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IDENTIFICATION AND QUANTIFICATION OF FOODBORNE

PATHOGENS IN DIFFERENT FOOD MATRICES USING FTIR
SPECTROSCOPY AND ARTIFICIAL NEURAL NETWORKS

M. J. Gupta,  J. M. Irudayaraj,  Z. Schmilovitch,  A. Mizrach

ABSTRACT. FTIR absorbance spectra of four foodborne pathogens suspended in four common food matrices at three different
concentrations were used with artificial neural networks (ANNs) for identification and quantification. The classification
accuracy of the ANNs was 93.4% for identification and 95.1% for quantification when validated using a subset of the data
set. The accuracy of the ANNs when validated for identification of the pathogens studied at four different concentrations using
an independent data set had an accuracy range from 60% to 100% and was strongly influenced by background noise. The
pathogens could be identified irrespective of the food matrix in which they were suspended, although the classification
accuracy was reduced at lower concentrations. More sophisticated background noise filtration techniques are needed to
further improve the predictions.

Keywords. ANNs, Differentiation, Food matrices, Food pathogens, FTIR spectroscopy, Quantification.

s concerns in food safety and security increase, it
has become imperative to develop simple but ef-
fective methods for rapid identification of food-
borne pathogens even at the single cell level

(Tauxe et al., 1997; Mead et al., 1999; Crutchfield et al.,
2000). Fourier transform infrared spectroscopy (FTIR) has
been widely used for the identification and characterization
of bacteria (Naumann et al., 1989; Yang and Irudayaraj,
2003; Naumann et al., 1991a, 1991b; Curk et al., 1994; Helm
et al., 1991a, 1991b) as it permits discrimination of intact mi-
crobial cells based on molecular fingerprints that are distinct
and reproducible without extensive sample preparation.
Real-time applications of these spectral signatures in pre-
vious research have used unsupervised classification meth-
ods such as analysis maps and cluster analysis, where
perceived closeness of similar objects is used to form respec-
tive clusters (Helm et al., 1991a). Over the past few years,
“supervised” methods such as chemometrics have been ap-
plied to analyze FTIR data. Artificial neural networks
(ANNs), which belong to the class of “supervised” learning
methods, have excellent potential for processing FTIR data
because they possess the ability to learn based on training and
predictions (Argov et al., 2002; Beksac et al., 1997; Chun et
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al., 1993; Freeman et al., 1994; Goodacre et al., 1994, 1998;
Kirschner et al., 1999; Udelhoven et al., 2000).

Direct detection of pathogens in food matrices presents a
major obstacle to most detection schemes because of the
complexity and time involved in sampling (Hanes, 1999).
Traditional methods involve isolation and enrichment, but
for rapid online assessment, identification, and quantifica-
tion should occur directly in a food matrix. To our
knowledge, no study has been reported on the identification
and quantification of foodborne pathogens in food matrices.
Therefore, the focus of this study was to obtain absorbance
spectra of food pathogens suspended directly in selected real
food matrices such as orange juice (pulp free), chicken broth,
fat-free skim milk, and milk with 1% fat, and to use ANNs for
qualitative and quantitative assessment. The proposed study
is an extension of the previous work by Gupta and Irudayaraj
(2004) on quantification and differentiation of foodborne
pathogens in phosphate-buffered saline solution based on
their FTIR spectral signatures using ANNs.

The objectives of this study were: (1) to obtain FTIR
fingerprints of four selected food pathogens at three con-
centration levels in four different food matrices and to
construct a database of their absorbance spectra in the key
fingerprint region, (2) to develop ANN models to differenti-
ate and quantify the various food pathogens in different food
matrices, and (3) to validate the differentiation and quanti-
fication models using independent data sets.

MATERIAL AND METHODS
SAMPLE PREPARATION FOR FTIR

Four food pathogens (E. coli O26, Salmonella typhimu-
rium, Yersinia enterocolitis, and Shigella boydii) were
obtained from the Gasteroenteric Disease Center (GDC) at
Pennsylvania State University (University Park, Pa.). The
samples were cultured in 100 mL of broth media at 37°C and
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Table 1. Concentrations of microorganisms
after incubation for 24 h by plate counting.

Microorganism

Plate Count Values (× 109 CFU/mL)

TSA Broth Nutrient Broth

E. coli O26 8.09 3.29
Salmonella typhimurium 9.26 8.66
Yersinia enterocolitis 9.98 5.44
Shigella boydii 9.99 3.98

shaken at 100 rpm for 24 h to attain a concentration of about
109 colony-forming units per mL (CFU/mL). Broth media
used were tryptic soy agar (TSA) broth (5 g yeast extract, 8 g
tryptone, and 5g NaCl in 500 mL distilled water; referred to
as media I) and nutrient broth (referred to as media II). The
concentrations of pathogens after incubation are listed in
table 1.

Sterile samples of orange juice, chicken broth, pasteurized
skim milk, and milk with 1% fat were inoculated with the
different organisms and diluted to six levels (× 106, 105, 104,
103, 102, and 101) to result in seven different concentrations
(109, 108, 107, 106, 105, 104, and 103 CFU/mL). The dilutions
of 109, 108, 106, and 103 CFU/mL were then used for FTIR
spectroscopic measurements.

FTIR MEASUREMENTS

Different bacteria suspended in the respective food
matrices were evenly applied onto a ZnSe (zinc selenide)
ATR crystal using a pipette and analyzed using a Nexus 870
FTIR spectrometer (Thermo Electron, Madison, Wisc.).
FTIR signals were collected in the spectral region between
600 and 4000 cm−1 (wave numbers) at a resolution of 2 cm−1.
For each spectrum, 256 interferograms were co-added,
averaged, and Fourier transformed to give a resolution of
2 cm−1. Mixtures of plain broth and the respective food
matrices in corresponding dilutions were first measured and
used as the background spectra and subtracted from the
respective sample spectra. For each sample, the spectra were
recorded in replicates of ten. The spectra were then smoothed
using an automatic smoothing function to reduce the noise
and differentiated to the first order as a spectra enhancement
operation using the difference equation to reduce the baseline
variability with OMNIC E.S.P. software (v5.2, Madison,
Wisc.).

DATA ANALYSIS
Principal Component Analysis (PCA)

In our previous study (Gupta and Irudayaraj, 2004),
absorbance data in the entire 600 to 4000 cm−1 range was
used as input to the ANN. The training time required for this
network configuration was 30 to 90 min, and the classifica-
tion accuracy from the validation set was between 0% and
30%, possibly due to the presence of a high level of noise in
the spectra due to the interference from water and carbon
dioxide. Hence, the absorbance spectra in the 600 to
1750 cm−1 region were used because they contained typical
fingerprints (600 to 900 cm−1) characterized by a combina-
tion of weak absorptions due to aromatic ring vibrations of
phenylalanine,  tyrosine, tryptophan, and several nucleotides;
the polysaccharide region (900 to 1200 cm−1) was used due
to symmetric stretching vibrations and peaks due to C−O−C
and C−O−P; the mixed region (1200 to 1500 cm−1) was used
due to the bending modes of lipids and proteins; and the

intense amide I and amide II region was used due to the
presence of � and � and structures of the cellular proteins
(Naumann, 2000). The prediction accuracy of this network
was 90% to 100%.

To reduce the network development and training time, the
20 principal components were extracted from the first
derivative smoothed spectra (ten replications each for the
four food pathogens) in the spectral region between 600 and
4000 cm−1 wave numbers and used as input to the ANNs.

Development of the Artificial Neural Network
The neural network analysis was carried out using the

Neuroshell 2 Release 4.0 software (Ward Systems Group,
Inc., Frederick, Md.), and the probabilistic neural network
(PNN) based algorithm was used for training. The network
consists of an input layer with 20 elements corresponding to
the PCs of the spectra. It has a pattern layer, which organizes
the training set in such a manner that each input vector is
represented by an individual processing element (thus, it is
40-120 for the bacteria differentiation network and 30 for the
quantification  network). The final network consists of an
output layer, called the summation layer, with as many
processing elements as the number of classes to be recog-
nized (three classes for the quantification network, i.e., one
element corresponding to each concentration class for each
bacterium, and four classes for the bacteria differentiation
network, corresponding to each bacterium for each con-
centration considered).

A summary of all the models is given in table 2. Each
element in this layer combines via processing elements
within the pattern layer that relate to the same class and
prepares that category for output. Sometimes a fourth layer
is added to normalize the input vector. Based on previous
results (Gupta and Irudayaraj, 2004), the network was trained
using 70% of the data, of which 50% was used for training
and 20% was used as a test set for calibration of the
smoothing parameter. The remaining 30% was used for
validation of the trained network. A binary coding system
was used for differentiation and quantification of the input
classes.

Differentiation of Foodborne Pathogens Irrespective of
Food Matrix

Although the ANNs developed for differentiation of
bacteria in a given food matrix are more accurate, an
exhaustive set of ANNs for all possible food matrices is
needed. Hence, an attempt was made to assess whether the
spectra of the foodborne pathogens from the four different
food matrices studied could be considered as a single group
for pathogen detection independent of the food matrix. Thus,
the PCs were extracted with 40 spectra (10 per food matrix)
for each of the four foodborne pathogens as a single group.
These PCs were then used as a training set in the ANN
analysis.

Time-Course Validation of ANNs for Differentiation
Using an Independent Data Set

Since calibration models are not stable over time due to
drift in instrumental and measurement parameters
(e.g., source intensity, temperature and humidity of the
surroundings, cleanliness of the ZnSe crystal, laser intensi-
ty), a preliminary evaluation was made to demonstrate the
effectiveness of the model using a time-course study. The
ANNs developed using the data collected in March and April
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Table 2. Summary of models developed and used for analysis.
Models Input Data Used Remarks

1-3
Principal components of spectral data of the four bacteria grown in media I 

at each of the concentration (108, 106, 103) in orange juice Done separately for each concentration

4-6
Principal components of spectral data of the four bacteria grown in media II 

at each of the concentration (108, 106, 103) in orange juice Done separately for each concentration

7-9
Principal components of spectral data of the four bacteria grown in media I 

at each of the concentration (108, 106, 103) in chicken broth Done separately for each concentration

10-12
Principal components of spectral data of the four bacteria grown in media II 

at each of the concentration (108, 106, 103) in chicken broth Done separately for each concentration

13-15
Principal components of spectral data of the four bacteria grown in media I 

at each of the concentration (108, 106, 103) in skim milk Done separately for each concentration

16-18
Principal components of spectral data of the four bacteria grown in media II 

at each of the concentration (108, 106, 103) in skim milk Done separately for each concentration

19-21
Principal components of spectral data of the four bacteria grown in media I 

at each of the concentration (108, 106, 103) in milk with 1% fat Done separately for each concentration

22-24
Principal components of spectral data of the four bacteria grown in media II 

at each of the concentration (108, 106, 103) in milk with 1% fat Done separately for each concentration

25-28
Principal components of spectral data of E. coli O26 at all concentrations 

(109, 108, 106, 103) in each food matrix Done separately for each food matrix

29-32
Principal components of spectral data of Salmonella typhimurium at all concentrations 

(109, 108, 106, 103) in each food matrix Done separately for each food matrix

33-36
Principal components of spectral data of Yersinia enterocolitis at all concentrations 

(109, 108, 106, 103) in each food matrix Done separately for each food matrix

37-40
Principal components of spectral data of Shigella boydii at all concentrations 

(109, 108, 106, 103) in each food matrix Done separately for each food matrix

41-44
Principal components of spectral data of the four bacteria in all food matrices 

done at each concentration Done separately for each concentration

2004 were further validated using the data collected in July
2004 for one pathogen. Yersinia enterocolitica  was grown in
TSA broth for 24 h at 37°C to a concentration of 109 CFU/mL
and suspended in sterile chicken broth at concentrations of
108, 106, and 103 CFU/mL. The absorbance spectra at these
three concentrations were then measured in replications of
ten using the Nicolet Nexus 870 FTIR spectrometer (Thermo
Electron Corp., Madison, Wisc.).

RESULTS AND DISCUSSION
DIFFERENTIATION OF THE FOODBORNE PATHOGENS

Figure 1 shows the FTIR absorbance spectra of four
matrices in which the bacteria were suspended. Similarly,
figure 2 shows the FTIR absorbance spectra of the four
microorganisms suspended in chicken broth, and table 3 lists
the major chemical groups in these matrices and microorgan-
isms. Figures 1 and 2 show that the spectra of the
microorganisms are different from that of the matrix (chicken
broth in this case). Slight variations among the four bacterial
spectra are visible in figure 2. These variations are too minute
to be visually differentiated; hence, sophisticated statistical
methods were used for the analysis of the spectral data.

ANNs were developed to differentiate four microorgan-
isms at various concentration levels (109 to 103 CFU/mL).
Data compression of the absorption spectra in the 600-
4000 cm−1 range was done using principal component
analysis (PCA), and 20 principal components (figs. 3 and 4)
were obtained and used as input to the ANNs. The network
could successfully differentiate all four microorganisms
grown in the two different media at an accuracy ranging
between 87.5% and 100%. The classification accuracy of the
training set was 100%. As reported in earlier studies (Gupta

and Irudayaraj, 2004), there were no correlations between the
pathogen concentration, growth media used, food matrix
analyzed, and classification accuracy. Errors could be
attributed to outlier patterns in the validation set. The
classification was 100% correct for data obtained from
suspensions in chicken broth at a concentration of 106 CFU/
mL (using bacteria grown in nutrient broth) and in skim milk
at the same concentration (using bacteria grown in TSA
broth). The overall classification accuracy for the validation
set using the data from the bacteria grown in the two different
media was 93.4%.

QUANTIFICATION OF THE FOODBORNE PATHOGENS
The concentration of bacteria in a suspension is directly

reflected by the change in intensity of the peaks in various
fingerprint regions, and this change in peak intensity linearly
correlates with the concentration of bacteria (fig. 5). ANNs
were developed separately for each pathogen to differentiate
and quantify the organisms at the three different concentra-
tions (108, 106, 103). The purpose here is to explore the
potential of FTIR spectroscopy as a counting tool. Results
from the analysis of the absorbance spectra using the
20 principal components in the ANN model is summarized
in figures 6 and 7 for bacteria grown in media I and media II,
respectively, in different food systems. Samples at all three
concentrations could be classified correctly with an accuracy
of about 100% using the data in the training set for bacteria
grown in both media. The validation accuracy range was
93.3% to 100% for bacteria grown in media I and 77.8% to
100% for bacteria grown in media II. There was no
correlation between the concentration of the pathogens and
the accuracy of quantification. The errors could only be
attributed to outlier patterns in the validation set. The
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Figure 1. FTIR absorbance spectra of the various food matrices. Figure 2. Absorbance spectra of the four bacteria.

Table 3. Major chemical groups in the food matrices and bacteria.
Food Matrix Wavenumbers (cm−1) Assignment

Skim milk and
milk with 1% fat

1200-900 C−O−C, C−O dominated by ring vibrations of carbohydrates C−O−P, P−O−P
1076 Lactose

1200-1450 Acetone
1402 C=O str (sym) of COO−

1548 Amide-II band of protein
1745 >C=O str vibration of esters
2924 C−H str (asym) of >CH2 in fatty acids

Orange juice 1200-900 C−O−C, C−O dominated by ring vibrations of carbohydrates C−O−P, P−O−P
~1400 C=O str (sym) of COO−

2926 C−H str (asym) of >CH2 in fatty acids

Chicken broth 1200-900 C−O−C, C−O dominated by ring vibrations of carbohydrates C−O−P, P−O−P
1220-1250 P=O str (asym) of >PO2

− phosphodiesters
1240-1310 Amide III band

1400 C=O str (sym) of COO−

1460 C−H def of >CH2

1558 Amide II
1645 Amide I of α-helical structures
1716 >C=O str vibration of esters
1743 >C=O str vibration of esters
2854 C−H str (sym) of >CH2 in fatty acids
2873 C−H str (sym) of −CH3

2926 C−H str (asym) of >CH2 in fatty acids

Bacteria 900-600 “Fingerprint region”
1200-900 C−O−C, C−O dominated by ring vibrations of carbohydrates C−O−P, P−O−P
1310-1240 Amide III

~1400 C=O str (sym) of COO−

1540-70 Amide II
~1630 Amide I of β-turns of proteins
~1655 Amide I of α-helical structures
1740 >C=O str vibration of esters

2919-21 C−H str (asym) of >CH2 in fatty acids
2960 C−H str (sym) of −CH3

~3100 N−H str (amide A) of proteins
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Figure 3. Food pathogens grown in media I and suspended in various food
systems.
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Figure 4. Food pathogens grown in media II and suspended in various
food systems.

maximum errors in classification occurred in the quantifica-
tion of Yersinia enterocolitis in chicken broth using the
bacteria grown in nutrient broth and in the quantification of
Shigella boydii in skim milk using the bacteria grown in
media II. The overall accuracy of classification was 95.1%.

DIFFERENTIATION OF FOODBORNE PATHOGENS
IRRESPECTIVE OF FOOD MATRIX

ANNs were developed for the differentiation of bacteria
irrespective of the food matrix at four different concentra-
tions (109, 108, 106, 103). Thus, for a given concentration, the
absorbance spectra of each bacteria suspended in the four

Figure 5. FTIR absorbance spectra of Yersinia enterocolitis in chicken
broth at three concentrations.
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Figure 6. Quantification of four foodborne grown in media I based on
their FTIR absorbance spectra using (PNN and PCA).
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Figure 7. Quantification of four foodborne grown in media II based on
their FTIR absorbance spectra using (PNN and PCA).

food matrices (table 3) were combined and used for
developing the network. Bacteria grown in media I and
media II were used at the 109 CFU/mL concentration. For the
other three concentrations (108, 106, 103), the bacteria grown
in media II were considered. The data were randomly split
into a training set (50%) and a validation set (50%). Thus,
four ANNs (one for each concentration) were developed and
validated. The results are summarized in table 4. The correct
assignment numbers in the table indicate the number of
spectra of bacteria that were correctly classified. The
concentration of pathogens had a strong effect on the
accuracy of network prediction. When the accuracy of the
validation sets was considered, at a concentration of 109

CFU/mL, with samples comprised of pathogens grown in
both types of growth media (media I and media II), the ANNs
could classify all four pathogens correctly with an average
accuracy of 87.5 %. At 108 CFU/mL, when pathogens
suspended in all four food matrices were considered, the

Table 4. Performance of the differentiation network
for pathogens suspended in all food matrices.

Concentration
Class

(CFU/mL) Suspension Matrix

Correct Assignment,
(number) %

Training
Set

Validation
Set

109 TSA broth and nutrient broth (40) 100 (35) 87.5
108 Food matrices[a] (80) 100 (76) 95
106 Food matrices (80) 100 (62) 77.5
103 Food matrices (70) 87.5 (38) 47.5

Overall results 96.88 73.33
[a] Chicken broth, milk (1% fat), orange juice, and skim milk
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Figure 8. FTIR absorbance spectra of E. coli O26 in different matrices.

ANN developed had an accuracy of 95%. For the pathogens
suspended in the same matrices at 106 and 103 CFU/mL, the
accuracy dropped to 77.5% and 47.5%, respectively.

The error at 109 CFU/mL is greater than that at 108

CFU/mL, as indicated by the accuracy of classification in
table 4, and this can be justified by the fact that the combined
spectral data are from bacteria grown on two different growth
media, whereas the spectral data at the other three concentra-
tions are for bacteria cultured in TSA and grown in TSA
broth. The spectral characteristics of cells depend on a
number of factors, such as cell cycle, growth conditions, and
sample preparation (Maquelin et al., 2002). Although the
growing conditions were similar, the difference in the growth
media must have contributed significantly to the difference
in the spectral signatures, and hence more errors in classifica-
tion were noted. The absorbance spectra of E. coli O26 grown
in different matrices (fig. 8) clearly show the difference in the
respective spectral signatures.

The increase in errors with a decrease in the concentration
could be attributed to the basic principle of attenuated total
reflectance (ATR), the technique used for obtaining the
mid-infrared spectra of the microbial cells on the internal
reflection element (IRE), i.e., zinc selenide (ZnSe). IR
radiation is focused onto the end of the IRE, and the incident
light is reflected down the length of the crystal. At each
internal reflection, the IR radiation actually penetrates a short
distance (1 to 4 microns) from the surface of the IRE into the
sample on top of the crystal (Compton and Compton, 1993;
Smith, 1996). It is this unique physical phenomenon that
enables one to obtain infrared spectra of samples placed in
contact with the IRE.

Since the samples in our experiment were retained only
for a short time on the crystal, the depth of penetration of the
evanescent wave might not be sufficient to uniformly cover
all the samples in the 1 to 4 micron range of penetration of the
ATR infrared radiation. However, the software assumes that
the spectra of the matrix or media with bacteria constitute the
spectra of the background and the microorganisms. Hence, it
subtracts the spectra of the background from the spectra of
the matrix with microorganisms to give the specific finger-
print of the spectra with microorganisms. This leads to an
increased level of noise in the signal. Settling time of
microorganisms might also be a factor; however, since all

experiments were conducted in static conditions, settling
time was not a factor in this work. However, if a continuous
flow-through analysis is to be devised, then settling time
should be considered as a parameter in sensing protocol
development.  Nevertheless, at lower concentrations, a lesser
area of the crystal surface is covered by the microorganisms.
Hence, weaker signals are possible, contributing to a lower
signal-to-noise ratio and possibly increased errors in classifi-
cation. Thus, more sophisticated analytical methods for
subtraction of the background, which take into consideration
settling time of the suspended bacteria and settling rate, are
needed for more accurate identification of pathogens,
irrespective of the food matrices.

VALIDATION OF ANNS FOR DIFFERENTIATION WITH

INDEPENDENT DATA SETS
The ANNs developed using spectral data collected in

March and April 2004 were validated using another indepen-
dent spectral data set for Yersinia enterocolitis suspended in
chicken broth, collected in July 2004 at the three concentra-
tions. The validation results are summarized in table 5.

As observed earlier when the classification was done with
smoothed and differentiated FTIR absorbance spectra, the
ANN predictions were poor. This could be due to instrumen-
tal and environmental factors noted earlier (e.g., stability of
the source, intensity of the laser, variations in environmental
conditions such as temperature and relative humidity, and
even the accuracy of the background spectra). As a first step
in this analysis, the smoothed spectral data were normalized
using Origin software (v7.7, SR2, OriginLab Corp., North-
ampton, Mass.). The normalized data were then compressed
into 20 principal components and used as input to the ANNs.

Table 5. Validation of the differentiation for an independent
data set (Yersinia enterocolitis in chicken broth).

Concentration
Class

(CFU/mL)

Correct Assignment, (number) %

Training Set Validation Set

109 (40) 100 (8) 80
108 (40) 100 (7) 70
106 (40) 100 (10) 100
103 (26) 65 (6) 60

(36.5) 91.25 (7.75) 77.5
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The network was influenced strongly by the poor signal-to-
noise ratio and performed best with data obtained from the
106 CFU/mL sample, where a classification accuracy of
100% was achieved. However, the average classification
accuracy for the validation set was 77.5%. Hence, better
post-processing procedures to remove the background noise
from the spectral data are needed.

CONCLUSIONS
ANNs combined with PCs have been successfully used for

the identification and quantification of four foodborne
pathogens (E. coli O26, Salmonella typhimurium, Yersinia
enterocolitis, and Shigella boydii) in four different food
matrices. The classification accuracy of the ANNs for
identification  and quantification was 93.4% and 95.1%,
respectively. The networks were also validated using an
independent data set obtained from a pathogen cultured and
grown separately. The network had an accuracy of 64% to
100% for such a validation in detecting Yersinia enterocolitis.
In this work, we have thus successfully demonstrated that
pathogens could be identified irrespective of the food
matrices. More sophisticated background noise filtration
techniques are needed to further refine the ANNs to improve
predictions, especially at lower concentrations (<103 CFU/
mL).
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