9.20 1.30 9.40 4.60 12.40 8.70

Hybrid 3.46 1.01 7.68 3.53 7.80 2.46 10.38 5.60

Note: All RMSE and MAD values should be multiplied by 107,

in general less in neural network model than in ARIMA
model, suggesting a better performance of TDNN
model. At this juncture, it is worth mentioning that a
specific neural network model is selected for each
forecast horizon which implies that p and ¢ may vary
over forecast horizon. However, we have observed that
ARIMA model performs better than TDNN model for
a forecast horizon of one month. In general, TDNN
model performs better in 6 and 12 months ahead
forecasting, while ARIMA models dominate in one
month and 3 months forecast horizons. Moreover, for
rapeseed-mustard series, the RMSE value pertaining
to neural network model is smaller as compared to
ARIMA model for all horizons, except one month,
suggesting better performance of TDNN which is truly
a nonlinear time series data set. Hence, nonlinearity
test provides a fairly good indication to post-sample
forecast accuracy for neural network models.

Turning Point Evaluation

Several researchers have suggested that RMSE
type measures may not be appropriate for nonlinear
models as these measures can imply that a nonlinear
model is less accurate than a linear one even when
former is the true data generating process. In effect, a
nonlinear model may generate more variation in
forecast values than a linear model, and hence could
be unduly penalized for errors that are large in
magnitude. Clements and Smith (1997) have argued
that the value of nonlinear model forecast may be better
reflected by the direction of change. Hence in this study,
we have also computed the percentage of forecasts that

could correctly predict the direction of monthly price
change as part of post-sample forecast accuracy. The
direction of change or turning point evaluation is a
measure of accuracy related to price forecasts
interpreted only in terms of whether agricultural
commodity prices will increase or decrease.

With one year of post-sample data, we have 12
one-step ahead forecast errors. The number of forecast
errors decreases as the forecast horizon increases, so
we have calculated the direction of change only for
the forecast horizon of 1 month, 3 months and 6 months
with 12, 10 and 7 forecast errors, respectively, as given
in Table 6. The implications of the direction of change
results of Table 6 are, however, very different from the
results based on RMSE. At horizon of 1 month, 3
months and 6 months, the neural network model always
had a larger percentage of correct sign than the linear
model for all series. The results of Table 6 imply that
the relative forecasting performance of both models
crucially depends on the manner performance is
measured.

Hybrid Model

Turning to the issue of whether the combination
of ARIMA and TDNN models performs better than a
single model. As mentioned earlier, the combined
models are constructed in a sequential manner, with
the application of ARIMA model first to the original
time series and then its residuals are modelled using
neural networks. We have found the optimal structure
of neural network for the residual series following the
procedure employed for the original series. Table 5
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Table 6. Post-sample percentage of forecasts of correct sign
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Series 1 month-ahead 3 months-ahead 6 months-ahead
ARIMA TDNN ARIMA TDNN ARIMA TDNN

Soybean 42 55 46 54 57 60

Rapeseed-mustard 50 67 44 68 49 71

provides the forecasting performance of possible hybrid
models in terms of RMSE and MAD values for soybean
and rapeseed-mustard for forecasting horizons of 1
month, 3 months, 6 months and 12 months.

The RMSE and MAD values of Table 5 reveal
mixed results in post-sample forecast accuracy of
hybrid model for the experimental data. We can see
from Table 5 that for soybean series, hybrid model in
general provides a poor forecast as compared to
ARIMA and TDNN models in terms of RMSE and
MAD values. The principle underlying the hybrid
model is that at the first stage ARIMA will pick up the
linear component in the data, while at the second stage,
the neural network will model the nonlinear
component. In the case of soybean series, after ARIMA
was fit at the first stage, the residual was close to
random because of its linear nature. In the case of
rapeseed-mustard, the hybrid model outperformed both
ARIMA and TDNN models consistently across four
different time horizons and with both error measures.
In nutshell, the empirical results with two real price
data sets suggest that the hybrid model performed better
than each component model in the case of nonlinear
pattern.

Concluding Remarks

The main advantage of univariate time-series
forecasting is that it requires data only of the time series
in question. First, this feature is advantageous if we
are to forecast a large number of price series. Second,
this avoids the problem that occurs sometimes with
multivariate models; for example, consider a model
including import, prices and domestic production. It is
possible that a consistent data on import series is
available only for a shorter period of time than the other
two series, restricting the time period over which the
model can be estimated. Third, timeliness of data can
be a problem with multivariate models.

This paper has compared the ARIMA and TDNN
models in terms of both modelling and forecasting
using monthly wholesale price data of two oilseed
crops, namely soybean and rapeseed-mustard traded
in Indore and Delhi markets of India. The TDNN model
in general has provided a better forecast accuracy in
terms of conventional RMSE and MAD values as
compared to the ARIMA model. It has been found that
the evidence of nonlinearity in a series plays a fairly
good role in providing a reliable guide to post-sample
forecast accuracy of ARIMA and TDNN models in
terms of RMSE for these price series. The study has
suggested that before adopting any nonlinear model
one needs to check whether the series is indeed
nonlinear. Moreover, TDNN has performed
substantially better than linear models in predicting the
direction of change for these series, and hence may be
preferred than linear models in the context of predicting
turning point, which is more relevant in the case of
price forecasting. Such direction of change forecasts
are particularly important in economics for capturing
the business cycle movements relating to the turning
points. Finally, the empirical results with rapeseed-
mustard data, which is a true nonlinear pattern, have
indicated that the combined model can be an effective
way to improve forecasting accuracy achieved by either
of the models used independently.

Agricultural price information needs for decision-
making at all levels are increasing due to globalization
and market integration. This necessitates an effort
towards designing a market intelligence system by
integrating traditional statistical methods with soft
computing techniques like neural network, fuzzy logic,
etc. to provide accurate and timely price forecast by
taking into account the local information to the farmers,
traders and policymakers so that they may make
production, marketing and policy decisions well in
advance. The decision support system should provide
customized advice to individual farmers in view of their
local conditions.
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