Crop Res. 32 (3): 365-369 (2006)

With four figures Printed in India

Nitrogen transformations in acidic hilly soil under tea cultivation

R. SARASWATHY1 AND P. SINGARAM

Department of Soil Science and Agricultural Chemistry Tamil Nadu Agricultural University, Coimbatore-641 003 (Tamil Nadu), India

ABSTRACT

Nitrogen fertilization plays an important role in tea plantation crop where the ultimate aim is the stimulation of vegetative growth. A nitrogen transformation in soil influences nitrogen losses via NH₃ volatilization, denitrification, surface runoff and leachate that degrade the environment. To elucidate information on the nitrogen transformations, an incubation experiment was carried out with two acidic soils (clay loam and sandy clay loam) under tea cultivation collected from the farms of UPASI, Coonoor and Valparai. Five levels of nitrogen (0, 250, 375, 500 and 625 kg ha⁻¹) as urea were applied to each soil and different forms of nitrogen were monitored periodically during 90 days of incubation period. Urea hydrolysis followed the first order reaction and it was high in clay loam soil during early period of incubation. Increasing levels of nitrogen application increased the nitrogen fractions such as NH₄-N and NO₃-N in both the soils. The NH₄-N content of the soil increased upto 5th day, whereas NO₃-N content of the soil increased upto 30th day of incubation.

Key words: Hilly soil, nitrogen transformation, soil texture

INTRODUCTION

Success of food grain production and increase in the yield of plantation crops in developing countries hinge on the expansion of fertilizer use. Conventional tea plantations make heavy use of chemical fertilizers and pesticides. Among the chemical fertilizers, nitrogen fertilization plays an important role in tea crop where the ultimate aim is stimulation of vegetative growth. Primarily, on account of its importance, nitrogen has been the most extensively researched nutrient element and will continue to be so in the years to come. Secondly, owing to the complex and dynamic transformations that nitrogen and its compounds undergo in the soil and the considerable loss that occurs through various pathways, there is an imperative need to understand the nitrogen transformations, its losses and its impact on environment. Hence, incubation experiment was conducted to study the nitrogen transformation in the applied

MATERIALS AND METHODS

The soils used for the present experiment were collected from the farm of

United Planters Association of Southern India (UPASI), Coonoor (Attavalli series) and UPASI, Valparai (Attavalli series) to study the nitrogen mineralization rate with different levels of nitrogen such as 0, 250, 375, 500 and 625 kg ha-1 under field capacity moisture regime. These soils are classified under Typic Dystropepts. The basic characteristics of the soils used in the study are given in Table 1.

Details of the Experiment

Bulk soil samples collected from 0-7.5 cm layer of Coonoor and Valparai sites were shade dried, processed and sieved through 2 mm sieve. One hundred and fifty gram of processed soil samples were taken into 250 ml conical flask and mixed thoroughly with different nitrogen levels (0, 46.3, 69.4, 92.59 and 115.74 mg N calculated based on the weight of the surface 7.5 cm depth of soil equivalent to 0, 250, 375, 500 and 625 kg N ha⁻¹) in the form of urea.

This experiment was conducted at field capacity and the loss of moisture was compensated by periodic addition of water. Each flask was covered tightly with rubber cork and incubated at $27\pm1^{\circ}\text{C}$ and each treatment was replicated twice.

¹Present Address: Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai-28, India.

rigation and Manage. 17

. California San Luis

i irrigation uide for ., Logan,

irrigation D. thesis,

l. Furrow ction. J.

eases in Proc. ASCE,

Border ertia. J.

surface , Utah,

Table 1. Properties of the experimental soil

Particulars	Coonoor soil	Valparai soil
	0-22.5 cm	0-22.5 cm
r Dhamical properties		
I. Physical properties (a) Particle size distribution (g kg ⁻¹)		200
A /1	398	300
Clay	160	200
Silt when release to the same and the same a	220	165
Fine sand	209	327
Coarse sand	c1	Scl
Texture	1.08	1.25
(b) Bulk density (Mg m ⁻³)	2.5	2.28
(c) Particle density (Mg m ⁻³)	56.6	45.1
(d) Pore space (%)	10.0	7.21
(e) Pore space volume (ml)	22.4	20.0
(f) Field capacity (%)		17.0
(g) Wilting point (%)	19.0	
II. Physico-chemical properties	Single Control of the	4.41
(a) Soil reaction	4.75	0.31
(b) Electrical conductivity (dSm ⁻¹)	0.51	0.31
III. Chemical properties	at mental transfer from the Land	24.13
(a) Organic carbon (g kg ⁻¹)	30.8	2.10
(b) Total nitrogen (g kg ⁻¹)	3.20	28.0
(c) Ammoniacal nitrogen (mg kg ⁻¹)	56.0	28.0
(d) Nitrate nitrogen (mg kg ⁻¹)	42.0	
(e) Ammonium fixing capacity (Cmol kg ⁻¹)	2.5	2.0

There were eight batches of flasks to facilitate analysis at the interval of 1, 2, 3, 4, 5, 30, 60 and 90 days after incubation. Each batch consisted of 20 flasks for both the soils. At the end of each incubation period, the soil in each flask was mixed well and analysed for

pH, EC, urea N, NH₄-N, NO₃-N, KMnO₄-N and total nitrogen content by standard methods (Table 2) in moist condition and the results were given on oven dry basis. The data were analyzed statistically by FCRD (Gomez and Gomez, 1984).

Table 2. Details of analytical methods employed in the soil analysis

Determination	Methodology	References Piper (1966) Piper (1966) Richards (1965)	
A. Physical properties 1. Particle size analysis 2. Bulk density 3. Moisture retention at 1/3 bar and 15	International pipette method Keen-Raczkowski brass cup method Pressure plate apparatus method		
bar pressure B. Physico-chemical properties 1. Soil reaction 2. Electrical conductivity	pH meter with glass electrode (1: 2.5 soil: water suspension) 'Elico' conductivity bridge	Jackson (1973) Jackson (1973)	
C. Chemical properties 1. Total nitrogen 2. Urea nitrogen 3. Ammoniacal and nitrate nitrogen	(1 : 2.5 soil : water suspension) MacroKjeldahl method Colorimetric method Steam distillation method	Piper (1966) Douglas and Bremner (1970) Bremner and Keeney (1966)	

Measurement of Volatilization Loss of Nitrogen

In each flask, volatilized ammonia was trapped in vials containing 5 ml of 0.5 M $\rm H_2SO_4$ with methyl red indicator. The acid used for absorbing the ammonia was changed every day and it was titrated against 1N KOH to quantify

the ammonia losses through volatilization.

RESULTS AND DISCUSSION

This experiment was conducted in two soil textures viz., clay loam and sandy clay loam at 1/3 bar pressure, since the field capacity condition prevails most of the time in tea fields

Lakh hydr unde soil:

Urea

occu loan vari incr whe clay (Ku 4.30 Nw day clay det inc hyc ear in rep wit

kg⁻¹)

tot

ex

of

tha

of

Ifrea (mg b

F

rai soil

0

N and thods esults were z and

))

am city, due to high slope (48%). Balwinder Singh and Lakhwinder Singh (1999) observed that urea hydrolysis and mineralization rate was rapid under field capacity condition than any other soil: water ratio.

Urea Hydrolysis

In clay loam soil, urea hydrolysis occurred upto five days, whereas in sandy clay loam soil it occurred upto four days. This variation was due to the soil pH which increased from 4.70 to 5.24 in clay loam soil, whereas it increased from 5.52 to 6.38 in sandy clay loam soil upto five days of incubation (Kumar and Wagnet, 1984). In clay loam soil, 4.30, 3.27, 2.07, 0.09 and 0.02% of added urea N was recovered on 1st, 2nd, 3rd, 4th and 5th day of incubation, respectively. But in sandy clay loam soil, 4.93, 2.91, 0.62 and 0.01% was detected on 1st, 2nd, 3rd and 4th day of incubation, respectively (Fig. 1). Thus, urea hydrolysis was high in clay loam soil during early period, which might be due to increase in urease activity. This enzyme activity was reported to be highly and positively correlated with organic carbon (Ramesh et al., 2003) and total nitrogen (Sahrawat, 1980). In this experiment, organic carbon and total nitrogen of clay loam soil was 21.7 and 34.4% higher than sandy clay loam soil, respectively. This rapid hydrolysis rate agrees with the findings of Gupta et al. (1999).

Fig. 1. Changes in urea concentration during incubation.

Volatilization Loss of Nitrogen

In the present experiment, no volatilization loss was observed after urea

application. It might be due to insufficient increase in pH value by the treatments. The increase was 1.02 units (5.34-4.32) and 1.89 units (6.6-4.71) for clay loam and sandy clay loam soil, respectively (Fig. 2). According to Tisdale *et al.* (1995), the required pH value for volatilization loss was more than 7.5.

Fig. 2. Changes in pH values of soil during incubation period.

NH₄-N Content of Soil during Incubation

Increase in the levels of nitrogen application increased the NH₄-N content in the soil (Table 3) due to transformation of urea nitrogen into NH₄-N. As the period of incubation was prolonged, the content of NH₄-N decreased in the soil (Fig. 3) due to the following reasons: (i) being an intermediate product of mineralization process, NH₄-N might have been preferentially consumed by microorganisms (Patrick *et al.*, 1985) which resulted in its decline after 5th day of incubation, (ii) increase in fixed NH₄⁺ and (iii) the decrease was due to the concomitant increase in the NO₃-N content at 30th day of incubation (Suraj Bhan *et al.*, 1990) (Fig. 4).

Table 3. Nitrogen content (mg kg⁻¹) at different nitrogen levels and soil textures during incubation

N levels	NH ₄ -N		NO ₃ -N	
	cl	scl	cl	scl
No	62.80	38.41	33.42	26.64
N,	156.61	143.78	56.74	41.64
N ₂	260.33	232.50	76.92	56.35
N ₃	336.63	286.65	93.36	68.17
N ₄	390.8	338.15	117.14	97.48
S. Ed	3.96	3.41	1.15	0.62
C. D. (P=0.05)	8.01	6.91	2.33	1.25

cl : clay loam soil; scl : sandy clay loam soil.

Fig. 3. Changes in NH₄-N content of soil during incubation.

Fig. 4. Changes in NO₃-N content of soil during incubation.

NO₃-N Content of Soil during Incubation

Increase in the rate of nitrogen addition recorded increased amount of NO₃-N content in the soil during incubation periods (Table 3). This could be due to higher substrate (NH₄-N) content with increased rates of nitrogen application that resulted in more NO₃-N during nitrification (Siddaramappa and Seshagiri Rao, 1971).

Nitrogen mineralization and subsequent nitrification proceeded rapidly during the first five days of incubation. It is attributed to mineralization of organic amide form of nitrogen by enhanced bacterial activity at 27±1°C (Rao and Batra, 1983) and priming effect. However, nitrification attained the peak at 30th day of incubation because of active nitrification of NH₄-N (Dey and Jain, 1997) that was confirmed by the decrease in the content of NH₄-N on 30th day of incubation. As the period of incubation prolonged, this NO₃-N content decreased which might be due to

immobilization (Nishio et al., 2001) or retardation of microbial activity and denitrification (Yadvinder Singh et al., 2001) (Fig. 4).

In clay loam soil, NO₃-N content increased remarkably at 30th day of incubation, when compared to sandy clay loam soil (Fig. 4). It could be attributed to higher organic carbon and total nitrogen content of initial clay loam soil than sandy clay loam soil.

Net nitrate accumulation was high in clay loam soil (160.8 mg kg⁻¹) when compared to sandy clay loam soil (109.4 mg kg⁻¹). It might have resulted from the high amount of initial NH₄-N content (Campbell *et al.*, 1993).

CONCLUSION

 Urea hydrolysis was high in clay loam soil during early period of incubation. This trend was reversed at the later stages of the incubation experiment.

 In both the clay loam and sandy clay loam soils, no volatilization loss was observed due to urea application.

Increasing levels of nitrogen application increased the NH₄-N and NO₃-N content of the soil irrespective of the soil texture. The NH₄-N content increased upto 5th day of incubations, whereas NO₃-N content of the soil increased upto 30th day.

REFERENCES

Balwinder Singh and Lakhwinder Singh (1999).

Kinetics of urea hydrolysis under different moisture regimes in Aquic Ustochrepts of Punjab. J. Indian Soc. Soil Sci. 47: 357-60.

Bremner, J. M. and Keeney, D. R. (1966).

Determination of isotope ratio analysis of different forms of nitrogen in soils. 3.

Exchangeable ammonium, nitrate and nitrite by extraction distillation methods.

Soil Sci. Soc. Am. Proc. 30: 577-82.

Campbell, C. A., Ellert, B. H. and Jame, Y. W. (1993). Nitrification potential of soils. In: Soil Sampling and Methods of Analysis, M. R. Carter, Lewis Ann, Arbor MI. (eds.). pp. 341-50.

Dey, P. and Jain, J. M. (1997). Mineralization and nitrification in soil amended with urea and enriched green manures in submerged soil system. *J. Indian Soc. Soil Sci.* **45**: 249-55.

Douglas, L. A. and Bremner, J. M. (1970). Extraction

I

N

I

1

2001) or rity and al., 2001)

content day of clay loam to higher ontent of cam soil. high in compared It might of initial

in clay riod of eversed abation

dy clay ss was ion. rogen ·N and

·N and pective NH₄-N lay of ontent day.

999). ferent ots, of 7-60. 366). sis of s. 3. and lods.

. W. In: , M. pp.

soil 55. and colorimetric determination of urea in soils. Soil Sci. Soc. Am. Proc. 34: 859-61.

Gomez, A. K. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. John Wiley and Sons, New York.

Gupta, S. K., Chaudhary, M. L. and Das, S. N. (1999). Urea transformation: A comparative study in salt-affected soils. J. Indian Soc. Soil Sci. 47: 546-48.

Jackson, M. L. (1973). Soil Chemical Analysis.
Prentice Hall of India Private Limited, New Delhi.

Kumar, V. and Wagnet, R. J. (1984). Urease activity and kinetics of urea transformation. *Soil Sci.* **137**: 263-69.

Nishio, T., Komada, M., Arao, T. and Kanamori, T. (2001). Simultaneous determination of transformation rates of nitrate in soil. JARO 35: 11-17.

Patrick, W. H., Mikkelsen, D. S. and Weels, B. R. (1985). Fertilizer Technology and Use. Soil Sci. Soc. Am., Madison, Wisconsin, U. S. A.

Piper, C. S. (1966). Soil and Plant Analysis. Hans Publishers, Bombay.

Ramesh, P. R., Kotur, S. C. and Sudhir, K. (2003).

Relationship of urease and dehydrogenase with physico-chemical properties of some coffee-growing soils of Karnataka. *J. Indian*

Soc. Soil Sci. 51: 78-80.

Rao, D. L. N. and Batra, L. (1983). Ammonia volatilization from applied nitrogen in alkali soils. Plant and Soil 70: 219-28.

Richards, L. A. (1965). Diagnosis and Improvement of Saline and Alkali Soils. Agric. Hand Book No. 60, USDA.

Sahrawat, K. L. (1980). Urease activity in tropical soils and flood water. *Soil Biol. and Biochem.* **12**: 195-96.

Siddaramappa, P. and Seshagiri Rao, T. (1971).
Studies on mineralization of urea in some soils of Mysore state. *Mysore J. agric. Sci.* **5**: 150-57.

Suraj Bhan, Singh, Y. P. and Singh, J. P. (1990). Effect of levels and types of salinity on the transformation of nitrogen applied through urea and ammonium sulphate. *J. Indian Soc. Soil Sci.* **38**: 180-82.

Tisdale, S. L., Nelson, W. L., Beaton, J. D. and Havlin, J. L. (1995). Soil Fertility and Fertilizers. Prentice Hall of India, New Delhi.

Yadvinder Singh, Grewal, J. P. S., Bijay Singh and Khind, C. S. (2001). Effect of soil moisture on nitrification in a sandy loam soil. *J. Indian Soc. Soil Sci.* **49**: 342-44.