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ABSTRACT KEYWORDS

Chain-ratio estimators are often used to improve the efficiency Ehai”';atio eStiml"?‘to'f"
of the estimation of the population total or the mean using wo-pnase sampling;

- . I . N auxiliary variables; bias;
two auxiliary variables, available in two different phases. An mean square error;

improved chain-ratio estimator for the population total based efficiency
on double sampling is proposed when auxiliary information is

available for the first variable and not available for the second

variable. The bias and the mean square error of this estimator

are obtained for a large sample. Empirical evaluations using

both model-based and design-based simulations show that the

proposed estimator performs better than the ratio, the regres-

sion, and the difference estimators.

1. Introduction

Survey statisticians may use auxiliary information to improve the precision of
estimators of population parameters, notably means and totals. The ratio, the
regression, and the difference estimators are used when available auxiliary infor-
mation is used for estimation. The ratio estimator is used when the character y and
the auxiliary variable x are positively correlated to one another and the product
estimator is used when y and x are correlated negatively to one another. When the
information on the auxiliary variable is not available, a large preliminary sample is
necessary to record the auxiliary character and a subsample is drawn from this
preliminary sample to record the character y. This method of first selecting a large
preliminary sample and then subsampling from that large sample is known as
“two-phase sampling or double sampling” (Neyman, 1938). The double sampling
technique is appropriate when the auxiliary variables are easy to obtain
(Hidiroglou and Sérndal, 1998; Fuller, 2000; Hidiroglou, 2001). Consider a first-
phase sample comprising #’ units drawn from a finite population comprising
N units, in order to record the auxiliary variable x. From this first-phase sample of
n'units, a second-phase sample comprising n units is drawn to estimate the
character y. The ratio estimator for the population mean in double sampling is
given by Sukhatme (1962) as
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v

YRd =Y (1)

R R

where y =1 Z yx is the sample mean of y for the second-phase sample,
"=

n
X = ni Z xx is the sample mean of the auxiliary variable x for the first-

n
phase sample, and x = %kZ: Xk is the sample mean of x for the second-
=1

phase sample.

We assume that the two auxiliary variables x; and x;, are available at different
phases of sampling, that is, x; is completely known while x;, is available at the
first phase and cor(x1, x,) > 0.50, with cor(x;, y) < cor(x,, ¥). Then, the popu-
lation mean of x; is estimated more accurately than x), alone by

/

~ X, —
Xord = —2X;, 2
2.Rd R (2)
if
1C,
px1x2>ic_x:' (3)
Here
S, N 2,
C,, =33 Z(sz— X)), i=1,2, (4)

k=1

N
and X; = & >~ x; is the population mean of the auxiliary variable x;, i = 1,2.
k=1
Chand (1975) introduced chain-ratio estimators and Kiregyera (1980)
a chain-ratio estimator with two auxiliary variables with a regression in the
first phase to estimate the auxiliary variable. Bahl and Tuteja (1991) devel-
oped the ratio and the product exponential estimators and compared with
the ratio estimator. Singh and Tailor (2003) proposed an exponential ratio
estimator by incorporating the correlation coefficient and Kadilar and Cingi
(2004) a ratio estimator in simple random sampling. Singh and Choudhury
(2012) developed an exponential chain-ratio and product estimator for
correlated auxiliary variables, and Vishwakarma and Gangele (2014) a class
of chain-ratio product estimators using two auxiliary variables in double
sampling. We improve the chain-ratio estimator under simple random sam-
pling with a weighted combination of the ratio estimator (Cochran, 1977)
and the chain-ratio estimator (Chand, 1975). The weight is such that the
mean square error of the proposed estimator is smaller than that of the ratio
estimator (Cochran, 1977) or that of the chain-ratio estimator (Chand, 1975).
We evaluate the estimator on the basis of four data sets.
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2. Theory

Consider a finite population Q = (1,2, ..., k, ..., N). Complete information on
the auxiliary variable x; is available. A large preliminary sample s’ € Q of size n’
is drawn from Q by simple random sampling without replacement to collect
information on x,. Subsequently, a second-phase sample s C s’ of size n is drawn
from s’ by simple random sampling without replacement to record the study
variable y. For every k € s, the kth unit pertaining to y is denoted by yx. The kth
unit for both auxiliary variables are x;; and x,. The population total >, . , X1k
of x; and the values of x1x and x,x are known for every k € s'. The sample means

n
of the auxiliary variables for the first-phase sample are X; =1 % x; and

n

n n
X, = L3 xo1; and for the second-phase sample x; = %Z X1k, Xy = % > Xk
k=1 k=1 k=1

o

and y =1%" y for the variables corresponding to the population means

N N N
Xi =% Xtk Xo =52 %k and Y =3 >" y. The coefficients of variation
k=1 k=1

o~
||
_

S, S, S,
of x5, x, and y are Cxl—x_ll’ C’Q_X_;’ and C,=3%,
2 1 al v\ 2 1 N \2

where S7. :mk§1(xik_Xi) ,i=1,2and S} :mkgl(yk—Y) :

The population correlations are p,,, p,., and p, . between the sub-
scripted variables. We define

such that

E(e)) = E(¢'y,) = E(&y,) = E(¢)y,) = E(er,) = 0
E(e ) = 8182 for j=y, x1, %

(%) = E(ge)) = 5,8? ; , forj =x1, x,

( /

(

E J
E SJSJ’): (SJSJ)_E<8 5])—52311 forj=x1, j =x
E(gyex,) = 018y, E(gy€x) = 028y, E()€s,) = 028k, Elexex,) = 010

(6)

Here,

le)’ = pyxls}’sxl’ sz)’ = pyxzs)’sx27 SX1X2 = pxl xzsxlsxz’ (7)
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1 1 1 1
81: (;—N>, 82: <;—N), and83: <

Estimators for the population total are

(1) the sample mean estimator (Cochran, 1977)

1—%) (8)
n n

Ym = N)_/, (9)
with variance
Var(Yy) = N°Y?8,C; (10)
(2) the ratio estimator in double sampling (Sukhatme, 1962)
- x
Yrp = Ny =2, (11)
X2
whose bias, to the first-order approximation, is
Bias (?RD) = NY(S_?, <C)262 — pyszyC’Q) 5 (12)
and whose first-order approximation of the mean square error is
MSE (Vrp) = N*7? (51cj + 6 (cﬁz ~2, cycx2)>; (13)
(3) the chain-ratio estimator (Chand, 1975)
. X, X
o= NyZ2Zt, (14)
X2 X'

whose bias, to the first-order approximation, is

Bias (V¢) = NY(@zpm G,y — 819, G,Cry — 02, C,Cr, — 6ZC§Z), (15)

and first-order approximation of the mean square error of Y¢ is

MSE (Y) = N> (61cj 0, (cfQ ~2p, cycxz) + 0, (ch ~2, Cycxl>); (16)
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(4) the chain exponential estimator (Kiregyera, 1980)

Yeg = N%(klz + by, (X1 — X1)), (17)
whose bias, to the first-order approximation, is
Bias (Ycg) = N?(Sszm Cs, (sz ~ Py, Cnyl) — 53pmcych — 62Cfc2>, (18)
and first-order approximation of the mean square error of Ycg is

MSE (?CE) = N2 ?2 (81C}% + 83 (Cazcz - ZP},XZ C}’sz) + 82pxpc1 sz (sz)q sz - zp}m C)') ); (19)

(5) the multivariate ratio estimator in double sampling with two auxiliary
variables (Sukhatme, 1962)
/

- _ X1 x>
X1 X2

where w is obtained by minimizing the mean square error of YymrD:
w(r2) 5% -7) (%)
W = ¥ ¥ kv, = kv = ) (21)
MSE(y%1) + MSE(y%) - 2B (3% - ¥) (322 - 7)

and whose minimum mean square error of Yygrp (at optimum value of w) is

. _ 84
MSE(Ymrp) = N?Y? | 6,C* — , (22)
( ) 4 C)261 + C)2€2 - szlxz Cxl sz

where
2
A= C; (pyx1 Cx1 - pyxzcxz> - C92€1 CJzCz (1 B p92c1x2>
+ ZCnyl sz <(Pyx2 Cxl + Pyx1 sz) - pxlxz (P)’xl Cx1 + Pyxz sz)) ’

(6) the exponential-chain-ratio estimator (Singh and Choudhury, 2012)

(*2/%1)X; — icz>7 (23)

Y, = Nyex _
cs =AY P((;‘cfz/»‘c’l)XIJm‘cz

whose bias, to the first-order approximation, is

N —(3 1
Bias(¥cs) = NY <§ (85C +0:C2, ) =5 (836,.,6,Cuc + 020, cycxl)) . (24)
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and whose first-order approximation of the mean square error of Ycg is

N - 1
MSE(YCS) = N2Y2 (81 C)Z/ + Z (83C)262 + 82C>261) - (83PJ’X2C}’CJC2 + 62P}’X1 C}"Cm)); (25)

(7) the chain exponential estimator in double sampling (Vishwakarma and
Gangele, 2014)

(26)

(0¥ + ) (aXy + ) — )

Yvs = Nyex =
e p(’_CIZ(OW_C’l +B) " (aXy +B) + %

where « and B are real numbers used as parameters in Yys, and whose
minimum mean square error is

R ~ C2 —4p,. C,C,
MSE(Yys) = N*Y? (&ci + 6, 4”‘2 YR 52C;p}2,xl> . (27)

The sample mean Yy, in Eq. (9) is the basic estimator to estimate the population
total and it uses no auxiliary variable. The precision of an estimator increases by
including auxiliary variables (Cochran, 1977). The ratio estimator in double
sampling Yrp in Eq. (11) uses a single auxiliary variable, which is positively
correlated with the study variable y (Sukhatme, 1962). The multivariate ratio
estimator in double sampling Yyrp in Eq. (20) with two auxiliary variables x;and
X, suggested by Sukhatme (1962), requires both that auxiliary variables are
available at the first phase of the sampling. This estimator is defined as a linear
combination of two separate ratio estimators and does not use the correlation
between x;and x,. Two auxiliary variables x; and x, may be available at different
phases of the sampling, for example, when x; is completely known and x; is
already available at the first phase. The chain-ratio estimator Yc in Eq. (14) uses
two auxiliary variables and the correlation between them (Chand, 1975), but the
regression line between the study variable y and the auxiliary variables x; and x;
passes through the origin and the auxiliary variable x; is estimated with the ratio
estimator. Kiregyera (1980) described the chain exponential estimator Y in Eq.
(17) avoiding the constraint that the regression line passes through the origin and
he used the regression method to estimate x,. The exponential-chain-ratio
estimator Ycg in Eq. (23) of Singh and Choudhury (2012) also involves two
auxiliary variables x; and x,, but, this estimator of x, is based on the ratio
estimator. The chain exponential estimator in double sampling Yvs in Eq. (26) is
a generalized class of the exponential ratio estimator and several estimators are
obtained as special cases of this estimator (Vishwakarma and Gangele, 2014), but
this estimator does not minimize the mean square error.
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3. The weighted chain-ratio estimator

In the case of a single auxiliary variable, an estimator performs satisfactorily
when the auxiliary variable is highly correlated with the variable y under
study, but in the case of two auxiliary variables, the performance of the
estimator depends on how these auxiliary variables are correlated with y.
They must also be positively correlated with each other. We propose the
weighted chain-ratio estimator for the population total in simple random
sampling without replacement as

. X X, X
Ys=N7<oc_—l+(1—oc>_—2;>, (28)

X1 X2 X'1
where the value of the weight & (0< a<1) is determined by minimizing the
mean square error of Ys. The estimator in Eq. (28) is a weighted form of the
ratio estimator (Cochran, 1977) and Chand’s (1975) estimator. If Py, is greater

than p__, then the first term aXl dominates in the estimator given in Eq. (28);
yx2 X1

X

if it is lower, the second term (1 — « + &+ dominates. The estimator in Eq.

. — X — > X
(28), whose mean square error is smaller than each component y& and y’f—zf(fl ,
X1 X2 X1

takes the advantages of both the ratio estimator (Cochran, 1977) and Chand’s
(1975) estimator. It is expected to perform satisfactorily in estimating finite
population totals. The estimator in Eq. (28) is

Vs =NY(1+e) (a(l te) Q- @)1 +y) (1 Fey) 1+ s’xl)*l). (29)
The bias of Ys, to the first-order approximation, is
Bias (Ys) = E(Ys — NY)
- NY((a _1) (52c§2 +83p,,, cycxz) — abip,, C,Cx — Oap,, cycxl).

(30)
The mean square error of Ys, to the first-order approximation, is
MSE (¥s) = E(Vs — NY)* = N*7?(?D; + (1 — @)’D3), (31)
where
D, = &, (cj +C -2, cycxl) ~and (32)

Dy =0, +05(C = 29,,G,C ) +0:(C = 20,,GC ). (33)
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Solving 8MSE(175) /Oa = 0 leads to the optimum value of the weight a as

D,

= 34
D, + D, (34)

(xopt

Replacing the value of a,p in the mean square error of Y5 given in Eq. (31),
the minimum mean square error of the proposed estimator Yg is

. _( DD
2372 12
MSE(Ys) . = N?Y <D1 n D2>. (35)

4, Comparison of the mean square error of different estimators of
the population total

We compare the mean square error of the proposed estimator Ys of Eq. (35)

with the estimators mentioned in section 2.

(i) From Eq. (10) and (35),
A2 — Ai(A; + As)

MSE (Ys) . < MSE (Yy,) if >0 36
(Ys) min ( )12A0+A1+A2+A3 : (36)
where
AO = (SIC;, Al = 61 (C)ZCI — ZPJ/xl Cnyl), (37)
Ay =0 (C = 2p,,G,Cy ) and 4y = &(C, - 2,,GC, ). (39)

(ii) From Eq. (13) and (35),
AR+ A3(2A0 + A3) + Ay (As — A))

MSE (Ys),... < MSE (Ygp) if B, >0, (39)
with
By =2A0+ A, + Ay + As. (40)
(iii) From Eq. (16) and (35),
MSE (¥s)_.. < MSE (Y¢) if (Ao + 42+ 45)° >0. (41)

B,
(iv) From Eq. (19) and (35),

MSE (Ys).... < MSE (Y¢g) if

min
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Ao(Ag + 245+ (24 A1 + As + A3)Ay) + AZ + Ay (A5 — A)

>0 42
B @)

with
A4 =09, C (P Cr = 2, G, ). (43)

(v) From Eq. (22) and (35),
N N B, A

MSE (Ys) . < MSE (Y, if ——§ >0, (44
( S)mln ( MRD) 1 B, 3C32cl + CJZCZ - 2Px1szX1CX2 ’ (4

with

(vi) From Eq. (25) and (35),

i . B 1 3
MSE () iy < MSE (Ves) if 52+ 7 (A2 4 43) 2 (099 G Cu + 629, G,y ) 0. (46)

(vii) From Eq. (27) and (35),

. B C2 —4p C,Cy
< MSE (Yys) if =+ 85— Py s

MSE (Y
(¥s) B, 4

2 2
min — 62Cypyx1 >0. (47)
These analytical expressions do not yield the performance of the estimator in
Eq. (28) in terms of mean square error compared to the other estimators.
That is why a simulation is necessary.

5. Comparison by simulation

First we simulate, second we use empirical datasets. We compute the per-
centage of relative efficiency of the estimators compared with the sample
mean estimator

MSE (Y1)
PRE = —— ™ x 100, (48)
MSE (Y;)

where MSE (Y;) denotes the mean square error of an estimator Y;.

5.1. Model-based simulation
We generate the unknown auxiliary variable x, using the model

Xk = 1.5x1k + vk, k=1, ...N where x;3~x*(5) and vx~N (0,02).  (49)
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Then, we generate a finite population of size N = 5000 using the model
Yk = X1k + X+, k=1,...N, (50)

where &~N (0,0?%). 0, and o, take three different values each to generate
nine different data-sets: 0, € {4, 6, 8} and o, € {5, 10, 15}. Table 1 pre-
sents the nine population datasets with different correlations between y, x;,
and x,. For each corresponding population, we draw a first-phase sample s’
of size 500 units and a subsample s of size 100 units from s’ by simple
random sampling without replacement, and we estimate the population total.
We draw 2500 random samples from the population and for each sample we
calculate the percentage of relative efficiency, presented in Table 2.

First, the percentage of relative efficiency increases with the correlations
between y, x1, and x,. As the case 1 (0, = 4and g, € {5, 10, 15}) has the highest
correlation between x; and x;, the gain in efficiency is the highest one in this case.
For a fixed correlation between x; and x,, the percentage of relative efficiency
increases with the difference between the correlations p(y, x;) and p(y, x,). In
case 2 (6, = 6 and o, € {5, 10, 15}), p(x1,x;) = 0.61. The gain in efficiency
p(y, x1)-p(y, x,)= 0.14 for 0, =6 and o, =5 is higher than for o, =6
and 0. =10 (p(y, x1)-p(y, x2)= 0.10) and for 0,=6 and o, =15
(p(y, x1)-p(y, x2)= 0.08). Likewise for cases 1 and 3. Second, the proposed
estimator Ys outperforms all the existing estimators in terms of percentage of
relative efficiency for any level of correlation between y, x;, and x;,. As expected, the

relative gain for Ys is highest for case 1.

5.2. Design-based simulation

1. Population 1, taken from Singh and Chaudhary (1986)

y = area planted (in acres) with wheat in 1974; x,= area planted (in acres)
with wheat in 1973; x,= area planted (in acre) with wheat in 1971.

Table 1. Parameters of the simulation.

Standard Standard Correlation Correlation Correlation
Correlation  deviation of deviation of between y and between y and between x; and

Situation level error v oy error € o x1 p(y, x1) x2 p(y, X2) X2 p(x1, X2)
1 High 4 5 0.78 0.84 0.76
Medium 4 10 0.60 0.64 0.76
Low 4 15 0.46 0.49 0.76
2 High 4 5 0.71 0.85 0.61
Medium 6 10 0.57 0.67 0.61
Low 6 15 0.45 0.53 0.61
3 High 8 5 0.64 0.88 0.50
Medium 8 10 0.53 0.72 0.50
Low 8 15 0.43 0.57 0.50
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Statistics are
N=34, n =20, n=05, Y =856.4 acres, X; = 199.4 acres, X, = 208.8
acres, C,=0.86, C, =075 G6,=072, p, =045 p, =045

2

Py, = 0.98. (51)
2. Population 2, taken from Cochran (1977)

y = total number of children taking a placebo; x;= total number of paralytic
polio cases in the group taking placebos; x,= total number of paralytic polio
cases in the group not taking placebos.

Statistics are

N=234, W =15 n=7, Y =4.9 children, X; = 2.9 children, X, = 2.5
children, C,=1.01, C, =105 C, =123, p, =064 p, =073,

Prv, = 0.68. (52)
3. Population 3, taken from Ahmed (1997)

y = total number of literate persons; x;= total population size; x,= total
number of cultivators.

Statistics are

N =376, n’ = 100, n = 20, Y = 316.6 literate persons, X,= 1075.3 per-
sons, X, = 141.1 cultivators, C, = 0.77, Cy, = 0.77, Cy, = 0.84, p . = 0.90,

Py, = 0.91, p, = 0.86. (53)

4. Population 4, taken from Abu-Dayyeh et al. (2003)

y = total number of cultivators; x;= total number of households in a village;
x,= area of the village (in acres).

Statistics are

N =332, n =70, n=15,Y = 1093.1 cultivators, X;= 143.3 households,
X, = 181.5 acres, C, = 0.76, C,, = 0.76, Cy, = 0.77, Py, = 0.86,p,, = 0.97,
Prx, = 0.84. (54)

Table 3 presents the results obtained from design-based simulations.
The percentage of relative efficiency of the proposed estimator in Eq. (28)
is higher than for the other estimators, and this for the four populations.
We also performed a sensitivity analysis of the proposed estimator by
taking three different samples for the first and the second phases from
populations 3 and 4. We combine first-phase samples with
n' =80, 100, 120, and second-phase samples with n =10, 20, 30. We
perform no sensitivity analysis for populations 1 and 2 which are too
small. Table 4 shows that the percentage of relative efficiency of the
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proposed estimator performs better for all choices of sample sizes than the
other estimators in terms of relative efficiency.

6. Conclusion

We have expressed an efficient chain-ratio estimator for the population total
using two auxiliary variables. This estimator is a weighted combination of the
ratio estimator and Chand’s (1975) chain-ratio estimator. The weights are
obtained by minimizing the mean square error of this estimator. This
estimator is more efficient than the ratio estimator and the chain-ratio
estimator. With empirical data, our estimator in Eq. (28) has higher effi-
ciency than other estimators.
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