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first survey, which has small sample size, collects both variable of
interest as well as auxiliary variables. The second survey, relatively
larger in sample size, has only some auxiliary variables in common domain inf ’
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to the first survey. A small area preq!ctor is proposed by combining borrowing strength;
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posed small area predictor can lead to efficiency gains when two squared error
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1. Introduction

In recent years, demands of small area statistics have increased tremendously. Small
areas (or small domains) are subsets of the population with small sample sizes, so
standard survey estimation methods (e.g. design-based direct estimators) for these areas,
which only use information from the small area samples, are unreliable. Obviously, the
problem can be overcome by increasing survey sample size, but this solution is usually
not pursued because it consumes time and budget resources. As a result, small area esti-
mation (SAE) methods have received significant attention due to their usefulness in
producing robust and reliable small area estimates. In this context model-based SAE
method that ‘borrow strength’ via statistical models are often used to produce reliable
small area estimates. In particular, SAE methods use statistical models to predict esti-
mates of interest for all the small areas, and a reliable estimate for one small area is
obtained by ‘borrowing strength’ from sample survey data that are collected in other
small areas, see (Rao and Molina 2015). SAE models produce good estimates, provided
that good auxiliary variables are available and the model is correctly specified, see
Pfeffermann (2013).

Often different agencies, departments and organizations conduct surveys from the
same population independently for different or same purposes. If two surveys conducted
independently have some variables in common, then it seems to be attractive to use
data from both surveys for efficient survey estimation. The problem of combining data
from two independent surveys to estimate totals at the population and large domain
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levels are discussed in Zieschang (1990), Renssen and Nieuwenbroek (1997), Hidiroglou
(2001), Merkouris (2004) and Wu (2004). These researchers considered that both the sur-
vey have common study variable as well as auxiliary variables to estimate totals at the
population and large domain levels. Kim and Rao (2012) considered a design-based
approach to combining information from two independent surveys with some common
auxiliary variables. We consider a situation where the first survey, which has small sample
size, collects both variable of interest as well as auxiliary variables whereas the second sur-
vey, relatively larger in sample size, has only some auxiliary variables in common. The two
samples may be selected from possibly different sampling frames and also different sam-
pling design. We use the term common auxiliary variables for those auxiliary variables
observed in both surveys and their population totals are same. It is assumed that the
observed auxiliary variables are comparable in the two surveys. The survey estimation
based single survey with small sample size can lead to unstable estimates. In numerous
practical situations, combining data from such type of surveys can be advantageous. If esti-
mates are required in a short time period (i.e. quick estimates) and conducting a survey
with large sample size is either difficult or not possible. For example, agricultural (e.g. crop
yield estimation) and health surveys where collecting or recording data on variable of
interest is either costly or time consuming or both, see Schenker and Raghunathan (2007).

Most of the research of combining sample survey data focuses on population and
large domain estimation. The scarcity of data and inadequacy sample size are major
problem for small areas as compared to the population level estimation. The problem
increases further if the survey has a number of areas with no sample units (i.e. non-
sample areas). Combining data from two independent surveys can be more attractive
and advantageous for producing reliable small area estimates. The potential for efficient
SAE by combining comparable information from multiple surveys has been recognized
long back, see for example, Marker (2001) and Rao (2003, 23). Merkouris (2010), Lohr
and Rao (2006), Elliott and Davis (2005) and Moriarity and Scheuren (2001) discussed
the SAE by combining information from multiple surveys. Lohr and Prasad (2003) used
multivariate models to combine information from several surveys. Ybarra and Lohr
(2008) considered the SAE problem when the area-level auxiliary information has meas-
urement errors. Manzi et al. (2011) used Bayesian hierarchical models to combine
information from multiple surveys for SAE. Kim, Park, and Kim (2015) considered an
area-level model approach for combining information from several sources in the con-
text of SAE. Our approach extends the work of Maples (2017), which in turn extended
the idea of Kim and Rao (2012) to combine data from two independent surveys for
small area estimates. Maples considered SAE of proportions from binary variable under
a generalized linear mixed model with logit link function (i.e. logistic linear mixed
model). In contrast, we focus on estimation of small area means under a linear mixed
model by combining information from two independent surveys.

In this article, we elaborate SAE method by combining data from two non-nested sur-
veys when both surveys have some auxiliary variables in common. We adopt frequentist
approach to SAE under a unit linear mixed model to combine information from two sur-
veys. The values of auxiliary variables from both surveys are available for the sample units,
but not accessible for the non-sample units. In addition, the aggregate values of auxiliary
variables are known at population level, but area-specific population aggregates are not
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available. We assume that a linear mixed model fitted to data from the first survey, with
small sample size, is also a good working model for data from the second survey, which is
larger in sample size. With this underlying assumption, we generate a synthetic data of
proxy values for the unobserved study variable in second survey and then use the proxy
data together with the associated survey weights, of second survey to define the empirical
predictor of the small area means (Chandra, Sud, and Gharde 2015).

The rest of the article is organized as follows. In Sec. 2, we first introduce a linear
mixed model and then describe the different small area predictors under this model.
Mean squared error (MSE) estimation of the proposed small area predictor is developed
in Sec. 3. The empirical performances of the different predictors are compared in
Sec. 4, using both model-based and design-based simulations, with design-based simula-
tions based on real data. Finally, Sec. 5 is devoted to concluding remarks.

2. Model and estimation of the small area mean

We assume that a finite population U containing N units can be partitioned into D
non-overlapping domains U;(i = 1,..,D) such that U2 U; = U. Following standard
practice, we refer to these domains as small areas or just areas. We further assume that
there is a known number N; of population units in the area i such that N = 2?:1 N;.
Let y;; denote the value of the variable of interest y for unit j in area i. The area-specific
mean of y for small area i is Y; = N;! E]N:’I ij- Let s denotes a sample of # units drawn
from U by some specified sampling design, and assume that values of y are available for
each of these n sample units. The non-sample component of U, containing N—n units,
is denoted by r. In what follows, we use a subscript of i to denote quantities specific to
area i (i=1,...,D). For example, s; and r; denote the n; sample and N;—n; non-sample
units respectively for area i. Let us assume that two surveys are conducted independ-
ently in the same population U, i.e. these surveys are non-nested. The first and second
survey are denoted by S(;) and S(;) respectively. The samples of size n(;) and n(,) units
from §;) and S(,) are denoted by s(;) and s(,) respectively. The area specific sample sizes
for sy and s;) in area i are denoted by n(;); and n(,); respectively such that n) =
Z,'Dzl nay and np) = Z?zl n(y)i- It is assumed that sample size of the first survey, Sy is
much smaller than the second survey, S(,)(i.e. n(;) < n(y)). Further, it is assumed that
the smaller survey S(;) has collected both variable of interest y as well as set of auxiliary
variables x. The larger survey S(;) has not collected data on the variable of interest y but
it has collected a set of auxiliary variables, common to the first survey. A subscript of
(k) is used to denote the quantities associated with k”'(k = 1,2) survey. The sample and
non-sample part of U, with respect to S, are denoted by sy and r() such that U =
S(ky U ks k =1,2. The area-specific n); sample and N;—n); non-sample units, with
respect to the sample Sy, are denoted by s(x); and r),; respectively for area i. With this
notation, the conventional design-based direct estimator (denoted by DIR) of area i
mean, Y; using data from the first survey, Sy is defined as

~DIR
vi=3 Wi (1)

jE€sayi
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Here, w i = Wi /Z] e * D is a normalized survey (or sample) weight of S,y for

unit j in area i w1th ZJES“)iw‘é)ij =1and w?f)ij is survey weight of S;) for unit j in area

~DIR

i. The design-based variance of the direct estimator Y,

SDIRY d d ~DIR\ 2
V"‘r(Yi )NZjes(l)iW(l)ij<W(l)ij_1) Vi~ Y) -

The expression for design-based variance estimator of the direct estimator is obtained
from Sarndal, Swensson, and Wretman (1992, 43, 185 and 391), with the simplifications

= 1/myi, )i = Ty and Ty = Tk, j 7 kK, where 7y is the first

can be approximated by

order inclusion probability of unit j in area i in S(l) and 7(); i is the second order
inclusion probability of units j and k in area i in S(;). Under simple random sampling,
wZ‘fl)ij :N,-n(’lﬁi,w’(ll)ij = ”(7131‘ and the direct estimator (1) is area-specific sample mean,

2DIR
Yo =V, = ’% Z]es( Vi The area-specific direct estimator does not depend on an

assumed model for its validity (Cochran 1977). The direct estimator (1) is unbiased but
it is based on area-specific sample data. Unfortunately, the direct estimator becomes
unstable when area specific sample size is small. Therefore, direct estimates are discour-
aged for the SAE. Further, due to high sampling variability, the confidence interval for
these estimates are also very large. Furthermore, for small areas with no sample data,
direct estimates cannot be used. In this context model-based SAE methods that ‘borrow
strength’ via statistical models, can be used to produce reliable small area estimates
(Rao 2003). These methods typically involve the use of indirect estimators based on
suitable models. The SAE methods make use of explicit linking models based on ran-
dom area-specific effects that take into account between areas variation beyond that is
explained by auxiliary variables included in the model. Model-based small area estima-
tors derived from unit level linear mixed models are widely used in SAE. This article
also focuses around the model-based approach to estimation of the small area mean
under the unit linear mixed model.

2.1. Estimation under a linear mixed model

Let x;; denote the vector of values of p unit level auxiliary variables for unit j that are
assumed to be predictive of y;;. We assume that x;; contains an intercept term as its first
component. For making small area inference, we consider a unit level linear mixed
model, in particular random intercepts model of form

,]—x[i+u,+e,],]—1 LNii=1,..,D, (2)

where P is a p vector of regression coefficients (the fixed effects in the model), u;
denotes area-specific random effect and e;; is an individual random effect. It is standard
practice to model the random effects as Gaussian, and so we further assume that these
effects are mutually independent between individuals and between areas, with wu;~
N(0,0?%) and e;~N(0, 6?7), see for example Battese, Harter, and Fuller (1988). It follows

that E(y;) = x;;B and Cov(yy,yx) = o, + 01(j = k), where I(A) is the indicator
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function for the event A. The vector of parameters = (o2, ae) are typically referred
to as the variance components of (2). Throughout this paper, we assume that the sam-
pling method is non-informative given the set of auxiliary variables, so the working
model (2) holds for both sample and non-sample population units. The model (2) is fit-
ted using sample data, s;) and { is estimated using maximum likelihood (ML) or
restricted ML (REML) estimation methods (Harville 1977). We use a ‘hat’ to denote an
estimated quality. Given the estimated values V= (62, 62) of the variance compo-

nents, we can obtain the estimate of fixed effects parameter f and prediction of the ran-
dom effects parameter #;. Under the model (2), using the estimated fixed and random

effects, the empirical best linear unbiased estimator (EBLUP) of the mean of y in area i
~ EBLUP PO .

is Y, = Ni_l[Zjes(l),yij + Zjer(l),-(x(Tl)ijﬁ +1;)], see Rao and Molina (2015). The

EBLUP is widely used for SAE and under (2) it is proven to be efficient. However, the

EBLUP requires the availability of auxiliary variables for non-sample units or at least

area-specific population aggregate values of auxiliary variables. In many practical appli-

cations, area-specific population aggregate values of auxiliary variables (e.g. area-specific
population means, X; =N; ! ZJI\LI x;ji; i=1,...,D) are not known. As a consequence, it
may not be possible to use the EBLUP estimator. As noted earlier in Sec. 1, the values
of auxiliary variables are available for the sample units, but not accessible for the non-
sample units. Also, the values of auxiliary variables are not available for area-specific
population aggregate. This is most prevailing situation in many countries where
Censuses are not regular or Censuses are regular but unit level auxiliary variables are
not accessible. Sometimes, the area-specific population aggregates of auxiliary variables
obtained from Census or administrative sources may not be consistent in definition
(and also may not be coherence in time) with the auxiliary variables available in the
sample. We consider two cases of availability of auxiliary variables and illustrate suitable
small area estimators combining information from two surveys.

Case-1. Values of auxiliary variables are available for the sample units only. The
working model (2) is fitted to sample data s(;) of the first survey S(;) and the estimate
of fixed effects parameter and prediction of the random effects parameter are obtained.
A plug-in empirical predictor for small area mean in area i denoted by EP1 (Chandra,
Sud, and Gharde 2015) is defined as

AEPl

= Zw z]}’z] §(T B+, (3)

j€sw)
where 3y = Xy + i, =50, —J‘Csﬂ)ﬁ% 9= G262+ 62 /nuy)
X, :na;izjﬁﬁi" X(1);j and x ()i Z](i w‘(i)] (1)ij is design-based direct estimate of X;

with E,,l(i ;)=X;. Here E;4(.) denotes the expectation under a sampling design (d). Both
the DIR est1mator (1) and the EP1 predictor (3) are based on the first survey S(;) data
alone, which is relatively very small in sample size. The second survey, which 1arge in
sample size, does not collect information on variable of interest y. In the spirit of Kim,
Park, and Kim (2015), we combine the data from two surveys to define small area pre-
dictor, indirectly based on enhanced overall sample size. We assume that the working
model (2) fitted to the data from first survey, is also a working model for the data from
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second survey. The fitted model (2) is used to generate the proxy or synthetic values of
y corresponding to the values of the auxiliary variables from second survey. In particu-
lar, we use parameter estimates from first survey to define the proxy or synthetic values
of y for second survey, y; = x(Tz)ij B+ iu, (j=1,..,np);i=1,.,D). An empirical pre-
dictor of small area mean in area i (denoted by EP2) using the auxiliary variables from
second survey is obtained as
P2

= Z W 1])/1] ié)zﬁ—f—i{” (4)

jEs)

where §(Tz)l. :ZJES( W[(i)in(zﬁ‘ is design-based direct estimate of X; with Ed(i(T)i) =X;.

Here w'. i = *dlj / Z]Gs . is normalized survey (or sample) weight of S(;) for unit
j in area i with Z]es ( Vi = 1 and w(z) jj is survey welght of S(;) for unit j in area i. In
case of simple random sampling, wé)ij = Niny); and w; )] ng);- Both EP1 and EP2

are using the synthetic rather actual values of y obtained under the working model (2),
so they require a correction. This correction (or bias correction) is obtained from the
first sample, S;) since the values of y are available in S(;). The area-specific values of

the bias correction are obtain as B; = ng(l)iwfll)ij(yij —¥;);i=1,..,D. The area-specific
values of bias correction can highly be unstable because area sample sizes of §;) are
very small. As a result, an average bias correction obtained as average of area-specific

values of bias correction, B = D' 3.7 B, is computed. The bias-corrected version of

~EP1 ~ EP1 A ~EP2 ~EP2 ~
EP1 and EP2 estimators are defined as Y,,c=Y, +B and Yo=Y, +B

respectively.

In small area applications, there can be many areas without sample data, referred as
non-sample areas. It is not possible to obtain direct estimates of small area quantities
for non- sample areas. Let us assume that D, out of D areas are non- sample in the first
survey, S;) whereas these areas are sample areas in second survey, S(;). In this case, we
cannot compute the DIR estimates and the EP1 estimates for these Dy non-sample
areas. The synthetic version of EP2 can still be obtained for these non-sample areas
using auxiliary variables from the second survey, S(;). The synthetic predictor of mean
for area i (denoted by SYN-EP2) is given by

SSYN-EP2 g

Yi (2) zoutﬂ’ =1,.., Dy, (5)
where B is estimate of fixed effects parameter obtained by fitting the model (1) to the
sample data from first survey, s(;) and ﬁ(z)z}out :ZJES(Z)X_w‘é)ij @)ij;i=1,.., Do.

Case-II. Values of auxiliary variables are available for the sample units as well as for
population aggregate. The area-specific aggregate values of auxiliary variables are not
known. In this case, three small area estimators defined above, namely DIR, EP1 and
EP2 can still be used. The aggregate values of auxiliary variables (e.g. population mean
x=N"1"72 E]N:’I x;j or total t, = Y 7, Z]N:’I x;j) are obtained from Census or admin-
istrative sources. We assume that definition of auxiliary variables, both in survey and
Census or administrative sources, is same and consistent. Here, we examine few alterna-
tive small area predictors using this extra population level auxiliary information.

><|>
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Chandra and Chambers (2009) introduced a model-based direct estimator (MBDE) for
small area means under the linear mixed model (2). The MBDE of a small area mean
improves upon the efficiency of the design-based direct estimator DIR by using sample
weights that define the EBLUP for the population total (Royall and Cumberland 1978)
under the same linear mixed model that underpins the EBLUP for small area mean. At
this end, let y;, = (yi, ..,yiNi)T, x; = (X1, ...,xiNi)T be a N; X p matrix, e; = (e;, ...,eiNi)T,
z; = 1y, and 1y, is a vector of ones of length N;. The population level version of the lin-
ear mixed model (2) is then expressed as

YU = Xuﬂ + ZUll + €y, (6)

where y, = (y7, ...,le))T, Xy = (xI, ...,xg)T, Zy =diag(z; = 15;1<i<D), u=
(uy,...,up)" and ey = (el ...,e[T,)T. Since different areas are independent, the covari-
ance matrix of y;, has block diagonal structure given by Vy = diag(v;;1 <i < D) with
v; = Var(y,) = aiziziT + 6?1y, and Iy, is the identity matrix of order N;. Using the esti-
mated values \ = (62, &ﬁ)T of the variance components, the estimated covariance
matrix is given by Vy = diag(v;;1 < i < D), with v; =62z;z] + 6 Iy,. Given a sample
s(1y of size n(;) from this population, without loss of generahty, we arrange the vector
yy so that its ﬁrst n() elements correspond to the sample units, and then partition y,
Xy, Zy and ey accordlng to sample and non-sample units. We can therefore write (6)

as follows:
Ys
y = (1)
U l Yr( l)

with variance matrix given by

Vswsw  Yswr ]
Viosay Vrora

Thus, X, represents the n(;) X p matrix deﬁned by the n(; sample values of the aux-

vo- |

iliary variable vector, while vy, = diag{o;1,,,1; nay T a1y 1,...,D} is the ngy x
n(1) matrix of covariances of the response varlable among the () sampled units that
make up the ng) x 1 sample vector Yo Similarly, v, ,, = diag{a.1,, N ni =

.,D}. Here, Ly, is the identity matrix of order n(;); and Ly, (1N1 ) denotes a

Vector of ones of size n(;; (N—n();). Under (6), the sample welghts that define the
EBLUP for the populatlon total of y are

BLUP __ EBLUP\ __ YT % ~—1 N
wEBLOP — (wm]. ) =1, +H] (tx—txs(l)) n (I ~H, s())vs(l)s(l)vs(l)m)1,(1), )

where, as usual, a ‘hat’ denotes substitution of estimated variance components, and

A (T ol ST -1 _ D N oA :
H, =(x Vs >XS<1>) Xs Vssay? =2 ZJ'=1 X = NX and b =
Z, IZ] 1 X(1)j = n(1)Xs, are the vectors of population and sample totals of x respect-
ively, I, is the identity matrix of order n(;) and 1, (1,,) denotes a vector of ones of

size n(p) (N—n(y)).
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Following Chandra and Chambers (2009, 2011), the MBDE (denoted by MBDE) of
area i mean of y is

~ MBDE ~ EBLUP

Y, = jesa) Wy Yip (8)

where w(ii"" = wipiC?/ Yiesus Wy - The MBDE of a small area mean is a weighted

average of the sample values from the area, defined by using sample weights derived
under a population level linear (6). It is noteworthy that the sample weights used to
define the MBDE ‘borrow strength’ via a model that explicitly allows for small area
effects. Therefore, the MBDE is expected to be better than the DIR. Replacing the sur-
vey weights in EP1 by the EBLUP sample weights (7), an empirical predictor (denoted
by EP3) of area i mean of y based on s;) is defined as

~EP3
_2 : ~ EBLUP; __ (2EBLUP
vo= jesa” Wi Vi = (X ) B+ i, ©)

where xfB)LUP = jesa Wi Xy with Eg(x EBLUP) =x;. The EP3 is defined by using

EBLUP sample weights (7) which ‘borrow strength’ via model (6). As the MBDE esti-
mates are efficient than the design-based direct estimates, we expect the improved effi-
ciency of the EP3 as compared to the EP1. Let us consider a similar sample and non-
sample decomposition of population units with respect to sample s;) and assume that
the model (6) is also working model for sample S(2)- Using the estimated variance com-
ponent parameters of model (6) based on s(;), the sample weights of s(,) that define the
EBLUP for the population total of y are glven as

~T ~ ~T
BLUP __ (. EBLUP\ __ _ B T Vo1 o
wEBLOP (w(z) ! > L, +H,, (tx t%) + (Is(z) HS(Z)XS(Z))vs(z)s(z)vs(z),(z)1r(2). (10)

T (T o1 ST o1 ¢ _ND NV o -
where, Hy, = (xs(z)vs(z)s<2)xs(2)) X5, Vensg bey = Doic1 2jmt Xy = N(2)Xsys Ly, is the

identity matrix of order n(; and Ls, ( ) denotes a vector of ones of size n(
(N—n(z)). Here, Vs = diag{oil,, +aI =1,..,D} and Vg, =
dzag{a Ly, 1y, ()"i .,D}, where I, is the 1dent1ty matrix of order n(,); and

(lN - ) denotes a vector of ones of size n(;; (N—n();). The empirical predictor
(denoted by EP4) of area i mean based on S and using the EBLUP weight (10) is
defined as

ne)i

~EP4
~ EBLUP~ EBLUP
Y, = Zjes Wi Vi = ( ) B+, (11)
EBL UP BL UP BLUP 2EBLUP _ ~ EBLUP
where wE /Z]es 2)IWE and Xa) = Zjés(z),-w(Z)ij X(2)i

with E4(x B)LUP) =X;.

Both EP3 and EP4 are defined using the synthetic values obtained under (6), so a
bias will obviously be introduced. In both EP3 and EP4 predictors, the bias corrections
are applied. As noticed earlier in case-I, there can be situations where some of the areas
are non-sample in the first survey, S;) but these are sample areas in the second survey,
S(2)- The small area predictors such as the MBDE given by (8) and the EP3 given by (9)
cannot be used for such non-sample areas. However, the synthetic version of EP4
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(denoted by SYN-EP4) of population mean for non-sample area i is given by

~SYN—EP4 EBLUP
i = )iout B i=

7"7D07 (12)

~EBLUP . ; I
where X)); ZJES wEBLUP X(2)i551 =1, .., Dy and B is estimate of fixed effects param-

eter of the model (2) étted to ().

3. MSE estimation

The MSE is the most common measure of accuracy in SAE. MSE estimation of the EP1
follows along the same lines as reported in Chandra, Sud, and Gharde (2015) and refer-
ences therein. This Section develops an approach for estimating the MSE of the EP2.
Here, we first obtain an approximation of the MSE of EP2 and then define estimate of
this MSE. The MSE estimators of EP3 and EP4 are obtained directly from the MSE of
EP1 and EP2 respectively, replacing the survey weights by the EBLUP sample weights
used in defining these estimators. The MSE estimator of the MBDE is given in Chandra
and Chambers (2009). Here, following McCulloch and Searle (2001, 300), a standard
result is adopted to define the conditional expectation, E(.) = E;{E:(.|d)} under both
design (d) and model (). Further, for known variance components { = (aﬁ,ag)T of
the model (2), ﬁ is the best linear unbiased estimator with E{(ﬁ —B;) = 0 whereas for
the predictor of random effects, Eg:(it;—u;) 91—” see McCulloch and Searle (2001,
168-171). The expectation of prediction error (Y, —Y;) is then obtained by taking the

expectations under both design (d) and model () as

~EP2  _ ~EP2 _
E(Y,- in):Ed{Eg(Y fY->|XSZ)}

bl b 570 i
= B { (Re—50)"B+Ee s — ) ixs, ) = Bl | (350 "B s, | = 0

Similarly, under both design (d) and model (&), the variance of prediction error
~EP2  _

(Y,- —Yi) is
~ EP2  _ ~ EP2 _ ~ EP2 _
Var(Y, —Y;)) = Eq{Vare(Y;, —Yi))|x,}+ Vara{Ee(Y, —Yi))|x,}
~EP2  _ .
= Eg{Vare(Y, = Yi)|x, } + Vare{ (X 2i—%:)" B}
~ EP2 _ ~
= Eq{Var:(Y, Y)|X52)}+B Vary(X(2);)p.

Here, Vard(i( )i) is the design based variance of x ()i = ZJES<> ?)J (2)ij- The second
term, BTVard(fi( 2)i)p is variability due to use of estimate X(,); of X; in EP2 Under the
working model (2), when model parameters are known, the EP2 is like best linear
unbiased estimator (BLUP) type estimator. The term ﬁTVard()i((z)i) p disappears when X;
is known. The first term on the right hand side of this prediction error variance is dir-
ectly followed using results reported in Rao and Molina (2015), Prasad and Rao (1990),
Datta and Lahiri (2000), Chandra, Sud, and Gharde (2015) and references therein.
Under (2), the MSE estimator of the EP2 is of form
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~ EP2 R
MSE(Y1 ) = Ed{Mli(“l’|XS(z)) + MZi(‘mXS(z)) + M3i(\|l|X5(2))}+ﬁTVan(i(2)i)B
= My; + My; + Ms; + My,

(13)

where,
My; = Ed{M1i<\|’|XS(z))} =
My = Ed{MZi(\l’|XS(z))} = (

Ms; = Eg{M5(W[x,,)} = tr [(8\#) 5(11 i ( \|’) Varg(‘lf)] and
My =P Vard()i(( 2i)B-

) Here Varg(BA) = (1(ST(DV;(11>SQ)xs(}))*1 and Var;(\) is the asymptotic covariance matrix of
V. Both Var:(B) and Var,;(\) are defined under the model (2) fitted to sample data from
first survey S(;). In MSE (13), the first term Mj; is the leading term which accounts for the
variability of the BLUP type of estimator when all the parameters are known and is of
order o(1). The second term M,; due to estimating the fixed effects f for given x;, , is of
order o(D™!) for large D. Finally, the third term Mj; is of the same order of magnitude as
M;; and hence is also dominated by M;;, see Prasad and Rao (1990) and Rao and Molina
(2015). The plug-in estimates of these components of MSE (13) are obtained by substitut-
ing the estimated values of the variance components under the model (2). Following the
approximations described in Prasad and Rao (1990), Datta and Lahiri (2000) and Chandra,
Sud, and Gharde (2015), estimator of the MSE (14) is given by

mse(V; ) = By; + My + 285~ CT () VMu(l) + B va(Zey)B, (14)

where

1\7131-:M3,-<\[t|x5(2>): [(g‘ﬁ!) R l<g$>:’q}v5(\il)1,and

My = ﬁTVd(i(z)i)ﬁv with Vc(‘|’) = 171(\|’)~

Here, a ‘hat’ on a quantity denotes a corresponding plug-in estimator of that quan-
tity. For example, My, M 2is M3; are obtained from My, My;, Mj3; respectively, replacing
s by . The multiplier of “2” in Ms; term arise because the plug-in estimator of Mj; is
biased low, with Eg(Ml,) My;—Ms; + CT( )VMl,(\ll) see (Rao 2003, 104). Overall,
the order of the bias in MSE estimate (14) is o(D™!) since M;,; and M3; have biases of
order o(D™'). The MSE (14) is therefore an approximately model unbiased estimator in
the sense that its bias is of order o(D™') and considered as a second order approxima-
tion. In MSE (14),
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Table 1. Description of different small area estimators.

Case Estimator Description
DIR Direct estimator (1) with sample weights w(;); based on first survey, S
| EP1 Predictor (3) with sample weights W) based on first survey, 5<1)
EP2 Predictor (4) with sample weights w i based on second survey, Sy
SYN-EP2 Synthetic predictor (5) with sample weights w(,); based on second survey ,5 ;)
MBDE MBDE (9) with sample weights (8) based on first survey, S
Il EP3 Predictor (10) with sample weights (8) based on first survey, Sy
EP4 Predictor (12) with sample weights (11) based on second survey, Sy
SYN-EP4 Synthetic predictor (13) with sample weights (11) based on second survey, 5,

. 1 . n
T — -1 2 : - } : T
Ci ("’) - E I ( 1<C]O<ZD tr ( X )i s s(l 51i> ( )i s ()i 5(1){)
is the bias in estimating the variance components V, with

. _1 B
v<{3)x S(1) /a\ll] 5( )5(1 ( S(1)S /8\|Il) - 15 2

and I"'(\s) is the inverse of information matrix I(\s), and VMl,(\il) is the first order
derivative of M;; with respect to  at \ = . The bias expression CT(\II) is negligible
when REML method is used for estimating the variance components Y, while this bias
is of order o(D~') when ML method. So, the term C7(y)VM;;(\y) is included in the
MSE estimator (14) when ML method is used for estimating .

4, Empirical evaluations

In this Section, we use simulation studies to illustrate the empirical performance of the
different small area estimators defined in the preceding Sections. The different small
area estimators are described in Table 1. We carried out two types of simulation studies.
In the first one, the properties of the small area estimators have been assessed by using
model-based simulation to generate artificial population and sample data. In this case,
at each simulation population data are first generated under the model and a single
sample is then taken from this simulated population by stratified simple random sam-
pling without replacement with small area as strata. These data are then used to com-
pare the performances of the different estimators. The second type of simulation study
is design-based, with population data derived from a real survey dataset (i.e. a real sam-
ple data was used to construct an artificial finite population). The performance of these
small area estimators are evaluated in the context of repeated sampling from a real
population using realistic sampling methods. In this case, a real survey data is first used
to simulate a population, and this fixed population is then repeatedly sampled according
to a pre-specified design.

The performance of the different estimators in the simulation studies is evaluated by
computing for each small area the average percentage relative bias (RB), the average
percentage relative root mean squared error (RRMSE) and the average percentage rela-
tive efficiency (RE) as

RB(m) = mean{ T'R7! Zr . - mir)} x 100,
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2
iy —m;
RRMSE(m) = R- 1§ LT x 100, and
(m) = mean — 1( " an
RMSE(Direct estimat
RE(m) — (Direct estimator) % 100, with

RMSE(Proposed small area estimator)

RMSE(m) = = mean {\/R 1Zr . —myy) 2} x 100.

Here the subscript i indexes the small areas and the subscript r indexes the R Monte
Carlo simulations, with m;, denoting the true area i mean at simulation r, with pre-
dicted value #1,,, m; = R™! Zle m;,. Note that in the design-based simulations since
the population is a fixed quantity so, m; = m;. The whole process of calculation of
small area estimates is independently replicated R times.

In addition to these we also perform the simulation studies to measure the perform-
ance of the MSE estimators of the small area mean predictors. The performance of MSE
estimators in the simulation studies is evaluated by computing for each small area the
average percentage relative bias (RB) and coverage rate (CR) of nominal 95 percent
confidence intervals defined as follows:

RB(M) = mean{ M 'R7! Z M,r M; } x 100 and

CR(M) = mean {R—l ZI<|m” —my| <1.96 Mir> }
! r=1

Here M; denotes the estimate of MSE estimator in area i at simulation r and M;
denotes the actual MSE in area i.

4.1. Model-based simulation study

In the model-based simulations, we set number of areas as D =30. Population size for
each area are kept fixed over simulations as N; = 500 and total population size is N =
15000. We consider two sets of model-based simulation, namely SIM1 and SIM2. The
first model-based simulation (denoted by SIM1) is based on population data generated
under the linear mixed model (2). In particular, population values for y are generated
under the random intercepts model of form yj; = 500 + 1.5x;; + u; + e;;, where x;(i =
1,...D;j=1,...,N;) drawn from a chi squared distribution with 20 degree of freedom.
The random area effects u; and individual effects e; are independently drawn from
N(0,02) and N(0,0% = 94.09) distributions respectively. We use two values of area
effects variance o2 =10.40 and 23.52 so that intra area correlation are p=
a%(62 +02)~" = 0.10 and 0.20 respectively. The model-based simulation, SIM1 for p =
0.10 and 0.20 are referred as SIM1-A and SIMI1-B respectively. Two samples of size
n) = 90 (first survey) and n(;) = 600 (second survey) are selected from each simulated
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Table 2. Values of percentage relative biases (RB), percentage relative root mean squared errors
(RRMSE) and percentage relative efficiencies (RE) of the different estimators in SIM1 of model based
simulations. The values are averaged over 30 small areas.

SIM1-A SIM1-B
N(1yis N2y Predictor RB RRMSE RE RB RRMSE RE
3,20 DIR 0.008 1.48 100 0.008 148 100
EP1 0.008 1.20 124 0.008 128 116

EP2 0.008 0.72 205 0.008 0.85 174

MBDE 0.007 147 101 0.008 147 100

EP3 0.007 1.18 125 0.007 127 117

EP4 0.009 072 206 0.009 0.85 174

3,50 DIR 0.008 1.48 100 0.008 148 100
EP1 0.008 1.19 124 0.008 1.26 17

EP2 0.006 0.65 229 0.006 0.78 188

MBDE 0.006 147 100 0.006 147 100

EP3 0.006 1.18 126 0.006 126 118

EP4 0.007 0.64 229 0.007 0.78 188

5,20 DIR 0.022 114 100 0.022 114 100
EP1 0.022 0.96 119 0.022 1.02 112

EP2 0.014 0.66 173 0.014 0.75 153

MBDE 0.015 113 101 0.015 114 101

EP3 0.015 0.95 121 0.015 1.01 113

EP4 0015 0.66 174 0.015 0.74 153

5, 50 DIR 0.000 114 100 0.000 114 100
EP1 0.000 0.96 119 0.000 1.02 112

EP2 ~0.005 0.59 192 ~0.005 0.69 165

MBDE —0.003 1.13 100 —0.003 113 100

EP3 —0.003 095 120 —0.003 1.01 113

EP4 —0.003 0.59 193 —0.003 0.69 166

population, with area sample sizes of first and second survey as n(;); = 3 and n(,); = 20
respectively. Sampling is via stratified random sampling, with the strata defined by the
small areas. The sample values of y for the first sample only and the sample values of x
for both samples obtained in each simulation are then used to estimate the small area
means using the different predictors. The process of generating population and sample
data, estimation of parameters and calculation of small area estimates is independently
replicated R=1000 times. The SIM1 simulations are further repeated with different
combination of sample sizes for first and second samples. In particular, three additional
combinations of sample sizes are: (n(1),n7)) = (90,1500),(150,600) and (150,1500).
The corresponding area-specific sample sizes for the first and second samples are:
(nayis n2)i) = (3,50), (5,20) and (5, 50) respectively. In these model-based simulations,
we consider two cases of the availability auxiliary information. These are: (i) Case-I,
auxiliary variables are available for the sample units only. (ii) Case-II, auxiliary variables
are available for the sample units, in addition, the population totals of auxiliary variables
are also known. The performance of the different estimators across the different simula-
tions is assessed by computing the average values of their area specific percentage rela-
tive bias, percentage relative root mean squared error and percentage relative efficiency.
Table 2 presents the average values of the different estimators from SIM1 simulations.
Boxplots of area-specific values of relative root mean squared errors of the different esti-
mators generated from SIM1-A simulation for two sample sizes (n(l),- = 3,np); = 20)
and (n(;); = 5, n(z); = 20) are depicted in Figure 1.

Conditions for the second model-based simulation study (denoted by SIM2) are the
same as in the first simulations (SIM1), with the exception that the area level random
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Figure 1. Boxplots of area-specific values of relative RMSE of the different small area predictors in
SIM1-A of model based simulations.

effects and the individual level random effects are independently drawn from mean cor-
rected chi-square distributions respectively. In SIM2 set of simulations, we examined
the robustness of the different estimators to model misspecification. Here, the random
area effects u; and individual effects e; are independently drawn from chi squared dis-
tribution with d; and d, = 5 degree of freedom respectively. The values of d; = 1 and 2
are chosen such that intra-area effects are 0.17 and 0.29 respectively. Corresponding to
these two values of the intra-area effects 0.17 and 0.29, simulation sets are denoted by
SIM2-A and SIM2-B respectively. The SIM2 simulations are replicated with four differ-
ent combinations of sample sizes as described in SIM1. Table 3 presents the average val-
ues of percentage relative biases, percentage relative root mean squared errors and
relative efficiencies of the different estimators from the model based simulation SIM2.

The SIM1 simulations are further replicated by considering a situation where few
areas in the first survey are non-sample (denoted by SIM3 simulations). In particular, in
the first sample, s(;), there are 25 sample and Dy = 5 non-sample areas. In contrast, in
the second sample, s(;), all the D = 30 areas are sample areas. The whole process of
generating the population to calculation of small area estimates are independently repli-
cated R=1000 times. The purpose of SIM3 simulation studies is to examine the per-
formance of the proposed small area estimators namely SYN-EP2 and SYN-EP4 for
non-sample areas. The corresponding results from SIM3 simulations are summarized in
Table 4.

The performance of proposed MSE estimator is also examined in SIM1 simulations.
The average values of empirical true root MSE, estimated root MSE, percentage relative
bias and coverage rate of nominal 95% confidence interval from SIMI1 simulations are
presented in Table 5. These results are averaged over 30 small areas. The bias-corrected
version of the different estimators are also evaluated in both SIM1 and SIM2 sets of
simulation studies. However, empirical performance of the bias-corrected estimators are
almost same as that of the without bias-corrected version. So, the results of different
predictors reported in this paper related to without bias-correction.

Table 2 shows the average relative bias, average relative RMSE and average relative
efficiency of the different estimators investigated in simulation set SIM1. In Table 2, we
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Table 3. Values of percentage relative biases (RB), percentage relative root mean squared errors
(RRMSE) and percentage relative efficiencies (RE) of the different estimators in SIM2 of model based
simulations. The values are averaged over 30 small areas.

SIM2-A SIM2-B
N(1yis N2y Predictor RB RRMSE RE RB RRMSE RE
3,20 DIR —0.005 1.08 100 0.005 1.061 100
EP1 —0.005 1.05 103 0.005 1.053 101

EP2 —0.003 045 240 0.002 0.428 248

MBDE —0.004 1.07 101 0.000 1.049 101

EP3 ~0.001 1.04 105 0.001 1.040 102

EP4 ~0.001 045 243 0.001 0423 251

3,50 DIR 0.010 1.09 100 —0.001 1.051 100
EP1 0.010 1.06 103 ~0.001 1.042 101

EP2 0.000 033 327 0.000 0.301 349

MBDE 0.001 1.08 101 —0.003 1.041 101

EP3 0.001 1.04 105 —0.003 1.032 102

EP4 0.000 033 331 —0.001 0.297 354

5,20 DIR 0.000 0.841 100 0.005 0818 100
EP1 0.000 0.821 102 0.005 0.813 101

EP2 ~0.002 0.442 190 ~0.001 0.421 195

MBDE ~0.002 0.831 101 —0.002 0.807 101

EP3 ~0.002 0.810 104 ~0.010 0.802 102

EP4 —0.002 0.437 193 —0.001 0415 197

5,50 DIR 0.015 0.843 100 0.006 0.817 100
EP1 0015 0.824 102 0.006 0.812 101

EP2 ~0.001 0312 270 0.000 0.285 286

MBDE 0.002 0.830 102 ~0.001 0.807 101

EP3 0.002 0.810 104 ~0.001 0.801 102

EP4 0.001 0309 273 0.000 0.282 290

observe a marginal gain in efficiency (in terms of lower relative root MSE) for the dif-
ferent estimators defined for case-II (MBDE, EP3 and EP4) as compared to their corre-
sponding estimators of case-I (DIR, EP1 and EP2). The estimators defined for case-II
uses extra auxiliary information in the form of population aggregates. This clearly illus-
trates that additional auxiliary information is not providing any significant gain in effi-
ciency. Hereafter, our discussion focus on three estimators defined for case-I, i.e. DIR,
EP1 and EP2 estimators. The differences in performance between the various estimators
in Table 2 are essentially as one would expect. Relative bias is not really an issue, as the
biases of all the estimators are almost negligible and of the same order of magnitude for
all set of sample sizes. The proposed small area estimator combining information from
two surveys is the most efficient in terms of relative RMSE. Here we see a substantial
gain in efficiency (as measured by a lower relative RMSE) when the EP2 is compared to
the EP1. The relative efficiency of the EP2 as compared to the EP1 is higher for smaller
value of intra area effect (SIM1-A). The relative RMSE of all the estimators increases
(or relative performance decreases) slightly when intra-area correlation increases from
0.10 to 0.20. Further, for a given sample size of smaller survey (n(l)), as the sample sizes
of larger survey (n(;)) increases, the relative efficiency of the EP2 increases (or relative
RMSE decreases) as compared to the EP1. The boxplot in Figure 1 also confirms the
conclusions from Table 2. The results in Table 2 and Figure 1 clearly indicate that com-
bining data from two surveys provide a significant gain in SAE.

Table 3 presents the simulation results of the different estimators from simulation set
SIM2. The conclusions from the results in Table 3 are almost same as observed in
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Table 4. Values of percentage relative biases (RB), percentage relative root mean squared errors
(RRMSE) and percentage relative efficiencies (RE) of the different estimators in SIM3 of model based
simulations [S): 25 sample + 5 non-sample areas; S(): all 30 sample areas]. The values are averaged
over 25 areas for sample and 5 areas for non-sample results.

SIM1-A SIM1-B

Nayis N2 Areas Predictor RB RRMSE RE RB RRMSE RE
3,20 Sample DIR 0.006 1.47 100 0.006 1.47 100
EP1 0.006 1.20 123 0.006 1.28 115
EP2 0.014 0.73 201 0.014 0.86 170
MBDE 0.008 1.47 100 0.008 1.47 100
EP3 0.009 1.19 124 0.008 1.27 116
EP4 0.011 0.73 202 0.011 0.86 171

Non-sample SYN-EP2 0.008 0.76 - 0.006 1.02 -

SYN-EP4 0.004 0.76 - 0.002 1.02 -
3,50 Sample DIR 0.016 1.47 100 0.016 1.47 100
EP1 0.016 1.19 123 0.016 1.27 115
EP2 0.009 0.66 224 0.009 0.80 184
MBDE 0.009 1.46 100 0.009 1.46 100
EP3 0.009 1.18 124 —0.005 1.26 116
EP4 0.010 0.66 224 0.010 0.80 184

Non-sample SYN-EP2 0.001 0.70 - —0.003 0.98 -

SYN-EP4 0.001 0.70 - —0.003 0.98 -
5,20 Sample DIR 0.017 1.14 100 0.017 1.14 100
EP1 0.017 0.96 118 0.017 1.02 1M1
EP2 0.008 0.68 168 0.008 0.76 149
MBDE 0.007 1.13 101 0.007 1.13 101
EP3 0.006 0.95 119 0.006 1.01 112
EP4 0.006 0.67 169 0.006 0.76 150

Non-sample SYN-EP2 0.012 0.76 - 0.014 1.03 -

SYN-EP4 0.010 0.76 - 0.012 1.03 -
5,50 Sample DIR —0.005 1.14 100 —0.005 1.14 100
EP1 —0.005 0.96 119 —0.005 1.02 112
EP2 —0.006 0.60 191 —0.006 0.69 165
MBDE —0.006 1.13 101 —0.006 1.13 101
EP3 —0.006 1.09 105 —0.006 1.01 113
EP4 —0.007 0.60 192 —0.006 0.69 165

Non-sample SYN-EP2 —0.003 0.68 - —0.006 0.96 -

SYN-EP4 —0.004 0.67 - —0.007 0.96 -

Table 5. Values of empirical true root MSEs (TRMSE), estimated root MSEs (ERMSE), percentage rela-
tive biases (RB) and coverage rates (CR) of nominal 95% confidence interval from SIM1 simulations.
The values are averaged over 30 small areas.

SIM1-A SIM1-B
N, NGy Predictor TRMSE ERMSE RB CR TRMSE ERMSE RB CR
3,20 EP1 4025 4225 522 091 4582 4590 038 091
EP2 14.62 16.27 11.47 0.96 2039 19.94 —203 0.95

EP3 39.46 4284 8.77 091 4511 46.54 338 091

EP4 14.47 16.27 12.73 0.96 2024 19.94 ~1.26 0.95

3,50 EP1 39.57 4247 7.57 091 44.94 46.11 2.85 091
EP2 1171 13.59 16.33 0.96 17.27 17.24 —0.02 0.95

EP3 38.80 43.09 1131 091 4427 46.81 5.98 091

EP4 11.66 1359 16.86 0.96 17.22 17.24 029 0.95

5,20 EP1 25.74 2647 3.08 0.93 29.17 2947 1.29 0.93
EP2 12.27 1274 422 0.95 15.73 15.76 0.54 0.95

EP3 25.22 26.65 593 0.93 28.69 29.67 3.64 0.94

EP4 12.12 12.74 5.49 0.95 15.58 15.76 1.46 0.95

5,50 EP1 25.72 26.36 271 0.93 29.13 29.38 1.08 0.93
EP2 9.82 9.95 149 0.95 1331 12.99 223 0.95

EP3 25.22 26.53 543 0.93 28.68 29.57 332 0.93

EP4 9.74 9.95 2.29 0.95 13.23 12.99 —1.66 0.95
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Table 2 and Figure 1. Again, we observe that for the fixed sample size in first survey,
increase in area specific sample sizes in second survey, the relative RMSE reduces and
relative efficiency increases consistently for the EP2 as compare the EP1. However, in
deviation to the SIMI results in Table 2, the relative performance (in terms of lower
relative RMSE) as well as the relative efficiency of all the estimators increases when
intra-area correlation increases from 0.10 to 0.20.

The results in Table 4 generated from SIM3 simulations indicate some intuition of
performance of the proposed estimator for non-sample areas. In this case, SIM1 simula-
tions are replicated, except that in first survey 5 areas are taken as non-sample areas,
i.e. only 25 areas are in sample. In Table 4, the results for sample areas are the average
values of 25 sample areas. The relative performances of all the estimators for sample
areas in Table 4 are identical to the results in Table 2. The results for non-sample areas
generated by the SYN-EP2 (or the SYN-EP4) method are noteworthy. These results are
average over 5 non-sample areas. The performances of two synthetic estimators, SYN-
EP2 or SYN- EP4 are at par. Both biases and RMSEs of the SYN-EP2 (or the SYN-
EP4) estimator for non-sample areas have almost same magnitude as of the EP2 estima-
tor for sample areas. This clearly shows an evidence that the proposed synthetic estima-
tor has potential to generate the reliable estimates for non-sample areas.

We now turn to an examination of performance of the MSE estimation investigated
in the simulation. In Table 5, we see that the MSE estimator (14) for the EP2 behaves
in exactly the same way as the corresponding MSE estimator for the EP4. The empirical
true root MSE of the EP2 is much smaller than the EP1, which shows a gain in effi-
ciency by combining data from two surveys. This happens because the EP2 estimator is
based on enhanced effective sample size. The results in Table 5 further shows that the
empirical true root MSEs and the estimated root MSEs obtained using the MSE estima-
tor (14) for the EP2 are very close. The relative bias of the MSE estimator decreases
with increase in sample sizes. It also decreases when intra-area correlation increases
from 0.10 to 0.20. The use of MSE estimates to calculate ‘normal theory based’ confi-
dence intervals is common practice. We combine the EP2 estimate with the MSE esti-
mate to generate ‘normal theory based’ confidence intervals as the estimate plus or
minus twice its corresponding estimated root MSE. Table 5 shows that the actual cover-
age rates achieved by these intervals, are generally 95 per cent for the MSE of the EP2.
Overall, the proposed MSE estimator tracts the true MSE of the EP2 reasonably well,
with a good coverage property.

4.2. Design-based simulation study

Design-based simulations complement model-based simulations for SAE since they
allow us to evaluate the performance of SAE methods in the context of a real popula-
tion and realistic sampling methods. From a finite population perspective we believe
that this type of simulation constitutes a more practical and appropriate representation
of the SAE problem. The design-based simulations are based on real survey data col-
lected in the 1995-96 Australian Agricultural Grazing Industry Survey (AAGIS) con-
ducted by the Australian Bureau of Agricultural and Resource Economics. In the
original sample consists of 759 farms from 12 regions (the small areas of interest),
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Table 6. Region-wise sample size (n,)) for large sample in AAGIS data.

Region Ny Region Ny
1 88 7 63
2 44 8 42
3 73 9 87
4 54 10 47
5 58 1 76
6 84 12 43

which make up the wheat-sheep zone for Australian broad acre agriculture. This ori-
ginal sample data is used to generate a population of size N = 39,562 farms by re-sam-
pling the original AAGIS sample of size 759 farms with probability proportional to a
farm’s sample weight, see Chandra et al. (2012). From this (fixed) population, R = 1000
independent samples of n(;) = 759 farms are selected using stratified random sampling,
with regions are strata and with stratum sample allocations the same as in the original
AAGIS sample. This sample is treated as the larger samples (second sample, s(,) of size
1) = 759). Table 6 shows the region-specific sample sizes n,); of 12 regions or areas.

The sample size for smaller sample, also referred as the first sample, s(;) is chosen as
n() = 60 with area-specific sample sizes, n(,); = 5. Again, R=1000 independently strati-
fied random samples of n(;) = 60 farms are selected from same the simulated popula-
tion (fixed), with regions are strata and with stratum sample size as n(;); = 5. In the
simulation studies, two additional sample sizes, n(;) = 120 and 240 with area-specific
sample sizes as n(;); = 10 and 20 respectively are also considered for smaller sample,
s(1)- With same procedure, R =1000 independent samples for these two sample sizes are
also selected from this (fixed) simulated population. The variable of interest is the total
cash costs (TCC), and the target is the average value of TCC in each region. A range of
potential explanatory variables are available for building a working small area model.
The covariates used in the fixed part of this working model returned an R* value of
0.40; they are land area, four identifiers for the five industries (i.e. specialist crop farms,
mixed livestock and crop farms, sheep specialists, beef specialists, and mixed sheep and
beef farms), number of closing stock-beef, number of closing stock-sheep and quantity
of harvested wheat. The results for the design-based simulations using the AAGIS data
presented in Table 7 and in Figure 2.

In Table 7, we again notice that the estimators defined under case-II practically offer
no gain over the estimators defined under case-I. So, our discussion concentrates
around three estimators only, i.e. DIR, EP1 and EP2. Figure 2 also demonstrates the
boxplots of region-specific values for DIR, EP1 and EP2. The results in Table 7 reveal
that the EP2 has lowest relative bias than both the EP1 and DIR estimators, except for
n(1y; = 10. Further, the EP2 has minimum relative RMSE and maximum efficiency than
the EP1 and the DIR. The results in Table 7 clearly provide an encouraging perform-
ance of the proposed EP2 estimator. Figure 2 shows the boxplots of region-specific val-
ues of actual relative RMSE for DIR, EP1 and EP2 (all expressed in percentage terms)
obtained in design-based simulations. Again, the EP2 outperforms EP1 and DIR in
terms of the distribution of relative RMSE between regions for all the sample sizes of
first (i.e. smaller) sample. Generally, the results set out in Table 7 and Figure 2 support
the conclusion that the combining data from two surveys improves SAE, with the
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Table 7. Values of percentage relative biases (RB), percentage relative root mean squared errors
(RRMSE) and percentage relative efficiencies (RE) of the different estimators from design based simu-
lations using the AAGIS data. The values are averaged over 12 regions.

n(1),- =5 n(1),- =10 n(]),- =20
Predictor RB RRMSE RE RB RRMSE RE RB RRMSE RE
DIR 1.36 57.35 100 —0.30 37.29 100 0.19 27.59 100
EP1 1.56 54.09 106 —0.09 34.87 107 0.22 25.97 106
EP2 0.11 30.81 186 —0.55 23.73 157 —0.02 21.01 131
MBDE 1.61 60.65 95 0.51 38.71 96 1.20 30.66 90
EP3 1.68 56.98 101 0.77 35.14 106 131 27.71 100
EP4 0.30 29.68 193 —032 22.88 163 0.25 20.00 138
Ay =5 ny, =10 Ay =20
180 807 | 80
160 L o
140 | 601
#120 Esn- *
ﬂmn : gso- T i ;au- _ “' 5
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Figure 2. Boxplots of region-specific values of relative RMSE of the different predictors from design
based simulations using the AAGIS data.

proposed EP2 emerging as the best performing of the methods that we investigated in
the empirical evaluations.

5. Concluding remarks

This paper investigates SAE method by combining data from two independent surveys.
The empirical results, based both on simulated data under the model as well as on real
data, clearly indicate that combining information from two surveys can bring significant
gains in SAE efficiency. The conclusions are essentially unaffected when we carried out
similar simulations using chi-square (i.e. non-Gaussian) distributed random effects. We
also suggest a method for estimating the MSE of the proposed small area estimator and
demonstrate empirically that it performs well. In addition, we consider the non-sampled
case, i.e. where the area of interest has no sample data in the main survey, and therefore
no direct estimate. Synthetic estimation is the standard approach here, and we develop
a synthetic version of proposed estimator using data from both surveys. The empirical
results provide evidence that this estimator can generate reliable estimates for non-
sampled areas.

There are several issues that still need to be explored in the context of using unit
level models for combining data from two surveys. One important practical issue in this
regard relates to the model robustness and validity for the second survey. A further
issue relates to the link between the survey data and the spatial information. In this
paper, we have assumed that different areas are independent to each other. However, it
is often reasonable to assume that the effects of neighboring areas are correlated, with
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the correlation decaying to zero as the distance between these areas increases (Chandra,
Salvati, and Chambers 2007). The method needs to be extended under a spatial version
of small area model. Authors are currently working on some of these issues.

In many countries, the crop cutting experiment (CCE) surveys are used for producing
crop yield estimate. Although the CCE technique is an objective method of assessment
of crop vyield, the procedure of conduct of CCE is tedious and time consuming. As a
result, most of the countries are looking the alternative method for crop yield estima-
tion. But, the CCE technique is still most popular and practiced method for generating
the crop yield estimates because of the nonexistence of reliable alternative. Due to this
and some other factors, in every country, there is a felt need to reduce the sample size
drastically in CCE surveys so that the volume of work can be reduced and managed
properly. However, reduction in sample size can have a direct bearing on the standard
error of the estimator. The reduction in sample size can be more alarming when this
survey is also used for producing small area estimates. This is one of the most import-
ant and outstanding problem in agricultural statistics. The proposed method can dir-
ectly be applied and hence recommended for disaggregate level crop yield estimation. In
particular, CCE survey with very small size should be conducted where observation on
yield (i.e. study variable) along with some auxiliary variables such as farmer’s eye obser-
vation, seed rate, plant density, fertilizer rate and expert assessment of yield should be
recorded. The second survey with relatively large sample size should be conducted
where some of the auxiliary variables in common should be collected. These two sur-
veys should be combined using the suggested SAE method. This statement clearly shows
the usefulness of the proposed method as a prospect SAE method for real life
application.
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