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In this paper, locally D-optimal saturated designs for a logistic model Received 4 August 2017
with one and two continuous input variables have been constructed Accepted 5 January 2018

by modifying the famous Fedorov exchange algorithm. A saturated KEYWORDS

design not only ensures the minimum number of runs in the design Fisher information matrix;
but also simplifies the row exchange computation. The basic idea is standardized variance

to exchange a design point with a point from the design space. The function; D-optimality;
algorithm performs the best row exchange between design points Fedorov exchange algorithm;
and points form a candidate set representing the design space. Nat- general equivalence theorem
urally, the resultant designs depend on the candidate set. For gain in

precision, intuitively a candidate set with a larger number of points

and the low discrepancy is desirable, but it increases the compu-

tational cost. Apart from the modification in row exchange com-

putation, we propose implementing the algorithm in two stages.

Initially, construct a design with a candidate set of affordable size

and then later generate a new candidate set around the points of

design searched in the former stage. In order to validate the opti-

mality of constructed designs, we have used the general equivalence

theorem. Algorithms for the construction of optimal designs have

been implemented by developing suitable codes in R.

1. Introduction

The logistic model with the binary response can be defined as follows:

py=1=_% - 1! Y =01 1)
o _1+e”_1+e—’7’ o

where n = f(x), x € y is called the linear predictor. It gives the functional form and num-
ber of input (x) to be included in the model. Let £ be an exact design with m support
points and 0 is the vector of unknown parameters. Following Atkinson et al. [1], Fisher
information matrix (FIM) for parameter vector 0 at design & is defined as follows:

M(E,0) = > wixi, 0)f (xi)f (%) wi (2)

i=1
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or

m
M(E,0) = > fi(xifi (%)) wi, (3)
i=1
where w(x,0) = e~ 7/(1 + e"’)z,ﬁ (xi) = V/w(x;, 0)f (x;) and w; is the weight given to the
support point x;, w; € [0,1]and ) 7, w; = 1.
Furthermore, the standardized variance function at a given input setting x is given by

d(x,£) = w(x, 0)f(x)'M ™ (£,0)f (%) (4)
or

d(x,§) = fi)'M™'(§,0)f1(x) (5)

The logistic model is one of the most extensively studied nonlinear models in biological
and social sciences. It establishes the nonlinear relationship between the input variables
and binary/ordinal response. Chernoff [2] addressed the issue of developing designs for
nonlinear models and discussed the use of initial parameter guesses. Such designs depend-
ing on initial parameter guesses are called local. Nelder and Wedderburn [3] introduced
generalized linear models (GLM) and their analysis. Ford et al. [4], Sebastiani and Settini
[5], Mathew and Sinha [6], and Li and Majumdar [7] provided sound theoretical results
to construct D-optimal designs for the logistic model in one variable. But as the number
of variables increases, the problem becomes mathematically intractable. Following Woods
etal. [8], Dror and Steinberg [9] proposed modifications in existing available algorithms of
linear models. Dror and Steinberg [9] basically focussed on generating robust designs for
logistic models using a clustering approach assuming that the generation of locally opti-
mal designs for the logistic model was easily possible. Khuri et al. [10] discussed the design
issues for GLM and provided the review till then.

D-optimal designs for the logistic model depend on initial parameter guess and are dif-
ficult to compute analytically. The computational complexity increases with an increase
in the number of design variables. Also, there are no straightforward computer-based
solutions available for constructing designs in this situation. Toolkits like GOSSET [11],
OPTEX procedure in SAS, statistical toolbox in MATLAB and AlgDesign package in R
are not applicable here. These software tools are well suited for linear models with discrete
factors. With continuous input variables, the computational cost increases heavily. In the
present study, we loosely followed Woods et al. [8] and Dror and Steinberg [9] to con-
struct locally D-optimal saturated designs for logistic models by searching in a continuous
design space. We modified and simplified the row exchange computation in the Fedorov
[12] algorithm to generate D-optimal saturated designs for the following cases of linear
predictors:

ni=«o + :Bxlb (6)
ni = Bo + Bix1i + Baxai, (7)
ni = Bo + Bix1i + Baxzi + B3X1iX2is (8)

i = Bo + Prx1i + Baxt; + Baxai + Paxd; + Bsxrixai, )
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2. Methodology

Technically, developing designs for nonlinear models is an optimization problem. The
objective function being some optimality criterion (in this study, D-) defined on FIM and
the candidate set representing the design space is defined for the input variables. Based
on the constraints, a set of support points/design points/experimental runs are obtained
from the candidate set. The choice of the candidate set is important. As we are interested in
continuous input variables, no candidate set can actually represent the true design space.
Intuitively, we generated a uniform grid with low discrepancy as a candidate set using the
R [13] function ‘expand.grid’. The idea is to search a design for this candidate set and
then generate a new candidate set in the vicinity of the generated design assuming that
the optimal design exists nearby. Dror and Steinberg [9] proposed using multivariate nor-
mal random numbers to generate a new candidate set. Using previously searched design
(say intermediate design) and the new candidate set, the final design is obtained. In our
study, we found that this new candidate set does not yield any betterment to the interme-
diate design. So, we devised a new way to generate the candidate set for the next stage. We
simply extended the use of ‘expand.grid’ function of R to generate a grid of design points
around the support points of the intermediate design.

In order to search the optimal design over a candidate set, we used the famous Fedorov
exchange algorithm [12]. Apart from the candidate set, an initial design is required to
implement this algorithm. We have taken a suitable subset of a factorial structure with
non-singular information matrix as the initial design. The Fedorov exchange algorithm is
basically a row exchange algorithm which replaces a row of a design at a given iteration
with a row from the candidate set so as to optimize the objective function.

Algorithm:

I. Initial design: Select a design with a non-singular information matrix.
II. Candidate set: Generate a grid of points to represent the true continuous design space.
III. Exchange: Exchange points between the design and the candidate set to attain maxi-
mum gain in the determinant of information matrix of the resulting design.
IV. Repeat exchange step till no further improvement in determinant of information
matrix for resultant design is observed,
V. New candidate set: Generate a grid of points in the vicinity of design found in step IV
and make it the new candidate set.
VI. Repeat steps III and IV with the new candidate set.

The optimality of designs generated by the algorithmic approach above is not guaran-
teed. So, to check the optimality of the generated designs, we used the general equivalence
theorem given by Kiefer and Wolfowitz [14] and extended to nonlinear models by White
[15] and Whittle [16].

2.1. Row exchange computation

Saturated designs have runs or support points equal to the number of unknown parameters
(say k) to be estimated in the model. Imposing the restriction of saturated designs has
mainly three advantages. Firstly, the generated designs have the minimum possible number
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of support points. Secondly, calculation of weights is not needed anymore, as discussed by
Silvey [17] all support points have equal weight for the case of saturated designs. And lastly,
the row exchange computation can be further simplified.

Let £/ be the design at iteration j and ‘b’ be the row to be replaced by a row ‘a’ from the
candidate set. Here, a = f1(Xip), Xin is a point from the candidate setand b = f(Xout), Xout
is a point from design £/. Since saturated D-optimal designs have equal weights, w; = 1/m,
we define N(£,0) = M(&,0) x m. From the appendix given at the end, we have

INj41] = IN;j +aa’" — bb'| = [N;|{1 +a'N;'a — b'N;'b — @'N;'a)(0'N; ')
+ @'N;'b)?) (10)
or
INj+1] = [Nj|A(Xin, Xout) (11)

In other words, we have to select x;, and Xy such that A (Xin, Xout) 1S maximized.

Lemma 1: Let H be the class of designs with exactly k support points with equal weights, k is
the number of unknown parameters in the model. Then, foreach & € H, d(§,x) = k,Vx € §.

Proof: Let & be any design with k support points with equal weights 1/k. So,

k
M(,0) = > f(x)f(x;)/ /k = FF/k. (12)

i=2

Let N = F'F, it can be easily shown that FN~!F’ = I, where I is an identity matrix of order
k. Since f(x;)’ is the i-th row of matrix F, the following result follows from matrix algebra.

fE)NTfx) =1 Vxe&i=12,...,k (13)

Subsequently,
fEIM fx) =k Vxie&i=12... .k

Hence, for saturated designs in Equation (10), we get, b’ Nj’lb =1.
Thus,

A (Xin, Xout) = (b/Nj_la)z- (14)

The above results can be extended to the logistic model case by simply replacing f(x;) with
f1(x;), where f1(x;) = /w(x;, 0)f (x;) and w(x;,0) = e~ /(1 + e 7)2, |

3. Designs for logistic models
3.1. One variable and two parameters

The linear predictor defined in Equation (6) gives the logistic model with one input vari-
able. For this case, a standard result on two-point D-optimal designs can be easily found
algebraically. Here, for a given initial parameter guess say, a and b for o and f, respec-
tively, the D-optimal design is obtained by solving £1.5434 & a + bx); [4]. But this result
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Table 1. D-optimal designs for the logistic model in one variable.

Initial parameter guess Support points
Design a b X11 X12 M| max d(x, &)
D, 0.1 0.5 —1 1 0.054968 2
D, 1 1 —1 1 0.026248 2
D3 1 4 —0.636 0.136 0.003132 2

holds for an unbounded design space. The theoretical framework for bounded design space
was discussed by Sebastiani and Settini [5] in Theorem 2 of their paper. The present study
strictly considers the design space [—1,1] and D-optimal designs were found using an algo-
rithmic approach. One can find the related literature for the logistic model in one variable
in [4-7].

We have used a sequence from —1 to 1 with the increment of 0.01 as the candidate set
and applying the algorithm explained in the previous section to obtain D-optimal design.
The D-optimal designs were found in few iterations only and are reported in Table 1.

3.2. First-order model with two variables

Haines et al. [18] reported the D-optimal designs for the logistic model with a linear pre-
dictor of the first order in two variables without interaction. For the transformed design
space with the adjusted initial parameter guesses as o = 9, 1 = 5 and f; = 5, Table 2
shows the designs generated from our approach. Both designs are very close and this illus-
tration tells the success of the proposed procedure for the construction of D-optimal exact
designs.

3.3. First-order model with two variables with interaction

For model (8), the linear predictor gives a first-order model with two variables and their
interaction. There are 4 unknown parameters in this model and let for example take the
initial parameter guesses as o = —1, 1 = B, = 2 and B3 = 0.01. Using initial design D,
and applying modified Fedorov algorithm design, Dg is obtained. A new candidate set is
constructed around design Dg and ultimately design Dy is found. The designs are reported
in Table 3.

3.4. Second-order full model with two variables and six parameters

With six unknown parameters the linear predictor defined for the logistic model in
Equation (9) is considered here with initial parameter guesses ,80 -1, ,61 =2, ﬂz = 0.5,

Table 2. Designs for the first-order logistic model in two variables.

Initial design (D4) Final design (Ds) Haenis design (Dg)
X1 X2 X1 X2 X1 X2
—1 1 —1 —1 —1 —1
1 —1 —1 —0.44 —0.4408 —1
—1 —1 —0.44 —1 —1 —0.4408
(M| max d(x, &) M| max d(x, &) M| max d(x, &)

1.77E—09 233.0174 1.06E—05 3 1.06E—05 3
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Table 3. Designs for the first-order logistic model in two variables with interaction.

Initial design (Dy) Intermediate design (Dg) Final design (Do)
X1 X2 Xq X2 X1 X2
-1 -1 -1 1 -1 1
-1 1 1 -1 1 =1
1 -1 0.64 0.64 0.64 0.64
1 1 —0.28 —0.32 —0.3024 —0.3008
M| max d(x, &) (M| max d(x, &) (M| max d(x, &)
1.15E—05 9.978745 3.86E—05 4.001469 3.86E—05 4

Table 4. Designs for the second-order logistic model with 51 x 51 points in the candidate set.

Initial design (D19) Intermediate design (D17) Final design (D13)
X1 X2 X1 X2 X1 X2
—1 —1 —1 1 —1 1
—1 1 1 —1 1 —1
1 —1 1 0 1 —0.0256
1 1 0.12 1 0.1424 1
0 1 0.04 0.08 =1 —0.7008
1 0 —1 —0.72 0.056 0.0672
M| max d(x, &) M| max d(x, ) M| max d(x, &)
2.74E—09 47.53295 1.24E—08 6.574738 1.24E—08 6.643901

Table 5. Designs for the second-order logistic model with 101 x 101 points in the candidate set.

Initial design (D13) Intermediate design (D14) Final design (D15)
X1 X2 X1 X2 X1 X2
—1 —1 —1 1 -1 1
-1 1 1 -1 1 —1
1 —1 0.06 0.06 -1 -0.7
1 1 1 —0.02 0.0568 0.0664
0 1 0.14 1 1 —0.0264
1 0 —1 -0.7 0.1432 1
M| max d(x, ) M| max d(x, &) M| max d(x, )
2.74E—09 47.55261 1.24E—08 6.622323 1.24E—08 6.646048

B3 =2, B4 = 0.1 and 5 = 0.01. We also intend to study the effect of density of the candi-
date set in our approach. For this purpose, we used two candidate sets, first with 51 x 51
points and later with 101 x 101 points.

Though the final designs were almost the same, the intermediate designs differ with
respect to support points. The respective designs are reported in Tables 4 and 5.

4. Discussion

The present study mainly focuses on the construction of D-optimal designs by modifying
the Fedorov algorithm in a continuous design space for more than one variable in the logis-
tic models. The general equivalence theorem plays a key role in validating the optimality of
designs constructed using an algorithmic approach. In simple words, the D-optimal design
should minimize the maximum of standardized variance function value over entire design
space. This minimum value is found to be the number of unknown parameters, attained at
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the design points only. In this study, we have used candidate sets, a grid of discrete points
to represent a continuous design space. We used the candidate set to exchange and pro-
duce new designs and also checked the conditions of general equivalence theorem. For

D, D, D,
" o "
2 8 3
g o 2 g o
S & & o 5§ 2
g - 2 @ S v |
5 @ 3 5 -
g - g - g .
87 8 N oo |
5 o 5 T4 5.
~ wn
8§ T T T T T & T T T T T § o™ T T T T
@ 10 05 00 05 10 2 10 05 00 05 10 @ 10 05 00 05 10
X X X
D4 D5 D6

Standardized variance

Standardized variance
Standardized v:

Standardized variance

Standardized variance
Standardized variance

Standardized variance
Standardized variance

Figure 1. Standardized variance function value vs. design space of constructed designs.

Note: In this study, we have considered rescaled design variables in all examples. So the reader is advised to adjust the initial
parameter guesses accordingly.
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most cases, namely designs for Equations (6)-(8), we found D-optimal designs in accor-
dance with the general equivalence theorem. But for Equation (9), we cannot say for sure
that design Dj5 is D-optimal. For any given design, a plot of the standardized variance
function d(x, &) over the candidate set helps in visualizing the conditions of the general
equivalence theorem. It can be seen in Figure 1 that for optimal designs, namely D, D5,
D3, D¢, D9, D13 and Djs, the maximum of d(x, £) is k and this maximum is occurring at
the design points itself. Furthermore, we found that the construction of the new candidate
set around intermediate design as in step V of the proposed algorithm helps in searching
optimal design even with smaller initial candidate set, thus it reduces computation as well
as storage cost in implementing computer-based programs.
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Appendix

Fedorov [12,p.100]: Let W be a non-singular matrix of order p x p and V be a p x q order matrix.
Then for any real A

W+ AVV'| = W[+ AVW V] (A1)
Let a be a vector of order p x 1 and W as defined earlier, from matrix algebra, we have
W+ad)'=wl—wlag+adwlay~law™ (A2)

Now let b be a vector of order p x 1, then using Equations (A1) and (A2):
[W + aa’ — bb/| = |W + aa’|{1 — b'(W + aa’)~'b}
= [W|(1+aW 'a9)[1 — b {W' =W a1 +a'W'a)'a'w'}b] (A3)
=|W{l+aW 'a— bW 'b— @W 'a)b'W'b) + @'W 'b)*}.



