Development and characterization of microsatellite markers from enriched genomic libraries in safflower (Carthamus tinctorius L.)

Usha Kiran Betha*, Mobeen Shaik, Kadirvel P., Mukta N. and Senthilvel S.
Crop Improvement Section, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500 030, Telangana, INDIA
*ushakiran.b@icar.gov.in

Abstract

Microsatellite markers are the ideal genetic markers for crop improvement. In this study, we developed and characterized a set of 200 genomic SSR markers in safflower, an important oilseed crop of the world. A microsatellite enriched genomic library was constructed from an Indian cultivar, A-1. A total of 750 SSR-positive clones was generated of which 617 were identified as unique sequences and sequencing of them revealed 238 SSR motifs. The SSRs are validated in a panel of 24 genotypes and found 42 polymorphic markers. The number of alleles ranged from 2 to 4 with an average of 2.7 with polymorphic markers.

The polymorphic information content (PIC) value ranged from 0.08 to 0.61 with an average of 0.33 . A dendrogram based on the polymorphic SSR loci clearly indicated the genetic relationships among genotypes. The reported SSR markers would be useful for characterization of genetic diversity and trait mapping purposes in safflower.

Keywords: Genetic diversity, genomic library, molecular markers, oilseed crop, polymorphism.

Introduction

Safflower (Carthamus tinctorius L.) is an important annual oilseed crop of the family Asteraceae ${ }^{1}$. It is one of the oldest crop grown in India primarily for high quality edible oil rich in polyunsaturated fatty acid (linoleic acid, $\sim 75 \%$), which is considered healthy for heart ${ }^{2,3}$. It is also a multi-purpose crop with the potential for production of bird seed, extraction of natural dye (carthamin) from the flowers and manufacturing of pharmaceutical products ${ }^{4}$. Characterization of genetic diversity is critical for improvement of safflower crop for higher productivity and quality.

Crop genetic diversity can be determined by agromorphological, biochemical and DNA marker analysis. However, agro-morphological traits and biochemical markers have drawbacks which are limited in number and influenced by the environment ${ }^{5}$. The DNA markers are highly advantageous as they are unlimited in number, highly reproducible, highly polymorphic and environmentally neutral. Various DNA markers such as random amplified polymorphic DNA (RAPD) ${ }^{6-9}$, inter-simple sequence repeats ISSR $^{6,10-15}$, amplified fragment length polymorphism
(AFLP) ${ }^{6,16,17}$, sequence related amplified polymorphism (SRAP) ${ }^{18}$ have been used in safflower mostly for understanding genetic diversity and species relationships. Simple sequence repeats (SSRs) in particular are considered perfect genetic markers for crop improvement due to their availability, locus specificity, co-dominant and multi-allelic nature, high polymorphism and reproducibility ${ }^{19}$.

Previously, significant efforts have been made to develop SSR markers from expressed sequence tag (EST) and genome sequences in safflower ${ }^{20-25}$, but most of them have not yet been genetically mapped. Furthermore, in various studies, SSR markers showed very low level of polymorphism in cultivated germplasm ${ }^{22-24,26,27}$ and wild species 21,28,29, which is a concern for development of high density SSR linkage map in safflower. However, availability of greater number of SSRs would enhance the chances of finding more polymorphic markers for linkage map construction.

In this study, we isolated and characterized new 200 microsatellite markers in safflower through a microsatellite enriched genomic library approach, which would enhance the SSR marker resources and facilitate trait mapping efforts in safflower.

Material and Methods

Plant materials and genomic DNA isolation: Genomic DNA was extracted from 150mg of young leaf tissues using a modified CTAB method with little modifications ${ }^{30}$. DNA from the cultivar, Annigeri-1 (A-1) was used for microsatellite enriched genomic library construction. A panel of 24 genotypes was used for microsatellite genotyping. The genotypes represented trait specific parental lines that are used for trait mapping purposes at ICAR-Indian Institute Oilseeds Research, Hyderabad, India (Table 1).

SSR-enriched library construction: The modified biotinstreptavidin capture method was used for constructing microsatellite-enriched genomic library ${ }^{31}$. Genomic DNA (5 $\mu \mathrm{g}$) was digested by blunt end-generating restriction endonucleases RsaI and XmnI [New England Biolabs (NEB), USA]. The DNA digested products were then separated on a 1.5% TAE agarose gel and fragments of size from 300-1000 bp were removed from the gel and purified with QIA quick purification Kit (Qiagen, USA). After purification, double stranded super SNX linkers were ligated to the blunt end of digested DNA using 50 ng linker $/ \mathrm{\mu g}$ of
genomic DNA using DNA ligase (NEB, USA) overnight at $14^{\circ} \mathrm{C}$.

Linker ligation to the digested DNA fragments was confirmed through PCR using super SNX forward primer at $55^{\circ} \mathrm{C}$ annealing temperature. The confirmed constructs are heat denatured and hybridized to biotinylated oligonucleotides. The hybridizations were carried out overnight at $60^{\circ} \mathrm{C}$ using $75 \mu \mathrm{l}$ of $6 \times$ SSC and 150 nM of each biotinylated repeat oligos $\mathrm{CT}, \mathrm{GA}, \mathrm{CA}$, afterward bound to streptavidin - coated magnetic beads. In order to capture the target sequences, the beads were incubated at room temperature for 15 min . The unbound genomic DNA was consequently removed through a sequence of washes; twice in $6 \times \operatorname{SSC} ; 0.1 \% \operatorname{SDS}\left(\operatorname{atv} 25^{\circ} \mathrm{C}\right)$, twice in $1 \times \operatorname{SSC}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ and finally twice in $6 \times \mathrm{SSC}$ at $60^{\circ} \mathrm{C}$ for 5 mins each.

The DNA attached to the magnetic beads was eluted in TE buffer preheated to $95^{\circ} \mathrm{C}$ as single stranded fragments. The fragments were amplified by PCR using super SNX24 forward as the primer and cloned in the plasmid vector pGEM-TEasy Vector (Promega Corp., USA) by incubating overnight at $14^{\circ} \mathrm{C}$. The vector transformed to E. coli DH 10 B cells (Invitrogen, USA) by heat shock method. The cloned fragments from the libraries were evaluated by colony PCR using M13 forward and reverse primers.

Sequencing of clones, identification of SSRs and primer designing: The positive clones were picked and grown overnight in liquid ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) LB media. Plasmid DNA was extracted using Micro Plasmid Prep Kit (Amersham Biosciences, USA). DNA inserts was sequenced using M13 Primer following the di-deoxynucleotide chain termination method on ABI3700 sequencer. Clone sequences were extracted from the chromatogram using chromos. The sequencing data were analyzed using the ClustalW package at the European Bioinformatics Institute (EBI: http://www.ebi.ac.uk/).

The unique sequences were compared against the GeneBank database (National Center for Biotechnology Information, NCBI) using the BLASTN search program (http://www.ncbi.nlm.nih.goc/blast). MISA and primer3 were used for identification of SSR motifs and designation of primer pairs flanking SSR regions ${ }^{32}$.

Amplification and visualization of microsatellite loci in the genotype panel: Microsatellites amplification was performed in $10 \mu \mathrm{l}$ reaction mix containing 0.4 pM of each primer, 0.1 U TaqDNA polymerase (Genei, India), 0.2 mM of each dNTP (Genei, India), 1% reaction buffer and 10 ng of template DNA using a thermocycler with the following conditions: $94^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 35$ cycles of $94{ }^{\circ} \mathrm{C}$ for 30 sec , annealing temperature $\left(55 / 59{ }^{\circ} \mathrm{C}\right)$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 30 sec and final extension of 7 min at $72^{\circ} \mathrm{C}$. Each primer pair was initially screened for product polymorphism and the annealing temperature was later optimized to produce clear and robust amplification. The amplified fragments were
resolved in non-denaturing 6% polyacrylamide gels with the silver staining procedure ${ }^{33}$ and the size of the fragments was predicted by comparison to a standard marker (100bp ladder).

Statistical analysis: To evaluate the SSR allelic variation in the genotype panel, we used the following measures: number of alleles $\left(\mathrm{N}_{\mathrm{a}}\right)$ per locus, maximum allele frequency $\left(\mathrm{M}_{\mathrm{af}}\right)$, observed heterozygosity $\left(\mathrm{H}_{0}\right)$, expected heterozygosity or gene diversity $\left(\mathrm{H}_{\mathrm{e}}\right)$ and polymorphism information content (PIC) using software POWERMARKER version $3.25{ }^{34}$. The SSR allelic data were used for computing the interindividual genetic dissimilarity based on simple matching coefficient by using DARwin 6.0.018 ${ }^{35}$. The neighbourjoining (NJ) tree based dendrogram used dissimilarity matrix to depict genetic relationships among genotypes.

Results and Discussion

SSR-enriched library: The two blunt end restriction enzymes digested the genomic DNA into numerous fragments of sizes less than 3.0 kb observed as smeared banding pattern (Fig. 1). This genomic library was enriched for CT, GA and CA SSR repeat motifs. The PCR positive bands indicated the selective amplification of DNA fragments containing CT, GA and CA repeats. Further, the amplified DNA fragments were used to construct three clone libraries. Numerous colonies were obtained for each library.

A total of 750 SSR positive clones were identified from three libraries by colony PCR using M13 primers which showed that the cloned fragments were in the size range of 300 to 1000 bp (Fig. 2). Among these, 617 (82.2\%) clones had unique sequences, which were analyzed with MISA and it was found that 238 (38.4%) of them were found to have one or more SSRs. The remaining 133 (17.7%) clones had redundant sequences which were discarded (Table 2).

The sequences obtained in this study have been deposited in the GeneBank (NCBI) viz. accession numbers KJ586129 to KJ586228 and KX914750 to KX914860. Analysis of the sequence information of these clones indicated the insert size in the clones range of 84 bp to 990 bp with an average size of 316 bp . Majority of the clones (52.6%) contained the insert of medium size ($200 \mathrm{bp}-400 \mathrm{bp}$) while 16.9% clones contained small inserts ($50 \mathrm{bp}-200 \mathrm{bp}$) and 30.5% clones contained large inserts ($>400 \mathrm{bp}$). Similar to the results obtained in this study, Hamdan et al ${ }^{22}$ reported that 35% of the colonies were found to contain SSRs in safflower.

The efficiency of the SSR enrichment procedure achieved in this study was comparable with other SSR isolation studies in crops, for instance in groundnut (10% to $30 \%)^{36-38}$. The SSR enrichment rate obtained in this study is higher because frequency of SSRs in the non-enriched genomic DNA libraries had been very low; for instance, 0.1% in Brassica, 0.1% in rye and 0.4% in Paspalum ${ }^{39-41}$. However, more efficient SSR enrichment has been obtained in crops namely
groundnut $(68 \%)^{42}$, wheat $(71 \%)^{43}$, pomegranate $(74.4 \%)^{44}$, coconut $(75 \%)^{45}$ and turmeric $(84 \%)^{46}$.

Definitely, the factors like restriction enzyme used for library construction and the SSR motifs used for enrichment etc. play a role in efficiency of SSR enrichment. The procedure used in the current study seems to be efficient SSR enrichment for isolation in safflower. The redundancy level of 21% observed in this study is substantially lower compared to the genomic SSR enrichment library study in safflower by Hamdan et al ${ }^{22}$ who reported 84% redundancy. Comparable rate of redundant SSR-containing clones has been reported in other plant species, for example, onion $(24.3 \%)^{47}$, groundnut $(26 \%)^{42}$, pomegranate $(9.3 \%)^{44}$, olive tree $(16.6 \%)^{48}$ and castor $(19.4 \%)^{49}$.

Occurrence and features of SSRs: Sequence analysis of clones showed the presence of one or more SSRs in 238 (38.4%) clones. According to definition of SSRs by Weber ${ }^{50}$, in the present study, 79.5% of SSRs were perfect, 1.5% imperfect and 19% were compound. Similar distribution of SSR classes was observed in different SSR isolation studies in safflower ${ }^{21-24}$ and other crops like pomegranate, bittergourd, Morus sp., pumpkin, sugarcane, wheat and pea ${ }^{44,51-56}$. The 'perfect' type of repeat regions is more common in plant genome and has more mutation rates, attribute to increase in the mutation and evolutionary rates ${ }^{37,57,58}$. Therefore, the SSR loci containing perfect repeats are more useful for diversity analysis ${ }^{51}$. The compound repeat motifs are rare in plant genomes but they seem to exhibit high polymorphism, which is more desirable for genetic diversity analysis and trait mapping ${ }^{42,50,59,60}$.

In this study, dinucleotide repeat motifs were predominant (in 152 clones; 63.5%) followed by tri-nucleotide repeats (in 76 clones; 31.7%) which is in accordance with other studies in safflower ${ }^{22,}{ }^{24}$. It has been observed that dinucleotide repeat motifs were more frequent in genomic SSRs, but trinucleotide motifs were more frequent in EST-SSRs ${ }^{61,62}$. In safflower, Chapman et al^{20} and Mayerhofer et al ${ }^{21}$ reported higher tri-nucleotides repeat followed by di- and tetra-nucleotide-repeats through EST data mining.

However, Yamini et al ${ }^{23}$ reported higher dinucleotide than trinucleotide repeat motifs through EST data mining. The presence of more dinucleotide repeats in safflower is in accordance with previous information of microsatellites in other crops such as castor ${ }^{49}$, rice ${ }^{63}$, wheat ${ }^{64}$ and maize ${ }^{65}$. Among the different types of SSRs, di- nucleotide appears to be common characteristic of plant genomes on a database search ${ }^{66}$.

Higher occurrence of dinucleotide motifs ${ }^{65,67,68}$ coupled with higher levels of polymorphism has been reported in plants ${ }^{69,70}$. Among the repeat motifs, the GA/TC repeat motif was the most frequent contributing of 33.8% among all repeat motifs followed by CA/TG repeat at 29.2% and AG/CT (22.1\%).

However, inference on the predominance of any microsatellite motif in the safflower genome from the results of this research needs to be done cautiously owing to the high level of redundancy introduced by enrichment of the library. In plants, most repeated dinucleotide motif differs between studies and species and thus could be due to variation of genome structure ${ }^{54}$. The previous results showed (AT) n as the most frequently occurring dinucleotide repeat motifs ${ }^{71,72}$ in plant genomes. However, other studies have suggested that the (CT) n and/or (TG) $n^{66,73-75}$ motifs may also be highly prevalent. Lagercrantz et al ${ }^{70}$ demonstrated that single strand of (AT)/(TA) and (CG)/(GC) repeated units more easily makes the self-complementary structure than the other kinds of repeat units of DNA sequences.

Therefore, the observed low SSR frequency of (AT)/(TA) and $(\mathrm{CG}) /(\mathrm{GC})$ in our study may be the result of the selfcomplementary nature of these probes. Abundance of CA/TG, GA/TC and AG/CT repeat motifs in the present study is in agreement with earlier reports on development of SSRs in safflower ${ }^{22,24}$.These results are also consistent with the frequency of di-nucleotides reported in rice ${ }^{63}$, maize ${ }^{65}$, wheat ${ }^{64,76}$, groundnut ${ }^{42}$, barley ${ }^{77}$, coffee ${ }^{78}$, castor ${ }^{49}$ and sugarcane ${ }^{54}$. The overall repeat motif number ranged from 4 to 32 .

Primer design and SSR polymorphism: The sequences with SSRs were used for designing of primers following the standard criteria: primer length $18-25 \mathrm{bp}$; $\mathrm{Tm} 50-60^{\circ} \mathrm{C}$; GC content 40-60\%; max Tm difference between forward and reverse primer $1.5^{\circ} \mathrm{C}$ and primer-pairs were designed for SSRs from 200 clone sequences. For 38 sequences, the primer designing could not be possible as the SSR motifs are located at start or end of the fragments. The proportion of primers designed to the number of sequenced clones (26.6%) is higher than some studies in wheat $(21 \%)^{73}$, groundnut $(21.6 \%)^{52}$, pomegranate $(11.3 \%)^{44}$ and lower than groundnut $(43.7 \%)^{66}$, bitter gourd $(32.5 \%)^{51}$ and sugarcane ($\left.27 \%\right)^{54}$.

Sequence of some clones was not suitable for primer design because of short or missing flanking regions. This may be attributed to the size range of insert, the restriction enzyme used for construction of library and the method used for SSR enrichment etc. ${ }^{19}$

Developed SSR primer-pairs were tested on two genotypes i.e. A1 and Bhima for amplification. Out of 200, only 164 (82.2%) primer-pairs yielded scorable amplicon in the genotypes examined which are higher than the other safflower studies such as Chapman et al ${ }^{20}$ (56.3%), Lee et $\mathrm{al}^{24}(59.3 \%)$ and Yamini et al ${ }^{23}$ (65.5%). In order to evaluate the amplification and polymorphism percentage of developed SSR primer-pairs (200) in safflower genotypes, they were tested in a panel of 24 genotypes (Supplementary Table 1). Only 42 (25.6%) primer-pairs out of 164 detected polymorphism in the genotype panel (Table 3, Fig. 3). Compared to other studies on safflower, in the present study the polymorphism was higher. For example, Lee et al ${ }^{24}$
reported 10% polymorphism with 100 diverse accessions of cultivated species.

In contrast, Chapmanet al^{20} found that 89.4% of their ESTSSR safflower markers were polymorphic across a diverse panel of 24 safflower lines composed of three species C. tinctorius, C. oxyacanthus, C. palestinus and Hamdan et al ${ }^{22}$ observed 72% polymorphism with 10 safflower lines of C.tinctorius. The number of polymorphic SSRs from enriched libraries of other crops was observed low as 11.8% in castor ${ }^{49}, 12.5 \%$ in sugarcane ${ }^{54}, 20 \%$ in bitter gourd ${ }^{51}$, 15% grape vine ${ }^{79}$, 14% sorghum $^{80}, 23 \%$ wheat 64,81 and higher in 44.2% in groundnut ${ }^{42}, 44 \%$ in pomegranate ${ }^{44}, 43 \%$ in Brassica species ${ }^{82}$. The previous studies indicated that percentage of polymorphism increases with repeat length ${ }^{37,83}$.

The locus mCtDOR38 with (TG) 13 repeat motif had a high PIC value of 0.61 while mCtDOR30 with higher (CA) 32 repeat motifs had PIC value of 0.32 . Even the markers mCtDOR20 (GA17), mCtDOR43 (TC10), mCtDOR41 (AG8-AG13), mCtDOR (AC11) were equally capable of detecting polymorphism in safflower lines revealing that SSR length is not necessarily a benchmark for detecting polymorphism ${ }^{84}$. In some reports, no relationship or weak correlation was observed between SSR polymorphism and repeat unit length ${ }^{85,86}$. With the genotypes used in the present study, the numbers of SSR alleles ranged from 2 to 4 with an average of 2.7 per locus. Majority of primer-pairs produced only two alleles. The major allele frequency ranged from $0.39-1.00$ with an average of 0.73 . The PIC values of SSR primer-pairs ranged from $0.00-0.61$ with an average of 0.32 .

Table 1
Details of the safflower genotype panel used for characterization of SSR markers

Genotype	Source	Characteristics
A-1	India	Variety spiny high yielding resistant to wilt and aphid high linoleic acid
Bhima	India	Variety spiny high yielding high linoleic acid content
PBNS-12	India	Variety high yielding spiny tolerant to wilt and aphid high linoleic acid
NARI-57	India	Variety spiny high oil high linoleic acid
CO-1	India	Variety non-spiny susceptible to aphid
GMU-472-1	India	Sold capitula with high seed number
GMU-184	India	High oil thin hull
EC-523374-p1-2-p8	India[Selection from breeding line(USA)]	
EC-542438-1-1-p2-4-p6	India [Selection from breeding line(USA)]	Bold capitula thin hull type
EC-542438-1-1-p2-7-p5	India [Selection from breeding line(USA)]	Bold capitula
EC-523368-2	India [Selection from breeding line(USA)]	Sparsely spiny resistant to aphid
EC-755659-1	Mexico [Selection from Mexican variety Ciano-OL]	Spiny high linoleic acid
EC-755660 (S-334)	Mexico	Variety spinyhigh oil high oleic acid
EC-755664 (CW-99)	Mexico	Variety spiny high oil high oleic acid
EC-755673-1	Mexico [Selection from Mexican varietyHumaya-65]	Variety high oil high oleic acid
EC-755675-1	Mexico [Selection from Mexican variety Aceitera]	Variety spiny high oil high oleic acid
EC-755688 (Ciano-Lin)	Mexico	Variety spiny high oil high linoleic acid
EC-736515 (Montola-2000)	USA	Variety spinyhigh oleic acid
EC-736516 (Centennial)	USA	Variety spiny high oil high oleic acid
EC-736487	USA	Breeding line spiny high oil
EC-736498	USA	Breeeding line spiny high oil
EC-736499	USA	Breeding line spiny high oil
EC-736501	USA	Seed

These results showed that the allelic diversity in the safflower lines was low. ${ }^{22}$ In safflower, similar results were reported by Hamdan et $\mathrm{al}^{22}\left(\mathrm{~N}_{\mathrm{A}}=3.2, \mathrm{PIC}=0.55\right)$, Barati and Arzani ${ }^{28} \quad\left(\mathrm{~N}_{\mathrm{A}}=3.43, \quad \mathrm{PIC}=0.32\right)$, Lee et $\mathrm{al}^{24} \quad\left(\mathrm{~N}_{\mathrm{A}}=2.8\right.$, PIC $=0.325$), Derakhshan et al ${ }^{29}\left(\mathrm{~N}_{\mathrm{A}}=3.8, \mathrm{PIC}=0.30\right)$ and Usha Kiran et al ${ }^{27}\left(\mathrm{~N}_{\mathrm{A}}=3.6, \mathrm{PIC}=0.28\right)$.

Genetic relationships revealed by newly developed SSR markers: Overall, pair-wise simple matching coefficients ranged from 0.0 (CW99- S-334 genotypes) to 0.74 (A1EC736487 and NARI-57-EC736487 genotypes) with the average of 0.35 . Cluster analysis based on simple matching coefficient detected three major groups (A, B, C) in the panel of 24 genotypes (Fig. 4).

Cluster A included 13 genotypes with two sub-clusters A1 and A2. The sub-cluster A1 included 7 genotypes; 6 of them were either exotic germplasm accessions from USDA or the selections made from them and CO-1, an Indian non-spiny cultivar. The sub-cluster A2 included exclusively high
yielding varieties and breeding lines of India namely A-1, Bhima, PBNS-12, NARI-57, GMU472-1 and GMU-184. The cluster B included 7genotypes; of which 6 were high oleic types (S-334, CW-99, Oleic Leed, Montola-2000, EC-755673-1, EC-755675-1) and one was thin hull type (EC736487). The cluster C consisted of 4 exotic genotypes from USDA and Mexico. EC-75559-1, EC-736516, EC-755688 and EC-5223368-2.

Genotypes originating from India grouped in first cluster A and the high oleic genotypes of Mexico and USA were distributed in other clusters. The dendrogram gives an understanding of the genetic diversity within the parental lines for constructing the mapping population(s) for mapping the seed traits and oil content and quality in safflower. Evaluation of these markers for assessment of genetic diversity among 24 safflower parental lines of mapping population indicates their potential in genetic analysis of safflower for mapping, variety protection and hybrid seed purity testing.

Figure 1: Dendrogram showing the genetic relationships among 24 safflower genotypes based on similarity coefficients derived from SSR polymorphism data

Table 2
Summary of the microsatellite enriched library constructed for safflower

S. N.	Characteristic	Number
1	Clones sequenced	750
2	Number of redundant clones	133
3	Unique clones	627
4	Number of sequences containing more than one SSR Repeats	238
5	Primers developed	200
6	Primers standardized/lous specific amplification	164
7	Polymorphic markers	42

Table 3
Details of polymorphic safflower microsatellite markers

Locus	Genebank accession	Primers	Repeat motif	Repeat type	Size range (bp) (approx)	$\mathrm{Na}_{\text {a }}$	$\mathbf{M a F}_{\text {ar }}$	$\mathrm{H}_{\text {e }}$	$\begin{gathered} \text { Gene } \\ \text { diversity } \end{gathered}$	PIC
mCtDOR3	KJ586131	F: TCCCAACCCTCTCACTTTTT	TTAA $^{3}-\mathrm{CA}_{13}$	C	110-125	2	070	000	042	033
		R: GTGTCCACACACCGTCAAG								
mCtDOR4	KJ586133	F: GGTCCCAGAAGCAGTAGTGA	AC_{9}	P	220-230	2	096	000	008	008
		R: CCCCGATAGCAACTACAGGT								
mCtDOR8	KJ586138	F: ATCTGAAGAGAGTCTCCGGC	AT_{9}	P	210-230	3	087	000	023	022
		R: CCATTCGACTATATCCGCTT								
mCtDOR20	KJ586151	F: GATGTAACAAGGTGCAGGGA	GA17GTGA $_{5}$	C	250-285	4	061	004	056	050
		R: GATCCAACGCCATTTTCTCT								
mCtDOR23	KJ586155	F: TGGCCTATGTAGTTTTCTCG	TAA ${ }_{6}$	P	230-240	2	091	000	017	015
		R: GACTCAAAGGGTTCGACGAT								
mCtDOR30	KJ586163	F: TGAGAGGGTAGATGCACTGG	CA_{32}	P	180-195	2	067	004	044	034
		R: CTCAGACTGGTTGTTGGTGG								
mCtDOR32	KJ586165	F: ATGTGGGAGGAATCAAGGAG	GAA_{8}-GT9	C	125-140	3	091	000	016	016
		R: CCATCTTCTCACCATGAAAACC								
mCtDOR33	KJ586166	F: CGTTATGGCGGCAGATAAAT	GATT $_{9}$	P	190-200	2	071	000	041	033
		R: TCTAACCACGTTTTCCCACA								
mCtDOR37	KJ586171	F: AGGGATTCAAGTAATAAATC	TC_{10}	P	280-300	2	096	000	008	008
		R: GGCAAGGGTTTACGCCAAAT								
mCtDOR38	KJ586172	F: GGACCTTCAAATATCACGCC	TG_{13}	P	185-200	4	044	004	067	061
		R: GTATTCCACCGATTCCTTCG								
mCtDOR40	KJ586174	F: GGAGCAATAAGCAGGAGGAG	$\mathrm{TC}_{5}-\mathrm{TC}_{7}$	I	350-360	2	092	000	015	014
		R: CGAGATTGATAACGCCTTGA								
mCtDOR41	KJ586175	F: TGAGGACAATTGTGTGCGTA	AG8-AG ${ }_{17}$	C	235-260	3	044	004	062	054
		R: ATAGGACAAAACCAACCCCA								
mCtDOR42	KJ586176	F: GATGCCCTAAAGTGGTCCAT	AG9	P	120-150	4	075	000	041	039
		R: AACAGATGCAAGTTTGGCAG								
mCtDOR43	KJ586177	F: CGCCACTCCTCTTCCTCCGA	TC_{10}	P	190-210	3	039	000	066	059
		R: GAGTAATCTATACCTACACTAC								
mCtDOR45	KJ586179	F: TTTTGCTCATGAACAGCCTC	TG10	P	285-290	2	075	000	038	030
		R: AGGGTATCGATCTTGTTGCC								
mCtDOR52	KJ586186	F: CACACAAACCACATGAAGCA	CA_{8}	P	220-245	4	071	000	047	043
		R: ACATTGAAAGATGTGAGGCG								
mCtDOR53	KJ586187	F: GAGTTGTAATAAGGGATTCAAG	TC_{7}	P	280-300	2	096	000	008	008
		R: GGCAAGGGTTTACGCCAAAT								
mCtDOR54	KJ586188	F: AAAAGGGTAAACGGAAGGGT	AC_{11}	P	270-280	3	055	000	060	053
		R: AAAAGCACCCTAAGGTCGTG								
mCtDOR56	KJ586190	F: ACTCGCTTTCTCTCTCATGT		C	260-280	4	077	004	038	036
		R: TATTCATACCGCTTTTCCCC	AG_{6}							
mCtDOR57	KJ586191	F: AGCTCCATGAAGAAAGGCAT	GA9	P	245-250	2	083	000	028	024
		R: CTCACAACCCAAAGTGGATG								
mCtDOR64	KJ586198	F: ACAAGTTCGATACACACCCG	AG_{5} - $\mathrm{AG}_{6}{ }^{-}$	I	165-170	2	070	000	044	035
		R: GAGGGCGTTAACTCGACG	AG_{9}							
mCtDOR74	KJ586209	F: AACTGCTTCTTACGTTCCTCTG	$\mathrm{TC}_{8}-\mathrm{AC}_{13}$	C	220-240	2	067	000	044	035
		R: ACGAAATGCTTGGAGAACAG								
mCtDOR75	KJ586212	F: TGTGCCTAAAGTTGTCAAAGAC	$\mathrm{CA}_{5}-\mathrm{CT}_{11}$	C	180-210	3	073	000	042	036

Res. J. Biotech

		R: GCAACTGGTGTGCTTTTAGAA								
$\begin{aligned} & \text { mCtDOR10 } \\ & 0 \end{aligned}$	KX914760	F: AAAATGAGAGCAAGGATGAA	TAA_{6}	P	300-320	3	050	002	046	052
		R: GCGTTGTTACCTTTCACAAT								
$\begin{aligned} & \mathrm{mCtDOR} 10 \\ & 1 \end{aligned}$	KX914761	F: CAAATATCCAGTCCAACCAT	AC_{9}	P	290-305	4	065	010	038	040
		R: ATGGGGTTGTTTACAAGTGA								
$\begin{aligned} & \text { mCtDOR11 } \\ & 3 \end{aligned}$	KX914773	F: CTACCCATATGCACCTAAGC	$\mathrm{AAC}_{6}-\mathrm{GCG} 5$	C	120-145	2	085	004	020	024
		R: ATGATCAACAACCTCACCAT								
$\begin{aligned} & \text { mCtDOR11 } \\ & 4 \end{aligned}$	KX914774	F: CCATCATCTTCACCATCTTT	TGA_{6}	P	134-150	2	063	000	050	042
		R: AATTTCTCAAACCCATCTCC								
$\begin{aligned} & \text { mCtDOR12 } \\ & 6 \\ & \hline \end{aligned}$	KX914786	F: GTCTGACTAGGGGTGTGCT	TC9	P	210-225	3	047	000	052	053
		R: CCCTGGCTAGTGAAATACTG								
$\begin{aligned} & \mathrm{mCtDOR} 12 \\ & 8 \end{aligned}$	KX914788	F: GCTACGAGCAGTAAGTCGTT	GT_{10}	P	220-250	3	053	001	047	052
		R: GCTAATTACGGAAGCAGAAA								
$\begin{aligned} & \text { mCtDOR13 } \\ & 6 \end{aligned}$	KX914796	F: AAACCAATTTTGCCATTAAA	CAA_{6}	P	110-135	2	091	000	010	009
		R: TGGTAAGTGTAGTCGGCTTT								
$\begin{aligned} & \text { mCtDOR14 } \\ & 3 \end{aligned}$	KX914803	F: CAAATATCCAGTCCAACCAT	AC 9	P	200-240	2	049	004	052	037
		R: ATGGGGTTGTTTACAAGTGA								
$\begin{aligned} & \text { mCtDOR14 } \\ & 9 \end{aligned}$	KX914809	F: TCGTCAATAAGGTCGAGAGT	CA_{8}	P	220-235	2	070	000	042	033
		R: GCTAAGATGGTGACGTGTCT								
$\begin{aligned} & \text { mCtDOR15 } \\ & 2 \\ & \hline \end{aligned}$	KX914812	F: AAGATGAGGTCAACTCCAAA	TTA_{6}	P	200-220	3	064	010	037	060
		R: ATTTCCAACAACTGCATACC								
$\begin{aligned} & \text { mCtDOR15 } \\ & 7 \end{aligned}$	KX914817	F: GAATTCTGATTGGTGGAAAA	TA 10	P	220-245	3	043	000	046	055
		R: GAAGAAGCATTTGAGACCAG								
$\begin{aligned} & \text { mCtDOR16 } \\ & 1 \end{aligned}$	KX914821	F: GCTTCATATCATCCCCATTA	CAG6	P	220-230	2	024	000	036	021
		R: ACACCCGATAAAAAGTAGCA								
$\begin{aligned} & \text { mCtDOR16 } \\ & 4 \end{aligned}$	KX914824	F: ATGAAACGAACTGATGAAGG	CTG_{6}	P	200-225	2	036	005	045	033
		R: ACCGATGTATGGTCACTAGG								
mCtDOR16	KX914825	F: ATAGCTCCATTCACCATCAC	CAA_{6}	P	190-215	4	029	000	035	027
5		R: ATTTGGCTTATTTCCACTGA								
$\begin{aligned} & \text { mCtDOR17 } \\ & 1 \end{aligned}$	KX914831	F: AATCССТСТТСТСТСАСТСС	TGA_{6}	P	220-240	2	0013	002	027	$\begin{gathered} 001 \\ 3 \end{gathered}$
		R: CCGTCAAAAGACAGAGAAAC								
$\begin{aligned} & \mathrm{mCtDOR} 17 \\ & 8 \end{aligned}$	KX914838	F: AGGAAGATACGATACGACCTC	TCT_{6}	P	220-235	2	04	004	035	046
		R: GAATTAATCACCGATGGAAA								
$\begin{aligned} & \text { mCtDOR18 } \\ & 2 \end{aligned}$	KX914842	F: ATCTCCGATCACACACTTTC	TC_{11}	P	220-230	3	022	002	036	021
		R: GATGGAGTGAGAGAGAGCTG								
$\begin{aligned} & \text { mCtDOR18 } \\ & 4 \end{aligned}$	KX914844	F: GCTACGAGCAGTAAGTCGTT	GT_{10}	P	350-370	3	085	000	020	024
		R: GCTAATTACGGAAGCAGAAA								
mCtDOR19	KX914853	F: AAGAGGGAGAGGGAGGTCAA	TAA_{7}	P	320-345	2	036	000	040	037
3		R: CCTTGCAAGCTCTTGCTTTT								

Supplementary Table 1
Details of 200 safflower microsatellite markers designed in this study

Locus	Genebank accession	Primers	Repeat motif	Repeat type	Size range (bp) (approx.)
mCtDOR1	KJ586129	F: GTCCCGAAAACTAGGACCAA	TC6	P	400
		R: ACCCTTCGCTCAATGAGAA			
mCtDOR2	KJ586130	F: CAGCAGCAGCATCTTCAAA	AG_{5}	P	NA
		R: CGACAATCGGGTTATCAGTG			
mCtDOR3	KJ586131	F: TCCCAACCCTCTCACTTTTT	$\mathrm{TTAA}_{3}-\mathrm{CA}_{13}$	C	110-125
		R: GTGTCCACACACCGTCAAG			
mCtDOR4	KJ586133	F: GGTCCCAGAAGCAGTAGTGA	AC_{9}	P	220-230
		R: CCCCGATAGCAACTACAGGT			
mCtDOR5	KJ586134	F: GTCTGTTGCAAGAAGAGTTGTG	AGA_{8}	P	180
		R: TGCTGGAATTGGTTCTGTCT			
mCtDOR6	KJ586135	F: CTAGCAGAATCCCTTCCCTG	GAA_{13}	P	190
		R: TGCCTCTGTCTGCTCACTTT			
mCtDOR7	KJ586137	F: CCAAGTCCCAACATGCACAA	CA_{7}	P	180
		R: GTTATATCTTGTAGATAGGCAG			
mCtDOR8	KJ586138	F: ATCTGAAGAGAGTCTCCGGC	AT_{9}	P	210-230
		R: CCATTCGACTATATCCGCTT			
mCtDOR9	KJ586139	F: GTTTTTCCCCTAAACCTCCC	CA_{7}	P	130
		R: TGAAAGTGATCAAGGGTCCA			

mCtDOR10	KJ586140	F: CCTTTTTCAAATCCTGCTGC	GAA_{8}	P	140
		R: ACCGAGATCAATGCAGTCAA			
mCtDOR11	KJ586141	F: GACTGTTATTCAAAAGGTCC	AT_{6}	P	260
		R: GCCTCCCGGAATTTGATTGA			
mCtDOR12	KJ586142	F: TCTCTCTCTCTCTTGATTTCCCA	$\mathrm{CT}_{9}-\mathrm{CT}_{7}$	C	280
		R: AAATGGGTTGGAAATCGAAGTTT			
mCtDOR13	KJ586143	F: TCACACTTCTTCTTGCCACA	CTT_{11}	P	150
		R: CTTCCCTGATTCTGAAGAGGA			
mCtDOR14	KJ586144	F: GGCCGATACTCGACTCTAGC	TC_{12}	P	130
		R: GAAGCCTCCATACACATACA			
mCtDOR15	KJ586145	F: AACTCCACCGAAAAATCACC	TG_{16}	P	135
		R: TAGAGCGGCAATTGACTTGA			
mCtDOR16	KJ586147	F: TACAGCACCCACAACGAAAT	CA_{7}	P	NA
		R: TCATTGCGCTCGATCTGTAT			
mCtDOR17	KJ586148	F: TCCAAGACCATGATTTGCAG	AT_{9}	P	NA
		R: CGCACATGTTACCCACAAGT			
mCtDOR18	KJ586149	F: AACTCCACCGAAAAATCACC	$\mathrm{TG}_{6}-\mathrm{TG}_{6}$	C	320
		R: AGGCCTAAGCTTGCAGAATC			
mCtDOR19	KJ586150	F: ATGAGGTTGTCGTTCGGGAT	AC_{7}	P	200
		R: TACATGAAACATGTATAATTC			
mCtDOR20	KJ586151	F: GATGTAACAAGGTGCAGGGA	$\mathrm{GA}_{17} \mathrm{GTGA}_{5}$	C	250-285
		R: GATCCAACGCCATTTTCTCT			
mCtDOR21	KJ586153	F: CCCTCTTTTACCCAGATCCA	$\begin{aligned} & \text { TGA }_{7-} \\ & \text { AAAGAA }_{4} \end{aligned}$	C	215
		R: CAAGAACCAGACCACTTCCC			
mCtDOR22	KJ586154	F: GTTCTCCTTTAAACTTTCACC	$\mathrm{AT}_{5}-\mathrm{GA}_{6}-\mathrm{GA}_{9}$	C	280
		R: TTCACTTGTCTTTACCGCCT			
mCtDOR23	KJ586155	F: TGGCCTATGTAGTTTTCTCG	TAA 6	P	230-240
		R: GACTCAAAGGGTTCGACGAT			
mCtDOR24	KJ586156	F: CTCACGAGATCGATGCCTTA	AG_{5}	P	285
		R: CCAACTTCGTGGGATTTCTT			
mCtDOR25	KJ586157	F: TAGCGGAATGTTCACAAAGC	TG_{8}	P	200
		R: CTATGGGCAACCCAGATACC			
mCtDOR26	KJ586158	F: TCTTGCTATCTGTTTCCGGC	AT_{8}	P	190
		R: CCCTAGATCCAAAACCGAAA			
mCtDOR27	KJ586160	F: TAGAACCCTCTCAGCCCTTC	$\mathrm{TTAA}_{3}-\mathrm{CA}_{10}$	C	265
		R: AGCCCATGTGTTGTGTGTGT			
mCtDOR28	KJ586161	F: AGGGAAGGAATCCTAGGCCC	AAGA_{8}	P	200
		R: GTTGATACATAAAGTTGCCT			
mCtDOR29	KJ586162	F: TACACACACTGAATACACCAAGA	AC_{6}	P	110
		R: TGTAAGTCTGAGTTAGTGTGGAG			
mCtDOR30	KJ586163	F: TGAGAGGGTAGATGCACTGG	CA_{32}	P	180-195
		R: CTCAGACTGGTTGTTGGTGG			
mCtDOR31	KJ586164	F: AAGAGAGATCGCCGGAGTAA	AG_{6}	P	110
		R: AGTTACCTTCCGAGCACGTT			
mCtDOR32	KJ586165	F: ATGTGGGAGGAATCAAGGAG	$\mathrm{GAA}_{8}-\mathrm{GT}_{9}$	C	125-140
		R: CCATCTTCTCACCATGAAAACC			
mCtDOR33	KJ586166	F: CGTTATGGCGGCAGATAAAT	GATT_{9}	P	190-200
		R: TCTAACCACGTTTTCCCACA			
mCtDOR34	KJ586168	F: TTATCATTTCAGGGCGTGTG	TA_{7}	P	400
		R: ACCCATCATCAGAGATGCAA			
mCtDOR35	KJ586169	F: ACATTGAAAGATGTGAGGCG	GA_{7}	P	210
		R: CACACAAACCACATGAAGCA			
mCtDOR36	KJ586170	F: ACCGGTTGATGTGTATCCCT	TC_{15}	P	320
		R: ATCGTTGGAGATGAAGTTGC			
mCtDOR37	KJ586171	F: AGGGATTCAAGTAATAAATC	TC_{10}	P	280-300
		R: GGCAAGGGTTTACGCCAAAT			
mCtDOR38	KJ586172	F: GGACCTTCAAATATCACGCC	TG_{13}	P	185-200
		R: GTATTCCACCGATTCCTTCG			

mCtDOR39	KJ586173	F: CGGCGATCTCTCCTCTTATC	ACT_{5}	P	250
		R: ACAACAACCCAGATGCCATA			
mCtDOR40	KJ586174	F: GGAGCAATAAGCAGGAGGAG	$\mathrm{TC}_{5}-\mathrm{TC}_{7}$	I	350-360
		R: CGAGATTGATAACGCCTTGA			
mCtDOR41	KJ586175	F: TGAGGACAATTGTGTGCGTA	$\mathrm{AG}_{8}-\mathrm{AG}_{17}$	C	235-260
		R: ATAGGACAAAACCAACCCCA			
mCtDOR42	KJ586176	F: GATGCCCTAAAGTGGTCCAT	AG_{9}	P	120-150
		R: AACAGATGCAAGTTTGGCAG			
mCtDOR43	KJ586177	F: CGCCACTCCTCTTCCTCCGA	TC 10	P	190-210
		R: GAGTAATCTATACCTACACTAC			
mCtDOR44	KJ586178	F: TGTGATCTGTTGTAGCGTGG	GA_{8}	P	205
		R: GATCCTGCCGTTTCCTCTAA			
mCtDOR45	KJ586179	F: TTTTGCTCATGAACAGCCTC	TG_{10}	P	285-290
		R: AGGGTATCGATCTTGTTGCC			
mCtDOR46	KJ586180	F: TAAGCCATGGGCTTTTTACC	ATC_{4}	P	290
		R: CTTTCCCAAACACCCAAAGA			
mCtDOR47	KJ586181	F: GATAGAGAATTAACTGGGCTCCC	TA_{5}	P	180
		R: AGTTTTGGAGTCAGAATCCAGT			
mCtDOR48	KJ586182	F: TATACCGACGGTTATGGTGC	GATC_{4}	P	300
		R: TCCAGTCGGTGATACGTAGG			
mCtDOR49	KJ586183	F: CACAAGGTTCCAAGCAAAGA	TGTGT_{3}	P	200
		R: AAACCGTGACAACACTCCAA			
mCtDOR50	KJ586184	F: ACTGACAGTGACCAGACTCG	TTCAT_{3}	P	330
		R: CAATACCTTCAGTGACTTGT			
mCtDOR51	KJ586185	F: AGGAACAAAACCACGAATCC	CA_{9}	P	250
		R: CTTTGTGAGCTCATCTCGGA			
mCtDOR52	KJ586186	F: CACACAAACCACATGAAGCA	CA_{8}	P	220-245
		R: ACATTGAAAGATGTGAGGCG			
mCtDOR53	KJ586187	F: GAGTTGTAATAAGGGATTCAAG	TC_{7}	P	280-300
		R: GGCAAGGGTTTACGCCAAAT			
mCtDOR54	KJ586188	F: AAAAGGGTAAACGGAAGGGT	AC_{11}	P	270-280
		R: AAAAGCACCCTAAGGTCGTG			
mCtDOR55	KJ586189	F: CGTCTTCGATCTTGCATATA	TATT_{3}	P	220
		R: AGGAGGATATGAAGCACTGC			
mCtDOR56	KJ586190	F: ACTCGCTTTCTCTCTCATGT	$\begin{aligned} & \mathrm{GA}_{9}-\mathrm{GA}_{10^{-}} \\ & \mathrm{AG}_{6} \end{aligned}$	C	260-280
		R: TATTCATACCGCTTTTCCCC			
mCtDOR57	KJ586191	F: AGCTCCATGAAGAAAGGCAT	GA_{9}	P	245-250
		R: CTCACAACCCAAAGTGGATG			
mCtDOR58	KJ586192	F: CAAAGTATCGGCTCCAGTCA	AT_{6}	P	NA
		R: CCTTGATTAAAGTCCAAGCG			
mCtDOR59	KJ586193	F: GTTCATGCTGTTATGAATAGG	CT_{13}	P	NA
		R: GTCGATCCGCCCCCCAGGAT			
mCtDOR60	KJ586194	F: ATCCCTGACCTTGCTGATTC	$\begin{array}{\|l\|} \hline \text { GTT }_{4-} \\ \text { TTCTGG }_{3}- \\ \text { GTT }_{6} \\ \hline \end{array}$	C	280
		R: TTCAAACGACAACCAGGGTA			
mCtDOR61	KJ586195	F: AATCTTAATGCAAGGGCACC	TA_{5}	P	230
		R: CCCATCCTATTGCTAGTCCC			
mCtDOR62	KJ586196	F: TGAAATGGAGAAATGAAGTG	GA_{8}	P	90
		R: CCTTGTGGCCAGCCCCTACC			
mCtDOR63	KJ586197	F: CACCTTGAAAAACGTCATGC	TG_{8}	P	220
		R: GCAAGGAAAGCACAAAGACA			
mCtDOR64	KJ586198	F: ACAAGTTCGATACACACCCG	$\mathrm{AG}_{5}-\mathrm{AG}_{6}-\mathrm{AG}_{9}$	I	165-170
		R: GAGGGCGTTAACTCGACG			
mCtDOR65	KJ586199	F: TCACACTCTGAGGTCACACG	CA_{5}	P	140
		R: GCCTAGCCCATTTTTGGATA			
mCtDOR66	KJ586200	F: CAAAGACACTCAAGACGCAC	$\mathrm{CA}_{5}-\mathrm{CT}_{11}$	C	190
		R: CCCTTAGCAACAAGTCTAGCC			
mCtDOR67	KJ586201	F: TCTGATCATGGGAAACAGGA	CAT_{4}	P	250
		R: GATTGGAGCTTGGTGATGTG			

mCtDOR68	KJ586202	F: CATGATGGGCCTTACCTTTT	$\mathrm{GT}_{5}-\mathrm{TG}_{5}$	C	NA
		R: GCGACAAGATCGAGTTGGTA			
mCtDOR69	KJ586203	F: TATGCGTTCACCGCTACTTC	$\mathrm{TC}_{7}-\mathrm{CT}_{5}$	C	180
		R: TCCTTGAGAAGCAAGCAAGA			
mCtDOR70	KJ586204	F: TCTGGTTCTGAAGTGCTTGG	TCC_{5}	P	280
		R: GGTAGTGGTCCTGATTGGCT			
mCtDOR71	KJ586205	F: CTATATGGATTAGGTTTGGTG	TGG_{4}	P	NA
		R: TGACCACGATCCAACCCAAT			
mCtDOR72	KJ586206	F: GAGGTGAGAGGTGTGTGGAA	GT_{5}	P	260
		R: CCCCATGGCTCTCTCTCATA			
mCtDOR73	KJ586207	F: TTGCTTAGTAACGACGCCAC	$\mathrm{AC}_{6}-\mathrm{AC}_{5}$	I	130
		R: CAATGTATGTGACGGTGCAA			
mCtDOR74	KJ586209	F: AACTGCTTCTTACGTTCCTCTG	$\mathrm{TC}_{8}-\mathrm{AC}_{13}$	C	220
		R: ACGAAATGCTTGGAGAACAG			
mCtDOR75	KJ586212	F: TGTGCCTAAAGTTGTCAAAGAC	$\mathrm{CA}_{5}-\mathrm{CT}_{11}$	C	180
		R: GCAACTGGTGTGCTTTTAGAA			
mCtDOR76	KJ586213	F: ATTCTTGACCACCACCCAAT	CA_{7}	P	280
		R: TTCAATGTCCTTGGTGCTGT			
mCtDOR77	KJ586214	F: CCACAAGATAGAAGCACCCA	AC_{10}	P	180
		R: GGGATGCTTTGTGATGCTAA			
mCtDOR78	KJ586216	F: GCTGGTTGACTTGACGAAAA	TA ${ }_{6}$	P	100
		R: CGCCAGGATAAGGTTCAAAT			
mCtDOR79	KJ586217	F: CCACAAGATAGAAGCACCCA	TA_{8}	P	110
		R: TTTCGGTTTCGAGTCAAGTG			
mCtDOR80	KJ586219	F: GCTTCACTCTAAGGCGGAAC	CT_{7}	P	340
		R: CAAATCGAGGCAAACTCTGA			
mCtDOR81	KJ586220	F: СССТTСССТTTATCСTTTCC	CA_{9}	P	230
		R: TGGTTGTGTGGTAGCCTGAT			
mCtDOR82	KJ586221	F: CCTCAAACGGTCAAATGATG	AT_{7}	P	400
		R: TGGCGAACATAATGTCTGGT			
mCtDOR83	KJ586222	F: CCCTGAAAACAGTAATTGGG	CAT_{6}	P	160
		R: AGCTGGATCAACAATCTCCC			
mCtDOR84	KJ586223	F: GAAACCTCATTCAGCCACAA	CTT_{6}	P	NA
		R: GCCCAAACTAATGAAGCCAT			
mCtDOR85	KJ586224	F: GGAGCAAGGAAGATCAGAGG	CTT_{7}	P	260
		R: GGAGCAAGGAAGATCAGAGG			
mCtDOR86	KJ586225	F: GGGTCTAAAGAAGAACAGAGAC	TG_{6}	P	410
		R: TTATAGATCCATCCCCCGAA			
mCtDOR87	KJ586226	F: CGTGCATCCAGTAGGAATTG	GA_{5}	P	430
		R: AAGGACCGCTACTCCAAAGA			
mCtDOR88	KJ586227	F: ACAGCATCGATAAACCCACA	TA_{5}	P	NA
		R: GTCGTAGTCTTTTTGCCCGT			
mCtDOR89	KJ586228	F: ATAACGAAGGGTCTCCAACG	$\mathrm{GT}_{5}-\mathrm{GA}_{5}$	C	300
		R: CCCACTTTTGTGTTGTCTGC			
mCtDOR90	KX914750	F: GTTTGTGGACACCGCGAAG	$\mathrm{TG}_{12}-\mathrm{AT}_{8}$	C	NA
		R: CGTGTTCCAAATCCCAGGTA			
mCtDOR91	KX914751	F: GCTGTCCAATTCTCTCTCAG	CT_{9}	P	NA
		R: GCAGTTTCTTGACCTTCTTG			
mCtDOR92	KX914752	F: CTCCAAGAACCCTACAGGA	TG_{10}	P	NA
		R: TCTGTACCACATGCATAAACA			
mCtDOR93	KX914753	F: AAACGCAACCTTATGAAGAA	$\mathrm{CT}_{8}-\mathrm{AT}_{11}$	C	250
		R: GAACACGGTCATGATAATCC			
mCtDOR94	KX914754	F: TGGAAGTGAAATCTGTAGAGG	GT_{9}	P	NA
		R: CCCATCTTCTTCTTCCTTTT			
mCtDOR95	KX914755	F: CACCGATTTGTGAGTAAAAA	GT_{9}	P	NA
		R: AAGCATTTCATCAAACAGGT			
mCtDOR96	KX914756	F: TTCCTCTGCTTCACTCTCAC	GAA_{7}	P	180
		R: ACAGCAATCAAAGATCCAAC			
mCtDOR97	KX914757	F: CACACGTCCTCTTTTCTTTC	TA_{8} - AC_{11}	C	270

		R: AATTCAGGTTCGAGGTTGTA			
mCtDOR98	KX914758	F: CCATAGGGACCAAAAACATA	CT_{9}	P	NA
		R: TTGAATGTGGAGAAGAAAGC			
mCtDOR99	KX914759	F: ATGGAGGATTGTGGAAGACG	$\mathrm{TG}_{8}-\mathrm{AG}_{9}$	C	240
		R: CAAGATCCACCTCGAACACC			
mCtDOR100	KX914760	F: AAAATGAGAGCAAGGATGAA	TAA ${ }_{6}$	P	300-320
		R: GCGTTGTTACCTTTCACAAT			
mCtDOR101	KX914761	F: CAAATATCCAGTCCAACCAT	AC_{9}	P	290-305
		R: ATGGGGTTGTTTACAAGTGA			
mCtDOR102	KX914762	F: ATGCTCTTCTTCACCATCAT	AAG_{8}	P	250
		R: AGTTTGGATATTGGGGATTT			
mCtDOR103	KX914763	F: AAAACACGATCATCATCTCC	CTT_{7}	P	120
		R: GGTGTCAAGAGGGTACAAGA			
mCtDOR104	KX914764	F: GAAACCACCACCATAACCTA	ACA_{6}	P	260
		R: GTCCTGTTTGTTGAACCACT			
mCtDOR105	KX914765	F: GAATCCCACAAAAATCTTGA	$\begin{aligned} & \mathrm{ACC}_{6} \mathrm{CCA}_{6}- \\ & \mathrm{CCA}_{7} \\ & \hline \end{aligned}$	C	NA
		R: ATATCGTTTTCCTGATGTGG			
mCtDOR106	KX914766	F: TCTTCTTCGTAATCCTCGTC	GA_{9}	P	NA
		R: AAGACGAAGGGTTAAATGGT			
mCtDOR107	KX914767	F: ACGAAGACTTTTGGTGTTGT	TCA_{7}	P	280
		R: ATCAGAAGGTGATGAAGGTG			
mCtDOR108	KX914768	F: CTTGCATGTTATGTGGATTG	TA 10	P	220
		R: GTCCCTTCCTCGACTCTTAG			
mCtDOR109	KX914769	F: TGTTTCAAAATTTTCGGATT	AC_{9}	P	NA
		R: TTTACTCTTGTTATGGGTTCC			
mCtDOR110	KX914770	F: CAGCAGACAATTGAAGTTGA	TA_{11}	P	230
		R: ATAAGAACCAAACCACCAAA			
mCtDOR111	KX914771	F: TCCTTCTTCCTCCTACTTCC	CTC_{7}	P	290
		R: ATCAGGGTCTAGCTCTTCCT			
mCtDOR112	KX914772	F: TTACAAAGGACTCCCAGAAA	CT_{11}	P	300
		R: CAGAAGGATCGATCAAAGAG			
mCtDOR113	KX914773	F: CTACCCATATGCACCTAAGC	$\mathrm{AAC}_{6}-\mathrm{GCG}_{5}$	C	120-145
		R: ATGATCAACAACCTCACCAT			
mCtDOR114	KX914774	F: CCATCATCTTCACCATCTTT	TGA_{6}	P	134-150
		R: AATTTCTCAAACCCATCTCC			
mCtDOR115	KX914775	F: CTATCCCTACACCCCACTAA	$\mathrm{GA}_{8} \mathrm{AC}_{9}$	C	210
		R: AAACTCCTCTAAGGGGGAAT			
mCtDOR116	KX914776	F: GCAGTCTTCTTGTCGGTAAA	TG9	P	220
		R: CTTCGGTTGTTCAGTTGATT			
mCtDOR117	KX914777	F: TGATAAAAGGAAGGTTTCGT	AAT_{7}	P	240
		R: AGAAACAAAGCTGTTTGACA			
mCtDOR118	KX914778	F: GTTGGTTTTGGAGTTGTGTT	TG_{8}	P	140
		R: TTCGGTCTGAATAATCCTGT			
mCtDOR119	KX914779	F: GTTGTGCTTGAACTTTGGTT	TG9	P	195
		R: ATCCACTCATCCCTTTACCT			
mCtDOR120	KX914780	F: GGTGGTGATTTTCAATTGTT	CT_{10}	P	NA
		R: AAGGAAGCTTGTTGAGATGA			
mCtDOR121	KX914781	F: TTTACTGTTGGGCTAGCATC	TCA_{7}	P	310
		R: CCAGATTTCAGGTATGTGGT			
mCtDOR122	KX914782	F: GAAATTCATGAGGTGGAAAA	TGA_{6}	P	320
		R: ATCGATGAAGATGATTGAGG			
mCtDOR123	KX914783	F: TGGTCTTAGAGATTGAAGCTG	$\mathrm{GT}_{9}-\mathrm{AAG}_{7}$	C	280
		R: ACGATAAATTAGCACTGTTGC			
mCtDOR124	KX914784	F: GCTTCCAGTGCTCCTAGAAT	GT_{9}	P	220
		R: TCTTGCAAGTTGGTAGGATT			
mCtDOR125	KX914785	F: CATACAAGCGACTCAAACAA	GGA_{5}	P	NA
		R: GAATGCATGGAAGCTCTATC			
mCtDOR126	KX914786	F: GTCTGACTAGGGGTGTGCT	TC9	P	210-225
		R: CCCTGGCTAGTGAAATACTG			

mCtDOR127	KX914787	F: TTGAATGGCTTTTTCTTGAT	CTC_{8}	P	NA
		R: AGGAGGTGGATGACGTTT			
mCtDOR128	KX914788	F: GCTACGAGCAGTAAGTCGTT	GT_{10}	P	220-250
		R: GCTAATTACGGAAGCAGAAA			
mCtDOR129	KX914789	F: TAGCTTCGAAAAGCTTCCTA	AC_{9}	P	220
		R: TCGGTGGGTTTATATTGTTC			
mCtDOR130	KX914790	F: ATGTACCCACCAACTAATGC	$\mathrm{AAC}_{6}-\mathrm{AGT}_{7}$	C	220
		R: AGTTCTGGAGGAGGATTTTC			
mCtDOR131	KX914791	F: ATCGATTGCACAGATTTGAT	TG9	P	250
		R: AAACCAACCCATCCACTT			
mCtDOR132	KX914792	F: GGTGATGGTGGGTAAAGTAT	GTG $_{6}$	P	350
		R: AAACCATAGGGACCAAATCT			
mCtDOR133	KX914793	F: TTCCAAGTACAACTGCATCA	GAT_{6}	P	240
		R: CTTGGAAAACCTTCCTACCT			
mCtDOR134	KX914794	F: CTCTAAAATTGGGAAGCAAC	$\mathrm{TG}_{6}-\mathrm{TC}_{11}$	C	290
		R: TCGTTAATGGCAAAAAGAGT			
mCtDOR135	KX914795	F: CCTTCCAACTACGTCCATAA	CAG_{6}	P	320
		R: GACTATTTGCAACAGCAACA			
mCtDOR136	KX914796	F: AAACCAATTTTGCCATTAAA	CAA_{6}	P	110-135
		R: TGGTAAGTGTAGTCGGCTTT			
mCtDOR137	KX914797	F: GTGTCGACTTCAGGGAACT	TCG_{7}	P	160
		R: AAAAATCCAATGAAAACGAA			
mCtDOR138	KX914798	F: GAGAGGTGGAATGGTGAGTA	GA_{9}	P	220
		R: CACACATGCATAGAAACCAG			
mCtDOR139	KX914799	F: TACCAGTCTCCGGCTTTTAT	GTC_{7}	P	190
		R: GACAGACACAGGCCAATC			
mCtDOR140	KX914800	F: ATGTCGTGGGACAACATTAT	TCA_{7}	P	NA
		R: GAGAGGGAGTTTGAGGAGAT			
mCtDOR141	KX914801	F: GGACAATAAAGATGGCAAAA	TC_{9}	P	NA
		R: TTTCTCTCTCCCTCATGCTA			
mCtDOR142	KX914802	F: ACTCTTGTGTTTGTGGAAGG	$\mathrm{CGA}_{5} \mathrm{GAA}_{6}$	C	NA
		R: GATTGATAGCTTCGGACTTG			
mCtDOR143	KX914803	F: CAAATATCCAGTCCAACCAT	AC_{9}	P	200-240
		R: ATGGGGTTGTTTACAAGTGA			
mCtDOR144	KX914804	F: CTTGCATGTTATGTGGATTG	TA 10	P	NA
		R: GTCCCTTCCTCGACTCTTAG			
mCtDOR145	KX914805	F: TAACACGAAAAGGGATGTCT	GAT_{6}	P	210
		R: TTCTTCTTTCTTGAGCTTGG			
mCtDOR146	KX914806	F: CAATCAATCCTCTTCTCCAA	$\mathrm{CA}_{8}-\mathrm{CA}_{7}$	C	230
		R: GGGTTTCGAGAAGTTAAGGT			
mCtDOR147	KX914807	F: GTCTGACTAGGGGTGTGCT	TC9	P	200
		R: CCCTGGCTAGTGAAATACTG			
mCtDOR148	KX914808	F: CCTGTCTTAAATCGGTGTTC	$\mathrm{GC}_{5} \mathrm{CA}_{8}$	C	NA
		R: GGATTAAGCCAAAACACAAA			
mCtDOR149	KX914809	F: TCGTCAATAAGGTCGAGAGT	CA_{8}	P	220
		R: GCTAAGATGGTGACGTGTCT			
mCtDOR150	KX914810	F: CTGGAATCATCAATCACCTT	CAT_{6}	P	230
		R: GTTTTTCCTGAAACCAACAA			
mCtDOR151	KX914811	F: TAGCTTCGAAAAGCTTCCTA	AC_{9}	P	220
		R: TCGGTGGGTTTATATTGTTC			
mCtDOR152	KX914812	F: AAGATGAGGTCAACTCCAAA	TTA_{6}	P	200-220
		R: ATTTCCAACAACTGCATACC			
mCtDOR153	KX914813	F: СССТTTTCATCTTCCTTTTT	TCT_{6}	P	230
		R: TAACTTCGTGAGGAGATCGT			
mCtDOR154	KX914814	F: GAATGGAATGGATGATGTGT	TC_{8}	P	400
		R: AGGTGGTGGTGTAAGAACTG			
mCtDOR155	KX914815	F: TACTTTCCCTCCATTTCCTT	CCA_{6}	P	350
		R: AGCTTATAAAGGCGGAAATC			
mCtDOR156	KX914816	F: GATTTCGGATTCGAGTTAAG	GAA_{6}	P	NA

		R: AATGATACAAGCCCCAAAC			
mCtDOR157	KX914817	F: GAATTCTGATTGGTGGAAAA	TA_{10}	P	220-245
		R: GAAGAAGCATTTGAGACCAG			
mCtDOR158	KX914818	F: GGGAAGAAAGGTTGAAGTTT	TG9	P	360
		R: CTTCTCTCGATCACGATTTC			
mCtDOR159	KX914819	F: CGCATACAAATCCATTATCA	CT_{8}	P	NA
		R: TTGCGGTAAGATTAGGGTTA			
mCtDOR160	KX914820	F: GTGAGGAGGTGGCAGAAG	TCA_{6}	P	NA
		R: AGCCCTGTTTCTCTTCTCTT			
mCtDOR161	KX914821	F: GCTTCATATCATCCCCATTA	CAG_{6}	P	220-230
		R: ACACCCGATAAAAAGTAGCA			
mCtDOR162	KX914822	F: GCCATAAATTGTCACACAAG	TC_{9}	P	250
		R: TAAGGGTTTCTTTGGTTTCA			
mCtDOR163	KX914823	F: TTTCTTCTTCCCCTTTTCAT	CA_{8} - GCA_{5}	C	230
		R: CTGAGATTCGGAGGTTAATG			
mCtDOR164	KX914824	F: ATGAAACGAACTGATGAAGG	CTG_{6}	P	200-225
		R: ACCGATGTATGGTCACTAGG			
mCtDOR165	KX914825	F: ATAGCTCCATTCACCATCAC	CAA_{6}	P	190-215
		R: ATTTGGCTTATTTCCACTGA			
mCtDOR166	KX914826	F: TCCTTTCAAAGCTTCACCTA	TCA ${ }_{6}$	P	190
		R: TTTGCCCTAGTTTTATGGAA			
mCtDOR167	KX914827	F: TTGTTGTAGCTGTGCTGTTC	CAT_{6}	P	380
		R: AATCCATATCCAACCCTTCT			
mCtDOR168	KX914828	F: ACCAAACTCAAAAATGGATG	$\mathrm{GCT}_{6} \mathrm{GAAA}_{5}$	C	210
		R: AGCCAATTGTGTTTTTCAAC			
mCtDOR169	KX914829	F: TGCATTTGGTCCTTGATTA	TCT_{6}	P	270
		R: TAAGAGACGGATTTCACGAT			
mCtDOR170	KX914830	F: CGATACCAGTGATCGAAAAT	TCT_{6}	P	420
		R: AAAGCATCCTGTAGAACGAA			
mCtDOR171	KX914831	F: AATCCCTCTTCTCTCACTCC	TGA ${ }_{6}$	P	220-240
		R: CCGTCAAAAGACAGAGAAAC			
mCtDOR172	KX914832	F: TATGCTCCCCTAGTCTTTGA	$\mathrm{ATC}_{6}-\mathrm{TTA}_{5}$	C	180
		R: TAAATAAACCCCCTCCTCAT			
mCtDOR173	KX914833	F: GTTGGCATTGATCAAGAACT	CAC_{6}	P	350
		R: TCGTCTCACTCTTCCAACTT			
mCtDOR174	KX914834	F: GAATGCACAATCGGAGTTAT	TC_{8}	P	190
		R: GCATTTACCTACAAGGGTGT			
mCtDOR175	KX914835	F: CCACACATAACTTCCACCTT	TCC_{6}	P	200
		R: TCATAGTCCACTGTGCCATA			
mCtDOR176	KX914836	F: ATAAGCTGCAGTGAGAGAGC	$\mathrm{AG}_{6}-\mathrm{GA}_{9}$	C	NA
		R: GCTAGGCTAGGGTTTCATCT			
mCtDOR177	KX914837	F: TTACAAAGGACTCCCAGAAA	CT_{11}	P	220
		R: CAGAAGGATCGATCAAAGAG			
mCtDOR178	KX914838	F: AGGAAGATACGATACGACCTC	TCT_{6}	P	220-235
		R: GAATTAATCACCGATGGAAA			
mCtDOR179	KX914839	F: CAACCAAAAGAGGGTTTTT	CA_{9}	P	240
		R: GGAGTTCTTCGATCTCCTTT			
mCtDOR180	KX914840	F: AACAAACCACCTTCAAAAGA	TC_{8}	P	195
		R: TCAGAAACCCTAATCAGGAA			
mCtDOR181	KX914841	F: TCCATGCTTTCTTCTCTCTC	TC_{8}	P	NA
		R: AGCATTCAATTGACGATTTT			
mCtDOR182	KX914842	F: ATCTCCGATCACACACTTTC	TC_{11}	P	220-230
		R: GATGGAGTGAGAGAGAGCTG			
mCtDOR183	KX914843	F: GCGGTTGATCATCCATTA	TA9	P	350
		R: GAGCAAGTATGGTCAAAAGG			
mCtDOR184	KX914844	F: GCTACGAGCAGTAAGTCGTT	GT_{10}	P	350-370
		R: GCTAATTACGGAAGCAGAAA			
mCtDOR185	KX914845	F: TTTCTTTTCCGTTATCCAAC	$\mathrm{TC}_{9}-\mathrm{TCT}_{6}$	C	NA
		R: CTTTCCAACTGAAATCTTGC			

mCtDOR186	KX914846	F: TGTTTCTCGTATGAATCTCCCTC	TA9	P	290
		R: AGCTCCTGATGATGATTCCG			
mCtDOR187	KX914847	F: ATAGTTTAAATAGTTCCATGCACAA	TA_{10}	P	230
		R: GAGGAGTGACCGGAGTTTCA			
mCtDOR188	KX914848	F: AAGGGTCAAAGGCCTTCCT	GTT_{7}	P	NA
		R: CATGGGAGCATTTGGAGATT			
mCtDOR189	KX914849	F: GTTGGGAAGACAGGGGAAAT	CAT_{6}	P	320
		R: GGTGAGATCCCTCATGCAAT			
mCtDOR190	KX914850	F: TCACCCACAAGATTTTCTTTGTT	$\mathrm{CT}_{6}-\mathrm{AG}_{9}$	C	190
		R: GTTCGGTTCGGATCTTGAAA			
mCtDOR191	KX914851	F: GGTCCTGTCCTGGCTGTATG	CT_{11}	P	175
		R: CCAGAGCACTGCAAGTGAAA			
mCtDOR192	KX914852	F: GTGCTCATGTCGAGTTGGGT	GTT_{6}	P	250
		R: ACATCCCGACCATTCACAAT			
mCtDOR193	KX914853	F: AAGAGGGAGAGGGAGGTCAA	TAA_{7}	P	320-345
		R: CCTTGCAAGCTCTTGCTTTT			
mCtDOR194	KX914854	F: GCACCATTGTGGAATTAGGG	GA_{11}	P	240
		R: CAAACCCCCAAATCTCTGTT			
mCtDOR195	KX914855	F: CAAACCCAAGGAAAGTCCAA	ACG_{8}	P	NA
		R: TCTCGCCATTGGAAGAAACT			
mCtDOR196	KX914856	F: GGACGGCCTTTCTTCTTCTT	$\mathrm{TC}_{6}-\mathrm{CT}_{9}$	C	290
		R: TCCAGCAGTCGGAGTTTTCT			
mCtDOR197	KX914857	F: GGTAAATGTGGAGGTGGTGG	GTG_{8}	P	320
		R: TCAGATAGCAATGGCAGACG			
mCtDOR198	KX914858	F: CCATCTTCATTTGCATCTTCA	$\mathrm{AC}_{5}-\mathrm{TA}_{8}$	C	NA
		R: GCTTTCGCTTGTTGATTCCT			
mCtDOR199	KX914859	F: CAGATGAATCGATCAGTGGAAA	GAA_{7}	P	260
		R: CGTGGAAGCCTCAAGAAGTG			
mCtDOR200	KX914860	F: TGAAGTAAAGAGTAGTCTGTAAAG	GT_{10}	P	NA
		R: AATTATAAGCTTGCAATTGGTG			

NA-Not amplified

Conclusion

It is essential to isolate and characterize more SSR markers in safflower for genetic analysis, linkage and trait mapping and marker assisted selection. So, in this study development of reliable and efficient microsatellites in safflower was reported. The present study also contributed 200 new SSR markers in cultivated safflower. In order to assess the potential and polymorphism, newly developed SSR markers screened in 24 genotypes showed reasonable level of polymorphism.

The SSR markers were detected on an average of 2.7 alleles per locus and average PIC value of 0.33 . Finally, the newly developed safflower microsatellite markers are of immense importance as they belong to the few available polymorphic SSR markers for constructing genetic and trait mapping.

Acknowledgement

Authors are thankful to Indian Council of Agricultural Research- Indian Institute of Oilseeds Research (ICARIIOR), Hyderabad for financial support.

References

1. Rohini V.K. and Sankara K.R., Embryo Transformation A Practical Approach for realizing Transgenic Plants of Safflower (Carthamus tinctorius L), Ann Bot, 86, 1043-1049 (2000)
2. Li D. and Mundel H.H., Safflower Carthamus tinctorius L Promoting the Conservation and Use of Underutilized and Neglected Crops 7, Institute of Plant Genetics and Crop Plant Research Gatersleben, International Plant Genetic Resources Institute, Rome (1996)
3. Nimbkar and Singh V., Chapter 6 safflower (Carthamus tintorius L), In Book Genetic resources chromosome engineering and crop improvement oilseeds, ed., Singh Ram J., CRC Press, 4, 167-194 (2006)
4. Han Z.G., Guo W.Z., Song X.L. and Zhang T.Z., Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton, Mol. Genet. Genomics, 272, 308-327 (2004)
5. Maric S., Bolaric S., Martincic J., Pejic I. and Kozumplink V., Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers morphological traits and coefficients of parentage, Plant Breed, 123, 366-369 (2004)
6. Sehgal D. and Raina S.N., Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints, Euphytica, 146, 67-76 (2005)
7. Amini F., Saeidi G. and Arzani A., Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers, Euphytica, 163, 21-30 (2008)
8. Khan M.A., Witzke-Ehbrecht S.V., Maass B.L. and Becker H.C., Relationships among different geographical groups agromorphology fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius), Genet. Res. Crop Evol, 56, 1930 (2009)
9. Mahasi M.J., Wachira F.N., Pathak R.S. and Riungu T.C., Genetic polymorphism in exotic safflower (Carthamus tinctorious L) using RAPD markers, $J P B C S$, 1, 8-12 (2009)
10. Sabzalian M.R., Mirlohi A., Saeidi G. and Rabbani M.T., Genetic variation among populations of wild safflower Carthamus oxyacanthus using agro-morphological traits and ISSR markers, Genet. Res. Crop Evol, 54, 415-420 (2009)
11. Yang Y.X., Wu W., Zheng Y.L., Chen L., Liu R.J. and Huang C.Y., Genetic diversity and relationships among safflower (Carthamus tinctorius L) analyzed by inter simple sequence repeats (ISSRs), Genet. Res. Crop Evol, 54, 1043-1051 (2007)
12. Golkar P., Arzani A. and Rezaei M.A., Genetic variation in safflower (Carthamus tinctorious L) for seed quality related traits and inter-simple sequence repeat (ISSR) markers, Int. J. Mol. Sci, 12, 2664-2677 (2011)
13. Panahi B. and Neghab M.G., Genetic characterization of Iranian safflower (Carthamus tinctorius) using inter simple sequence repeats (ISSR) markers, Physiol. Mol. Biol. Plants, 19, 239-243 (2013)
14. Majidi M.M. and Zadhoush S., Molecular and morphological variation in a world-wide collection of safflower, Crop Sci, 54, 2109-2119 (2014)
15. Yaman H., Tarıkahya-Hacioglu B., Arslan Y. and Subasi I., Molecular characterization of the wild relatives of safflower (Carthamus tinctorius L) in Turkey as revealed by ISSRs, Genet. Res. Crop Evol, 61, 595-602 (2014)
16. Johnson R.C., Kisha T.J. and Evans M.A., Characterizing safflower germplasm with AFLP molecular markers, Crop Sci, 47, 1728-1736 (2007)
17. Kumar S., Ambreen H., Murali T.V., Bali S., Agarwal M., Kumar A., Goel S. and Jagannath A., Assessment of genetic diversity and population structure in a global reference collection of 531 accessions of Carthamus tinctorius (safflower) using AFLP markers, Plant Mol. Biol. Rep, 33(5), 1299-1313 (2014)
18. Talebi M., Mokhtari N. and Rahimmalek Mand Sahhafi S.R., Molecular characterization of Carthamus tinctorius and C oxyacanthus germplasm using sequence related amplified polymorphism (SRAP) markers, Plant Omics J, 5, 136-142 (2012)
19. Gupta P.K. and Varshney, The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat, Euphytica, 11, 3163-185 (2000)
20. Chapman M.A. et al, Development polymorphism and crosstaxon utility of EST-SSR markers from saffower (Carthamus tinctorius L), Theor. Appl. Genet, 120, 85-91 (2009)
21. Mayerhofer R., Archibald C., Bowles V. and Good A.G., Development of molecular markers and linkage maps for the

Carthamus species C tinctorius and C oxyacanthus, Genome, 53, 266-276 (2010)
22. Hamdan Y.A.S., Garcia Moreno M.J., Redondo Nevado J., Velasco L. and Perez Vich B., Development and characterization of genomic microsatellite markers in safflower (Carthamus tinctorius L), Plant Breed, 130, 237-241 (2011)
23. Yamini K.N., Ramesh K., Naresh V., Rajendrakumar P., Anjani K. and Dinesh Kumar V., Development of EST-SSR markers and their utility in revealing cryptic diversity in safflower (Carthamus tinctorius L), J. Plant Biochem. Biotechnol, 2, 290102 (2013)
24. Lee G.A., Sung J.S., Lee S.Y., Chung J.W., Yi J.Y., Kim Y.Y. and Lee M.C., Genetic assessment of safflower (Carthamus tinctorius L) collection with microsatellite markers acquired via pyrosequencing method, Mol. Ecol. Resour, 14, 69-78 (2014)
25. Ambreen H., Kumar S., Variath M.T., Joshi G., Bali S., Agarwal M., Amar Kumar, Arun J. and Shailendra G., Development of genomic microsatellite markers in Carthamus tinctorius L. (safflower) using next generation sequencing and assessment of their cross-species transferability and utility for diversity analysis, PLoS ONE, 10(8), https://doi.org/10.1371/ journal.pone. 0135443 (2015)
26. Sehgal D., Rajpal V.R., Raina S.N., Sasanuma T. and Sasakuma T., Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L) world germplasm resources, Genetica, 135(3), 457-470 (2009)
27. Usha kiran B., Mukta N., Kadirvel P., Alivelu K., Senthivel S., Kishore P. and Varaprasad K.S., Genetic diversity of safflower (Carthamus tinctorius L) germplasm as revealed by SSR markers, Plant Genetic Resour. Charact. Utiliz, 15(1), 1-11 (2017)
28. Barati M. and Arzani A., Genetic diversity revealed by ESTSSR markers in cultivated and wild safflower, Biochem. Syst. Ecol, 44, 117-123 (2012)
29. Derakhshan E., Majidi M.M., Sharafi Y. and Mirlohi A., Discrimination and genetic diversity of cultivated and wild safflowers (Carthamus spp.) using EST-microsatellites markers, Biochem. Syst. Ecol, 54, 130-136 (2014)
30. Doyle J.J. and Doyle J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull, 19, 11-15 (1987)
31. Glenn T.C. and Schable N.A., Isolating microsatellite DNA loci, Methods Enzymol, 395, 202-222 (2005)
32. Thiel T., Michalek V. and Graner A., Exploiting EST databases for the development and characterization of gene-derived SSRmarkers in barley (Hordeum vulgare L), Theor. Appl. Genet, 106, 411-422 (2003)
33. Bassam B.J. and Gresshoff P.M., Silver staining of DNA in polyacrylamide gels, Nature Protocols, 2, 2649-2654 (2007)
34. Liu K. and Muse S.V., Power Marker: an integrated analysis environment for genetic marker analysis, Bioinformatics, 21, 21282129 (2005)
35. Perrier X., Flori A. and Bonnot F., Data analysis methods In Genetic diversity of cultivated tropical plants, ed., Hamon P., Seguin M., Perrier X. and Glaszmann J.C., Science Publishers, Montpellier, USA, 43-76 (2003)
36. Ferguson M.E., Burow M.D., Schultz S.R., Bramel P.J., Paterson A.H., Kresovich S. and Mitchell S., Microsatellite identification and characterization in peanut (A. hypogaea L), Theor. Appl. Genet, 108, 1064-1070 (2004)
37. Moretzsohn M.C., Leoi L., Proite K., Guimaraes P.M., LealBertioli S.C.M., Gimanes M.A., Martin W.S., Valls J.F.M., Grattapaglia D. and Bertioli D., A microsatellite based gene rich linkage map for the AA genome of Arachis (Fabaceae), Theor. Appl. Genet, 111, 1060-1071 (2005)
38. Moretzsohn M.C., Hopkins M.S., Mitchell S.E., Kresovich S., Valls J.F.M. and Ferreira M.E., Genetic diversity of peanut (Arachis hypogaea L) and its wild relatives based on the analysis of hyper varaible regions of the genome, BMC Plant Biol, 4, 11 (2004)
39. Szewc-McFadden A.K., Kresovich S., Bliek S.M., Mitchell S.E. and McFerson J.R., Identification of polymorphic conserved simple sequence repeats (SSRs) in cultivated Brassica species, Theor. Appl. Genet, 93, 534-538 (1996)
40. Saal B. and Wricke G., Development of simple sequence repeat markers in rye (Secale cereale L), Genome, 42, 964-972 (1999)
41. Liu Z.W., Jarret R.L., Kresovich S. and Duncan R.R., Characterization and analysis of simple sequence repeat (SSR) loci in seashore paspalum (Paspalum vaginatum Swartz), Theor. Appl. Genet, 91, 47-52 (1995)
42. Cuc L.M., Mace E.S., Crouch J.H., Quang V.D., Long T.D. and Varshney R., Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea), BMC Plant Biol, 8, 55 (2008)
43. Varshney R.K., Harindra A.K., Balyan S., Roy J.K., Prasad M. and Gupta P.K., Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat, Plant Mol. Biol. Rep, 18, 5-16 (2000)
44. Ebrahimi S., Sayed-Tabatabaei B.E. and Sharifnabi B., Microsatellite isolation and characterization in pomegranate (Punica granatum L), Iranian J. Biotech, 8, 156-163 (2010)
45. Rivera R. et al, Isolation and characterization of polymorphic microsatellites in Cocos nucifera L, Genome, 42, 668-675 (1999)
46. Siju S., Dhanya K., Syamkumar S., Sheeja T.E., Sasikumar B., Bhat A.I. and Parthasarathy V.A., Development characterization and utilization of genomic microsatellite markers in turmeric (Curcuma longa L), Biochem. Syst. Ecol, 38, 641-646 (2010)
47. Fischer D. and Bachmann K., Microsatellite enrichment in organisms with large genomes (Allium cepa L), Biotechniques, 24(5), 796-800 (1998)
48. Rallo P., Dorado G. and Martin A., Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L), Theor. Appl. Genet, 101, 984-989 (2000)
49. Kyoung-In Seo, Gi-An Lee, Kyung-Ho Ma, Do-Yoon Hyun, Yong-Jin Park, Jong-Wook Jung, Sok-Young Lee, Jae-Gyun Gwag, Chung-Kon Kim and Myung-Chul Lee, Isolation and Characterization of 28 Polymorphic SSR Loci from Castor Bean (Ricinus communis L), J. Crop Sci. Biotechnol, 14(2), 97-103 (2011)
50. Weber J.L., Informativeness of human (cC-dA)n(dG-dT)n polymorphisms, Genomics, 7, 524-530 (1990)
51. Swati S., Archana S., Archak Sunil, Tushar K., Behera Joseph K., John Sudhir U., Meshram Ambika B. and Gaikwad, Development of Novel Simple Sequence Repeat Markers in Bitter Gourd (Momordica charantia L) Through Enriched Genomic Libraries and Their Utilization in Analysis of Genetic Diversity and Cross-Species Transferability, Appl. Biochem. Biotechnol, DOI: 101007/s12010-014-1249-8 (2014)
52. Balachandran M., Niteen N., Kadam Jyoti Biradar, Sowmya H.R., Mahadeva A., Madhura J.N., Udayakumar M., Paramjit K. and Sheshshaye N.S., Development and characterization of microsatellite markers for Morus spp and assessment of their transferability to other closely related species, BMC Plant Biol, 13, 194 (2013)
53. Gong L., Stift G., Kofler R., Pachner M. and Lelley T., Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L, Theor. Appl. Genet, 117, 37-48 (2008)
54. Cordeiro G.M., Taylor G.O. and Henry R.J., Characterization of microsatellite markers from sugarcane (Saccharum spp) a highly polyploid species, Plant Sci, 155, 161-168 (2000)
55. Parida S.K., Kalia S.K., Sunita K., Dalal V., Hemaprabha G., Selvi A., Pandit A., Singh A., Gaikwad K., Sharma T.R., Srivastava P.S., Singh N.K. and Mohapatra T., Informative genomic microsatellite markers for efficient genotyping applications in sugarcane, Theor. Appl. Genet, 118(2), 327-338 (2009)
56. Lioi L. and Galasso I., Development of genomic simple sequence repeat markers from an enriched genomic library of grass pea (Lathyrus sativus L), Plant Breed, 132, 649-653 (2013)
57. Gimenes M.A., Hosino A.A., Barbosa A.V.G., Palmieri D.A. and Lopes C.R., Characterization and transferability of microsatellite markers of cultivated peanut (Arachis hypogaea), BMC Plant Biol, 7, 9 (2007)
58. Jin L., Macaubas C., Hallmayer J., Kimura A. and Mignot E., Mutation rate varies among alleles at a microsatellite locus: Phylogenetic evidence, PNAS, 93, 15285-15288 (1996)
59. Butcher P.A., Decroocq S., Gray Y. and Moran G.F., Development inheritance and cross-species amplification of microsatellite markers from Acacia mangium, Theor. Appl. Genet, 101, 1282-1290 (2000)
60. De Wiel C.V., Arens P. and Vosman B., Microsatellite retrieval in lettuce (Lactuca sativa L), Genome, 42, 139-150 (1998)

[^0]characterization of physically clustered simple sequence repeats in plants, Genetics, 156, 847-854 (2000)
62. Gao L.F., Tang J., Li H. and Jia J., Analysis of microsatellites in major crops assessed by computational and experimental approaches, Mol. Breed, 12, 245-261 (2003)
63. Panaud O., Chen X.L. and McCouch S.R., Frequency of microsatellite sequences in rice (Oryza sativa L), Genome, 38, 1170-1176 (1995)
64. Bryan G.J., Collins A.J., Stephenson P., Orry A., Smith J.B. and Gale M.D., Isolation and characterisation of microsatellites from hexaploid bread wheat, Theor. Appl. Genet, 94, 557-563 (1997)
65. Chin E.C.L., Senior M.L., Shu H. and Smith J.S.C., Maize simple sequence repetitive DNA sequences: abundance and allele variation, Genome, 39, 866-873 (1996)
66. Wang Z., Weber J.L., Zhong G. and Tanksley S.D., Survey of plant short tandem DNA repeats, Theor. Appl. Genet, 88, 1-6 (1994)
67. Akagi H., Yokozeki Y., Inagaki A. and Fujimura T., Microsatellite DNA markers for rice chromosomes, Theor. Appl. Genet, 93, 1071-1077 (1996)
68. Dannin-Poleg Y., Reis N., Tzuri G. and Katzir N., Development and characterization of microsatellite markers in Cucumis, Theor. Appl. Genet, 102, 61-72 (2001)
69. Morgante M. and Oliveri A.M., PCR amplified microsatellite as markers in plant genetics, Plant J, 3, 175-182 (1993)
70. Lagercrantz U., Ellegren H. and Andersson L., The abundance of various polymorphic microsatellite motifs differs between plant and vertebrates, Nucleic Acids Res, 21, 1111-1115 (1993)
71. Smulders M.J.M., Bredemeijer G., Rus-Kortekaas W., Arens P. and Vosman B., Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species, Theor. Appl. Genet, 97, 264-272 (1997)
72. Russel J., Fuller J., Young G., Thomas B., Taramino G., Macaulay M., Waugh R. and Powell W., Discriminating between barley genotypes using microsatellite markers, Genome, 40, 442450 (1997)
73. Ma Z.Q., Roder M. and Sorrells M.E., Frequencies and sequence characteristics of di, tri and tetra nucleotide microsatellites in wheat, Genome, 39, 23-130 (1996)
74. Morchen M.J. et al, Abundance and length polymorphism of microsatellite repeats in Beta vulgaris L., Theor. Appl. Genet, 92, 326-333 (1996)
75. Tangphatsornruang S., Somta P., Uthaipaisanwong P., Chanprasert J., Sangsrakru D., Seehalak W., Sommanas W.,

Tragoonrung S. and Srinivas P., Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L) Wilczek), BMC Plant Biol, 9, 137 (2009)
76. Nicot N., Chiquet V., Gandon B., Amilhat L., Legeai F., Leroy P., Bernard M. and Sourdille P., Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs), Theor. Appl. Genet, 109, 800-805 (2004)
77. Thiel T., Michalek W., Varshney R.K. and Graner A., Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L), Theor. Appl. Genet, 106, 411-422 (2003)
78. Poncet V., Rondeau M., Tranchant C., Cayrel A., Hamon S., de Kochko A. and Hamon P., SSR mining in coffee tree EST databases potential use of EST-SSRs as markers for the Coffea genus, Mol. Genet. Genomics, 276, 436-449 (2006)
79. Scott K.D., Eggler P., Seaton G., Rossetto M., Ablett E.M., Lee L.S. and Henry R.J., Analysis of SSRs derived from grape ESTs, Theor. Appl. Genet, 100, 723-726 (2000)
80. Brown S.M., Hopkins M.S., Mitchell S.E., Senior M.L., Wang T.Y., Duncan R.R., Gonzalez-Candelas F. and Kresovich S., Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolor (L) Moench), Theor. Appl. Genet, 93, 190-198 (1996)
81. Roder M.S., Plaschke J., Konig S.U., Borner A., Sorrells M.E., Tanksley S.D. and Ganal M.W., Abundance variability and chromosomal location of microsatellites in wheat, Mol. Genet. Genomics, 246, 327-333 (1995)
82. Squirrell J., Hollingsworth P.M., Woodhead M., Russell J., Lowe J., Gibby M. and Powell W., How much effort is required to isolate nuclear microsatellites from plants, Mol. Ecol., 12, 13391348 (2003)
83. Burstin J., Deniot G., Potier J., Weinachter C., Aubert G. and Baranger A., Microsatellite polymorphism in Pisum sativum, Plant Breed, 120, 311-317 (2001)
84. Katzir N., Danin Poleg Y., Tzori G., Karchi Z., Lavi U. and Cregan P.B., Length polymorphism and homologies of microsatellites in several Cucurbitaceae, Theor. Appl. Genet, 93, 1282-1290 (1996)
85. He G., Meng R., Newman M., Gao G.M., Pittman R.N. and Prakash C.S., Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L), BMC Plant Biol, 3, 3 (2003)
86. Yu K., Park S. and Poysa V., Abundance and variation of microsatellite DNA sequence in Beans (Phaseolus and Vigna), Genome, 4, 227-234 (1999).
(Received $28^{\text {th }}$ January 2019, accepted $22^{\text {nd }}$ March 2019)

[^0]: 61. Cardle L., Ramsay L., Milbourne D., Macaulay M., Marshall
 D. and Waugh R., Computational and experimental
