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Abstract Agricultural price forecasting is one of the

challenging areas of time series forecasting. The feed-for-

ward time-delay neural network (TDNN) is one of the

promising and potential methods for time series prediction.

However, empirical evaluations of TDNN with autore-

gressive integrated moving average (ARIMA) model often

yield mixed results in terms of the superiority in forecast-

ing performance. In this paper, the price forecasting

capabilities of TDNN model, which can model nonlinear

relationship, are compared with ARIMA model using

monthly wholesale price series of oilseed crops traded in

different markets in India. Most earlier studies of forecast

accuracy for TDNN versus ARIMA do not consider

pretesting for nonlinearity. This study shows that the

nonlinearity test of price series provides reliable guide to

post-sample forecast accuracy for neural network model.

The TDNN model in general provides better forecast

accuracy in terms of conventional root mean square error

values as compared to ARIMA model for nonlinear pat-

terns. The study also reveals that the neural network

models have clear advantage over linear models for pre-

dicting the direction of monthly price change for different

series. Such direction of change forecasts is particularly

important in economics for capturing the business cycle

movements relating to the turning points.

Keywords ARIMA � Price forecasting � Time-delay

neural networks

1 Introduction

Forecasts of agricultural prices are intended to be useful for

farmers, governments and agribusiness industries. The

ability to accurately forecast the price of agricultural

commodities is therefore an important concern in both

policy and business circles. Price forecasts are largely

made by using time series approaches. In time series

modeling, past observations of the same variable are col-

lected and analyzed to develop a model describing the

underlying relationship. The developed model is then used

to extrapolate the time series into the future. In the last few

decades, much effort has been devoted to the development

and improvement of time series forecasting models.

One of the most important and widely used time series

models is the autoregressive integrated moving average

(ARIMA) model. The popularity of the ARIMA model is

due to its statistical properties as well as the well-known

Box–Jenkins methodology in the model building process.

However, the major limitation of ARIMA model is the

preassumed linear form of the model. That is, a linear

correlation structure is assumed among the time series

values, and therefore, no nonlinear patterns can be captured

by the ARIMA model. Although linearity is a useful

assumption and a powerful tool in many areas, it became

increasingly clear in the early 1980s that the approximation

of the linear models to complex real-world problem is not

always satisfactory. For example, sustained animal popu-

lation size cycles (the well-known Canadian lynx data) and

sustained solar cycles (annual sunspot numbers) are not

suitable for linear models. The last two decades has seen

the development of a substantial literature dealing with

testing and modeling nonlinearity of time series data.

Several nonlinear time series models, such as the bilinear

model [12] and the threshold autoregressive (TAR) model
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[22], have been developed. These nonlinear models are

‘‘model-driven approaches’’ in which we first identify the

type of relation among the variables (model selection) and

afterward estimate the selected model parameters.

The recent upsurging research activities in artificial

neural network (ANN) as well as their numerous successful

forecasting applications suggest that they can also be an

important candidate for time series forecasting [5, 8, 16,

24]. As opposed to the traditional model-based methods,

ANN is a data-driven, self-adaptive, nonlinear, nonpara-

metric statistical method in that there are few a priori

assumptions about the models for problems under study [2].

ANN models can be useful for nonlinear processes that have

an unknown functional relationship and as a result are dif-

ficult to fit [6]. The process of constructing the relationship

between the input and output variables is addressed by

certain general purpose learning algorithm. ANN modeling

has attracted as a new technique for estimation and fore-

casting in many fields of study including agriculture, eco-

nomics and statistics. Investigators have been attracted by

ANN’s freedom from restrictive assumption such as line-

arity that is often needed to make the traditional mathe-

matical models tractable. Most uses of ANN in economics

have so far been in financial market, in part because tradi-

tional approaches have had low explanatory power and in

part because the ANN approaches require abundant data.

The use of the ANN model in applied work is generally

motivated by a mathematical result stating that under mild

regularity conditions, a relatively simple ANN model is

capable of approximating any Borel-measurable function to

any given degree of accuracy [11]. Such an approximator

would still contain a finite number of parameters. However,

despite the popularity and the sheer power of these models,

the empirical forecasting performance of neural network

models has been rather inconclusive [19, 24].

Neural networks and traditional time series techniques

have been compared in several studies. Sharda and Patil [20]

use 75 out of the 111 time series from the well-known

M-competition [24] as test cases and find that the neural

networks perform as well as the automatic Box–Jenkins

procedure. Kohzadi et al. [17] demonstrate that the neural

networks are superior to ARIMA methods for forecasting

commodity price. In the context of economic data, Swanson

and White [21] investigate the performance of neural network

models in forecasting nine quarterly seasonality-adjusted US

macro-econometric time series, finding that they generally

outperform traditional economic approaches even where

there is no explicit nonlinearity. Hervai et al. [15] consider

linear and ANN models for forecasting seasonally unadjusted

monthly data on European industrial production series and

conclude that linear models generally produce more accurate

post-sample forecast than neural network models at horizons

of up to a year, in terms of root mean square error. Zou et al.

[25] employ ARIMA model and neural networks to predict

average soil water content and mention the better perfor-

mance of latter on the basis of statistical parameters. Crone

et al. [5] report that neural networks are capable of handling

complex data, including short and seasonal time series,

beyond prior expectations. However, most earlier studies of

forecast accuracy for neural networks versus linear models do

not consider pretesting for nonlinearity. This will enable us to

examine whether nonlinearity tests of the series provide any

indication to post-sample forecast accuracy of the models.

Besides, literature suggests that the performance of nonlinear

model should be evaluated on the basis of percentage of

forecasts that correctly predict the direction of change instead

of measures based on error terms. The above facts clearly

indicate that there is a lack of systematic investigation on

forecasting agricultural price series using the neural network

models. Hence, in this paper, an effort is made to evaluate the

suitability of a time-delay neural network as a price fore-

casting model in agriculture in comparison with the Box–

Jenkins methodology using monthly wholesale price series of

major oilseed crops of India.

Moreover, the oilseed price series were deliberately

chosen for the study because the domestic edible oil price

is very responsive to international price as huge quantity is

imported to meet domestic requirement of our country. The

rest of the paper is organized as follows. The details of time

series forecasting models used in this paper are described

in Sect. 2. Empirical results obtained from real data are

given in Sect. 3. Finally, Sect. 4 concludes the paper.

2 Time series forecasting models

2.1 The ARIMA model

In an autoregressive integrated moving average model,

time series variable is assumed to be a linear function of

past actual values and random shocks. An ARIMA (p, q)

model is defined by the following equation [1]:

yt ¼ ;1yt�1 þ ;2yt�2 þ � � � þ ;pyt�p þ et � h1et�1 � h2et�2

� � � � � hqet�q

ð1Þ

that is,

1� ;1B� ;2B2 � � � � � ;pBp
� �

yt

¼ 1� h1B� h2B2 � � � � � hqBq
� �

et ð2Þ

or

; Bð Þyt ¼ hðBÞet ð3Þ

where B is the backshift operator defined by Byt ¼ yt�1;

; Bð Þ and hðBÞ are polynomials of degree p and q in B. yt is
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the price at time period t, and et is a random error at time

period t and is assumed to be independently and identically

distributed with a mean of zero and a constant variance

of r2. A generalization of ARIMA models, which

incorporates a wide class of nonstationary time series, is

obtained by introducing ‘differencing’ in the model. Thus,

an ARIMA model that can represent homogeneous

nonstationary behavior is written as follows:

; Bð Þð1� BÞdyt ¼ hðBÞet ð4Þ

that is,

; Bð Þzt ¼ hðBÞet ð5Þ

where zt ¼ rdyt, r ¼ ð1� BÞ is the differencing operator.

In general, an ARIMA model is characterized by the

notation ARIMA (p, d, q) where p, d and q denote orders of

autoregression, integration (differencing) and moving

average, respectively. ARIMA is a parsimonious approach

which can represent both stationary and nonstationary

processes. When d = 0, the ARIMA (p, d, q) model

reduces to ARIMA (p, d) model. In practice, d is usually 0,

1 or at most 2.

The first step in the process of ARIMA modeling is to

check for the stationarity of the series as the estimation

procedure is available only for stationary series. A series is

said to be stationary if its statistical characteristics such as

the mean and the autocorrelation structure are constant

over time. Stochastic trend of the series is removed by

differencing, while logarithmic transformation is employed

to stabilize the variance. After the appropriate transfor-

mation and differencing, multiple ARIMA models are

chosen on the basis of autocorrelation function (ACF) and

partial autocorrelation function (PACF) that closely fit the

data. Then, the parameters of the tentative models are

estimated through any nonlinear optimization procedure

such that an overall measure of errors is minimized or the

likelihood function is maximized. Lastly, diagnostic

checking for model adequacy is performed for all estimated

models through plot of residual ACF and via portmanteau

test like Box–Pierce and Ljung–Box tests. In this study

Ljung–Box test is used. The most suitable ARIMA model

is selected using the smallest Akaike Information Criterion

(AIC) or Schwarz–Bayesian Criterion (SBC) value and the

lowest root mean square error (RMSE).

2.2 The neural network models

Neural network models are computational methods that

mimic the behavior of the human brain’s central nervous

system. They are considered as a class of generalized

nonlinear, nonparametric, data-driven statistical methods.

A general neural network architecture consists of an input

layer that accepts external information, one or more hidden

or middle layer that provide nonlinearity to the model and

an output layer that provides the target value. Each layer

contains one or more nodes. All the layers in a multilayer

neural network are connected through an acyclic arc.

Time series data can be modeled using neural network

in two possible ways. The first way is to explicitly repre-

sent time in the form of recurrent connections from output

nodes to the preceding layer [10]. The second way is to

provide the implicit representation of time, whereby a

static neural network-like multilayer perceptron is

bestowed with dynamic properties [14]. A neural network

can be made dynamic by embedding either long-term or

short-term memory, depending on the retention time, into

the structure of a static network. For temporal data pro-

cessing, we require some form of short-term memory to

make neural network dynamic. One simple way of building

short-term memory into the structure of a neural network is

through the use of time delay, which can be implemented at

the input layer of the neural network. An example of such

architecture is a time-delay neural network (TDNN), pre-

sented in Fig. 1, has been employed for the present study.

The neural network structure for a particular problem in

time series prediction includes determination of the number

of layers and total number of nodes in each layer. This is

usually determined through experimentation of the given

data as there is no theoretical basis for determining these

parameters. As mentioned earlier, it has been proved that

neural networks with one hidden layer can approximate

any nonlinear function given sufficient number of nodes at

hidden layer and adequate data points for training. In this

study, we use neural network with one hidden layer. In

time series analysis, the determination of the number of

input nodes which are lagged observations of the same

variable plays a crucial role as it helps in modeling the

autocorrelation structure of the data. The determination of

the number of output nodes is relatively easy. In this study,

one output node is used, and multistep ahead forecasting is

done using the iterative procedure as used in Box–Jenkins

method. This involves use of forecast value as an input for

forecasting the future value. It is always better to select the

model with small number of nodes at hidden layer as it

improves the out-of-the sample forecasting performance

and also avoids the problem of overfitting.

The general expression for a multilayer feed-forward

time-delay neural network is given by

ytþ1 ¼ g
Xq

j¼0

/j f
Xp

i¼0

bijyt�i

 ! !

ð6Þ

where ytþ1 ¼ lnðytþ1=ytÞ: f and g denote the activation

function at hidden and output layer, respectively, p is

number of input nodes (tapped delay), q is the number of
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hidden nodes, bij is the weight attached to the connection

between ith input node and the jth node of hidden layer,

aj is the weight attached to the connection from jth

hidden node to the output node, and yt-i is the ith input

(lag) of the model. Each node of the hidden layer

receives the weighted sum of all inputs including a bias

term for which the value of input variable will always

take a value one. This weighted sum of input variables is

then transformed by each hidden node using the activa-

tion function f which is usually nonlinear sigmoid

function. In a similar fashion, the output node also

receives the weighted sum of the output of all hidden

nodes and produces an output by transforming the

weighted sum using its activation function g. In time

series analysis, f is often chosen as logistic sigmoid

function and g as an identity function. For p tapped

delay nodes, q hidden nodes, one output node and biases

at both hidden and output layers, the total number of

parameters (weights) in a three-layer feed-forward neural

network is q(p ? 2) ? 1.

For a univariate time series forecasting problem, past

observations of a given variable serve as the input vari-

ables. The neural network model attempts to map the fol-

lowing function

ytþ1 ¼ f yt; yt�1. . .yt�pþ1;w
� �

þ etþ1 ð7Þ

where yt?1 pertains to the observation at time t ? 1, p is

the number of lagged observation, w is the vector of net-

work weights, and et?1 is the error term at time t ? 1.

Hence, the neural network acts like nonlinear autoregres-

sive model.

In this paper, we divide the data series into two parts:

training set and testing set. The training set is used for

parameter estimation as well as to measure network

generalization, and testing set provides out-of-the sample

performance. The procedure of early stopping is adopted

for terminating the estimation process. The 20 percent of

the training set is randomly held as a validation set to

optimize the model complexity. The error measured with

validation set is monitored during the training process

which often shows a decrease at first followed by an

increase as the network starts to overfit. The training

is stopped at the point of smallest validation error in

order to obtain a network having good generalization

performance.

Suppose a time series data contain N observations y1, y2,

…,yN and out of N data points, n observations y1, y2, …, yn

are available for training purposes, and the model contains

p lagged observations as input variable then n - p patterns

will be available for training the network for one-step

ahead forecasting. This implies that y1, y2, … , yp will serve

as first input patterns for predicting the target output yp?1.

The last training pattern will be yn-p, yn-p?1, … ,yn-1 for

predicting the target output yn. Once the number of layers

and total number of nodes in each layer has been deter-

mined, the network is ready for training, a parameter

estimation process. The objective of training is minimiza-

tion of an error function that measures the misfit between

the predicted value and the actual value for any given value

of w. The error function which is widely used is given by

the sum of the squares of the error between the predicted

value ŷt for time t and the corresponding target value yt at

time t, so that we minimize

E wð Þ ¼ 1=2
Xn

t¼pþ1

yt � ŷt½ �2 ð8Þ

Fig. 1 Time-delay neural

network (TDNN) with one

hidden layer
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where the factor 1/2 is included for mathematical simpli-

fication. The error surface for multilayer feed-forward

neural network with nonlinear activation function is com-

plex and believed to have many local and global minima.

2.3 Nonlinearity test

In this study, we apply a nonlinearity test given by McLeod

and Li [18]. This test is designed to test the null hypothesis

of linearity against different types of possible nonlinearity.

The test is based on the autocorrelations of the squared

residuals. In this test, the residuals are obtained after fitting

the ARIMA model to the difference time series of n sample

observations. The test statistic is given as [18]

Q ¼ nðnþ 2Þ
Xh

i¼1

r2ðiÞ
n� i

ð9Þ

where r(i) is the autocorrelations of the squared residuals

and h is the number of autocorrelations. Under the null

hypothesis of linearity, this statistic is asymptotically dis-

tributed as a chi-square distribution with h degrees of

freedom.

3 Empirical results

3.1 Data and implementation

The study uses the monthly wholesale price (Rs. per

quintal) of major oilseeds crops of India, viz., soybean,

groundnut and rapeseed and mustard traded in Indore

(Madhya Pradesh), Rajkot (Gujarat) and Delhi markets,

respectively, to evaluate the prediction power of two

approaches. The basic characteristics of the price series

used in the experiments are presented in Table 1. Data on

rapeseed and mustard and groundnut are obtained from the

various issues of ‘‘Agricultural Prices in India’’ published

by the Directorate of Economics and Statistics, Govern-

ment of India, while data on soybean are collected from the

Web site of the Soybean Processors Association of India

(SOPA), Indore, Madhya Pradesh. In this study, all esti-

mation and forecasting of ARIMA model is done using

SAS/ETS 9.2, while the neural network modeling is

implemented using neural network toolbox of MATLAB

7.10. The price data are monthly averages. As mentioned

earlier, in all cases we divide the data into two sets, namely

training set and the testing set. The last 12-month price data

are retained for testing purpose. The training set will be the

one used for the modeling procedure and in-sample pre-

diction, and the testing set will be kept for post-sample

forecasting. The training set for the soybean series,

groundnut series and rapeseed and mustard series consists

of about 216, 260 and 360 observations, respectively.

In order to compare the performance of TDNN and

ARIMA model, we follow the same five-step modeling

procedures, namely preprocessing, identification, estima-

tion, diagnostic checking and evaluation, for all three price

series. Although neural networks are said to be universal

approximators, it has been reported that they are not able to

model a nonstationary time series data efficiently [23].

Therefore, data preprocessing becomes essential before

training, so that a stationary time series should be used for

modeling. We apply the natural choice of logarithmic

transformation in this context for each series and then the

augmented Dickey–Fuller test to test for unit roots. After

transformation, each series is differenced in order to make

the series stationary in mean as price data are trended and

nonstationary in nature. We find the ARIMA structure of

differenced series, based on the autocorrelation function

(ACF), the partial autocorrelation function (PACF) and the

AIC.

We find the best time-delay neural network with single

hidden layer for this study. Following the previous studies

[15, 24], the logistic and identity function have been used

as activation function for the hidden nodes and output

node, respectively. We focus primarily on one-step ahead

forecasting, and the multistep ahead forecasting is done

using iterative procedure so only one output node is

employed. Hence, the model uncertainty is associated only

with the number of tapped delay (p), which is the number

of lagged observations in this case, and the number of

hidden layer nodes (q). The number of tapped delay and

hidden nodes was determined with the help of experi-

mentation. We use multiple retries, with different random

starting points, in order to avoid local minima and find the

global minimum. We varied the number of input nodes

from 1 to 6 and the number of hidden nodes from 2 to 10

with an increment of 2 with basic cross-validation method.

Thus, different numbers of neural network models were

Table 1 Characteristics of the price series used in experiments

Crop Market Sample size Start date End date Mean (Rs/quintal) SD (Rs/quintal)

Soybean Indore 228 October 1991 September 2010 1256.36 472.54

Groundnut Rajkot 272 May 1988 December 2010 1520.04 617.98

Rapeseed & mustard Delhi 372 January 1980 December 2010 1288.38 741.33
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tried for each series before arriving at the final structure of

the model. Essentially, the process of exploration and

exploitation is carried out to obtain the best model for the

given series. There are many variations of the backpropa-

gation algorithm used for training feed-forward networks.

In this study, the Levenberg–Marquardt algorithm [13]

which has been designed to approach second-order training

speed without computing the Hessian matrix has been

employed. It has been shown [9] that this algorithm pro-

vides the fastest convergence for moderately sized feed-

forward neural network used on function approximations

problems. A typical TDNN structure with one hidden layer

is denoted by I:Hs:Ol, where I is the number of nodes in the

input layer, H the number of nodes in the hidden layer, O

the number of nodes in the output layer, s denotes the

logistic sigmoid transfer function, and l indicates the linear

transfer function. The forecasting ability of both models is

assessed with respect to two common performance mea-

sures, viz., the root mean squared error (RMSE) and the

mean absolute deviation (MAD). The RMSE measures the

overall performance of a model and is given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

yt � ŷtð Þ2
s

ð10Þ

where yt is the actual value for time t, ŷt is the predicted

value for time t, and n is the number of predictions. The

second criterion, the mean absolute deviation, is a measure

of average error for each point forecast and is given by:

MAD ¼ 1

n

Xn

t¼1

yt � ŷtj j ð11Þ

where the symbols have the same meaning as above.

In order to examine whether nonlinearity test provides

any reliable guide for post-sample forecast accuracy, we

apply nonlinearity test [18] to all series in this study. This

test is designed to test the null hypothesis of linearity

against different types of possible nonlinearity. This test is

based on the autocorrelations of the squared residuals. In

this study, autocorrelations up to 24 lags are used for

computing the test. Further, Clements and Smith [4] argue

that the value of nonlinear model forecast may be better

reflected by the direction of change. Accordingly, we also

compute the percentage of forecasts that correctly predict

the direction of change as part of post-sample forecast

accuracy.

4 Discussion

The first and foremost step in time series analysis is to plot

the data. Figure 2a shows the time series plot of average

monthly price of soybean from October 1991 to September

2010. We can see that there is a positive trend over time

which indicates the nonstationary nature of the series.

Similar trend was observed in case of groundnut and

rapeseed and mustard. As mentioned earlier, we applied

natural logarithmic transformation to the data to stabilize

the variance. Logarithmic transformation is used for data

which can take on both small and large values and is

characterized by an extended right-hand tail distribution.

Logarithmic transformation is one of the data processing

techniques which also convert multiplicative or ratio rela-

tionship to additive which is believed to simplify and

improve neural network training. We note that the series is

nonstationary even after logarithmic transformation and

shows a stochastic upward trend. We apply the augmented

Dickey–Fuller test for each level and transformed series to

test for unit root, and the results are provided in Table 2.

The table values clearly show the nonstationarity of level

and transformed series. This is also inferred from the ACF

and PACF plot of level and transformed series. Therefore,

we use first differencing for all price series. The first dif-

ferenced series are found to be stationary as indicated in

Fig. 2b and Table 2; hence, further differencing was not

required. Here, differencing is preferred over detrending

considering the stochastic trend of price data. The ACF and

PACF of difference series do not show strong and consis-

tent seasonal pattern. The absence of strong seasonality is

further confirmed by obtaining seasonal indices (see

Table 3) through multiplicative model of decomposition

analysis.

After logarithmic transformation and first differencing,

we model the relative change in the price series which also

has meaningful economic interpretation. We obtain the

best ARIMA model for each series based on the lowest

AIC and BIC information criteria as well as lowest RMSE

and MAD value. We select ARIMA (1, 1, 0), ARIMA (0, 1,

1) and ARIMA (2, 1, 0) model for soybean, groundnut and

rapeseed and mustard series, respectively. Due importance

is given to the well-behaved residuals while selecting the

best model.

We find the best time lagged neural network with single

hidden layer for each series by conducting an experiment

with the basic cross-validation method. Out of a total of 24

neural network structures, a neural network model with two

input nodes and three hidden nodes (2:3s:1l) performs

better than other competing model in respect of out-of-the

sample forecasting accuracy measures for soybean series.

In case of groundnut data, a neural network with one tap-

ped delay and nine hidden nodes (1:9s:1l) provides the best

test results out of a total of 21 neural network structures.

Similarly, a TDNN with two lagged observations as input

node and eight hidden nodes (2:8s:1l) shows minimum

training and testing RMSE. The issue of finding a parsi-

monious model is taken into account while selecting the
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best model for each price series. The parsimonious models

not only have the recognition ability but also have the more

important generalization ability. Further, nonlinearity test

statistic is computed for each series in order to decipher

true nonlinear pattern. Table 4 shows the results of

McLeod and Li nonlinearity test. Table values reveal

strong rejection of linearity only in case of rapeseed and

mustard. In this study, our interest centers on short-term

forecasting, and hence, we consider forecast horizon of up

to a year. In terms of the forecast horizon, we include

results for 1, 3, 6 and 12 months ahead forecast. Table 5

gives comparative results for the best ARIMA and TDNN

(a) 

(b) 
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Fig. 2 Soybean monthly price

data (Rs/quintal) from October

1991 to September 2010. a Raw

price data, b first differenced

price series

Table 2 Augmented Dickey–Fuller stationarity test for different series

Null hypothesis Level series Logarithmic transformed series First difference of transformed series

t-statistic P value t-statistic P value t-statistic P value

Soybean series has a unit root -1.951 0.308 -1.557 0.502 -11.666 \0.0001

Groundnut series has a unit root -0.879 0.794 -1.237 0.658 -17.595 \0.0001

Rapeseed and mustard series has a unit root -0.737 0.830 -1.321 0.621 -17.428 \0.0001
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models with respect to the post-sample RMSE ratio, which

is computed as RMSE (TDNN)/RMSE (ARIMA). We can

see from Table 5 that for all series the ratio is smaller than

1 for the forecast horizon of 12 months, suggesting a better

performance of TDNN over ARIMA model. However, we

observe that ARIMA model performs better than TDNN

model for the forecast horizon of 1 month as RMSE ratio is

more than one with respect to all series. It is obvious from

the Table that, in general, TDNN model performs better in

case of 6 and 12 months ahead forecasting, while ARIMA

models dominate in case of 1- and 3-month forecast hori-

zons. At this juncture, it is worth mentioning that for all

cases the best neural network model in terms of test RMSE

is obtained for a forecasting horizon of 12 months, and the

same model is used for other forecast horizons. In this

context, several researchers [15, 21] have recommended

that a specific neural network model should be selected for

each forecast horizon which implies that p and q may vary

over forecast horizon. This will in general improve the

performance of TDNN model with respect to each forecast

horizon. The multiple model approach is not of much

advantage in case of ARIMA model [3].

As indicated earlier, we also compare the prediction

abilities of both models with respect to the mean absolute

deviation (MAD), which provide similar trend as RMSE

for all series with respect to all forecasting horizons.

Hence, the results related to MAD measure are not

presented in the text. Table 5 reveals that the test RMSE

ratio is smaller than 1 for all horizons except 1 month for

rapeseed and mustard series. This clearly suggests better

performance for TDNN over ARIMA model for a truly

nonlinear series. Hence, nonlinearity test provides a fairly

good indication to post-sample forecast accuracy for neural

network models. As mentioned earlier, forecast accuracy is

measured here by the RMSE and by the percentage of

forecasts that correctly predict the direction of change by

having forecast and the actual value of the same sign. With

1 year of post-sample data, we have 12 one-step ahead

forecast errors. The number of forecast errors decreases as

the forecast horizon increases, so we calculate direction of

change only for forecast horizon of 1, 3 and 6 months with

12, 10 and 7 forecast errors, respectively. We repeat the

best model with regard to different series for five times in

order to compute the percentage of forecasts of correct

sign, and the results are given in Table 6. The implications

of the direction of change results of Table 6 are, however,

different from the results based on RMSE. At horizon 1, 3

and 6 months, the neural network model always has a

larger percentage of correct sign than the ARIMA model

for all (both linear and nonlinear) series. In this context,

Dacco and Satchell [7] have shown that RMSE type

measures may be inappropriate for nonlinear models, since

these measures can imply that the nonlinear model is less

accurate than a linear one even when the nonlinear model

is the true data-generating process. In effect, the nonlinear

model may generate more variation in forecast values than

a linear model, and hence, it may be unduly penalized for

errors that are large in magnitude. Thus, the results relating

to direction of change imply that the relative forecasting

performance of TDNN and ARIMA models crucially

depends on how performance is measured.

Table 3 Seasonal indices of wholesale price of different oilseed crops

Month crop January February March April May June July August September October November December

Soybean 0.98 0.99 1.00 1.04 1.06 1.06 1.04 1.04 1.01 0.90 0.92 0.95

Groundnut 0.99 0.99 1.00 1.03 1.01 1.02 1.03 1.05 0.99 0.95 0.96 0.98

Rapeseed & mustard 1.00 0.95 0.92 0.93 0.95 0.99 1.04 1.04 1.03 1.04 1.06 1.04

Table 4 McLeod and Li nonlinearity test for different series

Series Value P value

Soybean series 9.73 0.99

Groundnut series 25.60 0.37

Rapeseed & mustard series 87.82 \0.0001

Table 5 Comparative results of the series in terms of post-sample

RMSE ratio of TDNN and ARIMA model

Series 1 Month

ahead

3 Months

ahead

6 Months

ahead

12 Months

ahead

Soybean 6.24 1.03 0.85 0.56

Groundnut 1.49 1.39 2.69 0.97

Rapeseed &

mustard

1.43 0.08 0.19 0.17

Table 6 Post-sample percentage of forecasts of correct sign

Series 1 Month ahead 3 Months ahead 6Months ahead

ARIMA TDNN ARIMA TDNN ARIMA TDNN

Soybean 42 55 46 54 57 60

Groundnut 53 58 54 62 51 66

Rapeseed

&

mustard

50 67 44 68 49 71
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5 Conclusions

This study has compared ARIMA and TDNN model both

in terms of modeling and forecasting using monthly

wholesale price data of oilseed crops namely soybean,

groundnut, rapeseed and mustard traded in Indore, Rajkot

and Delhi markets of India. The aim of the study pertains to

short-term price forecasting up to 1 year with multiple

forecast horizons, namely 1, 3, 6 and 12 months. The

TDNN models provide better forecast accuracy in terms of

conventional RMSE as compared to ARIMA model for

nonlinear relationship. We find that nonlinearity of series

plays a fairly good role in providing reliable guide to post-

sample forecast accuracy of ARIMA and TDNN models in

terms of RMSE for these price series. Our study clearly

suggests that before adopting any nonlinear model, one

need to check whether the series is indeed nonlinear. For

rapeseed and mustard series which is nonlinear in nature,

TDNN performance was better than ARIMA for all fore-

cast horizons except for 1 month ahead. It may be because

we find best neural network model for 12-month forecast

horizon; hence, it has been suggested in the literature that

optimum network should be selected for each forecast

horizon. However, TDNNs perform substantially better

than linear models in predicting the direction of change for

these series and hence may be preferred than linear models

in the context of predicting turning point, which is more

relevant in case of price forecasting.

References

1. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis:

forecasting and control. Pearson Education, Upper Saddle River

2. Cheng B, Titterington DM (1994) Neural networks: a review

from a statistical perspective. Stat Sci 9:2–54

3. Clements MP, Hendry DF (1996) Multi-step estimation for

forecasting. Oxf Bull Econ Stat 58:657–684

4. Clements MP, Smith J (1997) The performance of alternative

forecasting methods for SETAR models. Int J Forecast 13:463–

475

5. Crone SF, Hibon M, Nikolopoulos K (2011) Advances in fore-

casting with neural networks? Empirical evidence from the NN3

competition on time series prediction. Int J Forecast 27:635–660

6. Darbellay GA, Slama M (2000) Forecasting the short-term

demand for electricity: do neural networks stand a better chance?

Int J Forecast 16:71–83

7. Dacco R, Satchell S (1999) Why do regime-switching models

forecast so badly. J Forecast 16:1–16

8. De Gooijer JG, Hyndman RJ (2006) 25 years of time series

forecasting. Int J Forecast 22:443–473

9. Demuth H, Beale M (2002) Neural network toolbox user’s guide.

Mathworks, Natic

10. Elman J (1990) Finding structure in time. Longtive Sci 14:179–

211

11. Fine TL (1999) Feed forward neural network methodology.

Springer, New York

12. Granger CWJ, Andersen AP (1978) Introduction to bilinear time

series models. Vandenhoeck and Ruprecht, Gottingen

13. Hagan MT, Menhaj M (1994) Training feed-forward networks

with the Marquardt algorithm. IEEE Trans Neural Netw 5:989–

993

14. Haykin S (1999) Neural networks: a comprehensive foundation.

Prentice Hall, Upper Saddle River

15. Hervai S, Osborn DR, Birchenhall CR (2004) Linear versus

neural network forecast for European industrial production series.

Int J Forecast 20:435–446

16. Jha GK, Thulasiraman P, Thulasiram RK (2009) PSO based

neural network for time series forecasting. In: Proceedings of the

international joint conference on neural networks. Atlanta, USA,

1422–1427

17. Kohzadi N, Boyd MS, Kermanshahi B, Kaastra I (1995) A

comparison of artificial neural network and time series models for

forecasting commodity prices. Neurocomputing 10:169–181

18. McLeod AI, Li WK (1983) Diagnostic checking ARMA time

series models using squared residual autocorrelations. J Time Ser

Anal 4:269–273

19. Rojas I, Valenzuela O, Rojas F, Guillen A, Herrera LJ, Pomares

H, Marquez L, Pasadas M (2008) Soft-computing techniques and

ARMA model for time series prediction. Neurocomputing 71:

519–537

20. Sharda R, Patil RB (1992) Connectionist approach to time series

prediction: an empirical test. J Intell Manuf 3:317–323

21. Swanson NR, White H (1997) Forecasting economic time series

using adaptive versus non-adaptive and linear versus nonlinear

economic models. Int J Forecast 13:439–461

22. Tong H, Lim KS (1980) Threshold autoregressive, limit cycles

and cyclical data. J R Stat Soc Ser B Methodol 42:245–292

23. Zhang G, Qi Min (2005) Neural network forecasting for seasonal

and trend time series. Eur J Oper Res 160:501–514

24. Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial

neural networks: the state of the art. Int J Forecast 14:35–62

25. Zou P, Yang J, Fu J, Liu G, Li D (2010) Artificial neural network

and time series models for predicting soil salt and water content.

Agric Water Manag 97:2009–2019

Neural Comput & Applic

123


	Time-delay neural networks for time series prediction: an application to the monthly wholesale price of oilseeds in India
	Abstract
	Introduction
	Time series forecasting models
	The ARIMA model
	The neural network models
	Nonlinearity test

	Empirical results
	Data and implementation

	Discussion
	Conclusions
	References


