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SUMMARY

The purpose of this article is to propose unified methods of construction of resolvable incomplete block designs for factorial
experiments. These designs have orthogonal factorial structure, have balance, estimate all main effects with full efficiency and
have control over the interaction efficiencies. These designs have applications in crop-sequence experiments. A catalogue of
designs is prepared for number of levels of any factor at most 12.
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1. INTRODUCTION

An experiment on ‘rice-wheat’ sequence was to be
conducted in the Division of Agronomy, [ARI, New
Delhi. During the kharif crop (rice), 5 herbicidal
treatments were to be applied. On the following rabi
crop (wheat), 4 herbicidal treatments were given. The
purpose of the experiment was (i) to compare direct
effects of kharif and rabi treatments, (ii) residual effects
of kharif treatments, and (iii) the interaction between
residual effects of kharif and direct effects of rabi
treatments.

Another experiment was to be planned in the
Division of Agronomy, IARI, New Delhi for evaluation
of sulphur sources at varying rates in aerobic rice-wheat
cropping system for improved productivity and soil
health. During kharif-rice, treatments comprising of
combinations of two sources of sulphur, viz., Gypsum
and Phosphogypsum and three levels of sulphur as 0,
30 and 60 kgs. / hectare are to be applied. During rabi-
wheat three rates of sulphur to be applied through
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respective sources as in Kharif-rice are 0, 15 and 30
kgs./hectare. The study needs to be conducted for two
years. The interest of the experimenter is to study
(i) the direct effect of sulphur sources and levels of
sulphur on kharif-rice; (ii) the residual effect of sulphur
treatments applied to kharif-rice on succeeding rabi-
wheat; (iii) the direct effect of sulphur applied to rabi-
wheat; (iv) the interaction between residual effects of
sulphur treatments applied during Kharif-rice and the
direct effect of sulphur treatments applied during rabi-
wheat; (v) the residual effect of sulphur applied to rabi-
wheat on succeeding kharif-rice in the second year;
(vi) the cumulative effect of sulphur applied to kharif-
rice and rabi-wheat in first year on the kharif-rice and
rabi-wheat of second year, and so on...

The experimenter would like to run such an
experiment in a design in three replications. This
ensures that even if one replication is lost during
experimentation, the experimenter has two replications
to run through the analysis. Moreover, the experimenter
would be more interested in the main effects and two
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factor interactions may also be of interest to him. It is,
therefore, desirable that the design permits estimation
of main effects without any loss of information (or full
efficiency) and the interaction efficiencies are also
controlled and reasonably high.

It is indeed possible that there are more than two
crops in a crop sequence. Further, the treatments in the
individual cropping seasons could also have a factorial
structure.

These experiments are generally run as a split plot
design. But this is a typical example of an experiment
to be run as a factorial experiment in an incomplete
block design [see also, Parsad et al. 2007, Gupta and
Parsad 2009]. To keep the discussion general, consider
a factorial experiment involving m factors F, F),, ...,
F,, the ™ factor F; being experimented with g; (= 2)
levels, j = 1, 2, ... m. A particular selection of levels is
an m-tuple, s = (s, ..., Sjs v S, 0 < $; S q; — 1 and
will be termed the s” treatment combination. The

totality of all such m-tuples is v = H’;lzlq ;- We shall

also assume that the v treatments are run in an
incomplete block design with » blocks and each block
contains k (<v) distinct treatments. A factorial
experiment run in an incomplete block design is said
to have the Orthogonal Factorial Structure (OFS) if the
adjusted treatment sum of squares can be split up
orthogonally into various components corresponding to
factorial effects like main effects and interactions. In a
block design with OFS inter-effect orthogonality holds
if the best linear unbiased estimates (BLUE) of the
estimable treatment contrasts belonging to different
factorial effects are mutually orthogonal or
uncorrelated. A factorial effect is said to be balanced
if all the normalized contrasts belonging to that effect
are estimable and are estimated with the same variance,
i.e., the loss of information on all the normalized
contrasts of any factorial effect is the same. A factorial
design is balanced if it is balanced for every factorial
effect. For an equireplicated design, full information is
retained on an effect if the effect is balanced and there
is no loss of information on any contrast belonging to
that effect (relative to the comparable complete block
design). For details, readers may refer to Kurkjian and
Zelen (1963) and Mukerjee (1982, 1986).

The problem of obtaining incomplete block
designs having OFS has been studied extensively in the
literature. Extended Group Divisible (EGD) designs
have OFS with balance. Generalized cyclic designs also
have OFS with balance. An alternative approach to
generate designs having OFS with balance is to employ
Kronecker type products of unstructured block designs,
popularly known as varietal designs. For details the
reader may see, David and Wolock (1965), Dean and
John (1975), John (1966, 1973, 1987), Gupta (1983,
1985, 1987), and Gupta and Mukerjee (1980a, 1980b,
1981, 1984, 1989a, 1989b).

The designs available in the literature for such
experimental situations have high main effects
efficiencies but the interaction efficiencies also need to
be controlled. However, there are some methods of
construction available in the literature that generate
designs in which it is possible to estimate main effects
with full efficiencies. But despite a burst of activity in
generating these designs, there is still a need to generate
designs with full efficiency on main effects and
controlled efficiency on interactions. The purpose of
this paper is to describe a unified but very simple
method of constructing such designs. However, the
experimenter is always keen to have a design in which
all the treatments appear at one place in a replication
and, therefore, there is a tendency to adopt a complete
block design, even at the cost of getting high error sum
of squares. This is important because the experimenter
needs to demonstrate the treatments effects at one place.
Therefore, from experimenters view point, it is essential
to get a resolvable block design with OFS, full
efficiency on all the main effects and controlled
efficiency on interactions. These designs have Property
K. A catalogue of resolvable designs with factors up to
a maximum of 12 levels is prepared. Designs with
factors at more than 12 levels can also be obtained
easily from the unified approach. The designs along
with the efficiencies of various factorial effects are
available at www.iasri.res.in/design/factorial/factorial
20files/catalogues.htm. We begin with some
preliminaries in Section 2.

2. SOME PRELIMINARIES

We begin by giving some definitions that would
be used throughout. We shall denote matrices by bold
capital letters and vectors by bold small letters. Unless
otherwise stated, a vector would be a column vector.
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We shall denote by 0, a ~~component vector with all
elements zero and by 1, a #~-component vector with all
elements one. J,, = 1,17 would denote a p X g matrix
with all elements one. Further, I, would denote an
identity matrix of order z. We shall omit the order of
matrices and vectors where the orders are obvious.

Let A= (a;) and B = (b;) be two matrices of order
m X n and p X g respectively.

Definition 2.1. The Kronecker product (or tensor
product) of A and B, denoted by an mp X ng matrix F
= A ® B, is defined by F = (¢;B) | <;<n.1<j<p In
general, if A; (i = 1, 2, ..., m) are m; X n; matrices, their

m
Kronecker product is written asH ® A; and has the
i=1

m m
ordeer,- X Hni .
i=1 i=1

We now define Symbolic Direct Product (SDP). It
may be noticed that the SDP is an operation on
symbolic quantities and not on numerical quantities. Let
a’=[a(1), a[2), ..., a(m,)] be an m; component vector,
i=1,2, ..., m Then the SDP of a, and a, is defined
to be

apy (1, 1)
a, (1) a,() 7Pq(1’2)
a (2) a (2) '
a,xa,= :p X :q = apq(l,mq)
a,(m,) ay (my) .apq @)
| Apg (1,511, |

The extension of the SDP to more than two vectors
is straight forward.

Let A = (a;) and B = (b;) be two rectangular
matrices of the same order m X n.

Definition 2.2. The special product of A and B, denoted
by an m X n matrix F = A « B is defined as symbolic
product of the symbols in the columns of A and B.

Let the n-component i column vectors of A and
B be a) = [a,(1), a(2), ... a(n)] and b; = [b,(1),
b(2), ..., b(n)],i=1,2, ..., m. Then the n-component
i™ column vector of F is defined to be

g | 5D | 4D

42| 6@ | |a@b2)
a; e b= S e :

g(n)| |b(n)] |a@n)b(n)

Suppose that the totality of v treatment
combinations written as m-tuples is arranged in a
lexicographic order. Let S}' =0, 1,2, .., g;— 1) be a
vector whose elements represent the levels of the factor
F;. The SDP §; X ... X §; X ... X S, is used to order
lexicographically the v treatments. The v treatments are
arranged in a block design with b blocks of size & each.
The block design is represented by a v X b incidence
matrix N = (n).

Let P; be (¢, — 1) X g, matrix such that
-1/2 N —
(g; "~1;,P;) is orthogonal. For any x = (xy, ..., X,,), X;

=0, 1V j, x # 0, let P¥ =Plx1 X ...

' X...x &, where
e {1j
J .
I

Definition 2.3. A proper matrix is a square matrix with
all row sums and all column sums equal.

Definition 2.4. (Mukerjee 1986) A vxv matrix A is said
to have structure K if it be expressible as a linear
combination of Kronecker products of proper matrices

x P, &=

if x; =0

ij =

{@Uﬁ}ifgzo
J

P, if x; =1

) if x; =1

w
of orders ¢, ..., q,, (taken in order), i.e., if A = z éjg
g=1
(Vg1 X ... X V,), where w is a positive integer, &l s
&,» are some real numbers and for each g, V,; is some
proper matrix of order g 1<j<m.

Structure K will always be with respect to a

particular factorization of v = szlqj , with the
factors occurring in a particular order.

For an equi-replicate factorial experiment in a
block design with common replication number 7,
constant block size £ and incidence matrix N, the
following theorems were proved by Mukherjee (1979,
1980a, 1980b):

Theorem 2.1. A sufficient condition for inter-effect-
orthogonality to hold is that the matrix NN’ has
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structure K. In the connected case this is also a
necessary condition for inter-effect-orthogonality.

Theorem 2.2. Given that NN has structure K, any main
effect F(1 <j < m) is balanced if e“NN’e* = u L +
u, 1,1’ where u,, u, are real numbers and x = (xy, ...,
X,)> X; = 1, X, = 0V j* # j. In this case the loss of
information on F; is given by L(F)) = (rkv)_lqjul.

Theorem 2.3. Full information is retained on any main
effect if and only if in each block the levels of the
corresponding factor occur equal number of times.

Theorem 2.4. Given that NN’ has structure K and the
design is connected, the average loss of information on
a complete set of orthonormal contrasts belonging to

any factorial effect 5 F3? ... Fr (x;= 0, 1V j, x = (xy,
., X,,) # 0) is given by

1 =r{IT(g;~ "} [Trace (P*CP*}'T"!

where C is the usual C-matrix of the design.

3. METHODS OF CONSTRUCTION

A large number of methods are available in the
literature for the construction of factorial designs. These
methods essentially make use of cyclic or generalized
cyclic designs or use Kronecker or Kronecker-type
products. These designs have OFS and, if appropriately
used, are capable of ensuring high efficiencies with
respect to the interactions of interest. For an excellent
review on this topic, a reference may be made to Puri
and Nigam (1976, 1978), Nigam et al. (1988), Gupta
and Mukerjee (1989a) and Mukerjee and Wu (2006).
Parsad et al. (2007) generated a large number of
extended group divisible designs, which have
orthogonal factorial structure with balance. They also
generated a catalogue of designs giving efficiency of
the factorial effects. But all these designs do not ensure
that the main effects would be estimated with full
precision, although their efficiencies are too high.
Parsad et al. (2007) gave a series of EGD designs with
three factors in which it is possible to generate designs
that estimate the main effects with full efficiency. In
most of these designs, however, the levels of first factor
are two.

Mukerjee (1981, 1982) also gave some methods
of constructing factorial designs having OFS and main
effects balance. The designs retain full information on

at least one main effect. Some designs are also balanced
with full efficiency on main effects [see also, Mukerjee
1984, 1986].

We propose a unified but a very simple method of
generating block designs with OFS and full efficiency
on main effects. The designs have structure K. The
designs are resolvable and can be obtained for any
given replication number.

3.1 Designs with all Main Effects Balanced

For two factor factorial experiments with v = s, X
s,, where s, and s, are the number of levels of the two
factors, respectively and v is the total number of
treatments, some methods of construction of factorial
designs with all main effects balanced and estimated
without loss of information are available in the
literature when

(I) s, is an integral multiple of s;; block size is a
multiple of both s, and s, and s,/s; = ¢ (=1), an
integer

(II) s, and s, have a common factor, like s, = g,/ and
§, = g,f. block size is a multiple of both s, and s,
and s, > s;.

It may happen that both s, and s, are composite
numbers with s,=f; X f, X ... X f, and 5,= by X hy X ... X
h,. Using replacement and collapsing of levels, one can
generate designs for v =f; X f, X ... X f, X by X hy X ... X
h, factorial experiment. The resulting design would
have all the properties of the original design.

Most of the methods available fall as a particular
case of the proposed unified approach of constructing
designs for factorial experiments with structure K. But
the designs generated by the proposed method are
resolvable and can be obtained for any given replication
number.

3.1.1 Unified Method of Construction

We now describe a unified method of construction
of resolvable factorial design with OFS and full
efficiency on main effects. The designs have Property
K. Suppose v =15, X 5, = f1 X f, X ... X f, X by Xy X ... X
h,. For an s, X s, design with s, > s, s, = g/fand s, =
g,/, to retain full information on both the main effects
in an equi-replicated block design, the block size must
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be a multiple of least common multiple of s, and s,. We now obtain the following:
Here g, < g, (21) are integers and f, a positive integer, ol ol o
is the highest common factor of s, and s,. The minimum
block size for this situation would k = g,g,f. The

parameters of the design will be v =5, X s,, b = rf,
replication = r, k = g,g,f.

Let the levels of the two factors be denoted as 0,
1,2, .,8—-2,8,—1land 0, 1, 2, .., 5, — 2,5, — I,

respectively.
D,=dx 1} 7
Step 1 : Write the s, levels of the second factor as a £
= g,g,f~component vectord = (0, 1, 2, ..., s, — 1, 0, 1, (12 % 6)
2,08 —1,..,0,1,2, ..., 5, — 1), where the symbols
0,1,2,.. s — 1 are repeated g, times each as a set.

Obtain a k x b matrix D, =d x 1.

wm A WD = O B kR WD = O

A WD = O R WD = O
wm A WD = O B kR WD = O

WD A WD~ © B AW N~
L Y S R =, B = U R O
L I Y S R = B = U R O

~
|
7
I
i
|

Step2:Let0,=(0,0,..,0, 1,1, ..., 1, ..,s;,— 1,8, —
1, ..., s, — 1) be a k-component vector obtained by
repeating g, times each of the symbols (0, 1, 2, ..., 5,
—1). Using 0, generate r distinct k-component vectors
0, 6;, ..., 6,, by cyclically permuting the elements in
0,.

Step 3 : Using 0,, generate a matrix R, = [Glu 0.0/ ]

of order k X f, u =1, 2, ..., r, where 09 = {0, +
(@—1) 1} mod (s,), @=1,2, ... f

LW W WP NN == = O o O
O O O W W W NN DN = e
L W W NN N = = - O O
—_— O O O W W W NN N =
O O WL WD == =D
—_—— O O O W W W

Step 4 : Let D, = [R; R, ... R/] be an k X rf matrix.
The required design is F = D, e« D,. The order of F is
kx b. The columns of F are the blocks. The design is The 12 x 6 matrix D, = [R; R, ... R
resolvable. D, 0 0 )

=)

]1is

g

Example 3.1 Suppose an experimenter is interested in
running a 4 X 6 factorial experiment in a resolvable
incomplete block design with » = 3 replications so that
all the main effects are estimated from the design with
full efficiency. Here s,= 4, 5,= 6, f = 2, g,= 2, g,= 3.
The number of blocks is b = 6.

The k = g,g2,/= 12-component vector d = (0, 1, 2,
3,4,5,0,1,2,3,4,5). The 12-component vector 6,
is,0,=(0,0,0, 1,1, 1,2,2,2, 3,3, 3). Since r = 3,
from 6, we obtain, ©, = (0,0, 1, 1, 1, 2, 2, 2, 3, 3, 3,
0);0,=(0,1,1,1,2,2,2,3,3,4,0,0).

LW LW WD~ == O O
S O O W WWNNDN = =
S W W W NN~ ==
— O O O W L WD N~
S O W W W NN = == O
—_— = O O O W W W N NN —
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The required design is F = D, « D,. The order of
F is (kx b) 12 x 6. The resolvable design, written with
rows as blocks, and parameters v=6 x4, b =6, r =3,
k=12 is given below

Replication | Replication II Replication III
Block-1 | Block-2 | Block-3 | Block-4 | Block-5 | Block-6
00 10 00 10 00 10
01 11 01 11 11 21
02 12 12 22 12 22
13 23 13 23 13 23
14 24 14 24 24 34
15 25 25 35 25 35
20 30 20 30 20 30
21 31 21 31 31 01
22 32 32 02 32 02
33 03 33 03 33 03
34 04 34 04 04 14
35 05 05 15 05 15

The 24 x 24 concurrence matrix NN’ for this
design can be written as

[\

—_ N W N = O N = O =N W =N WN = O N~ O = N W
N W N = O = = O = D W NN WD = O = = O —= N W

W N = o = N O = N W= W= O =N O = N W =
R = O m N W m N W = O N =D =N W=D W= O
= O P N W DY W s == o =N WY WD o =
S = N W N = W= O A N DO =N WY =W = O =N
N e © mw N W = N WD o O = O = N W= NN W - O
ol el L N L R o e < S i i e A A A S o S i e e
S = 0 PN = W=, O DN =NWNN = W= O =N
— N W= O N = O =N W= NDWND =R, O N~ =N W
N W N = O = = O = NP W N WD = O = = O =N W
W N = O =N O =N W =W =IO = NO =N W N -
—_ N W N = O N = O = NW=NWN = O N~ O = N W
N W N = O = = O = N W NN WD = O = = O = N W N
W NN = O = N O = N W = W= O =N O = N W N -
N = O = N W = N W = O N = O = N W= NN W - O
—_— O = N W NN WD = O = = O = N WD W= O =
S = N W N = W= O = N O = N WD~ WD = O = N
N = O = N W = N W= O N = O = N W= NN W - O
= O = NP N WD = O = O TN W N w2
S = N LW =W = O = 0= NWND = ND=O =N
— N W N = O N = O =N =NWND =, O N~ o =N W
D W N = O == O = DWW = O == O = N W N
W N = O = N O = N W NN —= W= O = N O = N W N -

The matrix NN’ can easily be written as a linear
combination of Kronecker product of proper matrices
as per Definition 2.4. Tperefore this matrix has structure
K. Again the matrix€* NN'e* for both factors has the
structures 0I, + 541,1; and 0I; + 241,1¢, respectively
and, therefore, all main effects of the design are
balanced by Theorem 2.2.

Remark 5.1 In this unified method if g, = 1, then one
gets designs for the experimental setting I given in
Section 3.1. We give below another unified method of
construction of designs for this setting when g, = 1.
However, the design obtained may have different block
contents.

We construct a resolvable design for v =15, X s, =
fx gf in b = rf blocks of size k = g,f = s, and
replication 7. The number of blocks within a replication
is f.

Let the levels of the two factors be denoted as 0,
1,2, .,8,—-2,8y—1and 0, 1,2, .., 8, — 2,5, — 1,
respectively.

Step 1: Write the s, levels of the second factor as a
vectord, = (012 ..s,—2s,—1). Obtain an 5, X b
matrix D, = d,1}.

Step 2: Write the s, levels of the first factor as a

vectord] = (012 ..s, —2s, —1). Let P¢ be a

permutation matrix of order s X s. The matrix P? is a
(0, 1) matrix and satisfies P1 =1 and 1'P¢ = 1”. One
can get A = s,! such matrices. Obtain an s-component

vectord! = Péd;,g=1,2, ... A.
Step 3: Define a g,s, x r matrix D =

[d'@®..d..a ] & =[aj .d . .a'] i el 2
..A}yandu=1,2, .., g, Further. d—d #0Vizi
=1,2,..,7.

Step 4: Obtain an s, X s; matrix Ui" from'di" by taking
cyclic permutations of the columns of dif, j=12, ..,

2. Let U =|:Uf1 U ...U{l’“] be a g,s; X s, matrix.

Then define a g,s, X b matrix D, = LUI | SRR S UrJ :

Step 5: The required design is F = D, ¢« D,. The order
of F is s, X b. The columns of F are the blocks. This
design is resolvable in 7 replications with s, blocks per
replication.
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Step 6: Use replacement of levels technique to generate
designs for v=/f X f, X ... X f, X hy X h, X ... X h, factorial
experiment. For instance, replace the s; symbols by
Ji X fa X ... X f, level combinations written in a
lexicographic order and the s, symbols by A, X i, X ...
X h, level combinations written in a lexicographic order
to get the required design.

This replacement scheme enables us to estimate
the interaction effects among the factors which are
replaced.

Example 3.2. A factorial experiment for 3 x 2 factorial
experiment is to be run in incomplete blocks with
parameters b =9, k= 6 and » = 3. For constructing this
factorial design, we first construct a design for v = 3 X
6, 5 =9, k=6 and r = 3. The following design is
obtained.

In this Example, s, =3,5,=6,71=2,d;=(0 1, 2,
3,4,5,d =(01,2),d'=(0,1,2,1,2,0), d* =
0,2,1,2,1,0),d7=(2,0, 1, 1,0, 2).

000O0O0OOO OO
111111111
Further,])2=d21,;=222222222
333333333
4 4 4 4 4 4 4 4 4
5 5555555 5]
(0 21 01 2 2 1 O]
1 02201021
D1=210120102
1 02201120
21 01 2001 2
021 01 220 1]

and F = D, « D, gives the following required design
with full efficiency on main effects

Replication | Replication 11 Replication II1

Bl B2 | B3 | Bl | B2 | B3 | Bl | B2 | B3

00 20 10 | 00 | 10 | 20 | 20 | 10 00
11 01 | 21 | 21 | 01 11 01 | 21 11
22 12102 (12 ] 22] 02 12 | 02 22
13 03 | 23 | 23| 03 13 13 | 23 03
24 14104 | 14| 24| 04 | 04 | 14 24

05 25 15 | 05 | I5 | 25 | 25 | 05 15

The 18 x 18 concurrence matrix NN’ for this
design can be written as

3jojo0f1rjoj2jof2jrjrjrjrfofrizf{r{2|o
013(0|2(1|0|L{0j2(1|1|{1]|2]{0[1]0]|1]2
ol12(3jo0j2(1j2frfoj1rj1rj1rj1rj24j01(20]1
11210|3j0j0|rf{rjrfoj1rj2|rjof{20j241
Ojr|210(3j0|rf{rj1f{210(1|2{1{oj1j012
210(1j0j03 ||| j1j2j0f{0(2|1({2{1]0
ojrj2)1{1{1)3f{ojofoj1{2j0{2f112y110
2101|111 jo0f3(0)210|111j0(21(0(2]1
112{0]1{1]{1]0({0|3(1]2]{0]|2]|1({0]|1]0]2
Ljrjrfof2j1f{ojzjri{3fojo(2fofrfoft |2
Ljrjrfr{oj2f{1rjoy2j0{3j0f1f{2fof2fof1t
Lyryr)2y1{0|2(rjofojo|3joj1rf{2)1y210
0121121001 )2(2)1703]0{0(0]|0]|3
rjoj2fof1ry2f{zjoj1rjof2y1r(of3f{o(3(ofo
211102101 ]1({2]0]1]0]2[0|0|3({0[3]0
110(2]0{1{2]|2(0|1({0]|2]{1]0|3({0]|3]0]0
211701201 |1{2]0(1]0{2]0]{0[3]0]|310
oj2(1|1{2|0)0(1]2(2]1{0]|3]0{0|0]|0]|3

The matrix NN’ can easily be written as a linear
combination of Kronecker product of proper matrices
as per Definition. Therefore, this matrix has structure
K. Again the matrixe* NN'e* for both factors has the
structures 0I; + 361515 and 0I; + 9141, respectively

and, therefore, all main effects of the design are
balanced by Theorem 2.2.

The interaction efficiency from this design is
obtained by Theorem 2.4 as F1F2 = 0.721. We now use
the replacement technique to get the required design for
v = 3?x 2 experiment in b = 9 blocks, k= 6 and r = 3.
The replacement technique is the following: 0 — 0 0;
1-510,2—>520;3—>01;4—>11;5—21.The
required design again with full efficiency on main
effects is

Replication | Replication I1 Replication 111

Bl1| B2 | B3 | Bl | B2 | B3 | Bl | B2 | B3

000 | 200 | 100 | 000 | 100 | 200 | 200 | 100 [ 000
110 | 010 | 210 | 210 | 010 | 110 | 010 | 210 | 110
220 | 120 | 020 | 120 | 220 | 020 | 120 | 020 | 220
101 | 001 | 201 {201 | 001 | 101 | 101 | 201 | 001
211 | 111 [ OIT | I11 | 211 | Ol1 [OI1 | 111 | 211
021 | 221 | 121 {021 | 121 | 221 | 221 | 021 | 121
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One can easily verify that NN’ matrix has structure
K and all main effects are balanced. The interactions
efficiencies from this design are obtained using
Theorem 2.4 as F1F2 = 0.825, F1F3 = 1.000 and F2F3
=1.000, FIF2F3 = 0.656.

Example 3.3. A factorial experiment for 3 X 4 X 6
factorial experiment is to be run in incomplete blocks.
In order to construct the factorial design, we first
construct a design for v =6 X 12 experiment in b = 18
blocks of size k = 12 each in » = 3 replications. The
following design with full efficiency on main effects
is obtained.

Replication 1

B1 B2 B3 B4 B5 B6
00 10 20 30 40 50
11 21 31 41 51 01
22 32 42 52 02 12
33 43 53 03 13 23
44 54 04 14 24 34
55 05 15 25 35 45
26 56 46 36 16 06
07 27 57 47 37 17
18 08 28 58 48 38
39 19 09 29 59 49

410 310 110 010 210 510
511 411 311 111 011 211

Replication II

B1 B2 B3 B4 B5 B6
40 50 30 00 20 10
11 41 51 31 01 21
22 12 42 52 32 02
03 23 13 43 53 33
34 04 24 14 44 54
55 35 05 25 15 45
36 56 46 06 16 26
27 37 57 47 07 17
18 28 38 58 47 08
09 19 29 39 59 49

410 010 110 210 310 510
511 411 011 111 211 311

Replication III
Bl B2 B3 B4 B5 B6
50 20 40 10 00 30
31 51 21 41 11 01
02 32 52 22 42 12
13 03 33 53 23 43
44 14 04 34 54 24
25 45 15 05 35 55
36 56 26 16 46 06
07 37 57 27 17 47
48 08 38 58 28 18
19 49 09 39 59 29
210 110 410 010 310 510
511 211 111 411 011 311

The interaction efficiency is F1F2 = 0.868. We
now use the replacement technique to get the required
design for v =3 x 4 X 6 experiment in b = 12 blocks, &
= 12 and r = 3. The replacement technique is the
following: 0 > 00;1 >01;2>502;3>503;4 >
10;5511;6>12;7->513;8—520;9—>21;10
— 2 2; 11 = 2 3. The required design with full
efficiency on main effects is:

Replication I

Bl B2 B3 B4 B5 B6

000 100 200 300 400 500
101 201 301 401 501 001
202 302 402 502 002 102
303 403 503 003 103 203
410 510 010 110 210 310
511 011 111 211 311 411
212 512 412 312 112 012
013 213 513 413 313 113
120 020 220 520 420 320
321 121 021 221 521 421
422 322 122 022 222 522
523 423 323 123 023 223
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Replication 11 1003 | 1103 | 1203 | 0003 | 0103 | 0203
Bl B2 B3 B4 B5 B6 1110 | 1210 | oolo | 1100 | 0210 | 1010
400 500 300 000 200 100 1211 0011 0111 0211 1011 1111
101 401 501 301 001 201 0212 1212 1112 1012 0112 0012
202 | 102 | 402 | 502 | 302 | 002 0013 | 0213 | 1213 | 1113 1013 | 0113
003 203 103 403 503 303 0120 0020 0220 1220 1120 1020
310 010 210 110 410 510
511 311 011 211 111 411 1021 0121 0021 0221 1221 1121
312 512 412 012 112 212 1122 1022 0122 0022 0222 1222
213 313 513 413 013 113 1223 1123 1023 0123 0023 0223
120 220 320 520 420 020 Reolication 1L
021 | 121 | 221 | 321 | 521 | 421 eplication
422 | 022 | 122 | 222 | 322 | 522 Bl B2 B3 B4 BS B6
523 4273 023 123 223 323 1100 1200 1000 0000 0200 0100
Replication III 0101 1101 1201 1001 0001 0201
Bl B2 B3 B4 Bs B6 0202 0102 1102 1202 1002 0002
0003 0203 0103 1103 1203 1003
500 200 400 100 000 300
301 501 201 401 101 001 1010 0010 0210 0110 1110 1210
002 302 502 202 402 102 1211 1011 0011 0211 0111 1111
103 003 303 503 203 403 1012 1212 1112 0012 0112 0212
410 (110 f O10 | 310 | 510 | 210 0213 | 1013 | 1213 1113 | 0013 | 0113
L e B N B BER 0120 | 0220 | 1020 | 1220 | 1120 | 0020
312 512 212 112 412 012 002 o1 1 0 » o
013 313 513 213 113 413 ! 0 0 1021 1221 121
420 | 020 | 320 | 520 | 220 | 120 1122 | 0022 | 0122 | 0222 | 1022 | 1222
121 421 021 321 521 221 1223 1123 0023 0123 0223 1023
222 122 422 022 322 522 Renlication III
523 | 223 | 123 | 423 | 023 | 323 cpucation
Bl B2 B3 B4 B5 B6
The interactions efficiencies are F1F2 = 0.9409,
F1F3 = 0.8932 and F2F3 = 1.000, F1F2F3 = 0.8781. 1200 0200 1100 0100 0000 1000
From this design one can also obtain a design for v =2 1001 1201 0201 1101 0101 0001
x32x4,b=18,k=12and r =3 by replacing the 6 0002 1002 1202 0202 1102 0102
levels of first factor by two factors at 2 and 3 levels 0103 | 0003 1003 1203 0203 1103
respectively. The replacement scheme is 0 — 00; 1‘—> 110 | o110 0010 1010 1210 0210
01;2—>02;3 > 10;4 — 11; 5 — 12. The new design 011 i o111 0011 1011 1
with full efficiency on main effects is
1012 1212 0212 0112 1112 0012
Replication I 0013 | 1013 | 1213 | 0213 | o113 | 1113
Bl B2 B3 B4 B5 B6 1120 0023 1020 1220 0220 0120
0000 0100 0200 1000 1100 1200 0121 1121 0021 1021 1221 0221
0101 0201 1001 1101 1201 0001 0222 0122 1122 0022 1022 1222
0202 1002 1102 1202 0002 0102 1223 0223 0123 1123 0023 1023
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The interactions efficiencies from this design are
F1F2 =1.000, F1F3 = 0.9350, F1F4 = 0.8966, F2F3 =
0.9367, F2F4 = 0.9178, F3F4 = 1.000, F1F2F3 =
0.9512, F1F2F4 = 0.8838, FIF3F4 = 0.8941, F2F3F4
=0.8816 and F1F2F3F4 = 0.8970.

Note: In all these designs derived under Example 3.3,
the main effects are balanced and can easily be verified
using Theorem 2.2.

Remark 3.2. This unified approach does not allow the
construction of designs when s; and s, are co-prime and
block size is a multiple of both s, and s,. This needs to
be investigated further.

We give below a catalogue of designs that can be
generated from the unified method. The catalogue
restricts to designs in which the maximum number of
levels of any factor is smaller than 20. Some designs
with efficiencies of factorial effects are given in the CD.

Using the above described method of construction,
a catalogue of designs is prepared and is given in Table
1 in the Appendix. These designs permit the estimation
of all main effects with full efficiency. The parameters
of the designs are also given in the table. These designs
along with the two-factor interactions efficiencies are
available at Design Resources Server being maintained
at [ASRI. The URL is www.iasri.res.in/design/factorial/
factorial.htm.
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APPENDIX

Table 1. Catalogue of resolvable designs obtainable from

the general method for a maximum of 12 levels of any
factor in 3 replications

4x2*

4x3?
4x33
422
42x2?
423
4x3x2
4x3x2?
4x3x23
4x3%x2
42x3x2
52

5x22
5x23
5x2%
52x2
52>< 22
5x3%22
5x3%23
5x4x2
5x4x2?
5x4x3x2

62

6x2
6x3
6x4
6x2°
6x3*
6%x2
6x3%2
6x4x2
6x4x3
6x5%2
6x4x2?
6x5x2*

92
9x3
9x6
9x3?
9x4x3
9x6x2
10°
10x2
10x4
105
10x6
10x8
10x5%2
112
122
12x2
12x3
12x4
12x6
12x8
12x9
12x10




