ICAS VIII, 2019, New Delhi

Trend Free Partially Balanced Incomplete Block (TF-PBIB) Designs Useful in Agricultural Experiments

Rahul Kumar Gupta¹, Arpan Bhowmik¹, Seema Jaggi¹, Cini Varghese¹, Md. Harun¹, Eldho Varghese²

¹ ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India

² ICAR-Central Marine Fisheries Research Institute, Kochi, India

Email: rahul.iasri1@gmail.com; arpan.bhowmik@icar.gov.in; seema.jaggi@icar.gov.in; cini2204@gmail.com; harun.agribhu@gmail.com; eldhoiasri@gmail.com

Introduction

- ☐ Heterogeneity in the experimental material is the most important problem to be taken care while designing of scientific experiments
- □ Block designs are the most commonly used designs when heterogeneity is present only in one direction
- ☐ In agricultural experiments, apart from the known source of variations, the response may also depend on the spatial position of the experimental unit, i.e. on systematic trend effects
 - **When plots occur in strips in a field, it is often the case** that differing contiguous sets of plots within the same strip have different fertility gradient
 - **Trend may occur in greenhouse experiments, where the** source of heat is located on sides of the house and experimental units are kept in lines
 - **❖** In poultry experiments, where the source of heat is at the centre of the shed and chicks of early age are in cages
 - ❖ In orchard and vineyard experiments on undulating topography, where response variable is affected by slowly migrating insects entering the area from one side

Objective

☐ To develop TF-PBIB design which will be useful for experiments involving systematic trend component

Block Model with Trend Component

Necessary and Sufficient Condition for a Design to be **Trend Free**

A block design is said to be trend free iff $\Delta Z=0$

TF-PBIB Design: Method of Construction

1	_		2
	2	•••	v - 2
2	3		v - 1
		•	
		•	
		•	
V	1		v - 3

Parameters v = b, r = k = (v - 2)

Trend effects and Treatment effects are orthogonal for the developed design

Association Scheme

- The developed TF-PBIB design follows varying circular association scheme
 - ✓ For even v : v/2 number of associates
 - ✓ For odd v : (v-1)/2 associates
 - ✓ First Associates will appear together in the design (v-3)number of times.
 - ✓ Associates other than first associates will appear together (v-4) number of times

Example $(\mathbf{v} = \mathbf{b} = 7, \mathbf{r} = \mathbf{k} = \mathbf{v} - 2)$

1	1	2	3	4	5
2	2	3	4	5	6
3	3	4	5	6	7
4	4	5	6	7	1
5	5	6	7	1	2
6	6	7	1	2	3
7	7	1	2	3	4

Associates

Ļ	Treatments	1 st associates	2 nd associates	3 rd associates
	1	2, 7	3, 6	4, 5
	2	1, 3	4, 7	5, 6
	3	2, 4	1, 5	6, 7
	4	3, 5	2, 6	1, 7
	5	4, 6	3, 7	1, 2
	6	5, 7	1, 4	2, 3
	7	1, 6	2, 5	3, 4

Conclusion

- ☐ The developed construction method provides linearly TF-PBIB designs for any number of v and designs are equireplicated, proper, connected and easy to obtain
- \Box In the experimental situations where there is presence of trend component, TF-PBIB designs can be used to make the trend effect as null

Reference

Bhowmik, A., Jaggi, S., Varghese, E., & Yadav, S. K. (2017). Trend free design under two-way elimination of Heterogeneity. Rashi, 2(1), 34-38

Bradley, R. A. and Yeh, C. M. (1980). Trend-free block designs: theory. *Annals of Statistics*, **8**, 883-893