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Antimicrobial peptides (AMPs) are the defence molecules of the host gaining extensive attention world-
wide as these are natural alternative to chemical antibiotics. Machine learning techniques have capabil-
ities to analyse large biological data for detection of hidden pattern in understanding complex underlying
biological problems. Presently, development of resistance to chemical antibiotics in cattle is unsolved and
growing problem which needs immediate attention. In the present study, attempt was made to apply
machine learning algorithms such as Artificial Neuron Network (ANN) and Support Vector Machine
(SVM). It was found that performance of SVM based models for in silico prediction/identification of AMPs
of cattle is superior than ANN. A total of 99 AMPs related to cattle collected from various databases and
published literature were taken for this study. N-terminus residues, C-terminus residues and full
sequences were used for model development and identification/prediction. It was found that best SVM
models in this case for C-terminus residues, N-terminus residues and full sequence were with kernels
Radial Basis Function (RBF), Sigmoid and RBF with accuracy as 95%, 99% and 97%, respectively. These
SVM models were implemented on web server and made available to users at http://cabin.iasri.res.in/
amp/ for classification/prediction of novel AMPs of cattle. This computational server can accelerate novel
AMP discovery from whole genome proteins of a given cattle species for bulk discovery with very high
accuracy. This is the first successful attempt for development of species specific approach for predic-
tion/classification of AMPs, which may be used further as a model in other species as well.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Animal domestication is the oldest economic activity associated
with human civilization. Livestock products, not only contributes
to human nutrition through milk, meat and other livestock foods
but also provides draught power, manure, employment, income,
and export earnings. Domestication of cattle since Neolithic
(8,000–10,000 years ago) era with subsequent spread of cattle
throughout the world was intertwined with human migrations
and trade (Willham, 1986). Currently, global cattle population is
1.5 billion, which is likely to increase to 2.6 billion by 2050 (FAO,
2012).

One of the major factors contributing to low animal productivity
in the country are biotic and abiotic stresses apart from genetic
factors. Cattle suffers from wide range of infectious diseases.
Therefore, preventing measures are important for animal health. The
best means to achieve this is by vaccination. Antimicrobial peptides
(AMPs) play important role in host defence and is known as an
essential part of innate immunity in response to microbial chal-
lenges. Macrophages, neutrophils, epithelial cells, haemocytes, fat
body, reproductive tract, etc. are the various sources of AMPs in ani-
mals. In case of animals, both immune systems, i.e. innate and
adaptive provides protection against spreading infection due to
pathogen. The major advantages of AMPs in clinical application
include their potential for broad-spectrum activity, rapid microbici-
dal activity and low propensity for resistance development (Marr
et al., 2006). They also offer advantage of ‘peptide promiscuity’
showing an enormous multiplicity of biological activities, including
activities such as antimicrobial, cytotoxic, insecticidal, uterotonic,
antivirus, neurotensin antagonism, hemolytic and anthelmintic
(Franco, 2011). AMPs are much more versatile in therapeutic appli-
cations viz., as single anti-infective agents; in combination with
conventional antibiotics or antivirals to promote any additive or
synergistic effects; as immune-stimulatory agents that enhance
natural innate immunity, and also as endotoxin-neutralizing agents
to prevent the potentially fatal complications associated with bac-
terial virulence factors that cause septic shock (Gordon et al., 2005;
Franco, 2011). The major challenges in use of AMP are higher cost,
limited stability (especially when composed of L-amino acids), and
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unknown toxicology and pharmacokinetics. Now success are com-
ing up with the development of stable, more cost-effective and
potent broad-spectrum synthetic peptides in industries (Marr
et al., 2006; Franco, 2011).

The peptidic group of bioactive molecules i.e. AMPs have been
gaining attention world wide in research. These are the host
defence molecules for innate immunity in response to microbial
challenges (Otvos, 2000). AMPs play vital role as a natural antibi-
otic alternative of their chemical counterpart for protecting ani-
mals against diseases. These are present in both type organisms
i.e. prokaryotic and eukaryotic. These AMP molecules can be fur-
ther classified as cationic or anionic depending on net charge on
them. AMPs comprise of classes like defensins, thionins, lipid-
transfer proteins, cyclotides, snakins and hevein-like, according
to amino acid sequence homology (Pestana-Calsa et al., 2010).
Some of the bovine AMPs with commercial use like Lactoferricin,
Lactoferrampin, Alpha and Beta lactoglobulin derived peptides,
casein derived peptides, lysozyme derived peptide (Jabbari et al.,
2012) are well documented. A good bioinformatics resource has
been reported in relation to AMPs (Sarika et al., 2012) like AMSDb
(Tossi and Sandri, 2002), ANTIMIC (Zheng and Zheng, 2002), AMPer
(Fjell et al., 2007), APD2 (Wang et al., 2009) and CAMP (Thomas
et al., 2010).

Extensive literature is available related to antibacterial and
antiviral peptides, describing their identification, characterization
as well as mechanism of action. Unfortunately, antibacterial and
antiviral peptides have no sequence homology, despite their com-
mon properties. Thus, it is difficult to develop techniques for pre-
dicting antibacterial and antiviral peptides based on homology.
Moreover, experimental methods for identification and designing
of antibacterial and antiviral peptides are resource intensive in
terms of capital, time and manpower. Therefore, attempt was
made to develop server for prediction of antimicrobial peptides.
AntiBP2 (Snehlata et al., 2007) is the server that predicts antibacte-
rial peptides. The prediction model of this server is very generic
and developed considering all available antibacterial peptide
sequences irrespective of organism. Since earlier approach are
based on multispecies reference data, thus for any specific species,
the prediction accuracy may not be accurate.

Since cattle has more than 30,000 genes but only 100 AMPs are
reported in literature thus there is need to screen them in silico
before evaluating them in vitro and in vivo. After excluding non-
coding genes, in vitro or in vivo evaluation of more than 20,000 pro-
teins is a great challenge in assay of AMP activity.

Though non-species specific AMP prediction servers are
reported like ANTIBP (Snehlata et al., 2007), CAMP (Thomas et al.,
2010) and CS-AMPred (Porto et al., 2012) but species specific
approach has not been attempted so far. Thus, there is need to
develop efficient computational tool for predicting antibacterial
and antiviral peptides specific only for cattle, which could be used
to design potent peptides against microbial pathogens. Therefore,
in this study attempt has been made to develop prediction tool
for antimicrobial peptides of cattle through in silico approach. Also
estimated prediction/accuracy of the developed model has been
obtained through cross validation technique. Therefore, this server
will be quite useful in this process of protein evaluation and nar-
row down search of AMPs through lab experiments. Thus, in silico
search for this server will be quite resource efficient.

2. Materials and methods

2.1. Data collection

The antimicrobial peptide sequences of bovidae family (cattle)
were extracted from various specialized databases like AMSdb
(Tossi and Sandri, 2002), SAPD (Wade and Englund, 2002), ANTI-
MIC (Brahmachary et al., 2004), AMPer (Fjell et al., 2007), APD2
(Wang et al., 2009) and CAMP (Thomas et al., 2010). Nearly two
hundred peptide sequences were considered for this study. In
order to build the SVM based model, we need to have non-antimi-
crobial peptides as control also. Since, no experimentally validated
non antimicrobial source exists, thus peptide synthesized from
mitochondria and other intracellular locations except the secretary
proteins were considered as AMP which are mostly secreted out-
side the cell (Kumar et al., 2006). Eukaryotic mitochondrial orga-
nelle genome mimics prokaryotic genome features like common
protein synthesis inhibitor and ribosome types. This is due to
endosymbiont hypothesis endorsing prokaryotic origin of mito-
chondria during course of evolution (Martin and Mentel, 2010).
Moreover, bovine AMP lactoferrin is known to have antimicrobial
activities does not bind to mitochondrial proteins is well demon-
strated in the species to be investigated (Richardson et al., 2009).

The extracted antimicrobial peptides were from different AMP
family viz., Bactenecin, Lactoferricin, Defensin, Indolicidin, Semi-
nalplasmin, Cathelicidin, Enkelytin, Casecidin, Vasostatin, Bactene-
cin, Cathelin, Melantropin, Aprotinin, Cascocidin, Lactoferricin,
Proenkephalin, Casocidin and Apolipoprotein. The maximum num-
ber of data were extracted for ‘‘Defensin’’ family.

2.2. Pre-processing

In order to use these sequences for SVM based machine learning
algorithm for training and testing, the biological sequences need to
be converted in suitable feature for model building. In this study,
each instance, i.e. biological sequence was denoted by a vector,
having 31 attributes (or features), out of these, 20 representing
Amino Acid Composition (AAC) for that instance and rest 11 fea-
tures (viz. molecular weight, number of carbon atoms, number of
hydrogen atoms, number of nitrogen atoms, number of oxygen
atoms, number of sulfur atoms, theoretical pI, estimated halflife,
instability index, aliphatic index, and grand average of hydropath-
icity (GRAVY) (Gasteiger et al., 2005) are the physico-chemical
parameters for that sequence. These features were computed using
bioperl scripts. AAC is a quantitative measure of the sequence that
represents the sequence in terms of 20 values, one for each amino
acid residue. For ith amino acid residue, AAC is defined as the per-
centage of ith residue in whole sequence. Mathematically,

AACi ¼ ðN=NiÞ � 100

where AACi is the Amino Acid Composition of ith amino acid resi-
due, Ni is the Number of occurrences of ith amino acid residue in
the sequence and N is the Total number of amino acid residue in
the sequence.

AAC completely ignores the sequence order information and
focuses only on the percentage amino acid residue content. Now,
a matrix of order N � 31 (here, N is 199) is obtained which is used
as input for this analysis. The prediction target vector of two
dimension comprises of binary class i.e. AMP or Non-AMP.

Separate models for N and C terminus were chosen because
both termini contributes in AMP activity. C-terminus first interacts
with the negatively charged membrane of the bacteria and pene-
trates (Park et al., 1998). The N-terminus also contributes in ham-
pering crucial bacterial metabolic functions by interacting with
intracellular components like DNA and RNA (Yonezawa et al.,
1992). Due to this reason, the whole dataset was analyzed with
three approaches, i.e. N-terminal residues, C-terminal residues
and full sequence. For N-terminal and C-terminal, the available
data were split with window size of 30 using PERL scripts, and
redundancy was checked with CDHit (Li and Godzik, 2006) at
80%. We thoroughly checked each peptide in various available
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peptide prediction servers and selected total of 972 data for
N-terminal and 970 data for C-terminal model fitting. The peptide
size less than or equal to 30 was taken for training and testing
since the average size of these sequences is generally around 30
(Wang et al., 2009). Among 31 features taken under study, only
the significant features, selected on the basis of p-values at 5% level
of significance were considered for further analysis. This was done
based on Chi-Square values obtained using STATISTICA ver 6.0 soft-
ware package (STATISTICA, 2001).

2.3. Support Vector Machine (SVM) technique

In order to build the prediction model, earlier, Artificial Neural
Networks (ANNs) with back propagation algorithm have been used
(Cheng and Titterington, 1994; Shukla et al., 2011), but it was
found that it overfits and provides underestimation of actual pre-
diction error specially in case of small sample size. Therefore, Sup-
port Vector Machine (SVM) technique developed by Vapnik (2000)
was found to be quite reliable in case of small sample size due to it
non-linear optimization property. It has attractive features and
profound empirical performance for small sample, nonlinearity
and high dimensional data application. It is based on Structural
Risk Minimization (SRM) principle, which has been shown to be
superior to traditional Empirical Risk Minimization (ERM) princi-
ple implemented in ANN models. Therefore, in this we used SVM
for development of prediction models.

Support Vector Machine (SVM) is a nonparametric algorithm
developed by Vapnik (2000). It is very promising and popular
methodology for nonlinear classification in the field of supervised
machine learning. It is proven to be very attractive to biological
analysis due to their ability to handle noise and large input spaces
(Brown et al., 2000; Ding and Dubchak, 2001).

Consider two-class classification problem and assume a set of
samples, i.e. a series of input vectors xi 2 Rd; ði ¼ 1;2; . . . ;NÞwith
corresponding class levels yi e {+1, �1}, (i = 1, 2,. . .,N). For our
study, +1 and �1 indicates two different classes and input vector
dimension, i.e. N is 31. Main objective is to construct a binary clas-
sifier or derive a decision function from the available samples,
which has a minimum probability of misclassifying a future sam-
ple. Further, Non-linear Support Vector Machine (NL-SVM) maps
input vectors xi 2 Rd into a high dimensional feature, i.e. space /
(xi) e H and constructs an Optimal Separating Hyperplane (OSH),
which maximizes the margin, i.e., the distance between hyper-
plane and nearest data points of each class in the space H. Equation
of a simple hyperplane is given by

y ¼ sign½wT xþ b�

where w denotes a weight vector that can map the training data in
the input space to the output space and b is the bias. In case, the
data of the two classes are separable, it can be written as

wT xi þ b � þ1; if yi ¼ þ1
wT xi þ b � �1; if yi ¼ �1

�

These two sets of inequalities can be combined into one single
set as follows:

yi½wT xi þ b� � 1 i ¼ 1;2; . . . ;N

SVM formulations are done within a context of convex optimi-
zation theory. The primal form Quadratic Programming (QP) prob-
lem is obtained. After introducing Lagrangian with Lagrange
multipliers ai P 0 for i = 1, 2. . .,N, the resulting linear classifier is

f ðxÞ ¼ sign
XN

k¼1

aiyix
T
i xþ b

" #
The index i run now over the number of support vectors, where
training data points corresponding to non-zero ai values are called
support vectors. The bias b determined from complementarily
conditions of the Karush–Kuhn–Tucker (KKT) condition, which
state that the product of the dual variable and the constraints
should be zero at the optimal solution. Instead of using an arbitrary
support vector xi, it is better to take an average over all the support
vectors.

Some binary classification problems do not have simple hyper-
plane as a useful separating criterion. For those problems, there is a
variant of mathematical approach that retains nearly all the sim-
plicity of an SVM separating hyperplane. Let x be a vector in n
dimensional input space and u(�) be a nonlinear mapping function
from the input space to the high dimensional feature space, which
can be infinite dimension. Different mappings construct different
SVMs. The mapping u(�) is performed by kernel function K(xi, xj),
which defines an inner product in the space H. The decision func-
tion implemented by SVM is as follows:

f ðxÞ ¼ sign
XN

i¼1

aiyiK x; xið Þ þ b

" #

where the coefficients ai are obtained by solving the following con-
vex quadratic programming problem:

max
a

� 1
2

XN

i;j¼1

aiajyiyjK xi; xj
� �

þ
XN

i¼1

ai

subject to 0 6 ai 6 c

XN

i¼1

aiyi ¼ 0

Here, c is the regularization parameter that controls trade-off
between margin and misclassification error. It is the learning
parameter, where, larger values of c lead to few training errors
and small values generate larger margin at the cost of more errors.
The xj’s are called support vectors only if corresponding ai > 0. The
choice of the proper kernel function is an important issue for SVM
training because the power of SVM comes from the kernel represen-
tation that allows the nonlinear mapping of input space to a higher
dimensional feature space. Some typical choices of kernel function
(Cristianini and Shawe-Taylor, 2000) are as follows:

a. Kðxi; xjÞ ¼ xT
i xj ðLinear SVMÞ

b. Kðxi; xjÞ ¼ ðcxT
i xj þ rÞd ðPolynomial SVM of degree dÞ

c. Kðxi;xjÞ ¼ exp �ckxi � xjk2
n o

ðRadial Basis function KernelÞ

d. Kðxi; xjÞ ¼ tan h cxT
i xj þ r

� �
ðSigmoidÞ

where r, d, c > 0 are the kernel parameters.
SVM can handle large feature spaces, effectively avoid overfit-

ting by controlling the margin, and automatically identify a small
subset made up of informative points, i.e. support vectors, etc.
The use of appropriate decision function can give better classifica-
tion. For a given dataset, only the kernel function and regulariza-
tion parameter ‘‘c’’ are selected to specify the model. SVM has
many attractive features. For instance, the solution of the quadratic
program (QP) problem is globally optimized while, with neural
networks, the gradient based training algorithms only guarantee
finding a local minima. In addition, SVM can handle large feature
spaces, effectively avoid overfitting by controlling the margin and
automatically identify a small subset made up of informative
points, i.e. the support vectors, etc.



Table 1
Feature selection with best predictors.

Features Full sequence C-terminal N-terminal

Chi-square p-value Chi-square p-value Chi-square p-value

Composition of Arginine 171.96 0.00 304.67 0.00 294.40 0.00
Gravy 149.46 0.00 489.58 0.00 483.96 0.00
Number of nitrogen atoms 142.90 0.00 295.45 0.00 266.63 0.00
Molecular weight 134.24 0.00 2.06 0.36 6.19 0.19
Number of hydrogen atoms 123.34 0.00 2.06 0.36 6.19 0.19
Theoretical pI 110.58 0.00 107.83 0.00 78.09 0.00
Number of carbon atoms 108.28 0.00 10.87 0.03 6.19 0.29
Composition of Tyrosine 105.30 0.00 47.79 0.00 42.91 0.00
Composition of Methionine 105.09 0.00 376.41 0.00 372.18 0.00
Composition of Cysteine 103.57 0.00 195.03 0.00 192.25 0.00
Number of sulphur atoms 98.99 0.00 71.46 0.00 70.59 0.00
Composition of Alanine 98.28 0.00 28.15 0.00 26.48 0.00
Composition of Lysine 93.07 0.00 218.96 0.00 228.65 0.00
Composition of Phenylalanine 92.98 0.00 83.16 0.00 83.68 0.00
Aliphatic_index 88.17 0.00 287.96 0.00 279.48 0.00
Composition of Asparagine 86.55 0.00 0.55 0.91 1.43 0.70
Composition of Glycine 85.97 0.00 23.33 0.00 19.07 0.00
Composition of Glutamine 85.46 0.00 117.85 0.00 115.66 0.00
Composition of Tryptophan 85.06 0.00 93.54 0.00 96.78 0.00
Composition of Leucine 84.36 0.00 171.93 0.00 158.12 0.00
Number of oxygen atoms 80.41 0.00 47.61 0.00 13.45 0.06
Composition of Serine 78.43 0.00 9.74 0.08 10.23 0.18
Composition of Isoleucine 75.80 0.00 207.81 0.00 218.53 0.00
Composition of Proline 68.96 0.00 39.25 0.00 39.87 0.00
Composition of Histidine 59.92 0.00 64.53 0.00 61.09 0.00
Composition of Threonine 59.44 0.00 114.47 0.00 131.94 0.00
Composition of Valine 52.59 0.00 14.73 0.01 25.56 0.00
Composition of Aspartic acid 31.34 0.00 121.00 0.00 116.36 0.00
Instability index 31.14 0.00 52.39 0.00 85.77 0.00
Half life 22.79 0.00 4.32 0.12 16.90 0.00
Composition of Glutamic acid 19.27 0.00 183.93 0.00 188.61 0.00

The variables having p-values >0.05 are not considered for model building.
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2.4. Five-fold cross validation

All models obtained in this study were evaluated using five-fold
cross-validation technique (Efron, 1983). In this case, dataset is
randomly divided into five sets, each set containing around equal
number of peptides. Four sets among five are used for training
and the remaining one set for testing. The process is repeated five
times such that each set gets the opportunity to fall under test set.
Average of five sets is finally considered.

2.5. Assessment of the prediction accuracy

The performance of each fitted model was assessed using test
data. Several measures are available for the statistical estimation
of the accuracy of these prediction models. The common statistical
measures are Sensitivity, Specificity, Precision or Positive Predic-
tive Value (PPV), Negative Predictive Value (NPV), False Positive
Rate (FPR), False Discovery Rate (FDR), Accuracy and Mathew’s cor-
relation coefficient (MCC) and F1 score.

These measures are defined as follows:
Sensitivity = TP/
(TP + FN) ⁄ 100
Specificity = TN/
(FP + TN) ⁄ 100
PPV = TP/(TP + FP) ⁄ 100
 NPV = TN/(TN + FN) ⁄ 100

FPR = FP/(FP + TN)
 FDR = FP/(TP + FP) = 1 - PPV

F1 = 2TP/(2TP + FP + FN)

Accuracy ¼ ðTPþTNÞ
ðTPþFPþTNþFNÞ � 100

MCC ¼ ðTP�TN�FP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p � 100

where TP = True Positive, TN = True Negative, FP = False Positive,
FN = False Negative.
3. Results and discussions

The entire data analysis is carried out using STATISTICA, Ver. 6.0
software package (STATISTICA, 2001). Table 1 shows the features
selected for model development. For full-sequence model, all the
features were selected for model building. For C-terminus residues,
molecular weight, number of hydrogen atoms, composition of
asparagine and half-life were discarded. For N-terminus residues,
molecular weight, number of hydrogen atoms, carbon atoms, oxy-
gen atoms, composition of asparagine and serine were not included
in model development. In this study, we have developed classifica-
tion models using ANN and SVM. While comparing, these two
techniques, models based on SVM was found to be superior (Tables
2–4) which has also been reported in various other studies
(Snehlata et al., 2007; Bhasin and Raghava, 2004). In case of ANN,
before training, available observations are divided into two sub-
sets: (i) first sub-set is training set comprising 70% observations,
which is used for computing and updating the network weight
and biases, and (ii) test set comprise the remaining 30% observa-
tions. The two most popular and widely used networks namely,
MultiLayer Perceptron (MLP) and Radial Basis Function (RBF) are
trained using all the three learning algorithms, viz. Gradient Des-
cent Algorithm (GDA), Broyden–Fletcher–Goldfarb–Shanno (BFGS),
and Conjugate Gradient Descent Algorithm (CGDA) with a view
to minimizing sum of the squared error function of the network
output. Several learning rates (Cheng and Titterington, 1994) are
considered for training the networks as well as for adjusting the
weights. A higher learning rate may converge more quickly, but
may also exhibit greater instability. The present ANN model is hav-
ing typically three-layer feed forward network viz., input, hidden
and output layer. For our data, best result is obtained for 0.01
learning rate. For hidden units and output units, several activation



Table 2
Performance of the models for C-terminus residues using SVM and ANN methodology.

Models C c No. SVs Sp Sen PPV NPV FPR FDR ACC MCC F1

SVM methodology
Linear 2.00 – 140 0.95 0.93 0.95 0.94 0.05 0.05 0.94 0.88 0.94
Polynomial-2 9.75 0.05 330 0.95 0.93 0.94 0.93 0.05 0.06 0.94 0.87 0.94
Polynomial-3 6.25 0.05 167 0.91 0.94 0.91 0.94 0.09 0.09 0.93 0.85 0.93
RBF 9.00 0.11 180 0.96 0.94 0.96 0.94 0.04 0.04 0.95 0.90 0.95
Sigmoid 19.50 0.22 177 0.96 0.93 0.95 0.93 0.04 0.05 0.94 0.89 0.94

ANN methodology
MLP 31-14-2 – – – 0.94 0.94 0.94 0.94 0.06 0.06 0.94 0.87 0.94

The model in bold is the best model for C-terminus residues and implemented at the back-end.

Table 3
Performance of the models for N-terminus residues using SVM and ANN methodology.

Models c c No. of SVs Sp Sen PPV NPV FPR FDR ACC MCC F1

SVM methodology
Linear 17.50 – 123 0.95 0.95 0.95 0.95 0.05 0.05 0.95 0.90 0.95
Polynomial-2 9.25 0.08 176 0.95 0.94 0.95 0.95 0.05 0.05 0.95 0.90 0.95
Polynomial-3 19.25 0.08 417 0.93 0.94 0.93 0.94 0.07 0.07 0.93 0.87 0.93
RBF 12.00 0.2 172 0.97 0.98 0.97 0.98 0.03 0.03 0.97 0.95 0.97
Sigmoid 18.00 0.11 240 0.98 0.99 0.98 0.99 0.02 0.02 0.99 0.98 0.99

ANN methodology
MLP 31-19-2 – – – 0.94 0.94 0.94 0.94 0.06 0.06 0.94 0.88 0.94

The model in bold is the best model for N-terminus residues and implemented at the back-end.

Table 4
Performance of the models for full sequence using SVM and ANN methodology.

Models c c No. of SVs Sp Sen PPV NPV FPR FDR ACC MCC F1

SVM methodology
Linear 2.00 – 17 0.95 0.95 0.95 0.95 0.05 0.05 0.95 0.90 0.95
Polynomial-2 2.50 0.05 133 0.95 0.96 0.95 0.96 0.05 0.05 0.95 0.91 0.95
Polynomial-3 17.75 0.05 129 0.96 0.96 0.96 0.96 0.04 0.04 0.96 0.92 0.96
RBF 20.00 0.05 20 0.97 0.97 0.97 0.97 0.03 0.03 0.97 0.94 0.97
Sigmoid 1.50 0.31 81 0.97 0.96 0.97 0.96 0.03 0.03 0.96 0.93 0.96

ANN methodology
MLP 31-16-2 – – – 0.93 0.92 0.93 0.92 0.07 0.07 0.92 0.85 0.92

The model in bold is the best model for full sequence and implemented at the back-end.
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functions, viz. Identity, tanh, logistic, exponential and sine are
tried. Performance of the trained network is assessed by comput-
ing different measures as mentioned in Section 2.5 on the training
and test sets. As described in Section 2.2, the whole analysis is done
for three types viz. C-terminus residues, N-terminus residues and
full sequence.

The models MLP 31-14-2, MLP 31-19-2 and MLP 31-16-2 with
accuracy 0.94, 0.94 and 0.92 were found to be best for C-terminus
residues, N-terminus residues and full sequence, respectively. In
case of C-terminus residues, training algorithm BFGS, entropy error
function, exponential activation function for hidden layer and for
output layer softmax function were found to be best. For N-termi-
nus residues, activation function was exponential, while for full
sequence, it was Tanh. Training algorithm and error functions for
all the three were BFGS and entropy respectively whereas output
layer was Softmax. The best models were selected on the basis of
measures discussed in Section 2.5 and the same are reported in
Tables 2–4 respectively for C-terminus residues, N-terminus resi-
dues and full sequence.

Subsequently, SVM models using all kernel functions, viz. Lin-
ear, Polynomial of degree 2, Polynomial of degree 3, RBF, and Sig-
moid function have been developed with a stopping criteria as
maximum number of iterations as or stop if error is less than
0.001. Further, 5-fold cross validation is applied here. For C-termi-
nus residues, SVM model with RBF kernel function was found to be
best with c parameter as 9.00 with 180 number of support vectors.
Sensitivity, specificity, PPV, NPV, FPR, FDR, accuracy, MCC and F1
score were found to be 0.96, 0.94, 0.96, 0.94, 0.04, 0.04, 0.95,
0.90 and 0.95 respectively (Table 2). Table 3 shows the results tab-
ulated for N-terminus residues. For N-terminus residues, SVM
model with sigmoid kernel function was found to be best with c
parameter as 18.00 and 240 number of support vectors. Sensitivity,
Specificity, PPV, NPV, FPR, FDR, accuracy, MCC and F1 score were
found to be 0.98, 0.99, 0.98, 0.99, 0.02, 0.02, 0.99, 0.98 and 0.99,
respectively. Table 4 shows SVM models based on full sequence.
Here, again, SVM with kernel function RBF was found to be best
with c parameter as 20.00 and 20 number of support vectors. Sen-
sitivity, Specificity, PPV, NPV, FPR, FDR, accuracy, MCC and F1 score
were found to be 0.97, 0.97, 0.97, 0.97, 0.03, 0.03, 0.97, 0.94 and
0.97, respectively. The receiver-operating characteristic (ROC)
curves obtained for each kernel function for C-terminal, N-terminal
and full sequence models are represented in Fig. 1.

The compromised accuracy of ABP2 (92.14% by SVM) (Snehlata
et al., 2007) and CAMP (93.2% by Random Forest approach and
91.5% by SVM) (Thomas et al., 2010) as compared to our server,
which gave the predicted accuracy of 97% was seen. This specu-
lates that during course of evolution, the AMP diversification might
be on specialized species specific parameters which might have led
to higher accuracy in our finding.

The performances of different peptide prediction models devel-
oped using machine learning techniques were compared. It was con-
cluded that for classification and prediction of AMP of cattle using
SVM methodology performs superior as compared to ANN methodol-
ogy. Therefore, the SVM model was implemented in the webserver.



Fig. 1. ROC curves for (A) C-terminal, (B) N-terminal and (C) full sequence models.
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3.1. Web implementation

The best models were implemented for N-terminus residues, C-
terminus residues and full sequence and is made available at
http://cabin.iasri.res.in/amp/. The server is developed using CGI-
Perl script, Hyper Text Markup Language (HTML) and Java Scripts
to make it more user-friendly. This is launched using open source
web server software program, Apache. The user needs to submit
the peptide sequence either by pasting in the text box or uploading
through ‘‘upload’’ button. The user can select from the three
options viz. N-terminus residues, C-terminus residues and full
sequence using radio-button. The webserver has six tabs, viz.
Home, Algorithm, Submission, Links, Tutorial and Team. The
‘‘Tutorial’’ has the full guide to use the server.
4. Conclusion

This is the first successful attempt to develop species specific
approach for AMP prediction. In this study, SVM methodology
which is used for nonlinear classification is described and imple-
mented through web (http://cabin.iasri.res.in/amp/) for users. It
is freely available tool, which is very cost and time effective for
prediction of unknown peptides with prediction accuracy up to
97%. Computational prediction is an important immunoinformatic
technology supporting the determination of AMPs. Antimicrobial
peptides are potent and effective molecules responsible for innate
immune response of eukaryotes. They are widely distributed in
both plants and animals, but most dominantly present in animals.
The application of AMPs have shown very promising results in
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production of animal/plant and agricultural produce and therefore
the latest tools and technology for production of AMPs with spe-
cific activity and wide microbe range of action can be effectively
utilized to develop genetically modified disease resistance varie-
ties/breeds through biotechnology and genetic engineering. This
first report on species specific tool can be used to decipher large
number of putative AMPs over available genomes of cattle having
more than 20,000 proteins. The future bulk discovery of AMP by
this approach needs further wet lab validation before practicing/
applying them for therapeutics and industrial application.

Availability: This application can be freely accessible to non-
commercial users at http://cabin.iasri.res.in/amp/.
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