and Soils and Sediments 10.1007/s11368-018-1922-6

SOLS SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH

Measuring potassium fractions is not sufficient to assess the long-term impact of fertilization and manuring on soil's potassium supplying capacity

Das¹ · Amaresh Kumar Nayak² · V. K. Thilagam³ · Dibyendu Chatterjee² · M. Shahid² · Rahul Tripathi² · S. Mohanty² · Anjani Kumar² · B. Lal² · Priyanka Gautam² · B. B. Panda² · S. S. Biswas¹

15 April 2017 / Accepted: 15 January 2018

Seringer Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Potassium (K)-fractions, thresholds of K release and fixation, quantity-intensity (Q/I) parameters of K, K-release and K-fixation capacity were compared for their effectiveness in differentiating the effect of various nutrient management on K supplying capacity of an Aeric Endoaquept soil after 45 years of puddled rice cultivation.

methods Soil samples (0–15 cm) were collected after the completion of 45 rice-rice cycles from an on-going longlegal experiment located in ICAR-National Rice Research Institute, Cuttack, India. The treatments involved control N (nitrogen fertilizer), NP (N+ phosphorus fertilizer), NK (N+ potassium fertilizer), NPK (N+P+K fertilizer), NPK fertilizer), NPK (N+P+K fertilizer), NPK fertilizer)

and discussion Rice cultivation without K fertilizer application resulted in lower values of soil K parameters than the K-release rate constants, and K-fixation capacity. Parameters of K-release kinetics and Q/I relationships showed better with rice grain yields than soil-K fractions. Soil K thresholds were closely related with exchangeable (K_{ex}) and non-real kinetics. We will not clay minerals.

Among the soil K parameters, RTC, cumulative K release (K_f) with 0.01 M CaCl₂, release rate constants (b_A) and b_S) and diffusion equation, and K-fixation capacity were most effective in revealing the nutrient management induced soil K fertility. In the studied soil, K-thresholds were significantly related to K_{ex} and K_{nx} .

Fixation capacity · Fixation threshold concentration · Long-term fertilizer experiment · Q/I relationship · Release relationship · Release threshold concentration