
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gmps20

Mathematical Population Studies
An International Journal of Mathematical Demography

ISSN: 0889-8480 (Print) 1547-724X (Online) Journal homepage: https://www.tandfonline.com/loi/gmps20

Improved chain-ratio type estimator for
population total in double sampling

Saurav Guha & Hukum Chandra

To cite this article: Saurav Guha & Hukum Chandra (2019): Improved chain-ratio type
estimator for population total in double sampling, Mathematical Population Studies, DOI:
10.1080/08898480.2019.1626635

To link to this article:  https://doi.org/10.1080/08898480.2019.1626635

Published online: 19 Jun 2019.

Submit your article to this journal 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gmps20
https://www.tandfonline.com/loi/gmps20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08898480.2019.1626635
https://doi.org/10.1080/08898480.2019.1626635
https://www.tandfonline.com/action/authorSubmission?journalCode=gmps20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gmps20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/08898480.2019.1626635&domain=pdf&date_stamp=2019-06-19
http://crossmark.crossref.org/dialog/?doi=10.1080/08898480.2019.1626635&domain=pdf&date_stamp=2019-06-19


Improved chain-ratio type estimator for population total in
double sampling
Saurav Guha and Hukum Chandra

Indian Agricultural Statistics Research Institute, New Delhi, India

ABSTRACT
Chain-ratio estimators are often used to improve the efficiency
of the estimation of the population total or the mean using
two auxiliary variables, available in two different phases. An
improved chain-ratio estimator for the population total based
on double sampling is proposed when auxiliary information is
available for the first variable and not available for the second
variable. The bias and the mean square error of this estimator
are obtained for a large sample. Empirical evaluations using
both model-based and design-based simulations show that the
proposed estimator performs better than the ratio, the regres-
sion, and the difference estimators.
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1. Introduction

Survey statisticians may use auxiliary information to improve the precision of
estimators of population parameters, notably means and totals. The ratio, the
regression, and the difference estimators are used when available auxiliary infor-
mation is used for estimation. The ratio estimator is used when the character y and
the auxiliary variable x are positively correlated to one another and the product
estimator is used when y and x are correlated negatively to one another.When the
information on the auxiliary variable is not available, a large preliminary sample is
necessary to record the auxiliary character and a subsample is drawn from this
preliminary sample to record the character y. This method of first selecting a large
preliminary sample and then subsampling from that large sample is known as
“two-phase sampling or double sampling” (Neyman, 1938). The double sampling
technique is appropriate when the auxiliary variables are easy to obtain
(Hidiroglou and Särndal, 1998; Fuller, 2000; Hidiroglou, 2001). Consider a first-
phase sample comprising n0 units drawn from a finite population comprising
N units, in order to record the auxiliary variable x. From this first-phase sample of
n0units, a second-phase sample comprising n units is drawn to estimate the
character y. The ratio estimator for the population mean in double sampling is
given by Sukhatme (1962) as
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�yRd ¼ �y
�x0

�x
; (1)

where �y ¼ 1
n

Pn
k¼1

yk is the sample mean of y for the second-phase sample,

�x0 ¼ 1
n0
Pn0
k¼1

xk is the sample mean of the auxiliary variable x for the first-

phase sample, and �x ¼ 1
n

Pn
k¼1

xk is the sample mean of x for the second-

phase sample.
We assume that the two auxiliary variables x1 and x2 are available at different

phases of sampling, that is, x1 is completely known while x2 is available at the
first phase and cor x1; x2ð Þ> 0:50, with cor x1; yð Þ< cor x2; yð Þ. Then, the popu-
lation mean of x2 is estimated more accurately than �x02 alone by

�̂X2;Rd ¼ �x02
�x01

�X1; (2)

if

ρx1 x2 >
1
2
Cx1

Cx2
: (3)

Here

Cxi ¼ Sxi
�Xi
; S2xi ¼ 1

N�1

PN
k¼1

xik � �Xið Þ2, i ¼ 1; 2, (4)

and �Xi ¼ 1
N

PN
k¼1

xik is the population mean of the auxiliary variable xi, i ¼ 1; 2.

Chand (1975) introduced chain-ratio estimators and Kiregyera (1980)
a chain-ratio estimator with two auxiliary variables with a regression in the
first phase to estimate the auxiliary variable. Bahl and Tuteja (1991) devel-
oped the ratio and the product exponential estimators and compared with
the ratio estimator. Singh and Tailor (2003) proposed an exponential ratio
estimator by incorporating the correlation coefficient and Kadilar and Cingi
(2004) a ratio estimator in simple random sampling. Singh and Choudhury
(2012) developed an exponential chain-ratio and product estimator for
correlated auxiliary variables, and Vishwakarma and Gangele (2014) a class
of chain-ratio product estimators using two auxiliary variables in double
sampling. We improve the chain-ratio estimator under simple random sam-
pling with a weighted combination of the ratio estimator (Cochran, 1977)
and the chain-ratio estimator (Chand, 1975). The weight is such that the
mean square error of the proposed estimator is smaller than that of the ratio
estimator (Cochran, 1977) or that of the chain-ratio estimator (Chand, 1975).
We evaluate the estimator on the basis of four data sets.
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2. Theory

Consider a finite population Ω ¼ 1; 2; :::; k; :::; Nð Þ. Complete information on
the auxiliary variable x1 is available. A large preliminary sample s0 2 Ω of size n0

is drawn from Ω by simple random sampling without replacement to collect
information on x2. Subsequently, a second-phase sample s � s0 of size n is drawn
from s0 by simple random sampling without replacement to record the study
variable y. For every k 2 s, the kth unit pertaining to y is denoted by yk. The kth
unit for both auxiliary variables are x1k and x2k. The population total

P
k2 Ω x1k

of x1 and the values of x1k and x2k are known for every k 2 s0. The sample means

of the auxiliary variables for the first-phase sample are �x01 ¼ 1
n0
Pn0
k¼1

x1k and

�x02 ¼ 1
n0
Pn0
k¼1

x2k; and for the second-phase sample �x1 ¼ 1
n

Pn
k¼1

x1k, �x2 ¼ 1
n

Pn
k¼1

x2k,

and �y ¼ 1
n

Pn
k¼1

yk for the variables corresponding to the population means

�X1 ¼ 1
N

PN
k¼1

x1k, �X2 ¼ 1
N

PN
k¼1

x2k, and �Y ¼ 1
N

PN
k¼1

yk: The coefficients of variation

of x1, x2, and y are Cx1 ¼ Sx1
�X1
, Cx2 ¼ Sx2

�X2
, and Cy ¼ Sy

�Y ,

where S2xi ¼ 1
N�1

PN
k¼1

xik � �Xið Þ2 ; i ¼ 1; 2 and S2y ¼ 1
N�1

PN
k¼1

yk � �Yð Þ2.

The population correlations are ρy x1 , ρy x2 , and ρx1 x2 between the sub-
scripted variables. We define

εy ¼ �y� �Y
�Y

; ε0x1 ¼
�x01 � �X1

�X1
; εx1 ¼

�x1 � �X1

�X1
; ε0x2 ¼

�x02 � �X2

�X2
; and εx2 ¼

�x2 � �X2

�X2
(5)

such that

EðεyÞ ¼ Eðε0x1Þ ¼ Eðεx1Þ ¼ Eðε0x2Þ ¼ Eðεx2Þ ¼ 0

Eðε2j Þ ¼ δ1S
2
j for j ¼ y; x1; x2

Eðε02j Þ ¼ Eðεjε0jÞ ¼ δ2S
2
j ; for j ¼ x1; x2

Eðεjε0j0 Þ ¼ Eðε0jε0j0 Þ ¼ Eðε0jεj0 Þ ¼ δ2Sjj0 for j ¼ x1; j0 ¼ x2
Eðεyεx2Þ ¼ δ1Sx2y; Eðεyε0x1Þ ¼ δ2Sx1y; Eðεyε0x2Þ ¼ δ2Sx2y ; Eðεx1εx2Þ ¼ δ1Sx1x2 :

(6)

Here,

Sx1y ¼ ρy x1SySx1 ; Sx2y ¼ ρy x2SySx2 ; Sx1x2 ¼ ρx1 x2Sx1Sx2 ; (7)
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δ1 ¼ 1
n
� 1
N

� �
; δ2 ¼ 1

n0
� 1
N

� �
; and δ3 ¼ 1

n
� 1
n0

� �
: (8)

Estimators for the population total are

(1) the sample mean estimator (Cochran, 1977)

Ŷm ¼ N�y; (9)

with variance

VarðŶmÞ ¼ N2�Y2δ1C
2
y; (10)

(2) the ratio estimator in double sampling (Sukhatme, 1962)

ŶRD ¼ N�y
�x02
�x2

; (11)

whose bias, to the first-order approximation, is

Bias ðŶRDÞ ¼ N�Yδ3 C2
x2 � ρyx2CyCx2

� �
; (12)

and whose first-order approximation of the mean square error is

MSE ðŶRDÞ ¼ N2�Y2 δ1C
2
y þ δ3 C2

x2 � 2ρyx2CyCx2

� �� �
; (13)

(3) the chain-ratio estimator (Chand, 1975)

ŶC ¼ N�y
�x02
�x2

�X1

�x01
; (14)

whose bias, to the first-order approximation, is

Bias ðŶCÞ ¼ N�Y δ2ρyx2CyCx2 � δ1ρyx2CyCx2 � δ2ρyx1CyCx1 � δ2C
2
x2

� �
; (15)

and first-order approximation of the mean square error of ŶC is

MSE ðŶCÞ ¼ N2�Y2 δ1C
2
y þ δ3 C2

x2 � 2ρyx2CyCx2

� �
þ δ2 C2

x1 � 2ρyx1CyCx1

� �� �
; (16)
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(4) the chain exponential estimator (Kiregyera, 1980)

ŶCE ¼ N
�y
�x2

�x02 þ bx2x1 �X1 � �x01ð Þð Þ; (17)

whose bias, to the first-order approximation, is

Bias ðŶCEÞ ¼ N�Y δ2ρx2x1Cx2 Cx2 � ρyx1CyCx1

� �
� δ3ρyx2CyCx2 � δ2C

2
x2

� �
; (18)

and first-order approximation of the mean square error of ŶCE is

MSE ðŶCEÞ ¼ N2�Y2 δ1C
2
y þ δ3 C2

x2 � 2ρyx2CyCx2

� �
þ δ2ρx2x1Cx2 ρx2x1Cx2 � 2ρyx1Cy

� �� �
; (19)

(5) the multivariate ratio estimator in double sampling with two auxiliary
variables (Sukhatme, 1962)

ŶMRD ¼ N�y w
�x01
�x1

þ 1� wð Þ �x
0
2

�x2

� �
; (20)

where w is obtained by minimizing the mean square error of ŶMRD:

w ¼
MSE �y �x02

�x2

� �
� E �y �x01

�x1
� �Y

� �
�y �x02

�x2
� �Y

� �
MSE �y �x01

�x1

� �
þMSE �y �x02

�x2

� �
� 2E �y �x01

�x1
� �Y

� �
�y �x02

�x2
� �Y

� � ; (21)

and whose minimum mean square error of ŶMRD (at optimum value of w) is

MSE ŶMRD
� � ¼ N2�Y2 δ1C

2
y �

δ3Δ

C2
x1 þ C2

x2 � 2ρx1x2Cx1Cx2

 !
; (22)

where

Δ ¼ C2
y ρyx1Cx1 � ρyx2Cx2

� �2
� C2

x1C
2
x2 1� ρ2x1x2

� �
þ 2CyCx1Cx2 ρyx2Cx1 þ ρyx1Cx2

� �
� ρx1x2 ρyx1Cx1 þ ρyx2Cx2

� �� �
;

(6) the exponential-chain-ratio estimator (Singh and Choudhury, 2012)

ŶCS ¼ N�y exp
�x02=�x01ð Þ�X1 � �x2
�x02=�x01ð Þ�X1 þ �x2

� �
; (23)

whose bias, to the first-order approximation, is

Bias ŶCS
� � ¼ N�Y

3
8

δ3C
2
x2 þ δ2C

2
x1

� �
� 1
2

δ3ρyx2CyCx2 þ δ2ρyx1CyCx1

� �� �
; (24)
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and whose first-order approximation of the mean square error of ŶCS is

MSE ŶCS
� � ¼ N2�Y2 δ1C

2
y þ

1
4

δ3C
2
x2 þ δ2C

2
x1

� �
� δ3ρyx2CyCx2 þ δ2ρyx1CyCx1

� �� �
; (25)

(7) the chain exponential estimator in double sampling (Vishwakarma and
Gangele, 2014)

ŶVS ¼ N�y exp
�x02 α�x01 þ βð Þ�1 α�X1 þ βð Þ � �x2
�x02 α�x01 þ βð Þ�1 α�X1 þ βð Þ þ �x2

 !
; (26)

where α and β are real numbers used as parameters in ŶVS, and whose
minimum mean square error is

MSEðŶVSÞ ¼ N2�Y2 δ1C
2
y þ δ3

C2
x2 � 4ρyx2CyCx2

4
� δ2C

2
yρ

2
yx1

 !
: (27)

The sample mean Ŷm in Eq. (9) is the basic estimator to estimate the population
total and it uses no auxiliary variable. The precision of an estimator increases by
including auxiliary variables (Cochran, 1977). The ratio estimator in double
sampling ŶRD in Eq. (11) uses a single auxiliary variable, which is positively
correlated with the study variable y (Sukhatme, 1962). The multivariate ratio
estimator in double sampling ŶMRD in Eq. (20) with two auxiliary variables x1and
x2, suggested by Sukhatme (1962), requires both that auxiliary variables are
available at the first phase of the sampling. This estimator is defined as a linear
combination of two separate ratio estimators and does not use the correlation
between x1and x2. Two auxiliary variables x1 and x2 may be available at different
phases of the sampling, for example, when x1 is completely known and x2 is
already available at the first phase. The chain-ratio estimator ŶC in Eq. (14) uses
two auxiliary variables and the correlation between them (Chand, 1975), but the
regression line between the study variable y and the auxiliary variables x1 and x2
passes through the origin and the auxiliary variable x2 is estimated with the ratio
estimator. Kiregyera (1980) described the chain exponential estimator ŶCE in Eq.
(17) avoiding the constraint that the regression line passes through the origin and
he used the regression method to estimate x2. The exponential-chain-ratio
estimator ŶCS in Eq. (23) of Singh and Choudhury (2012) also involves two
auxiliary variables x1 and x2, but, this estimator of x2 is based on the ratio
estimator. The chain exponential estimator in double sampling ŶVS in Eq. (26) is
a generalized class of the exponential ratio estimator and several estimators are
obtained as special cases of this estimator (Vishwakarma and Gangele, 2014), but
this estimator does not minimize the mean square error.
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3. The weighted chain-ratio estimator

In the case of a single auxiliary variable, an estimator performs satisfactorily
when the auxiliary variable is highly correlated with the variable y under
study, but in the case of two auxiliary variables, the performance of the
estimator depends on how these auxiliary variables are correlated with y.
They must also be positively correlated with each other. We propose the
weighted chain-ratio estimator for the population total in simple random
sampling without replacement as

ŶS ¼ N�y α
�X1

�x1
þ 1� αð Þ �x

0
2

�x2

�X1

�x01

� �
; (28)

where the value of the weight α ð0< α< 1Þ is determined by minimizing the
mean square error of ŶS. The estimator in Eq. (28) is a weighted form of the
ratio estimator (Cochran, 1977) and Chand’s (1975) estimator. If ρy x1 is greater

than ρy x2 , then the first term α
�X1
�x1

dominates in the estimator given in Eq. (28);

if it is lower, the second term 1� αð Þ �x02�x2
�X1
�x01

dominates. The estimator in Eq.

(28), whose mean square error is smaller than each component �y
�X1
�x1

and �y �x02
�x2

�X1
�x01
,

takes the advantages of both the ratio estimator (Cochran, 1977) and Chand’s
(1975) estimator. It is expected to perform satisfactorily in estimating finite
population totals. The estimator in Eq. (28) is

ŶS ¼ N �Y 1þ εy
� �

α 1þ εx1ð Þ�1 þ 1� αð Þ 1þ ε0x2ð Þ 1þ εx2ð Þ�1 1þ ε0x1ð Þ�1
� �

: (29)

The bias of ŶS, to the first-order approximation, is

Bias ðŶSÞ ¼ E ŶS � N�Y
� �

¼ N�Y α� 1ð Þ δ2C
2
x2 þ δ3ρyx2CyCx2

� �
� αδ3ρyx1CyCx1 � δ2ρyx1CyCx1

� �
:

(30)

The mean square error of ŶS, to the first-order approximation, is

MSE ðŶSÞ ¼ E ŶS � N�Y
� �2 ¼ N2�Y2 α2D1 þ 1� αð Þ2D2

� �
; (31)

where

D1 ¼ δ1 C2
y þ C2

x1 � 2ρyx1CyCx1

� �
; and (32)

D2 ¼ δ1C
2
y þ δ3 C2

x2 � 2ρyx2CyCx2

� �
þ δ2 C2

x1 � 2ρyx1CyCx1

� �
: (33)
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Solving @MSE ŶS
� ��

@α ¼ 0 leads to the optimum value of the weight α as

αopt ¼ D2

D1 þ D2
: (34)

Replacing the value of αopt in the mean square error of ŶS given in Eq. (31),
the minimum mean square error of the proposed estimator ŶS is

MSE ŶS
� �

min ¼ N2�Y2 D1D2

D1 þ D2

� �
: (35)

4. Comparison of the mean square error of different estimators of
the population total

We compare the mean square error of the proposed estimator ŶS of Eq. (35)
with the estimators mentioned in section 2.

(i) From Eq. (10) and (35),

MSE ðŶSÞmin <MSE ðŶmÞ if A2
0 � A1 A2 þ A3ð Þ

2A0 þ A1 þ A2 þ A3
> 0; (36)

where

A0 ¼ δ1C
2
y; A1 ¼ δ1 C2

x1 � 2ρyx1CyCx1

� �
; (37)

A2 ¼ δ2 C2
x1 � 2ρyx1CyCx1

� �
and A3 ¼ δ3 C2

x2 � 2ρyx2CyCx2

� �
: (38)

(ii) From Eq. (13) and (35),

MSE ðŶSÞmin <MSE ðŶRDÞ if
A2
0 þ A3 2A0 þ A3ð Þ þ A2 A3 � A1ð Þ

B1
> 0; (39)

with

B1 ¼ 2A0 þ A1 þ A2 þ A3: (40)

(iii) From Eq. (16) and (35),

MSE ðŶSÞmin <MSE ðŶCÞ if
A0 þ A2 þ A3ð Þ2

B1
> 0: (41)

(iv) From Eq. (19) and (35),

MSE ðŶSÞmin <MSE ðŶCEÞ if
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A0 A0 þ 2A3 þ 2þ A1 þ A2 þ A3ð ÞA4ð Þ þ A2
3 þ A2 A3 � A1ð Þ

B1
> 0; (42)

with

A4 ¼ δ2ρx1x2Cx2 ρx1x2Cx2 � 2ρyx1Cy

� �
: (43)

(v) From Eq. (22) and (35),

MSE ðŶSÞmin <MSE ðŶMRDÞ if
B2

B1
� δ3

Δ

C2
x1 þ C2

x2 � 2ρx1x2Cx1Cx2
> 0; (44)

with

B2 ¼ A2
0 � A1 A2 þ A3ð Þ: (45)

(vi) From Eq. (25) and (35),

MSE ðŶSÞmin <MSE ðŶCSÞ if
B2

B1
þ 1
4

A2 þ A3ð Þ � 3
4

δ3ρyx2CyCx2 þ δ2ρyx1CyCx1

� �
> 0: (46)

(vii) From Eq. (27) and (35),

MSE ðŶSÞmin <MSE ðŶVSÞ if
B2

B1
þ δ3

C2
x2 � 4ρyx2CyCx2

4
� δ2C

2
yρ

2
yx1

> 0: (47)

These analytical expressions do not yield the performance of the estimator in
Eq. (28) in terms of mean square error compared to the other estimators.
That is why a simulation is necessary.

5. Comparison by simulation

First we simulate, second we use empirical datasets. We compute the per-
centage of relative efficiency of the estimators compared with the sample
mean estimator

PRE ¼ MSE ðŶmÞ
MSE ðŶ iÞ

� 100; (48)

where MSE ðŶiÞ denotes the mean square error of an estimator Ŷi.

5.1. Model-based simulation

We generate the unknown auxiliary variable x2 using the model

x2k ¼ 1:5 x1k þ υk ; k ¼ 1; : : :N where x1k,χ2 5ð Þ and υk,N ð0; σ2υÞ. (49)

MATHEMATICAL POPULATION STUDIES 9



Then, we generate a finite population of size N = 5000 using the model

yk ¼ x1k þ x2k þ εk ; k ¼ 1; : : :N; (50)

where εk,N ð0; σ2εÞ. συ and σε take three different values each to generate
nine different data-sets: συ 2 4; 6; 8f g and σε 2 5; 10; 15f g. Table 1 pre-
sents the nine population datasets with different correlations between y, x1,
and x2. For each corresponding population, we draw a first-phase sample s0

of size 500 units and a subsample s of size 100 units from s0 by simple
random sampling without replacement, and we estimate the population total.
We draw 2500 random samples from the population and for each sample we
calculate the percentage of relative efficiency, presented in Table 2.

First, the percentage of relative efficiency increases with the correlations
between y, x1, and x2. As the case 1 (συ ¼ 4 and σε 2 5; 10; 15f g) has the highest
correlation between x1 and x2, the gain in efficiency is the highest one in this case.
For a fixed correlation between x1 and x2, the percentage of relative efficiency
increases with the difference between the correlations ρ y; x1ð Þ and ρ y; x2ð Þ. In
case 2 (συ ¼ 6 and σε 2 5; 10; 15f g), ρ x1; x2ð Þ ¼ 0:61. The gain in efficiency
ρ y; x1ð Þ-ρ y; x2ð Þ= 0.14 for συ ¼ 6 and σε ¼ 5 is higher than for συ ¼ 6
and σε ¼ 10 (ρ y; x1ð Þ-ρ y; x2ð Þ= 0.10) and for συ ¼ 6 and σε ¼ 15
(ρ y; x1ð Þ-ρ y; x2ð Þ= 0.08). Likewise for cases 1 and 3. Second, the proposed
estimator ŶS outperforms all the existing estimators in terms of percentage of
relative efficiency for any level of correlation between y, x1, and x2. As expected, the
relative gain for ŶS is highest for case 1.

5.2. Design-based simulation

1. Population 1, taken from Singh and Chaudhary (1986)

y = area planted (in acres) with wheat in 1974; x1= area planted (in acres)
with wheat in 1973; x2= area planted (in acre) with wheat in 1971.

Table 1. Parameters of the simulation.

Situation
Correlation

level

Standard
deviation of
error υ συ

Standard
deviation of
error ε σε

Correlation
between y and
x1 ρ y; x1ð Þ

Correlation
between y and
x2 ρ y; x2ð Þ

Correlation
between x1 and
x2 ρ x1; x2ð Þ

1 High 4 5 0.78 0.84 0.76
Medium 4 10 0.60 0.64 0.76
Low 4 15 0.46 0.49 0.76

2 High 4 5 0.71 0.85 0.61
Medium 6 10 0.57 0.67 0.61
Low 6 15 0.45 0.53 0.61

3 High 8 5 0.64 0.88 0.50
Medium 8 10 0.53 0.72 0.50
Low 8 15 0.43 0.57 0.50
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Ta
bl
e
2.

Pe
rc
en
ta
ge

of
re
la
tiv
e
ef
fic
ie
nc
y
of

es
tim

at
or
s
of

th
e
po

pu
la
tio

n
to
ta
li
n
th
e
m
od

el
-b
as
ed

si
m
ul
at
io
n.

Si
tu
at
io
n

Co
rr
el
at
io
n
le
ve
l

Es
tim

at
or
s

Sa
m
pl
e
m
ea
n
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Statistics are
N ¼ 34; n0 ¼ 20, n ¼ 5, �Y ¼ 856:4 acres, �X1 ¼ 199:4 acres, �X2 ¼ 208:8

acres, Cy ¼ 0:86, Cx1 ¼ 0:75, Cx2 ¼ 0:72, ρyx1 ¼ 0:45, ρyx2 ¼ 0:45,

ρx1x2 ¼ 0:98. (51)

2. Population 2, taken from Cochran (1977)

y = total number of children taking a placebo; x1= total number of paralytic
polio cases in the group taking placebos; x2= total number of paralytic polio
cases in the group not taking placebos.

Statistics are
N ¼ 34, n0 ¼ 15, n ¼ 7, �Y ¼ 4:9 children, �X1 ¼ 2:9 children, �X2 ¼ 2:5

children, Cy ¼ 1:01, Cx1 ¼ 1:05, Cx2 ¼ 1:23, ρyx1 ¼ 0:64, ρyx2 ¼ 0:73,

ρx1x2 ¼ 0:68. (52)

3. Population 3, taken from Ahmed (1997)

y = total number of literate persons; x1= total population size; x2= total
number of cultivators.

Statistics are
N ¼ 376, n0 ¼ 100, n ¼ 20, �Y ¼ 316:6 literate persons, �X1¼ 1075:3 per-

sons, �X2 ¼ 141:1 cultivators, Cy ¼ 0:77, Cx1 ¼ 0:77, Cx2 ¼ 0:84, ρyx1 ¼ 0:90,

ρyx2 ¼ 0:91, ρx1x2 ¼ 0:86. (53)

4. Population 4, taken from Abu-Dayyeh et al. (2003)

y = total number of cultivators; x1= total number of households in a village;
x2= area of the village (in acres).

Statistics are
N ¼ 332, n0 ¼ 70, n ¼ 15, �Y ¼ 1093:1 cultivators, �X1¼ 143:3 households,

�X2 ¼ 181:5 acres, Cy ¼ 0:76, Cx1 ¼ 0:76, Cx2 ¼ 0:77, ρyx1 ¼ 0:86, ρyx2 ¼ 0:97,

ρx1x2 ¼ 0:84. (54)

Table 3 presents the results obtained from design-based simulations.
The percentage of relative efficiency of the proposed estimator in Eq. (28)
is higher than for the other estimators, and this for the four populations.
We also performed a sensitivity analysis of the proposed estimator by
taking three different samples for the first and the second phases from
populations 3 and 4. We combine first-phase samples with
n0 ¼ 80; 100 ; 120, and second-phase samples with n ¼ 10; 20; 30. We
perform no sensitivity analysis for populations 1 and 2 which are too
small. Table 4 shows that the percentage of relative efficiency of the
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proposed estimator performs better for all choices of sample sizes than the
other estimators in terms of relative efficiency.

6. Conclusion

We have expressed an efficient chain-ratio estimator for the population total
using two auxiliary variables. This estimator is a weighted combination of the
ratio estimator and Chand’s (1975) chain-ratio estimator. The weights are
obtained by minimizing the mean square error of this estimator. This
estimator is more efficient than the ratio estimator and the chain-ratio
estimator. With empirical data, our estimator in Eq. (28) has higher effi-
ciency than other estimators.
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