
1 
 

Digital mapping of soil salinity at various depths using an EM38 1 

Bhaskar Narjary
1
*, M.D.Meena

1
, Satyendra Kumar

1
, S.K.Kamra

1
, D.K.Sharma

1
 and J. 2 

Triantafilis
2 

3 

 
4 

1
Central Soil Salinity Research Institute, Karnal-132001, Haryana, India 5 

2 
University of New South Wales - School of Biological, Earth and Environmental Sciences, 6 

New South Wales, Australia 7 

 8 

*Corresponding Author’s details:  9 

Dr. Bhaskar Narjary, Central Soil Salinity Research Institute, Karnal-132001, Haryana, India 10 

E-mail: bhaskar.narjary@gmail.com 11 

Alternate E mail: bhaskar.narjary@icar.gov.in 12 

 13 

Running title: Soil salinity mapping using EM38 14 

 15 

 16 

 17 

 18 

 19 

 20 

mailto:bhaskar.narjary@gmail.com
mailto:bhaskar.narjary@icar.gov.in


2 
 

Abstract 21 

Problem definition: Spatial information on salinity is required at the farm level to enable suitable 22 

soil, crop and water management practices. Rationale: To facilitate this, we used an 23 

electromagnetic (EM) induction instrument for rapid measurement of apparent soil electrical 24 

conductivity (ECa – mS/m) across the 11 ha area of the Central Soil Salinity Research Institute 25 

(CSSRI) experimental farm in Nain, Haryana, India. Methods: The ECa was measured using an 26 

EM38 in horizontal (ECah) and vertical (ECav) modes on a grid survey. Using the ECa data we 27 

selected 21 locations using the response surface sampling design (RSSD) module of Electrical 28 

Conductivity Sampling Assessment and Prediction (ESAP) software. We collected soil samples 29 

at four depth increments, including two topsoil (0-0.15 m and 0.15-0.30 m), a subsurface (0.3-30 

0.6) and a subsoil (0.6-0.9) and measured the soil electrical conductivity (ECe-dS/m). Results: 31 

We developed multiple linear regression (MLR) to predict ECe using the ESAP software from 32 

ECah and ECav and two-trend surface parameters (i.e. Easting and Northing) across the farm. The 33 

prediction accuracy and bias were compared at different depth increments and results of the 34 

spatial distributions of ECe using ordinary kriging (OK) interpolation were described in terms of 35 

the crop and soil use and management implications. Conclusions: We conclude the overall 36 

approach allows for generations of a digital soil maps (DSM) of ECe and which serve as baseline 37 

data that will allow the monitoring of any rehabilitation effort of salt-affected soils according to 38 

their actual degree of salinity. 39 

Keywords: EM-38, ESAP, Soil salinity, Ordinary kriging 40 

 41 

 42 
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Digital mapping of soil salinity at various depths using an EM38 43 

Introduction 44 

Soil salinity is a serious environmental problem which adversely affects crop yield, soil 45 

health and socio-economic conditions of the farming communities in the Indo-Gangetic plain. 46 

This is particularly the case in the semi-arid north-western Indian states of Haryana, Punjab, 47 

Rajasthan and Gujarat, where salinization results from the presence of naturally occurring salt 48 

bearing minerals (halite, Kumar et al., 2010) in the soil. Secondary salinity arises because of the 49 

development of irrigation through extensive canal systems and owing to poor water 50 

management, waterlogging and shallow saline water tables which develop across the flat alluvial 51 

landscape. Driven by strong evaporative demand, the salt is brought to the surface through 52 

capillary rise. The problem is exacerbated in irrigated areas having inadequate drainage. As a 53 

result, salinity seriously threatens the sustainability of irrigated agriculture of North West India 54 

across 2 million ha (Kamra, 2015). There is a need to characterise the spatial distribution of 55 

salinity at farm level to understand extent and determine the most appropriate soil, water and 56 

crop management to return to agricultural productivity. It is also required to gauge management 57 

against baseline soil salinity. 58 

However, traditional laboratory methods of determining salinity, such as the electrical 59 

conductivity of a saturated soil paste extract (e.g. ECe) are labour intensive, time consuming, and 60 

expensive (Traintafilis et al., 2012) and only provide point information. It has been shown that 61 

the use of electromagnetic (EM) induction instruments can be used as ancillary data to rapidly 62 

map soil properties relevant to salinity. This is because EM instruments measure the apparent 63 

soil electrical conductivity (ECa), which is a function of properties such as clay (Saey et al., 64 

2009), mineralogy (Nagra et al., 2017) and moisture (Brevik et al., 2006). More importantly, 65 
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when these properties are uniform across a study site (Friedman, 2005), the shallow measuring 66 

EM38 instrument has been used to first enable site selection for calibration (Triantafilis et al., 67 

2000) and subsequently for mapping salinity at field (Li et al., 2013), across farms (Buchanan 68 

and Triantafilis, 2009) and landscapes (Odeh et al., 1998). This includes the use of mechanized 69 

mobilized sensing systems where large amounts of ECa data are collected quickly at the field 70 

scale and which have been used to investigate salinity in southwest USA (Rhoades et al., 1999; 71 

Cassel et al., 2015), Australia (Huang et al., 2014), Spain (Herrero et al., 2011) and increasingly 72 

in China (Li et al., 2012). However, there are limited case studies where this type of research has 73 

been undertaken in developing countries; Pakistan (Chaudhary and Baig, 2000), India (Banerjee 74 

et al., 1998; Narjary et al., 2017) and Bangladesh (Aziz et al., 2008) 75 

Owing to the success of these researchers, we use a similar approach but using an EM38 76 

on a grid and across the Central Soil Salinity Research Institute (CSSRI) experimental farm in 77 

Nain, Haryana, India. In the first instance we measure the apparent electrical conductivity (ECa) 78 

in horizontal (ECah) and vertical (ECav) modes. We then use the US Salinity Laboratory 79 

Electrical Conductivity Sampling Assessment and Prediction (ESAP) software (Lesch et al., 80 

2000) to choose appropriate soil sampling locations using the response surface sampling design 81 

(RSSD) module. Four multiple linear regression (MLR) equations were used for predicting soil 82 

salinity (ECe) in two top soil (0-0.15m and 0.15-0.3 m), a subsurface (0.3-0.6m) and a subsoil 83 

(0.6-0.9) depth using the two ECa measurements and trend surface parameters (Easting and 84 

Northing). We discuss the prediction accuracy and bias of prediction at the different depth 85 

increments. The study also aims to develop spatial salinity maps and confer maps in terms of 86 

crop and soil use and management implications with respect to effect of salinity on soil health 87 

and agricultural productivity. 88 



5 
 

 89 

Material and Methods 90 

Experimental site 91 

The study site is located on the Central Soil Salinity Research Institute farm near Nain, 92 

which is located in the Panipat district of Haryana State, India. The farm is 11 ha in size and 93 

geographically extends between 29
o
19’7.09” to 29

o
19’10”N latitude and 76

o
47’30.0” to 94 

76
o
48’0.0”E longitude (Fig. 1). It is at an elevation of 213-214 m above mean see level.  The 95 

study farm falls within the QIG2 geomorphic surface (Shrivastava et al., 2015) and the soil is 96 

characterised by a sandy loam texture and according to USDA (United States Department of 97 

Agriculture) soil taxonomy classified as mixed Typic haplustepts (saline phase) (Sachdev et al., 98 

1995; Mondal et al., 2013). 99 

Climatically the farm is situated in a sub-tropical and semi-arid climate with average 100 

annual rainfall of 550-650 mm. The rainfall (77 %) occurs during south-west monsoon (i.e. July 101 

to mid-September) and about 1,500 mm annual evaporation under a Ustic soil moisture regime 102 

(Mandal et al., 2013). During the summer months (March-May) mean maximum temperature 103 

ranges between 30-39 
o
C and mean minimum temperature ranges 18-27 

o
C.  104 

The site had been lying barren for nearly two decades due to salinization and owing to the 105 

presence of a shallow perched water table (~1 m), particularly during the wet monsoon months. 106 

The water table is deeper (~3.5 m) during the summer. Before being acquired by the CSSRI in 107 

2011, the land was a part of village community land and was abandoned for a long period of 108 

time. This led to the emergence of naturally growing trees, bushes and shrubs commonly found 109 

in salty land with poor quality (saline) groundwater. Though the vegetation type and density 110 

varied spatially, the dominant species were Prosopis juliflora (Babool), Azadirachta indica 111 
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(Neem), Ziziphus numularia (Jharberi) and Dalbergia sissoo (Sisham).  The farm also has salt 112 

tolerant grasses and herbs; including, Saccharum spontanium (Kans), Cynodon dactylon (Dub 113 

grass), Suaeda fruticosa (Noon-khari), Kochia indica (Bui) and Calotropis procera (Aak).  114 

After acquiring the farm, these naturally growing trees, bushes and grasses were 115 

removed. The land was leveled, and the soil leached through monsoon rain water by dividing the 116 

farm into a number of fields using dykes. The main land use in the monsoon is cultivation for 117 

Pearl millet (Pennisetum glaucum) and in winter season is mustard (Brassica juncea). Some part 118 

of the landscape is dedicated to agro-forestry of Eucalyptus. 119 

 120 

 121 

EM Survey  122 

 An analogue EM38 (Geonics Limited, Mississuaga, Canada) was used to undertake ECa 123 

survey across the CSSRI Nain Experiment farm in the summer month of May 2013. Two ECa 124 

measurements were collected (i.e. ECah and ECav). A total of 276 measurement sites were visited 125 

along transects spaced ~15-20 m apart (Fig. 2a). A Global Positioning System (GPS) was used to 126 

identify the exact location of each measurement site. Trimble GEO XT GPS system was used to 127 

record two trend surface parameters i.e. Easting and Northing. 128 

A contour survey analysis of the farm was carried out using dumpy level (Optical instrument 129 

used to establish or verify points in the same horizontal plane). We found that the farm was fairly 130 

level (Fig. 2b), ranging between 212.99 to 213.67 m above mean sea level. Higher elevation was 131 

observed in the southeast corner where a farm pond has been excavated and excavated soil has 132 

been stacked over the land. The lowest elevation was observed in the middle of the farm from the 133 

south east side. 134 
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Collection of soil samples and laboratory analysis 135 

To enable calibration between EM38 ECa and ECe and to understand relationships with 136 

various soil properties and dominant salts, soil samples were collected simultaneously from 137 

selected EM38 measurement sites. Response Surface Sampling Design (RSSD) module of the 138 

ECe Sampling, Assessment and Prediction (ESAP) software package was used to select locations 139 

based on the ECa data (Lesch et al., 2000). In brief, the design involves de-correlating ECa using 140 

a principal component transformation. This transformed data is then directly compared to a 141 

suitable RSSD composed of n design level combinations balanced across m principal component 142 

vectors.  143 

The aim of the RSSD is to select a small set of sampling sites to optimise estimation of 144 

regression parameters for predicting soil properties with ordinary least squares estimation 145 

approach and to minimise effects of the spatially dependent error structure on the estimation 146 

process (Triantafilis and Lesch, 2005). In practical terms, this led to the selection of EM38 (ECah 147 

and ECav) values at low (< 100 mS/m), intermediate-low (100-200 mS/m), intermediate (200-350 148 

mS/m), intermediate-high (350-500 mS/m) and high (>500 mS/m) with sites spread across the 149 

farm. Fig. 2b shows the location of the 21 soil sampling locations.  150 

At each of the 21 sites, samples up to a depth of 0.90 m were collected at the depth 151 

increments of two topsoil (0-0.15 m and 0.15-0.30 m), a subsurface (0.3-0.6) and a subsoil (0.6-152 

0.9). Since soil texture and moisture content are reported to be important variables influencing 153 

calibration of EM observations with ECe (McKenzie et al., 1989; Vaughan et al., 1995), one 154 

portion of the soil sample was collected in aluminum moisture box for determination of 155 

gravimetric moisture content (GMC), and saturation percentage (SP). This is because SP is 156 

closely related to soil texture (Lesch et al., 2000). For chemical analysis, the soil samples were 157 
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air dried, ground and passed through a 2-mm sieve and analyzed for the electrical conductivity of 158 

a saturated soil paste extract (ECe- Eutech EC meter), soluble cations (Ca
2+

 and Mg
2+

) and anions 159 

(CO3
-2

, HCO3
-1

 and Cl
-1

) using a wet chemistry (Titration) procedure (Bhargava, 2003), Na
+1

 and 160 

K
+1

 ions determined using a flame photometer (Systronics India Limited).  161 

Understanding ECe and Modeling of ECa data 162 

For correlating EM38 observations (ECah and ECav) with ECe at various depth increments 163 

an MLR model software package (ESAP) was used and which considers both ECa and two trend 164 

surface parameters (i.e. Easting [x] and Northing [y]) of each survey site. The prediction 165 

variable, Y is derived in this model as per the following equation: 166 

Y=b0+ b1 (ECah) +b2 (ECav) +b3(x) +b4(y)…………….…………..……..(1) 167 

Where ECah and ECav represent the EM38 observations in horizontal and vertical 168 

orientations, x and y represent the spatial coordinates of EM38 locations, while bo, b1, b2, b3, 169 

and b4 are fitted model parameters. To circumvent co-linearity, transformed and uncorrelated 170 

principal component scores were used in place of the raw EM38 observations as predictor 171 

variables, while scaling techniques of the surface parameters are used to increase the prediction 172 

accuracy in the MLR model (Lesch et al., 1995b). Consequently, the depth specific MLR 173 

prediction model can be represented as: 174 

Y = b0 +b1 (z1) + b2 (z2) + b3 (u) +b4 (v)…………………………………………..(2) 175 

Where z1 and z2 are the de-correlated EM38 observations (i.e., the principal component 176 

scores) and (u, v) represent the scaled spatial coordinates of each survey site (Lesch et al., 2000). 177 

 178 

Statistical Analysis 179 
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The performance of the model was evaluated by using statistical tools such as the R
2
 180 

(coefficient of determination), root mean square error (RMSE), model efficiency (ME) and 181 

Wilmot’s index of agreement (IoA).  Statistical analysis was done using Excel and online with 182 

SAS 9.2 version (http://stat.iasri.res.in/sscnarsportal). 183 

 184 

Geo-statistical analysis of spatial variability  185 

Ordinary kriging (OK) was used to characterize the variance structure, determination of 186 

spatial distribution, and trend changes of soil properties. The OK method uses a semi-variogram 187 

to quantify the spatial dependence between neighbouring observations. Four types of semi-188 

variogram models (Circular, Spherical, Exponential, and Gaussian) were tested using geo-189 

statistical modules in Arc-GIS 9.3 (Arc-GIS, 2008). For the selection of the best model, 190 

predictive performances of the fitted models were checked on the basis of a leave-one-out-cross-191 

validation test. Herein we used point kriging. Values of Mean Standardized Error (MSE), Root 192 

Mean Square error (RMSE), Average Standard Error (ASE) and Root Mean Square Standardized 193 

error (RMSSE) were estimated to ascertain the performance of the fitting models (Gorai et al., 194 

2017).  195 

 196 

Results and Discussion 197 

Spatial distribution and descriptive statistics of ECa 198 

Table 1 shows the descriptive statistics of measured ECah and ECav. In terms of the 199 

shallower measuring ECah, it had a smaller mean (358.3 mS/m) but larger standard deviation 200 

(182 mS/m) than the deeper measuring ECav (404.7 and 162 mS/m, respectively). These results 201 

were a function of the larger range in ECah (917 mS/m) from a minimum of 45 mS/m to a 202 

http://stat.iasri.res.in/sscnarsportal
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maximum of 962 mS/m, compared with the ECav which varied from 58 to 771 mS/m. This 203 

suggests that in some parts of the study area, ECe may be larger in the topsoil layers as compared 204 

to the subsoil; representing inverted salinity profiles.  205 

Nevertheless, and as indicated by the kurtosis value for both ECah (-0.4) and ECav (-0.7), 206 

which were both less than 3, the distributions were platykurtic. This implies the distributions 207 

have fewer and less extreme outliers than a normal distribution. The histograms shown in Fig.3a 208 

and 3b, show that the ECah and ECav respectively, were normally distributed and symmetric with 209 

well-behaved tails. Given the skewness of the ECah (0.5) and ECav (0.1) were also small; no 210 

transformation was required for further analysis of the measured ECa survey data.  211 

Table 1 also shows the descriptive statistics of the ECa measurements at the 21 212 

calibration sites. For the most part, the mean and median and other statistics are equivalent with 213 

those achieved with the survey data, with similar values of skewness and kurtosis in the two data 214 

sets. This indicates that the calibration data is a fair reflection of the survey data. The spatial 215 

distribution shown in Fig. 2b also shows that the calibration sites are evenly distributed across 216 

the farm. 217 

Fig. 4a shows the variation in ECah as a contour plot (JMP Version 12). It was evident 218 

that the smallest ECah (< 200 mS/m) was measured along the western and southern margins. 219 

Conversely, and with increasing distance to the eastern side, ECah increases whereby the largest 220 

measurements (> 600 mS/m) are adjacent to a large pond located in the centre of the farm. The 221 

pattern in ECav was equivalent except it appeared to be universally intermediate-large (i.e. > 600 222 

mS/m) across the farm (Fig. 4b). The area of large ECa was more extensive and consistent with 223 

areas where water-logging was problematic in the eastern half and southern parts of the farm. In 224 

both cases, there was a trend in ECa with Easting and Northing, respectively. 225 
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 226 

Descriptive statistics of measured soil properties 227 

Table 1 also shows the descriptive statistics at various depths of the measured properties 228 

(ECe, SP and GMC). With respect to ECe, the salinity varied from non-saline (< 2 dS/m) at all 229 

depths to highly-saline (> 32 dS/m). This was particularly the case in the topsoil (0-0.15 m) and 230 

subsurface (0.15-0.30 m) where salinity was largest (respectively, 50.8 and 41.5 dS/m). Given 231 

the slightly smaller ECe maximums in the subsoil, this suggests the process driving salinization 232 

was a rising water table and accumulation of salts in the topsoil through capillary rise and high 233 

evaporative demand. This was a function of the semi-arid nature of the area which was 234 

influenced by monsoonal weather patterns. 235 

Of the other soil properties which influence EM38 ECa there appears to be little variation 236 

in these. With respect to soil texture, the small range in SP at various depths suggests there is 237 

little variation in soil texture. The uniform and small range in GMC at the various depths 238 

indicates little variation in soil moisture; it was a drier in the topsoil (14.4 %) than in the deepest 239 

subsoil (19.9 %). 240 

 241 

Linear- and multiple-linear regression analysis 242 

Table 2 shows there was significant positive correlation between ECah and ECav and 243 

average profile (0-0.90 m) ECe of 0.76 and 0.74 (p < 0.01), respectively. This was not the case 244 

with respect to many of the other average profile properties measured including SP (-0.02), GMC 245 

(-0.23), Ca + Mg (0.37) and CO3
-2

 + HCO3
-1

 (-0.21) which were poorly correlated. In terms of 246 

the poor correlation with SP this suggests that the soil texture across the farm was relatively 247 
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uniform. This was similarly the case with GMC, which indicates soil moisture was consistent at 248 

the time the EM38 survey was conducted.  249 

However, there was a large positive correlation (> 0.7) for both ECah and ECav with some 250 

of the cations (Ca
2+

, Mg
2+

, Na
+
) and anions (CO3

2-
, HCO3

-
, Cl

-
). The largest correlations were for 251 

Na
 
(0.77 and 0.74, respectively) and Cl

 
(0.73 and 0.71, respectively). Along with the fact that 252 

these ions were strongly correlated with ECe, this indicates that sodium chloride (NaCl) was the 253 

major salt responsible for ECe in the study area and which contribute most to ECa variation. 254 

Table 3 shows the multiple linear regression (MLR) summary statistics derived from 255 

model (eq. 2) using ECah and ECav and to predict ECe at non-sampled points (i.e. locations where 256 

only ECah and ECav data were collected) and for the two topsoil (0-0.15 m and 0.15-0.30 m), 257 

subsurface (0.3-0.6) and a subsoil (0.6-0.9) depth increments of interest. The largest (0.86) R
2
 for 258 

a calibration was achieved for the upper topsoil (0-0.15 m) MLR model to predict ECe, with 259 

reasonable RMSE (6.36 dS/m) (Table 1).  260 

The MLR model for lower topsoil (0.15-0.30 m) and subsurface (0.3-0.6 m) were also 261 

good, although slightly smaller R
2
 (i.e. 0.77 and 0.78, respectively). While the RMSE were also 262 

equivalent (i.e. 6.32 and 5.96 dS/m, respectively), the model efficiency was slightly smaller (i.e. 263 

0.77 and 0.72, respectively) owing to the smaller standard deviations (SD) in ECe (i.e. 11.9 and 264 

11.3 dS/m, respectively) as compared with the topsoil (15.1 dS/m). 265 

The MLR model for the subsoil (0.6-0.9 m) was reasonable, although the R
2
 (0.66) was 266 

smaller again than the lower topsoil and subsurface depths. We attribute this to various factors. 267 

In terms of the ECe it was because the range in ECe was smallest for this depth increment as 268 

compared to the other three depths with a minimum (0.8 dS/m) and maximum (33.3 dS/m), 269 

however the mean ECe was largest (17.4 dS/m). This constrains the ECe data and means that the 270 
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efficiency of the model will be somewhat compromised. This was the case as this model was 271 

then most inefficient (0.66) with the largest RMSE (7.58 dS/m). 272 

In terms of ECa, the model result for the subsoil depth was also impacted by the fact that 273 

the ECa was most likely influenced by the more conductive topsoil and subsurface salinity, 274 

particularly in the areas where the ECe was at a maximum. This leads to much of the secondary 275 

magnetic field to be channeled near the surface and therefore measurement to deeper depths is 276 

compromised. 277 

 278 

Semi-variogram analysis 279 

The fitted semi-variogram models of the measured apparent soil electrical conductivity 280 

(ECa) for both the ECah and ECav are shown in Fig. 5a. For both ECa, a spherical model best 281 

fitted the data. The ECah semi-variogram has a larger nugget (1.2 x 10
-4

) compared with ECav 282 

(0.8 x 10
-4

). The range was approximately 60 m for both ECa. Equivalent variograms were 283 

generated for the estimated soil electrical conductivity of a saturated soil paste extract (ECe) for 284 

each of the depths of interest (Fig. 5b). 285 

The nugget (C0) to Sill (C0+C) ratio is often used to characterize short distance auto 286 

correlation and spatial dependence of the variables (Gorai et al., 2017). According to 287 

Camberdella et al., (1994), a nugget: sill ratio less than 25% is indicative of strong spatial 288 

dependence while values between 25-50% and more than 75 are representative respectively of 289 

moderate and weak spatial dependence. Utilizing these indices in this study, it was found that 290 

estimated ECe had strong (22.5%) spatial dependency. 291 

Despite this, and owing to the presence of a nugget variance, improvements in semi-292 

variogram development and to better predict ECe measurements of ECa could be made at smaller 293 
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grid spacing approximately only 1 m apart. This could be facilitated by mobilizing the EM38 294 

onto a small sled capable of being dragged behind a small all-terrain vehicle or even by hand. 295 

Herein this was difficult owing to various crops being present and at various stages of growth. 296 

 297 

Measured versus predicted ECe  298 

Fig. 6(a-c) shows a plot of predicted versus measured ECe for all depths, achieved using a 299 

leave one-out-cross-validation (LOOCV) procedure. It was evident, for the most part, that the 300 

predicted ECe achieved from the MLR modelling (calibration) and kriging (interpolation) was 301 

successful and generally fall close to the 1:1 line (Fig. 6a). We describe the results with reference 302 

to the salinity classes defined by Barrett-Lennard et al., (2008).  303 

This was the case for calibration locations where the measured ECe was small and either 304 

non-saline (< 2 dS/m) to only slightly-saline (2-4 dS/m). This was the case at sample site 256. 305 

Fig. 6b shows that for this salinity profile, measured ECe was uniformly non-saline, excepting 306 

the topsoil which was moderately saline (4-8 dS/m). Our ability to predict ECe at all depths, 307 

except the topsoil, and as shown in Fig. 6c, indicates that our calibration and interpolation was 308 

satisfactory in this instance. This indicates some confidence in prediction of non-saline 309 

conditions along the eastern margin. 310 

This was also the case for predicted ECe, which was intermediate, as exemplified by 311 

calibration site 177. Located to the north of site 256, the essentially normally distributed salinity 312 

profile; whereby ECe increases with increasing depth as a logistic curve (Triantafilis et al., 313 

2000), was for the most part well predicted in the topsoil and subsoil depths (i.e. >0.9 m).  314 

However, and as shown in Fig. 6c, the lower topsoil (0.15-0.3 m) and subsurface (0.3-0.6 315 

m) ECe were measured as being highly-saline (8-16 dS/m) but were slightly over-predicted as 316 
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severely-saline (16-32 dS/m). We attribute this to the short scale variation in ECa around site 317 

177, which was intermediate-large (300-400 mS/m) along a narrow band and as shown in Fig. 318 

4b. 319 

As measured ECe increased to much larger values, for example at site 105, our ability to 320 

predict ECe was also reasonable, despite the extremely-saline ECe (> 32 dS m
-1

). In this inverted 321 

salinity profile, located along the southern margin of the farm, measured salinity (51 dS/m) 322 

decreased from the topsoil to the subsoil (0.6-0.9 m), where ECe was still extreme. At most depth 323 

increments, predicted ECe was equivalent (Fig. 6c). Given the salinity profile was inverted, this 324 

suggests that the process of secondary salinization was being driven by strong evaporative 325 

demand, capillary rise and from the presence of the water table; which was saline given the 326 

extreme ECe.  327 

There were, however some instances where measured and predicted ECe were not 328 

consistent. This was the case at site 40, which was in the northeast corner of the farm. From Fig. 329 

4(a and b) it was apparent that the site was in an area where measured ECah and ECav were small 330 

(<200 mS/m). This was generally consistent with the small measured ECe, which was non-saline 331 

in the topsoil and only slightly saline at lower depth increments (Fig. 6b). This was not the case, 332 

however, regarding the predicted ECe (Fig. 6c), which suggested ECe was highly saline (8-16 333 

dS/m) to severely saline ECe (16-32 dS/m).  334 

While the calibration was satisfactory, and as indicated by the good results achieved by 335 

the LOOCV during calibration, here where we also consider the interpolation of the ECe data 336 

predicted. Specifically, where the ECa data was collected at the 276 measurement sites, the 337 

predicted ECe is a function of the short scale variation. It was also a function of the survey 338 

interval of approximately 15 m transects and measurement spacing shown in Fig. 2a. As a result, 339 
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and in the northeast part of the study area ECa changed from small to intermediate values of ECa 340 

over a short distance. Consequently, ECe was over-predicted. The opposite was the case at site 341 

50; whereby predicted ECe was under-predicted. 342 

To better predict ECe, particularly considering the small scale spatial variation in ECa and 343 

apparent in Figure 4a and 4b, EM38 should be collected at smaller grid spacing. Whilst using a 344 

MESS (Mobile electromagnetic sensing system) is preferred, the size of the farms and the 345 

individual fields most likely precludes this in developing countries. An alternative is to mount an 346 

EM38 onto a small sled along with a GPS and data logger and dragging the sled by hand to allow 347 

for the collection of continuous data (Koganti et al., 2018). This would also require upgrading 348 

the EM38, used herein, to record digital data. 349 

 350 

Digital Soil Maps of ECe 351 

Fig. 7 and 8 show the DSM developed from the MLR models (developed at the 21 352 

calibration sties) and interpolated using ordinary kriging from the predicted ECe at the 276 ECa 353 

survey locations. Fig. 7a and 7b show the DSM for the upper (0-0.15 m) and lower (0.15-0.30 m) 354 

topsoil. These DSM show clearly that few areas on the farm were not affected by some form of 355 

salinization. In terms of the upper topsoil, the areas which were relatively unaffected were 356 

located along the eastern margin and the northeast corner of the farm. Here, in an area less than 3 357 

% of the farm, ECe was only slight to moderately saline (< 8 dS/m). At these levels, wheat 358 

(Triticum aestivum L.) which is sometimes grown in adjacent farms, could reasonably be 359 

expected to at least germinate, however the threshold ECe (6 dS/m) was exceeded (Maas and 360 

Hoffman, 1977). This explains why it is seldom grown as a staple crop. 361 
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Across a much larger part of the farm, the ECe was highly-saline (8-16 dS/m) across 362 

35.4%. This was predominantly situated in the western part of the farm. Here, the impact of 363 

salinity begins to become problematic at the time of germination because the main crop which is 364 

grown in the winter is Indian mustard (Brassica Juncea), which although moderately salinity 365 

tolerant, its thresholds were exceeded in most parts of this area (9 dS/m). This explains why this 366 

farm was abandoned by the farmer in the early 1980’s.  367 

The reason it was abandoned becomes self-explanatory given more than half of the farm 368 

(55.4%) has been mapped as severely-saline (16-32 dS/m) with a smaller area (6.3%) extremely-369 

saline (> 32 dS/m). In both cases, these values characterize the southern half of the farm (Fig. 7 370 

and 8). Here, the tell-tale signs of extremely saline soil conditions are evident year-round. During 371 

the monsoonal period (July to mid-September), when the water table is within 1 m, water 372 

logging and presence of a saline water table is problematic. During the summer, when the water 373 

table is around 3 m deep, the high evaporative demand of plants and evaporation leave salt 374 

crystals on the surface. The reason for these problems is because the southern part of the farm is 375 

situated in a depression. 376 

In terms of management there are various options, including crop, soil and water 377 

management. These will need to be considered in combination, considering the severely to 378 

extremely saline nature of salinity. In terms of crop management, salt tolerant crops (e.g. barley) 379 

and salt tolerant variety need to be considered.  Forestry plantation (Eucalyptus) was also planted 380 

for controlling shallow saline water table and to generate income. To enable more effective water 381 

management, pressurised irrigation techniques (drip and sprinkler) and installation of sub surface 382 

drainage to lower the shallow saline water table and facilitate leaching of salts during the wet 383 

season need to be considered. Soil management could include the preparation of beds that 384 
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encourage salts to accumulate in areas away from germinating seedlings; when salinity is most 385 

problematic. 386 

 387 

Summary and Conclusions  388 

The effective control of soil salinity requires knowledge of its magnitude and extent. In 389 

this paper, we demonstrated how this could be done using a simple to use geophysical instrument 390 

(EM38) on an approximate regular grid. By considering ECa in the horizontal (ECah) and vertical 391 

(ECav) modes and considering two trend surface parameters (Easting and Northing), we could 392 

use two modules in an easy to use software package (ESAP) to first determine a suitable number 393 

of soil sample locations (RSSD) and then predict ECe at the ECa measurement sites using a 394 

MLR. Using ordinary krigging (OK) interpolation method spatial distributions of ECe were 395 

predicted for top, subsurface and subsoil depths and DSM of soil salinity was prepared. 396 

The DSM of soil salinity at two topsoil (0-0.15 m) and (0.15-0.30 m) a subsurface (0.3-397 

0.6) and a subsoil (0.6-0.9) depths can act as baseline information which can be used to gauge 398 

the impact of soil, water and crop management introduced to manage salinity. Improvements in 399 

the DSM however need to be sought. In the first instance, to account for the short scale spatial 400 

variation of ECe, a small sled capable of being dragged behind a small all-terrain vehicle or even 401 

by hand needs to be designed and developed to mobilise the EM38 and GPS and to enable higher 402 

resolution ECa data. 403 

The collection of higher resolution GPS data in the vertical orientation (i.e. height) might 404 

allow for improved prediction of ECe, particularly in the depressed areas in the southern part of 405 

the farm. With higher resolution ECa data it might also be possible to better model the ECe data 406 

by modelling this data directly from the estimated true electrical conductivity using inversion 407 
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software (e.g. EM4soil). This is because soil salinity with depth has been shown to be more 408 

easily and more efficiently using a single calibration equation in 2-dimensions (Stockman et al., 409 

2017), at the field scale (Zare et al., 2015) and at the district level (Dadak et al., 2017). 410 

 411 
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Table 1: Descriptive statistics of EM38 in horizontal (EM38H) and vertical EM38V (mS/m), Electrical 537 

conductivity of saturated soil paste extract (ECe - dS/m), Saturation percentage (SP, %), gravimetric 538 

moisture content (GMC, %), calcium and magnesium concentration in saturation extract (Ca+Mg, meq/l), 539 

Sodium and K concentration in saturation extract (Na and K, meq/l), Carbonate and bicarbonate 540 

concentration in saturation extract (CO3+HCO3, meq/l) Chlorine concentration in saturation extract (Cl, 541 

meq/l). 542 

Parameters n Mean SD Minimum Maximum Skewness Kurtosis 

ECa (Survey)        

     EMH 276 358.3 182.1 45.0 962.0 0.5 -0.4 

     EMV 276 404.7 162.0 58.0 771.0 0.1 -0.7 

ECa (Calibration)        

     EMH 21 324.7 182.1 45.0 804.0 0.9 0.1 

     EMV 21 367.9 197.3 58.0 752.0 0.3 -0.9 

Soil Properties        

     ECe (0-0.15 m) 21 16.7 15.1 2.0 50.8 1.1 0.2 

     ECe (0.15-0.3 m) 21 15.3 11.9 1.3 41.5 0.9 -0.1 

     ECe (0.3-0.6 m) 21 16.5 11.3 1.0 38.1 0.4 -0.5 

     ECe (0.6-0.9 m) 21 17.4 11.6 0.8 33.3 0 -1.6 

     SP (0-0.15 m) 21 47.0 1.0 44.5 48.8 -0.8 1.4 

     SP (0.15-0.3 m) 21 46.5 1.8 42.9 49.7 -0.5 -0.3 

     SP (0.3-0.6 m) 21 46.3 1.0 43.5 48.1 -0.7 1.7 

     SP (0.6-0.9 m) 21 46.3 0.9 44.6 47.7 -0.7 -0.6 

     GMC (0-0.15 m) 21 14.4 3.7 8.5 22.7 0.3 -0.4 

     GMC (0.15-0.3 m) 21 16.7 2.8 10.6 22.0 0 0.4 

     GMC (0.3-0.6 m) 21 18.8 3.1 14.1 28.0 1.3 2.7 

     GMC (0.6-0.9 m) 21 19.9 2.8 14.6 25.0 0.4 -0.1 

Na (0-0.15 m) 21 199.6 207.8 6.0 659.4 1 -0.2 

Na (0.15-0.3 m) 21 149.3 143.9 4.3 492.5 1.3 0.8 

Na(0.3-0.6 m) 21 173.0 145.2 3.0 470.0 0.7 -0.3 

Na(0.60-0.9 m) 21 203.9 157.8 4.6 504.0 0.3 -1 

Cl (0-0.15 m) 21 122.9 108.4 5.2 369.9 0.8 -0.4 

Cl (0.15-0.3 m) 21 92.3 81.6 4.7 263.2 0.9 -0.3 

Cl(0.3-0.6 m) 21 92.8 77.2 5.2 238.3 0.7 -0.9 

Cl (0.6-0.9 m) 21 114.1 81.8 17.4 249.1 0.3 -1.6 

Ca+Mg (0-0.15 m) 21 50.0 43.7 4 210 2.6 8.9 

Ca+Mg (0.15-0.3 m) 21 38 30.2 6 120 1.1 1 

Ca+Mg (0.30-0.6 m) 21 39.4 34.3 7 120 1 -0.2 

Ca+Mg (0.6-0.9 m) 21 38.3 36.1 8 141 1.5 1.9 

CO3 + HCO3(0-0.15 m) 21 2.7 0.9 1.4 5.2 1.7 3.3 

CO3 + HCO3(0.15-0.3 m) 21 2.7 0.9 1 4.8 0.2 0 

CO3 + HCO3(0.3-0.6 m) 21 2.6 0.6 1.7 4.2 0.7 1.2 

CO3 + HCO3(0.6-0.9 m) 21 2.6 0.8 1 4.3 0.1 0.1 

K (0-0.15 m) 21 0.95 0.15 0.04 2.86 0.98 1.36 

K (0.15-0.3 m) 21 0.57 0.1 0.09 1.84 1.55 2.1 

K (0.3-0.6 m) 21 0.55 0.14 0.08 2.86 2.77 9.53 

K (0.6-0.9 m) 21 0.44 0.11 0.08 2.16 2.61 7.85 
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Table 2: Pearson correlation analysis among apparent conductivities (V and H) and soil 543 

properties for average soil profile (0-90 cm) including the electrical conductivity of saturated soil 544 

paste extract (ECe - dS/m), saturation percentage (SP, %), gravimetric moisture content (GMC, 545 

%), and from the saturated extract the sodium and K (Na and K, meq/l), chloride (Cl, meq/l), 546 

calcium and magnesium (Ca+Mg, meq/l), and arbonate and bicarbonate (CO3+HCO3, meq/l). 547 

 548 

  V H ECe SP GMC Na Cl Ca+Mg  

 

CO3+HCO3 

H 0.90
**

 

       

 

ECe 0.74
**

 0.76
**

 

      

 

SP 0.03 -0.03 0.06 

     

 

GMC -0.22 -0.23 -0.05 0.31 

    

 

Na 0.74
**

 0.77
**

 0.93
**

 0.29 0.01 

   

 

Cl 0.71
**

 0.73
**

 0.83
**

 0.18 -0.03 0.81
**

 

  

 

Ca+Mg  0.37 0.37 0.43 -0.10 -0.04 0.26 0.70
**

 

 

 

CO3+HCO3 -0.26 -0.21 -0.12 -0.06 0.21 -0.07 -0.39 -0.57
*
 

 

K 

0.41 0.37 0.62* -0.06 -0.24 0.50* 0.60* 0.63* -0.23 

 549 

 550 
**

 Significant at p< 0.01 and 
*
 significant at p<0.05 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 
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Table 3. Multiple linear regression (MLR) models for estimating saturated paste electrical 564 

conductivity (ECe), based from electromagnetic induction (EM) readings in horizontal (ECah) 565 

and vertical (ECav) and two trend surface parameters (i.e. Easting and Northing) for the upper (0 566 

– 0.15 m) and lower topsoil (0.15-0.3 m), subsurface (0. 30-0.6 m) and subsoil (0.6-0.9 m) 567 

depths. 568 

Parameter Model details 0-15 cm 15-30 

cm 

30-60 cm 60-90 

cm 

Average 0-90cm 

ECe Model Selected ECe  =  b0 + b1(z1) + b2(z1^2) + b3(x) + b4(x^2) 

 Model R
2
 0.86 0.77 0.78 0.66 0.84 

 RMSE 6.36 6.32 5.96 7.58 5.01 

 Model 

Efficiency 

0.86 0.77 0.72 0.66 0.79 

 Index of 

Aggrement 

0.96 0.93 0.91 0.89 0.94 

 569 

Where,  570 

 b, b1, b2, b3, and b4 are coefficients;  571 

z1 = decorelated signals; 572 

x = trend surface parameter 573 

 574 

 575 

 576 

 577 

 578 
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Fig 1: Location map of experimental farm (Nain, Panipat, Haryana, India) 
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Fig.2: Spatial distribution of (a) EM38 survey locations and (b) EM38 calibration points across 

the experimental farm (Nain, Panipat, Haryana, India. Note: Dotted lines represent elevation 

(above mean sea level – m). 
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Fig.3a: Signal histogram in EM38h measurements Fig.3b: Signal histogram in EM38v measurements 

a 
b 
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Fig 4: Contour plot of measured soil apparent electrical conductivity (ECa – mS/m) using an 

EM38 in (a) horizontal (ECah) and (b) vertical (ECav) modes of operation
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Fig. 5 Semi-variograms a) measured soil apparent electrical conductivity (ECa – mS/m) using an 

EM38 in horizontal (ECah) and vertical (ECav) modes of operation and b) estimated electrical 

conductivity of a saturated soil paste extract (ECe – dS/m) at depth increment of topsoil (0-0.15 

m), subsurface (0.15-0.3 m) and upper (0.3-0.6 m) and lower (0.6-0.9 m) subsoil. 
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Fig. 6. Plot of a) predicted versus measured electrical conductivity of a saturated soil paste 

extract (ECe - dS/m), b) measured ECe (dS/m) and depth and c) predicted ECe (dS/m) and depth. 
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Fig. 7 Contour plot of kriged estimated electrical conductivity of a saturated soil paste extract 

(ECe – dS/m) at depth increments of a) topsoil (0-0.15 m), and b) subsurface (0.15-0.3 m). 
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Fig. 8 Contour plot of kriged estimated electrical conductivity of a saturated soil paste extract 

(ECe – dS/m) at depth  increments of a) upper (0.3-0.6 m), and b) lower (0.6-0.9 m) subsoil. 


