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SUMMARY
Surveys are often based on complex sample designs where sampling units frequently have different probabilities of being selected. In the survey 

data analysis, sampling weights must be used to incorporate the sample designs. Regression coefficients are estimated to find the relationship between 
the study and auxiliary variables. Kish and Frankel (1974) deliberated the use of sampling weights in the estimation of regression coefficients. This 
paper describes calibration based approach to estimate the regression coefficient using two auxiliary variables. The variance estimation of proposed 
estimator is also developed. The empirical results based on synthetic and real population show that the proposed estimator, in terms of percent relative 
bias and percent relative root mean square error, performs better than the existing estimator. The proposed variance estimator shows a satisfactory 
performance in empirical evaluation. 
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1.	 INTRODUCTION

In sample surveys, sampling weights are being 
used in the analysis of data. The weights are attached 
to each unit in the sample such that the sampling unit 
represents the population from which it is selected. 
Sampling weights also called as design weights are 
the reciprocals of the sample inclusion probabilities 
(Horvitz and Thompson, 1952). In the case of 
availability of auxiliary variable these design weights 
are often modified in order to produce an efficient 
estimator of the population parameter by an approach 
commonly called as Calibration (Deville and Särndal, 
1992). In this approach a new set of weights called as 
calibrated weights are obtained which are as close as 
possible to the design weights according to a distance 
measure subject to a set of constraints. Regression 
coefficient is estimated to find out the relationship 
between the study variable and an auxiliary variable. 
It is generally computed by using ordinary least 
square (OLS) techniques under the assumption that 
observations are independently identically distributed. 

But since the survey data are complex in nature OLS 
technique is often misleading and thus there need 
for modification of standard approach. Kish and 
Frankel (1974) considered design-based inference 
of finite population parameter. They proposed the 
use of probability weights for the estimation of 
finite population regression coefficient. Holt, Smith 
and Winter (1980) proposed a probability weighted 
least square method with complex survey data. Devi 
(2005) developed a double sampling based estimator 
of finite population regression coefficient. Wu and 
Fuller (2005) proposed an estimation of regression 
coefficients with unequal probability samples. Also, 
see Breidt and Opsomer (2017)  who reviewed the 
design-based, and model-assisted approach for a 
complex survey data with an application to estimation 
of regression coefficients. Basak et  al. (2018) 
developed calibration approach in the context of two-
stage sampling design for the estimation of finite 
population regression coefficient.
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There can be situation in survey sampling where 
the information on more than one auxiliary variable 
is available. For instance the planting area and the 
proportion of good seeds in agricultural engineering 
are two important auxiliary variables when estimating 
average cotton output (Lu, 2017). So, in a study to 
find the relationship between average cotton output 
and planting area, an another auxiliary variable is 
proportion of good seeds that are highly correlated to 
the study variable that would not appear explicitly in 
the regression relationship but can be used to enhance 
the precision of the estimator. Similarly in an another 
example, the breed of cow and climate is an important 
auxiliary attribute when estimating average milk 
yield (Rhone, 2008) and for a study of relationship 
between milk yield and climate, the breed of cow may 
be used as another auxiliary variable that is highly 
correlated to average milk yield. Motivated with the 
above arguments, the objective of the present work 
is to propose a calibrated estimator of the population 
regression coefficient using two auxiliary variables.

The rest of the article is organised as follows. 
The next section describes the weighted least square 
method and theoretical development for the estimation 
of population regression coefficient with modified 
weight using calibration approach. The expressions 
for variance and estimator of variance have also 
been developed in section 3. The results from model-
based simulations have been used to illustrate the 
performances of the proposed estimator which is 
presented in section 4. The specific application to 
real data is presented in section 5. And, finally the 
concluding remarks with a discussion of potential 
avenues for further research are given in the section 6. 

2.	 �ESTIMATION OF REGRESSION 
COEFFICIENT

To start with we consider a finite population 
U = (U1,U2,..,UN) of size N from which a probability 
sample ( )s s U⊂  of size n is drawn following a 
sample design denoted by p(.) The first and second 
order inclusion probabilities ( )i rp i sπ = ∈  and 

( and )ij rp i j sπ = ∈  are assumed to be strictly positive 
and known. Let y be the study variables defined on 
the population U and taking nonnegative values 

1 2, ,... , Ny y y  where the totals of variables are given 
as y i

i U
t y

∈
= ∑ . We denote the two auxiliary variables 

as x and z having values 1 2, ,... , xNx x  and 1 2, ,... , Nz z z  
that are correlated to the variables y. In this study we 
are interested in estimation of population regression 
coefficient (B) of y on x, given as 
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The ordinary least square estimator (OLS) of the 
population regression coefficient is given as
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We can estimate the population regression 
coefficient using the Hortwitz Thompson estimator 
of population totals to obtain weighted ordinary least 
square estimator (WOLS), (see for example Särndal, 
Swensson and Wretman, 1992 p.195) and is given by
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here, 1
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i
d

π
=  is the sampling design weights of 

elements i (i=1,2 …, N). The first order Taylor 
expansion of the wolsb  is written as
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The approximate variance of estimator of 
regression coefficient is
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where, ( ) ( )i i iE y Y B x X= − − −  and 
ij ij i jπ π π∆ = − .
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The approximate estimator of variance of (3) is 
given by
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We now describe the proposed estimators of 
population regression coefficient. We assume that

i
i U

Z Z
∈

= ∑ , i.e. the population totals of the auxiliary 

variable related to study variable y is known. Here, 
we propose a calibration approach based estimator 
of finite population regression coefficient. Following 
the work of Deville and Särndal (1992), we modify 
the sampling design weights to obtain new calibrated 
weights iw . For this purpose, we minimize the chi-
square distance between the design weights id  and 
calibrated weight iw  by considering distance measure 
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Here iq  is suitably chosen constant and we 
consider 1iq = . This value is often used for regression 
type of estimation. With 1iq = , the revised weights 
are given as
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Using this set of new calibrated weights wi from 
equation (5) the calibrated estimator of regression 
coefficient can be written as
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3.	 ESTIMATION OF VARIANCE

Taylor series linearization is a popular method of 
variance estimation for complex statistics. Using this 
method, we approximate the calibrated regression 
estimator by a linear form. 

For the construction of linearization estimator of 
variance of non-linear function firstly the quantity 
of the interest i.e. calibrated estimator of regression 
coefficient given in equation (6) is written as function 
of the totals of the variables i.e.
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These are the Horvitz Thompson estimators and 
hence unbiased estimators of their respective totals. 
Therefore it can be said that ĉalb  is a function of 
unbiased estimators. Then the partial derivative w.r.t. 
each argument is calculated and is evaluated at the 
population quantities to form the linearising constants. 
The linear part of Taylor series expansion of ĉalb  at 
the mean point is given by
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The approximate variance can be written as
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4.	 SIMULATION STUDIES

In this section we illustrate the comparative 
performance of the existing weighted ordinary least 
square (WOLS) and the proposed calibrated (CAL) 
estimator of regression coefficient using the simulation 
studies based on synthetic population. The simulation 
studies are the common ways of illustrating and 
comparing the performance of proposed estimators 
under the assumed conditions. In our simulation study 
we consider a finite population of size N=5000 units. 

The variable of interest y was generated from the model 
1 24 ; 1,2,...,i i i iy z x e i Nβ β= + + + =  where, errors ei

( )1,2,...,i N=  are generated from normal distribution 
with mean 0 and variance 2

eσ  i.e. 2(0, )i ee N σ . 
Here, the auxiliary variables, , ( 1,2,..., )i ix z i N= =  
are independently generated from normal distribution 

with mean 100 and variance 2
xσ  i.e. ( )2100,i xx N σ  

and chi-square i.e. ( )2 10iz χ∼  respectively. Here, we 
choose 1 2 1β β= =  and fixed the values throughout 
the simulations. However, we chose different values 
of error variance 2

xσ  and 2
eσ  to generate different 

populations having different levels of correlation 
between the variables. In particular, we considered 
six different parameter sets. The values of different 
parameter sets used in the simulation studies are given 
in Table 1. 

Table 1. Parameter sets used in simulation studies.

Parameter set 2
xσ ( , )y x ( , )y zρ

1A 4 2 0.40 0.88

1B 4 16 0.32 0.71

2A 9 2 0.55 0.80

2B 9 16 0.45 0.67

3A 16 2 0.66 0.73

3B 16 16 0.55 0.61

For each fixed finite population sample of size 
n was taken with simple random sample without 
replacement. Particularly, M = 5000 samples were 
drawn for each of the parameter sets to calculate the 
estimators of regression coefficient and estimate of 
variance. To examine the sensitivity of population size 
on the estimator we took three different sample sizes 
i.e. n=100, 200, 500 for our simulation study. 

The performance of the developed calibrated 
estimators has been evaluated on the basis of two 
measures. These are absolute percentage relative bias 
(ARB,%) and percentage relative root mean square 
error (RRMSE,%) that are defined as follows. Let b  
denote the estimator of regression coefficient which 
is either weighted ordinary least square (WOLS) or 
calibrated estimator (CAL). Let k̂b  and ˆkv  denote the 
estimator of regression coefficient and its estimate of 
variance respectively for the sample ( 1,..., )k k M= . 
The percentage absolute relative bias of an estimator 
b  of the population regression coefficient B is given by 



197Vandita Kumari et al. / Journal of the Indian Society of Agricultural Statistics 72(3) 2018   193–199

1

ˆ1ˆ( ) 100
M

k

k

b B
ARB b

M B=

 −
= × 

 
∑

and relative root mean squared errors of these 
estimators are given as

2

1

1 1 ˆ( ) ( ) 100.
M

k
k

RRMSE b b B
B M =

 
= − × 

 
∑

The percentage relative gain (RG,%) in the 
RRMSE of the proposed CAL estimator over WOLS 
estimator is given as 

  100.WOLS CALRG
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−= ×

The values of percentage relative bias (RB,%) of 
variance estimates of regression coefficients are also 
calculated to examine the behavior of estimate of 
variance with respect to the true variance. The RB is 
defined as 
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estimators of population regression coefficients 
obtained from simulation studies are presented in 
Table 2 and 3. The corresponding results for the 
variance estimation are reported in Table 4.

The result in Table 2 shows that the relative 
biases of the estimators decrease as the sample sizes 
increases. The bias of the proposed CAL estimator 
is smaller than the existing WOLS estimator for all 
combination of sample sizes and parameter sets. From 
Table 3 we find that the relative root mean squared 
error both the estimators decreases with increase in 
sample size and there is percentage relative gain in 
root mean squared error for CAL as compared to the 
WOLS. As expected, the % relative gain in RRMSE is 
high for Set 1A and 1B. In these cases, the correlation 
between y and x is lower and correlation between y 
and z is higher as compared to other sets. Moreover, 
when the correlations between ( , )y xρ  and ( , )y zρ  are 
at par then the gain is very less. Overall, two point 
emerged from the results presented in the Table 2 and 

3. First, both the values of relative bias and the values 
of relative root mean squared error decreases as sample 
size increase for both the existing WOLS estimator as 
well as the proposed CAL estimator. Second, in term 
of relative bias and the values of relative root mean 
squared error, the relative performance of the proposed 
CAL estimator as compared to the existing WOLS 
estimator improves with decrease in sample size. 
Table 2. Values of percentage Absolute Relative Bias (ARB, %) 

of WOLS and CAL estimators from simulation studies. 

n WOLS CAL WOLS CAL WOLS CAL

Set1A Set2A Set3A

100 18.49 11.4 12.43 9.56 9.37 8.06

200 12.86 9.54 8.65 7.56 6.51 6.13

500 7.87 6.98 5.29 5.17 3.98 4.03

Set1B Set2B Set3B

100 24.00 14.38 16.03 11.73 12.04 9.79

200 16.75 12.13 11.19 9.41 8.4 7.59

500 10.39 8.98 6.94 6.55 5.21 5.09

Table 3. Percentage relative root mean square error (RRMSE, %) 
and percentage relative gain in RRMSE (RG, %) of WOLS and 

CAL estimators from simulation studies. 

n WOLS CAL % 
RG WOLS CAL % 

RG WOLS CAL % 
RG

Set1A Set2A Set3A

100 23.21 14.30 62.31 15.61 11.65 33.99 11.76 9.78 20.25

200 16.14 11.75 37.36 10.85 9.22 17.68 8.17 7.50 8.93

500 9.87 8.53 15.71 6.64 6.34 4.73 5.00 4.97 0.60

Set1B Set2B Set3B

100 30.14 18.31 64.61 20.13 14.53 38.54 15.11 12.07 25.19

200 21.09 15.10 39.67 14.09 11.60 21.47 10.58 9.37 12.91

500 12.92 10.97 17.78 8.63 8.04 7.34 6.48 6.28 3.18

The empirical performance of estimation of 
variance obtained from the simulation studies are 
shown in Table 4. The results in Table 4 show that the 
relative bias of variance estimate reduces with increase 
in sample size for both WOLS and CAL estimators 
and for all combination of parameters sets. Overall, the 
variance estimates indicate satisfactory performance. 

5.	 APPLICATION TO REAL DATA

In this section we illustrate an application of 
the proposed estimator with real data. We used the 
MU284 population given in Appendix C of Särndal, 
Swensson and Wretman (1992) having 284 units in 
the population. The variables used for estimation of 
regression coefficients are real estate values according 
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to 1984 assessment (REV84) as variable of interest 
(y) and the auxiliary variables x and z are the total 
number of seats in municipal council in 1982 (S82) 
and the number of municipal employees in 1984 
(ME84) respectively. In this population the correlation 
between y and x is 0.677 and that between y and z 
is 0.940. From this population we selected M=5000 
samples each of sizes n (n = 25, 50, 75 and 100) by 
simple random sampling without replacement and 
population regression coefficients were estimated 
using two estimators (WOLS and CAL). The result of 
this application is given in the Table 5. 

Table 5. Values of percentage absolute relative bias (ARB, %), 
percentage relative root mean squared error (RRMSE, %) and 

percentage relative gain in RRMSE (RG, %) using the real data.

n ARB, % RRMSE, %

WOLS CAL WOLS CAL % RG

25 45.93 44.96 56.12 50.06 12.11

50 40.54 37.14 46.36 41.96 10.49

75 34.48 31.71 38.89 36.52 6.49

100 29.05 26.24 32.72 31.18 4.94

Table 4. True variance (V), estimate of variance ( v̂ ) and relative 
bias of the variance (RB, %) of WOLS and CAL estimators from 

simulation studies. 

V x 10-2 v̂  × 10-2 RB ,%

n WOLS CAL WOLS CAL WOLS CAL

Set 1A

100 5.6716 1.7833 5.4121 2.3074 -4.58 29.39

500 1.0258 0.6755 0.9908 0.694 -3.42 2.74

Set1B

100 9.1862 2.8656 8.8207 3.8718 -3.98 35.11

500 1.6889 1.0833 1.6224 1.153 -3.94 6.44

Set2A

100 2.5207 1.1531 2.4054 1.334 -4.58 15.69

500 0.4559 0.3762 0.4403 0.3569 -3.41 -5.13

Set2B

100 4.0828 1.8159 3.9203 2.2264 -3.98 22.61

500 0.7506 0.5974 0.7211 0.5902 -3.93 -1.2

Set3A

100 1.4179 0.8192 1.3530 0.8772 -4.58 7.08

500 0.2564 0.2342 0.2477 0.2159 -3.40 -7.81

Set3B

100 2.2965 1.275 2.2052 1.4574 -3.98 14.31

500 0.4222 0.3717 0.4056 0.356 -3.93 -4.22

From the results reported in Table 5 we can see 
that in terms the percentage absolute relative bias 
and percentage relative root mean squared error the 
proposed estimator CAL has performed consistently 
better than the WOLS. The percentage relative gain 
in RRMSE of the proposed estimator increases with 
decrease in sample size. The results clearly indicate 
that the proposed CAL estimator shows better 
performance both in terms of bias and efficiency in 
real data. The conclusions from real data are identical 
to the simulation studies based on synthetic population 
reported in Section 4. 

6.	 CONCLUDING REMARKS 

In this paper, a calibration estimator of regression 
coefficient using auxiliary variables correlated with 
the study variable has been developed. Our empirical 
evaluation on the basis of simulation studies and real 
data show that the proposed estimator is more efficient 
than the existing estimator. The proposed variance 
estimation indicates a reasonably good performance. In 
few simulation setup, the proposed variance estimator 
shows a biased results. Therefore, some alternative 
approaches like bootstrap and jacknife based variance 
estimation can be explored. The proposed estimator of 
regression coefficient uses two auxiliary variables but 
it is interesting to explore the use of multiple auxiliary 
variables. Authors are currently on these issues. 
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