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Abstract 

This study aimed to develop volume estimation models which will be robust and useful for predicting merchantable volume of teak trees 

in different teak growing regions of the world. The data was statistically simulated based on various published models for different teak 

growing conditions in different parts of the world. A total of thirteen models comprising nine conventional (linear and nonlinear) and 

four Artificial Intelligence (AI) techniques-based models, thus two Support Vector Machine (SVM) techniques and two Artificial Neural 

Network (ANN) techniques, were fitted to the data. Several statistical model selection criteria including Efron’s pseudo R-squared, Root 

Mean Square Error, Mean Absolute Bias, Nash-Sutcliffe Efficiency, Index of Agreement and Akaike Information Criterion were used 

to evaluate and rank the models’ performances from best to worst. All AI techniques-based models were superior over conventional 

models in performance, and the overall best model was SVM technique followed by an ANN technique. Among conventional models, 

allometric models generally fitted the data better than linear regression type models, with model 𝑀5 being the best while 𝑀2 was the 

worst. Combination of tree diameter at breast height (dbh) and height as predictors of tree volume was shown to improve model 

prediction accuracy for teak trees irrespective of the model involved. On the basis of the varied nature of the data used for model fitting, 

the developed models would be useful in making reliable predictions of teak timber volume for different teak growing regions across 

the world. The models have wide application potential and may be recommended for use in managing teak plantation inventory in 

different parts of the world. 
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1. Introduction 

Teak (Tectona grandis) is considered one of the most well-known 

and widely used timbers of the world. It is well recognized for its 

high-quality timber in the international market. Superior qualities 

of teak timber include durability, ease of seasoning without 

splitting and cracking, attractiveness in colour and grain, 

lightness with strength, ease of working and carving, resistance 

to termite, fungus, and weathering (Kaosa-ard 1998; Bermejo et 

al. 2004) [23, 6]. Its natural distribution ranged from India through 

Burma, Laos and Thailand (Kaosa-ard 1998; Hansen et al. 2015) 
[23, 18]. Recently, increasing demand of teak timber and its related 

products has resulted in shrinking of natural forests. To ensure 

sustainable supply of timber, teak trees have been successfully 

established as exotic timber species in many countries outside the 

natural distribution zones, a few major ones being Puerto Rico, 

Panama and Trinidad in Central America; Brazil and Ecuador in 

South America; Senegal, Ivory Coast, Ghana, Togo, Benin and 

Nigeria in West Africa; Sudan, Kenya and Tanzania in East 

Africa; and Nepal, China, Sri Lanka, Bangladesh and Indonesia 

in Asia (Hoare and Patanapongsa 1988; Perez and Kanninen 

2003) [20, 40]. 

For teak or any timber species, sustainable timber production is 

fundamental to long-term success of forest management as land 

use system (Brienen and Zuidema 2006) [9]. The goal of proper 

management of timber plantation is to provide high quality 

timber in quantities and sizes that will ensure maximum 

satisfaction of owner(s) while resolving imposed constraints 

(Newberry 1984) [33]. Consequently, evaluating various 

management and utilization alternatives for timber resources 

require the use of accurate and flexible methods to estimate stand 

and tree growth and yield (Sharma et al. 2000) [43]. Statistical 

models become very useful tools in estimating tree growth and 

yield, when measurements of variables such as diameter at breast 

height (dbh), tree height and volume are available. The dbh 

(measured at 1.3 m above ground) and tree height are crucial in 

measurement of tree growth, and have been used to estimate the 

total and merchantable tree volume, site index, and other relevant 

variables in forest growth and yield, succession, and carbon 

budget models in many species (Peng et al. 2001) [39]. While 

diameter can be easily and directly measured on trees, the 

measurement of total tree height is relatively complex, costly and 

time consuming (Sharma and Parton 2007) [44]. Accurate 

measurement of height of standing trees is difficult especially in 

closed-canopy forests, so most researchers ignore it in carbon-

accounting programs (Hunter et al. 2013; Larjavaara and Muller-

Landau 2013) [21, 26]. Jiang and Li (2010) [22] developed mixed-

effects models for estimating height from diameter. Site specific 

height-dbh model was found to be suitable in estimating tree 

height in the lowland forests of Tanzania (Mugasha et al. 2016) 
[29].  
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In timber production, it is desirable to obtain estimates of growing 

stock in terms of timber volume. The relationships among dbh, 

height and volume are exploited in developing volume equations 

as the most common procedure in estimating stand volumes 

(Bohre et al. 2013) [8]. Though dbh is mostly used as predictor in 

volume equations, inclusion of height generally provides better 

estimates (Hunter et al. 2013; Chave et al. 2014) [21, 12] because it 

helps account for variations in climate, soil and some cultural 

practices (Shamaki et al. 2011) [42]. Estimates of bole volume are 

very useful in forest inventory since the basic management unit 

of forests is the volume of timber (Cháidez 2009) [11]. Despite the 

increasing use of biomass and density, volume is the most 

extensively used traditional measure for tree quantity in forest 

management (Koirala et al. 2017) [24]. Bylin (1982) [10] developed 

equations for predicting tree volumes from stump diameter and 

stump height for 15 tree species. Nunifu and Murchinson (1999) 

[35] compared three methods of estimating teak stand volume per 

hectare viz. two-stage simple random sampling (SRS), two stage 

sampling with probability proportional to basal area at the second 

stage (PPG), and a standard volume equation developed using 

individual sub-sample tree dbh, height and volume 

measurements. They observed that volume estimates derived 

using the standard volume equation were more precise, hence 

they recommended its use to guarantee efficient yield estimates 

in standing trees. Shamaki et al. (2011) [42] reported that double 

log equation was best for estimating volume of teak trees in 

Nimbia Forest Reserve in Nigeria. Allometric model was found 

to be better than linear, logistic, gompertz and chapman-richards 

models in predicting biomass components of Populus deltoides 

in India (Ajit et al. 2011) [2]. 

The need to improve yield prediction accuracies has led to the 

deployment of data-driven models under Artificial Intelligence 

(AI) techniques, particularly Support Vector Machine (SVM) and 

Artificial Neural Network (ANN). The reason is that AI 

techniques are algorithm-based, do not require any assumptions 

about the form of a fitting function, and yet, they are able to learn 

from data and predict patterns more accurately (Diamantopoulou 

2006) [16]. AI techniques outperformed traditional regression 

models in estimating the height of trees (Özçelik et al. 2013) [38], 

diameter and total height (Vieira et al. 2018) [52], tree volume 

(Diamantopoulou 2006; Lacerda et al. 2017) [16, 25] and biomass 

(Nandy et al. 2017) [31]. Özçelik et al. (2010) [37] employed ANNs 

to estimate dbh and tree volume from stump diameter for 3 

economically important species in Turkey. SVM and ANN 

models were found to be better than nonlinear regression models 

in estimating inside-bark volume of Eucalyptus globulus (Nieto 

et al. 2012) [34], height of Crimean juniper tree (Özçelik et al. 

2013) [38] and bark thickness of teak trees (Vendruscolo et al. 

2019) [51]. 

If trees are to be felled for commercial purpose, then there is a 

need for volume models that are able to quantify tree volume well 

prior to tree felling (Mugasha et al. 2016) [29]. Tewari and Singh 

(2018) [49] argued that specific rather than generic volume 

equations should be preferred because of variations in growing 

rates, management regimens and production objectives of teak 

plantations across different tree growing regions. Specific 

volume models are expedient in estimation of the average volume 

for standing trees (Avery and Burkhart 2002) [5], nevertheless, 

their usefulness is limited to the growing region of the data under 

consideration. This is due to the fact that most volume equations 

are local, thus developed based on specific data from a locality 

under certain forest management practices.  

Though there have been considerable research efforts to develop 

volume estimation models for teak, most developed models are 

region specific, and no particular model can be deemed 

appropriate for use to produce reliable volume estimates across 

different growing regions. Therefore, this research aims to 

develop generic volume estimation models for teak which will be 

robust and have wider application potential across different teak 

growing regions of the world. In this study, we have attempted (i) 

using statistical approaches to simulate data from region/climate 

specific individual published equations from different growing 

regions in six countries; (ii) combining individual simulated data 

sets from different regions of the world into one aggregated-data-

set; and (iii) fitting conventional (linear/non-linear) and AI (SVM 

and ANN) models on the aggregated-data-set to present a generic 

model that may be used for predicting teak timber volume across 

different regions and climatic conditions.  

 

2. Materials and methods 

2.1 Study area  
This study covers several teak growing regions in six countries. 

Eleven published articles based on primary data were selected, 

from which the general climatic conditions of the study areas are 

summarized in Table 1. Primary data refers to the data obtained 

by direct measurements (or estimation) of variables of interest 

from standing or felled trees in the field. 

 
Table 1: Main characteristics of the study areas of teak plantations in different countries 

 

Country Study area(s) 
Climatic conditions of study area(s) 

Reference 
Rainfall (mm) Temperature (°C) Altitude (m) 

Ghana Tamale, Savelugu, Yendi and Damongo forest districts 960 – 1200 28 151 – 217 Nunifu 1997 [36] 

Costa Rica 

Guanacaste, Puntarenas, Limon, Alajuela 1659 – 4200 25.9 – 27.1 25 – 300 Perez and Kanninen 2003 [40] 

Puerto Carrillo, Palo Arco and Moravia 1800 – 2450 26 – 29 25 – 400 Bermejo et al. 2004 [6] 

Carrillo, Garza, Jicaral, Tempisque, San Carlos, Parrita, 

Quepos, Palmar Norte and Buenos Aires 
1659 – 3900 26.1 – 27.1 25 – 300 Perez 2008 [41] 

Tanzania 
Mtibwa, Longuza and Kilombero Valley Teak Company 1000 – 1400 19 – 31 160 – 560 van Zyl 2005 [50] 

Longuza Forest Plantation 1400 27 160 – 560 Mwangi 2015 [30] 

Nigeria 
Nimbia Forest Reserve, Kaduna State 1650 – 1700 17 – 35 600 Shamaki et al. 2011 [42] 

Agudu Forest reserve 1400 – 1500 16 – 44 287 Shuaibu 2016 [45] 

Nepal Sarlahi district 1130 – 2680 10 – 45 60 – 330 Koirala et al. 2017 [24] 

India 

Karnataka 1600 – 4500 11 – 38 0 – 1925 Tewari et al. 2013 [48] 

Godhara, Baria, Narmada, Vyara and Dang forest divisions 

in Gujarat 
578 – 1107 12 – 49 198 Tewari and Singh 2018 [49] 
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2.2 Data simulation  
The data generation process started with an extensive search of 

literature to identify key articles or researches, which had 

published data on volume prediction models of teak. The eleven 

articles which were selected from six countries are indicated in 

Tables 1. Those researches represent major teak growing regions 

across the world. Descriptive statistics (minimum, maximum, 

mean and standard deviation (SD) of the variables (dbh, height 

and volume)) from each research were tabulated (Table 2) and 

used for the simulation of data. In each of the selected researches, 

the authors had fitted several volume models and recommended 

some models as best based on well-defined model evaluation 

criteria. Parameter estimates of those best models, one from each 

article, were then used for simulation of data points for the 

present study.  

For each of the published equations (representing different region 

and different climatic conditions), the minimum and maximum 

values of dbh (as depicted in Table 2) were used as the two 

parameters of a uniformly distributed random variable (X) to 

generate 𝑁(= 500)  data points at random. Thus 𝑋~𝑈(𝑎, 𝑏) 
where 𝑎  and 𝑏  are the minimum and maximum values 

respectively of the distribution. The data sets were generated in 

R using 𝑟𝑢𝑛𝑖𝑓(𝑁, 𝑎, 𝑏)  function. Height values were also 

generated similarly. However, the data set from Shamaki et al. 

(2011) [42] was generated using 𝑟𝑛𝑜𝑟𝑚(𝑁,𝑚𝑒𝑎𝑛, 𝑠𝑑) while the 

actual field data of Mwangi (2015) [30] was used. The randomly 

generated values of dbh or dbh and height were inputted into the 

published best equations (of the 11 respective research articles) 

to predict the corresponding volume values. However, these 

predicted volume values are static (in the sense of being 

generated from a fixed equation), accordingly there arises a need 

to associate a random (actually the error) component with each of 

these predicted volume values so that these pseudo generated-

data set simulates the actual/original harvest-data set from which 

the published equation was derived. Thus to create randomness 

in the predicted volume values, the SDs associated with the 

original volume values (Table 2) were used to generate 500 raw 

random errors (say 𝑒𝑖, 𝑖 = 1, 2, … , 𝑁) for each data set, following 

a Normal-Distribution with MEAN=0 and SD=volume-standard-

deviation-as-reported-in-article.  

Since each published model had 𝑅2 value, the difference of the 

𝑅2 value from one, denoted as 𝑑𝑗 = 1 − 𝑅𝑗
2, (which is the portion 

of the total variance not accounted for by the model, i.e. error 

component) was obtained. Here, 𝑗 = 1, 2, … , 11  for the 11 

equations. 

 
Table 2: Descriptive statistics of teak data from published researches originating from different teak growing regions 

 

Sample size (n) Data use Variable Min Max Mean SD Source 

368 Training 

dbh (cm) 3.6600 33.5000 14.9200 8.2590 

Nunifu 1997 [36] Height (m) 4.0000 26.4000 11.9780 5.7826 

Vol (m3) 0.0015 1.5413 0.4339 0.3740 

111 Training 

dbh (cm) 2.4000 58.7000 17.8000 8.8000 

Perez and Kanninen 2003 [40] Height (m) 3.8000 33.3000 16.5000 5.2000 

Vol (m3) - - - - 

285 Training 

dbh (cm) 10.0000 27.2000 18.7000 2.4000 

Bermejo et al. 2004 [6] Height (m) 12.0000 23.2000 17.9000 1.9000 

Vol (m3) 0.0199 0.3584 0.1403 0.0560 

222 Training 

dbh (cm) 8.1000 79.4000 31.2719 17.3083 

van Zyl 2005 [50] Height (m) 8.9800 33.8200 21.2837 6.8372 

Vol (m3) 0.0100 5.9400 1.0053 1.1369 

25 Training 

dbh (cm) 9.4000 55.4000 23.3000 10.3000 

Perez 2008 [41] Height (m) 12.4000 33.3000 20.6000 5.7000 

Vol (m3) - - - - 

364 Training 

dbh (cm) - - 13.7240 1.6973 

Shamaki et al. 2011 [42] Height (m) - - 5.5000 0.5661 

Vol (m3) - - 0.0785 0.0226 

91 Training 

dbh (cm) 5.5000 36.0000 17.5700 5.6200 

Tewari et al. 2013 [48] 

Height (m) 6.5000 21.4000 14.6900 3.4900 

Vol (m3) 0.0063 1.0357 0.2101 0.1651 

39 Validation 

dbh (cm) 6.5000 35.2000 16.4800 6.6800 

Height (m) 6.9000 21.3000 13.9700 3.4400 

Vol (m3) 0.0104 1.1037 0.2001 0.2133 

51 Training 

dbh (cm) 1.0000 83.4000 37.3940 24.5329 

Mwangi 2015 [30] Height (m) 1.5000 37.5000 25.6470 10.9960 

Vol (m3) - - - - 

70 Training 

dbh (cm) 23.0000 36.0000 29.0000 3.0000 

Shuaibu 2016 [45] 

Height (m) 11.6000 20.2000 15.8600 2.1700 

Vol (m3) 0.5100 1.4700 0.8900 0.1980 

30 Validation 

dbh (cm) 21.7600 34.6800 29.1000 2.9000 

Height (m) 12.6000 20.6000 16.7130 2.3980 

Vol (m3) 0.4982 1.4819 0.9410 0.2010 

31 Training 
dbh (cm) 6.3700 58.9200 27.9100 16.0300 

Koirala et al. 2017 [24] 
Height (m) 5.7000 26.1000 16.1300 5.2100 
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Vol (m3) 0.0100 2.1300 0.6500 0.6400 

13 Validation 

dbh (cm) 6.0500 57.3200 27.8500 18.7000 

Height (m) 6.1000 23.3000 16.0800 5.6600 

Vol (m3) 0.0100 2.4400 0.7600 0.9200 

41 Training 

dbh (cm) 7.3000 30.8000 18.0700 5.4600 

Tewari and Singh 2018 [49] Height (m) 8.2000 22.0000 14.2700 3.5500 

Vol (m3) 0.0249 0.6589 0.1637 0.1388 

Min, minimum; Max, maximum; SD, standard deviation; dbh, diameter at breast height; Vol, volume. 
 

Then 𝑑𝑗
𝑡ℎ percentage of the random errors 𝑒𝑖 (say, 𝑒𝑑𝑗 = 𝑑𝑗 ∗ 𝑒𝑖) 

were calculated and added to the predicted volume values to give 

simulated volume values. So under each model, simulated 

volume = predicted volume + 𝑒𝑑𝑗 . The variables in each 

simulated data set were grouped together using 𝑐𝑏𝑖𝑛𝑑() function 

and saved to comma-separated values file using 𝑤𝑟𝑖𝑡𝑒. 𝑐𝑠𝑣() 
function in R. All the data sets were combined together to 

constitute one data set called aggregated data, containing 6511 

final data points (observations) after data cleaning.  

 

2.3 Fitting of volume models 
A key step in development of statistical models is the need for 

two independent data sets so that one set is used for model 

estimation and the other set for model validation (Ajit 2010) [3]. 

However, if there are no two independent data sets, then the 

available data set may be judiciously partitioned into two, one 

used for model estimation and the other for model validation. In 

such a scenario, Geisser (1975) [17] suggested that a random 

sample (without replacement) of about 80% data points should be 

selected and utilized for model fitting while the remaining 20% 

data points is kept as the second independent data set to be used 

for model validation. In this study, the data set was randomly split 

into 80% and 20% for model training and validation respectively 

using 𝑠𝑎𝑚𝑝𝑙𝑒() function in R. The descriptive statistics of the 

randomly sampled data sets are given in Table 3. A careful look 

at these descriptive statistics in comparison to those in Table 2 

suggests a similarity in pattern of the data points. 

 
Table 3: Descriptive statistics of simulated data for teak 

 

Sample size (n) Data use Variable Minimum Maximum Mean Standard deviation 

5209 Training 

DBH (cm) 1.4450 80.5000 26.2764 13.6375 

Height (m) 5.0000 37.5000 18.7277 5.4069 

Vol (m3) 0.0009 6.9422 0.6750 0.8737 

1302 Validation 

DBH (cm) 1.6935 83.4000 25.7518 14.2987 

Height (m) 7.1215 36.6151 18.6345 5.5526 

Vol (m3) 0.0011 6.6509 0.6730 0.9278 

 

Nine conventional (linear and nonlinear) models and 4 AI 

technique-based models were fitted to the data. The 9 

conventional models were chosen based on recommendations 

from literature (Nunifu 1997; Perez and Kanninen 2003; Bermejo 

et al. 2004; Perez 2008; van Zyl 2005; Shamaki et al. 2011; 

Shuaibu 2016; Tewari et al. 2013; Koirala et al. 2017, Tewari and 

Singh 2018) [36, 40, 6, 41, 50, 42, 45, 48, 24, 49]. We have denoted these 9 

models as 𝑀𝑖(𝑖 = 1, 2, … ,9) and given their forms below.  

 

𝑀1:  𝐸(𝑉) = 𝛽0 + 𝛽1𝐷 + 𝛽2𝐻   (1) 

𝑀2:  𝐸(𝑉) = 𝛽0 + 𝛽1𝐷   (2) 

𝑀3:  𝐸(𝑉) = (𝛽0 + 𝛽1𝐷)
2   (3) 

𝑀4:  𝐸(𝑉) = 𝛽0𝐷
𝛽1      (4) 

𝑀5:  𝐸(𝑉) = 𝛽0𝐷
𝛽1𝐻𝛽2    (5) 

𝑀6:  𝐸(𝑉) = 𝛽0 + 𝛽1𝐷
2𝐻   (6) 

𝑀7:  𝐸(𝑉) = 𝑒(𝛽0+𝛽1𝑙𝑛(𝐷
2𝐻))

   (7) 

𝑀8:  𝐸(ln𝑉) = 𝛽0 + 𝛽1ln𝐷 + 𝛽2ln𝐻  (8) 

𝑀9:  𝐸(𝑉) = 𝛽0 + 𝛽1𝐷 + 𝛽2𝐷
2   (9) 

 

Where 𝐸() is expectation, 𝑉 is volume of main stem (bole), 𝐷 is 

diameter at breast height (dbh), 𝐻 is height of main stem, 𝑙𝑛 is 

natural logarithm and 𝛽0, 𝛽1 and 𝛽2 are parameter estimates to be 

determined when models are fitted. The models were fitted using 

either 𝑙𝑚()  or 𝑛𝑙𝑠()  functions of 𝑛𝑙𝑠𝑡𝑜𝑜𝑙𝑠  package in R, 

depending on the type of model.  

The 4 AI technique-based models comprised 2 ANN models 

(denoted as ANNdbh and ANNdbhht) and 2 SVM models 

(denoted as SVMdbh and SVMdbhht), all of which are based on 

some learning algorithms. ANN is an efficient computing system 

consisting of one or more layers, where each layer contains one 

or more simple processing units called neurons. A typical ANN 

has an input layer, a hidden layer (which may be absent in some 

cases) and an output layer. The input layer receives the input 

variables and transmits them to the hidden layer which processes 

them before transmitting to the output layer. There is an 

activation function(s) within the hidden layer which transform(s) 

the input received in order to ensure that the amplitude of the 

output of a neuron is within limit. A simple ANN model is 

defined by Haykin (2009) [19] as, 

 

𝑌 = 𝜗(∑ 𝑥𝑖𝑤𝑗𝑖 + 𝑏𝑗
𝑚
𝑖=1 )    (10) 

 

where 𝑌 is the output variable, 𝑥𝑖 is the 𝑖th input variable, 𝑤𝑗𝑖  is 

the synaptic weight of 𝑗th neuron assigned to 𝑥𝑖, 𝑏𝑗 is bias of 𝑗th 

neuron and 𝜗(. ) is the activation function.  

To fit the 2 ANN models, the data set was processed by 

normalizing all variables due to the difference in units of 

measurements. The training data set was inputted into the ANN 

model for calibration, with dbh alone (ANNdbh) or dbh and 

height (ANNdbhht) as inputs and volume as output. Predictions 

were then made for both the training and validation data sets for 

computation of model evaluation statistics. The implementation 

of the models was done using feed forward neural network with 

multilayer perceptron architecture (having 2 hidden layers with 
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3, 2 neurons respectively) under the 𝑛𝑒𝑢𝑟𝑎𝑙𝑛𝑒𝑡() function in R. 

A perceptron is the simplest form of a neural network (an 

artificial neuron) that does certain computations to detect features 

in an input data.  

SVM is a type of algorithm that receives a training sample and 

constructs a hyperplane as the decision surface with the target of 

maximising the margin of separation between two patterns 

(Haykin 2009) [19]. It is used in solving both classification and 

nonlinear-regression problems. According to Cristianini and 

Shawe-Taylor (2000) [14], SVM uses a linear learning machine to 

learn a non-linear function in a kernel-induced feature space 

while the capacity of the system is controlled by a parameter that 

is independent of the dimensionality of the space. The technique 

uses a slack variable to measure the deviation of a data point from 

the ideal pattern-separating hyperplane. Thus, for any set of 

observations, the SVM technique finds a strip in the feature space 

that separates each class in a different semi space, maximizing 

the separation between classes (in a training sample) and 

minimizing some measure of the misclassification errors (Blanco 

et al. 2020) [7]. Haykin (2009) [19] provided detail exposition of 

the SVM techniques. A simple equation of the hyperplane that 

performs the pattern separation is, 

  

𝑤𝑇𝑥 + 𝑏 = 0     (11)  

 

Where 𝒙 is an input vector, 𝑤 is an adjustable weight vector, and 

𝑏 is a bias.  

In this study, the 2 SVM models were fitted on the training data 

set with either dbh alone (SVMdbh) or dbh and height 

(SVMdbhht) as input variables respectively, and volume as 

output variable using 𝑠𝑣𝑚() function in R. Tuning of models was 

done using the 𝑡𝑢𝑛𝑒() function to obtain the best model.  

 

2.4 Model evaluation and validation  

Under every model, predictions of timber volume were done for 

both the training and testing data sets for computation of model 

evaluation statistics. This study employed several statistical 

criteria to assess model performance. These criteria are defined 

in the following: (i) Efron’s pseudo R-squared (𝑅2) refers to the 

square of the correlation between the predicted values of a model 

and the actual values (Mangiafico 2016) [27]. It gives a relative 

measure of how well a model explains the data; (ii) Root Mean 

Square Error (RMSE) is a measure of average magnitude of the 

error of a model in predicting quantitative data. It is particularly 

useful when large errors are undesirable; (iii) Mean Absolute 

Error (MAE) is a measure of the average magnitude of the errors 

between the predicted and the observed values, without 

considering their direction; (iv) Nash-Sutcliffe Efficiency (NSE) 

is a normalized statistic that measures the relative magnitude of 

the residual variance compared to the observed data variance 

(Nash and Sutcliffe, 1970) [32]. It gives a measure of the predictive 

accuracy of a model; (v) Index of Agreement (IA) is a 

standardized measure of the amount of model prediction error 

(Willmott 1981) [53]. IA represents the ratio of the mean square 

error and the potential error. (vi) Akaike Information Criterion 

(AIC) is a measure of how well a model fits a data set without 

over-fitting it, relative to other model(s) fitted to the same data 

set. AIC of a model is useful only when compared to AICs of 

other models. The formulae, limits and interpretations of these 

statistics are presented in Table 4. 

 
Table 4: Statistical criteria used for evaluating model performance 

 

Statistic Formula Limits Interpretation 
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where 𝑦𝑖 is 𝑖th observed data point, �̅� =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1  is the mean of 

the observed data points, �̂�𝑖 is 𝑖th predicted value of each model, 

𝑛 is the sample size, 𝑒 is exponent, 𝑝 is the number of estimated 

parameters in a model, and �̂�  is the maximum value of the 

likelihood function for the model.  

Under each evaluation criterion, all the models were ranked for 

their performance following the procedure of Tewari and Singh 

(2018) [49]. Ranking was carried out in two ways, thus ranking all 

models (without including AIC) and ranking only conventional 

models (with AIC included). This was due to the fact that AIC 

values could not be computed for the AI technique-based models, 

as they are only approximations to an underlying model whereas 

AIC is based on assumption of asymptotic normality of 

maximum likelihood estimators (Anders and Korn 1999) [4]. 

Therefore, all the 13 models were assigned rank scores from best 

(1) to worst (13) without considering AIC. Rank scores were then 

summed for each model and the model with lowest total score 

declared the best. In the second case, by including AIC, the 9 
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conventional models were ranked in similar manner from best (1) 

to worst (9). Additional evaluation of models was done by 

regressing observed volume on predicted volume of training data 

set for each model using simple linear regression. The presence 

of autocorrelation in the residuals was tested by computing 

Durbin-Watson (DW) statistic for each regression (Montgomery 

et al. 2003) [28]. The statistic is given as, 
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Where 𝑟𝑖(𝑖 = 1, 2, … , 𝑛) are the residuals from an ordinary least 
squares analysis applied to the observed-predicted regression 
data? Values of DW range from 0 to 4, with values between 1.5 
and 2.5 considered relatively normal and indicate no 
autocorrelation in the given data.  
All models were validated by using each fitted model to predict 
tree volume for the test data set. All the evaluation statistics 
(except AIC) were computed for the test data set and ranked from 
best to worst.  
 

3. Results and discussion 
After fitting the models to the training data, the parameter 

estimates along with the respective t-test of significance and 

probabilities for each estimate are presented in Table 5. All 

parameter estimates for all models were highly significant (p < 

0.001). This result agreed with Bohre et al. (2013) [8] who 

reported significant parameter estimates when different 

permutations of dbh and height were used as predictors of teak 

tree volume in Madhya Pradesh, India. Tewari et al. (2013) [48] 

and Tewari and Singh (2018) [49] also reported highly significant 

parameter estimates for several volume models of teak though, in 

both reports, few parameter estimates were insignificant. The 

estimates of intercepts (𝛽0)  for models 𝑀1 , 𝑀2  and 𝑀3  were 

negatives (Table 5), which imply that these models may produce 

negative estimates of tree volume as they are linear regression 

type models. In a study of Populus deltoides, Ajit et al. (2011) [2] 

observed negative estimates of tree volume from a linear 

regression model. Avery and Burkhart (2002) [5] stated that 

negative intercepts are expected for merchantable volume 

prediction. Nevertheless, the possibility of producing negative 

volume estimates does not make biological sense as actual tree 

volume cannot be negative. Since the nonlinear models will 

rarely produce negative volume estimates, it means their 

predictions mimic actual field situation and should be preferred 

over the linear regression type models. The SE for parameter 

estimates of all models were generally low. This suggests that the 

models would predict teak volume with high accuracies, 

considering the fact that they were fitted on data that had high 

variability. There were no parameter estimates for ANN and 

SVM models (Table 5), because they are AI techniques which are 

based on algorithm and considered to be approximations of some 

true underlying models (Anders and Korn 1999) [4]. However, 

diagrams of the developed neural networks for ANNdbh and 

ANNdbhht models are given in Fig 1 and 2 respectively. In both 

networks, there were two hidden layers having 3 and 2 neurons 

respectively with the associated synoptic weights clearly 

indicated in the diagrams. These networks were chosen, based on 

their prediction accuracies, as the best among several networks 

fitted with varying number of hidden layers and neurons.  

 
Table 5: Model parameter estimates for training data set for teak 

 

Model Parameter Parameter estimate Standard Error t-value Probability 

𝑀1 

𝛽0 -0.79460 0.01972 -40.30 <0.001 

𝛽1 0.06073 0.00065 92.89 <0.001 

𝛽2 -0.00674 0.00165 -4.09 <0.001 

𝑀2 
𝛽0 -0.86234 0.01071 -80.53 <0.001 

𝛽1 0.05851 0.00036 161.74 <0.001 

𝑀3 
𝛽0 -0.14831 0.00498 -29.76 <0.001 

𝛽1 0.03199 0.00011 293.37 <0.001 

𝑀4 
𝛽0 2.530e-04 8.401e-06 30.12 <0.001 

𝛽1 2.30300 8.308e-03 277.20 <0.001 

𝑀5 

𝛽0 1.962e-04 7.311e-06 26.83 <0.001 

𝛽1 2.16500 0.01370 158.07 <0.001 

𝛽2 0.24120 0.01863 12.95 <0.001 

𝑀6 
𝛽0 0.10280 3.776e-03 27.24 <0.001 

𝛽1 2.790e-05 1.033e-07 270.02 <0.001 

𝑀7 
𝛽0 -9.12146 0.03901 -233.90 <0.001 

𝛽1 0.88529 0.00344 257.50 <0.001 

𝑀8 

𝛽0 -8.64788 0.06021 -143.63 <0.001 

𝛽1 2.78806 0.01732 160.97 <0.001 

𝛽2 -0.44435 0.03323 -13.37 <0.001 

𝑀9 

𝛽0 0.08272 0.01141 7.247 <0.001 

𝛽1 -0.01306 7.517e-04 -17.38 <0.001 

𝛽2 1.067e-03 1.075e-05 99.27 <0.001 

Note: Ye-x = Y×10-x 
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Fig 1: Artificial neural network with 2 hidden layers (3, 2 neurons) having dbh as input and tree volume (simVol) as output 

 

 
 

Fig 2: Artificial neural network 2 hidden layers (3, 2 neurons) having dbh and height as inputs and tree volume (simVol) as output 

 

The 𝑅2  values of the models were generally high except for 

models 𝑀1  and 𝑀2  which had moderate values (Table 6). This 

means that the models accounted for higher amount of variability 

in teak volumes. This finding is similar to the work of Tewari et 

al. (2013) [48], who reported that non-linear models were better in 

estimating teak volume. In a study of teak plantation from two 

different forest reserves in Nigeria, Adekunle (2007) [1] reported 

relatively moderate to high 𝑅2  values (74.89 to 92.50%). The 

NSE is notably similar to 𝑅2 in formula and the computed values 

too, except in few cases where there were few differences in 

values (Table 6). The very high values of NSE and IA indicates 

how well these models fitted the training data. The IA in 

particular, shows the degree to which the observed (actual) tree 

volumes are accurately estimated by the predicted tree volumes, 

and gives a measure of the degree to which a model's predictions 

are error free (Willmott 1981) [53]. Based on the rank scores, the 

overall best model was an SVM followed by ANN, both of which 

had dbh and height as independent variables. Clearly, all AI 

models outperformed the conventional models on all model 

evaluation criteria. This implied that AI models fitted the data 

better and would produce better predictions. The fitting patterns 

are corroborated in the scatter plots of observed against predicted 

volumes as well as the residual plots given in Appendix (Fig 3). 

In the observed-predicted plots, the data points appeared to line 

up along the main diagonals. Also, from the residual plots, the 

residuals of all AI models appeared to spread around zero quite 

well, to some extent, given the heterogeneous nature of the data 

under consideration.  

In most studies involving comparison of AI and conventional 

models, the former has been noted to be phenomenal in 

performance (Özçelik et al. 2010; Özçelik et al. 2013; Lacerda et 

al. 2017) [37, 38, 25]. Socha et al. (2020) [46] attributed such 

phenomena to non-requirements of full a priori knowledge of a 

given data by AI models. Also, AI techniques are algorithm-

based and so have enhanced ability to work with any noisy or 

low-quality data (Diamantopoulou et al. 2015) [15]. However, 

since AI models do not have parameter estimates for any fitting 
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equations, they cannot be written out in an equation form for easy 

use by laymen. Therefore, their implementation may be hindered 

by lack of skilled personnel, appropriate computer software or 

both. In this regard, the use of conventional volume models may 

still be encouraged in many situations.

 
Table 6: Model evaluation statistics for models fitted on training data set of teak 

 

Model 𝑹𝟐 RMSE MAE NSE IA AIC 
Total rank  Overall rank 

No AIC With AIC No AIC With AIC 

𝑀1 0.8345 (12) 0.3554 (12) 0.2284 (12) 0.8345 (12) 0.9529 (12) 4011.82 (7) 60 67 11 8 

𝑀2 0.8340 (13) 0.3559 (13) 0.2297 (13) 0.8340 (13) 0.9527 (13) 4026.53 (8) 65 73 12 9 

𝑀3 0.9424 (8) 0.2098 (8) 0.1220 (6) 0.9423 (8) 0.9850 (8) -1478.04 (4) 38 42 8 4 

𝑀4 0.9459 (6) 0.2035 (6) 0.1200 (5) 0.9458 (6) 0.9860 (6) -1800.14 (2) 29 31 6 2 

𝑀5 0.9476 (5) 0.2001 (5) 0.1225 (7) 0.9476 (5) 0.9865 (5) -1973.01 (1) 27 28 5 1 

𝑀6 0.9333 (11) 0.2255 (10) 0.1570 (11) 0.9333 (10) 0.9825 (10) -726.68 (6) 52 58 10 6 

𝑀7 0.9356 (9) 0.2219 (9) 0.1418 (10) 0.9355 (9) 0.9832 (9) -896.06 (5) 46 51 9 5 

𝑀8 0.9334 (10) 0.2646 (11) 0.1391 (9) 0.9083 (11) 0.9793 (11) 4856.36 (9) 52 61 10 7 

𝑀9 0.9426 (7) 0.2093 (7) 0.1249 (8) 0.9426 (7) 0.9850 (7) -1504.75 (3) 36 39 7 3 

ANNdbh 0.9665 (3) 0.1600 (3) 0.1076 (3) 0.9665 (3) 0.9914 (3) n/a 15  3  

ANNdbhht 0.9768 (2) 0.1331 (2) 0.0822 (2) 0.9768 (2) 0.9941 (2) n/a 10  2  

SVMdbh 0.9658 (4) 0.1616 (4) 0.1077 (4) 0.9658 (4) 0.9913 (4) n/a 20  4  

SVMdbhht 0.9808 (1) 0.1211 (1) 0.0736 (1) 0.9808 (1) 0.9952 (1) n/a 5  1  

𝑅2, Efron’s pseudo R-squared; RMSE, root mean square error; MAE, mean absolute error; NSE, Nash-Sutcliffe efficiency; IA, Index of Agreement; 

AIC, Akaike Information Criterion; values in parentheses are rank scores; n/a, not applicable 
 

The allometric model 𝑀5 was the best among the conventional 

models, followed by 𝑀4 (Table 6). These results are in agreement 

with the findings of Ajit et al. (2011) [2] who reported that 

allometric model was superior to standard linear and growth 

models in a study of Populus deltoids. Clearly, the outstanding 

models SVMdbhht, ANNdbhht and 𝑀5 require the combined use 

of dbh and height as predictors of tree volume. Perhaps the 

inclusion of tree height as predictor of tree volume improves tree 

volume prediction accuracy of a model (Bohre et al. 2013; Chave 

et al. 2014) [8, 12]. It is important to note that SVMdbh, ANNdbh, 

𝑀4  and 𝑀9  are also good models since they had quite high 

prediction accuracies and each have only dbh as predictor of tree 

volume so that, their use will not require height measurements. 

Measuring of tree height on standing trees is known to be quite 

tedious and expensive (Sharma and Parton 2007) [44]. Therefore, 

the use of these 4 models may be encouraged with the expectation 

that the marginal loss in prediction accuracies of these models is 

compensated for by an obvious reduction in the cost of data 

collection due to exclusion of height measurement. 

From Table 7, the correlation coefficients between observed and 

predicted tree volumes were generally high with concomitant 

high values of 𝑅2∗  resulting from the regression of observed 

volume on predicted volume. These results give a confirmation 

that all models were well fitted to the training data and AI 

technique-based models were superior in performance. The DW 

statistics ranged from 1.937 to 2.01 and implied that there was no 

problem of autocorrelation in the residuals. When autocorrelation 

is present in the residuals of a given model, it is an indication that 

the model structure is mis-specified (Montgomery et al. 2003) 
[28]. 

 
Table 7: Statistics for regressing observed on predicted values for each model 

 

Model Correlation 𝑹𝟐∗ DW Probability 

𝑀1 0.914 0.835 1.946 <0.001 

𝑀2 0.913 0.834 1.946 <0.001 

𝑀3 0.971 0.942 1.997 <0.001 

𝑀4 0.973 0.946 2.003 <0.001 

𝑀5 0.973 0.948 2.005 <0.001 

𝑀6 0.966 0.933 2.016 <0.001 

𝑀7 0.967 0.936 2.013 <0.001 

𝑀8 0.966 0.933 2.004 <0.001 

𝑀9 0.971 0.943 2.000 <0.001 

ANNdbh 0.983 0.966 1.988 <0.001 

ANNdbhht 0.988 0.977 1.986 <0.001 

SVMdbh 0.983 0.966 1.981 <0.001 

SVMdbhht 0.990 0.981 2.016 <0.001 

DW, Durbin-Watson statistic;𝑅2∗, coefficient of determination. 

 

Model evaluation statistics computed for each model using the 

test or validation data set are given in Table 8. After ranking, the 

results followed a similar pattern to those obtained from the 

training data set, with the AI models still appearing superior. 

Since the data (Table 2) for the present study were generated 

under varied teak growing conditions across the world (Table 1), 

the developed models would be useful in estimating teak volume 

yields on a wider scale. They may be described as generic volume 

prediction models on the bases of their applicability over a wide 

range of teak growing regions in the world. Promoting the use of 
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these generic models is in contrast with Tewari and Singh (2018) 

[49] who suggested that specific volume equations should be 

preferred over generic ones in estimating tree volume. The fitted 

models in this study are based on data with high variability and 

so would account for wider variations in teak growing 

environments (Shamaki et al. 2011) [42]. It is important to note that 

the input variables (especially dbh) are relatively easy to measure 

on standing trees, so using them as predictors imply that volume 

yields could be estimated through non-destructive sampling as 

suggested by Tackenberg (2007) [47] and Chen et al. (2009) [13]. 

The development and use of generic volume estimation models 

are very relevant in forest inventory management and should be 

encouraged. If reliable volume prediction models are available to 

provide accurate estimates of teak tree volumes of standing trees 

in several locations, they will contribute significantly in 

improving management of forest inventory, as foresters could 

make well-informed decisions regarding which particular forest 

section, tree and even time to harvest timber to meet specific 

market requirements as well as ensure sustainable use of timber 

resources. 

 
Table 8: Model evaluation statistics obtained from using developed models to predict volume in validation data set 

 

Model 𝑹𝟐 RMSE MAE NSE IA Total rank Overall rank 

𝑀1 0.8378 (12) 0.3749 (12) 0.2434 (12) 0.8366 (12) 0.9530 (12) 60 12 

𝑀2 0.8371 (13) 0.3756 (13) 0.2444 (13) 0.8360 (13) 0.9528 (13) 65 13 

𝑀3 0.9447 (8) 0.2182 (8) 0.1256 (7) 0.9446 (8) 0.9855 (7) 38 8 

𝑀4 0.9472 (6) 0.2132 (6) 0.1242 (5) 0.9471 (6) 0.9863 (6) 29 6 

𝑀5 0.9501 (5) 0.2072 (5) 0.1252 (6) 0.9501 (5) 0.9870 (5) 26 5 

𝑀6 0.9401 (10) 0.2275 (10) 0.1575 (11) 0.9398 (10) 0.9841 (10) 51 10 

𝑀7 0.9431 (9) 0.2215 (9) 0.1396 (9) 0.9430 (9) 0.9850 (9) 45 9 

𝑀8 0.9329 (11) 0.2817 (11) 0.1440 (10) 0.9078 (11) 0.9792 (11) 54 11 

𝑀9 0.9448 (7) 0.2180 (7) 0.1293 (8) 0.9448 (7) 0.9855 (8) 37 7 

ANNdbh 0.9666 (3) 0.1695 (3) 0.1073 (3) 0.9666 (3) 0.9914 (3) 15 3 

ANNdbhht 0.9762 (2) 0.1432 (2) 0.0833 (2) 0.9762 (2) 0.9939 (2) 10 2 

SVMdbh 0.9664 (4) 0.1700 (4) 0.1094 (4) 0.9664 (4) 0.9914 (4) 20 4 

SVMdbhht 0.9768 (1) 0.1415 (1) 0.0771 (1) 0.9767 (1) 0.9941 (1) 5 1 

𝑅2, Efron’s pseudo R-squared; RMSE, root mean square error; MAE, mean absolute error; NSE, Nash-Sutcliffe efficiency; IA, Index of Agreement; 

values in parentheses are rank scores. 
 

4. Conclusions  
In this study, attempts were made to develop generic models for 
predicting volume of teak timber. The results showed that both 
conventional (linear and nonlinear) models and AI techniques-
based (ANN and SVM) models fitted the observed data set well. 
Almost all the candidate models accounted for very high amount 
of variation in teak timber volume with very high prediction 
accuracies. The overall best model was SVMdbhht followed by 
ANNdbhht while 𝑀5 ranked 5th among all models but 1st among 
only conventional models. The AI models generally 
outperformed conventional models, though the use of these AI 
models require skilled personnel and appropriate computer 
software. Combined use of dbh and height as predictors of tree 
volume was shown to enhance model prediction accuracy for teak 
trees irrespective of the model involved. The study was based on 
several published data from different teak growing regions of the 
world, hence the developed models have wide application 
potential and may be recommended for use in managing teak 
plantation inventory in different parts of the world.  
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