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Abstract

Half of the global human population is dependent on rice as a staple food crop and more than 25% increase in
rice productivity is required to feed the global population by 2030. With increase in irrigation, global warming and
rising sea level, rising salinity has become one of the major challenges to enhance the rice productivity. Since the
loss on this account is to the tune of US$12 billion per annum, it necessitates the global attention. In the era of
technological advancement, substantial progress has been made on phenomics and genomics data generation but
reaping benefit of this in rice salinity variety development in terms of cost, time and precision requires their
harmonization. There is hardly any comprehensive holistic review for such combined approach. Present review
describes classical salinity phenotyping approaches having morphological, physiological and biochemical
components. It also gives a detailed account of invasive and non-invasive approaches of phenomic data generation
and utilization. Classical work of rice salinity QLTs mapping in the form of chromosomal atlas has been updated.
This review describes how QTLs can be further dissected into QTN by GWAS and transcriptomic approaches.
Opportunities and progress made by transgenic, genome editing, metagenomics approaches in combating rice
salinity problems are discussed. Major aim of this review is to provide a comprehensive over-view of hitherto
progress made in rice salinity tolerance research which is required to understand bridging of phenotype based
breeding with molecular breeding. This review is expected to assist rice breeders in their endeavours by fetching
greater harmonization of technological advances in phenomics and genomics for better pragmatic approach
having practical perspective.

Keywords: Genomics, Genome editing, Phenomics, QTL mapping, Rice molecular breeding, Salinity tolerance,
Transgenic

Introduction
While half of the global human population is dependent
on rice (Oryzae sativa and Oryza glaberrima) as a staple
food crop, there is more than 25% demand-supply gap

to feed the global population by year 2030 which is a
global challenge (3000 Rice Genomes Project 2014).
About 20% of irrigated lands in the world are conjec-
tured to be adversely affected by excessive salts (Pitman
and Lauchli 2002). This situation presents harsh envir-
onment for crop growth and survival. The occurrence of
salts in soil and water poses a serious constraint to agri-
cultural productivity especially in those areas where irri-
gation is essentially required. Agricultural salinity affects
about 1000 million hectares land globally which limits
agricultural production and productivity of these areas.
Approximately 100 million ha in South and South-east
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Asia which are predominantly populated are covered by
problem soils where rice (Oryza sativa) is the staple
crop. In India, about 6.73M hectare land is afflicted with
salts encompassing sodicity, inland and coastal salinity
(Sharma et al. 2004). Every year, an average of 2000
million hectare irrigated land gets degraded by salt
across 75 countries of the world as reported in Econom-
ics of Salt-Induced Land Degradation and Restoration
(unu.edu/media- relations/releases) report (Reddy et al.
2017). There is up to 70% decrease in yield of crops like
wheat, maize, rice, and barley due to salinity stress
(Acquaah 2007). It is estimated that cost of such loss in
crop productivity is to the tune of US$12 billion per
annum globally with upward trend (Qadir et al. 2008).
Looking at the importance of rice as a food for the

world population, United Nation declared the Inter-
national Year of Rice way back in 2004 itself. Due to its
adaptation and evolution, especially in coastal saline and
sodic soils, rice has acquired many advantageous attri-
butes (Singh 1998; Tyagi 1998). Due to increase in de-
mand of agricultural production in last 4 decades, there
is increase in irrigated land by 300%. This has increased
soil salinization adversely affecting crop yield (Poustini
and Siosemardeh 2004). The existing variability among
salinity tolerant varieties can be utilized to further im-
prove tolerance by their trait screening and breeding.
Global warming and rising sea level have led to further
increase in salinity, especially in rice grown regions by
intrusion of sea salinity into inland water of coastal areas
(Wassman et al. 2004; Vineis et al. 2011). Harnessing the
potential of available technological leads for the manage-
ment of salt affected areas can play a significant role in
increasing and sustaining the food security. Such ap-
proach requires improvement of salinity tolerance in rice
by best use of phenomics and genomics approaches.
Earlier reviews of salinity tolerance in rice covered

Quantitative trait loci (QTL) and genes associated with
tolerance and their prospects for use in marker assisted
breeding (Flowers et al. 2000; Bohnert et al. 2006; Blum-
wald and Grover 2006; Ismail et al. 2007; Ashraf and
Foolad 2013; Kumar et al. 2013; Kaur et al. 2016; Shi
et al. 2017). However, there is hardly any comprehensive
holistic review covering basics of phenotyping/screening,
critically required for practically useful varietal improve-
ment along with modern genomics based approach to
dissect QTL into Quantitative Trait Nucleotide (QTN)
by transcriptomics and GWAS approach including gen-
ome editing. If there is a critical review on these aspects
of rice salinity tolerance, global community can have a
more comprehensive view, which is required for rice
salinity research. Looking at the cost (US $ 50–900 mil-
lion) and time of at least 10 years required for develop-
ment of salinity tolerant varieties by conventional
breeding (Alpuerto et al. 2009), supplementation by

marker assisted breeding can reduce the time from 3to
6 years. For a better return to such huge investment, it
would be pragmatic to have a comprehensive review of
earlier work along with available opportunities of gen-
omic technology especially in the practical perspective.
The present review offers exhaustive and exclusive ac-

count of conventional breeding vis-à-vis modern genom-
ics options for improved salt tolerance in rice which is
genomically the most explored and economically the
most important cereal crop. It endeavours to retrospect,
introspect and project the strategies aimed at realistic
and faster utilization of marker assisted breeding (MAB)
and other genomics based technologies for improvement
of salt tolerance in rice. The take away conclusions from
this paper may also facilitate and direct the proper allo-
cation of research investments for making practical
impacts in this domain. In the past, the genomics and
computational biology for salt tolerance have been
presented and documented in isolation from real field
requirements and applicability under salt affected condi-
tions. The genomic and transgenic technologies have so
far provided little success in developing successful salt
tolerant rice varieties for actual field conditions. Simi-
larly, germplasm evaluation and varietal development
through field evaluation and novel phenotyping proto-
cols for the target soil stress factors have not taken the
expected advantage of the spiralling developments in
molecular and computational biology. This review
uniquely attempts to bridge the gaps between these two
aspects for better synergy and technological benefits for
practical gains.

Benefits of Salt Tolerant Rice Varieties
Reclaiming problem soils by chemical amendments and
drainage interventions is one suitable approach. How-
ever this option invariably involves higher costs which
are generally beyond the economic access of poor and
marginal farmers inhabiting such areas. Moreover, such
pilot projects are often operative in larger community
areas and individual farmers with smaller land holding
size may not be able to adopt this option in a participa-
tory manner. Identification of suitable sites for dispos-
ing off the drained-out saline water to other new areas
could be another difficulty. These situations are com-
pelling the human efforts to explore, collect, evaluate
and develop salt tolerant genetic resources of the po-
tential crops. In view of this, there remains a great pos-
sibility of selecting and breeding the salt tolerant
“types” within a crop to adapt to such unfavourable
conditions. This approach is well proven, simple and
economical to adopt and also prevents environmental
degradation. There could be a third approach i.e. syner-
gistic approach which is based on harnessing the syner-
gies between the environment modifying technologies
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and genetically enhanced plant types. This approach is
considered to be more practical, economically viable,
less pollution causing and efficient with tremendous
potential.

Extent of Intra- and Inter-Specific Variability for Salt
Tolerance in Rice
Maas and Hoffman (1977) categorized different crops
in 4 classes (tolerant, moderately tolerant, moderately
sensitive and sensitive) based on the performance of
one or few genotypes/varieties. For rice, soils with ECe
exceeding 4 dS m− 1 are considered moderately saline,
while more than 8 dS m− 1 are highly saline. Similarly,
soil pH in the range of 8.8–9.2 is considered normal,
9.3–9.7 as moderate sodic, and 9.8 and above as high
sodic stress. Rice is generally considered to be a sensi-
tive crop to salinity, the threshold limit being around 3
dS m− 1. However, their conclusions for individual
crops possibly rallied around few genotypes under their
study which did not take into account the tremendous
intra-specific variation and immense potential for
breeding varieties with higher tolerance limits. This fact
is substantiated by the study conducted by Gupta and
Sharma (1990) for the response of crops to sodicity
expressed in terms of exchangeable sodium percentage
(ESP). Distinct genotypic differences were found in rice
for threshold ESP (ESPt) as well as ESP at which the
yield gets reduced to 50% (ESP50). In their study, salt
tolerant rice variety CSR 1 was found to survive better
with an ESPt of 20.63 while MI 48, a sensitive genotype,
with an ESPt of 8.02 whereas corresponding values of
ESP50 for these varieties were 81.6 and 30.6 respect-
ively. This study clearly brought out the extent of intra-
specific variability for salt tolerance in rice. Rice is
found to have the maximum range of genetic variability
for alkalinity tolerance while barley has the maximum
for salinity tolerance. Based on affinity towards salts,
plants are also categorized into two classes i.e. salt
loving “halophytes” and salt sensitive “glycophytes”
(Flowers et al. 1977; Flowers and Flowers 2005). Unfor-
tunately, most of the cultivated terrestrial crop species
belong to later class of glycophytes. However, no major
practical breakthrough seems to be achieved so far for
gene transfer from halophytes to glycophytes due to
complex hybridization barriers, restricted recombin-
ation and expression of alien trait. Though most of the
wild relatives are not reported to have higher salt toler-
ance than rice, few studies report deeper understanding
of the biology of salt tolerance in a halophytic tetra-
ploid rice wild relative Porteresia coarctata (Sengupta
and Majumdar 2010) and successful development of
inter-generic hybrids and their derivatives after its
hybridization with rice (Jena 1994).

Salinity Tolerance Parameters for Rice Phenotyping
An ideal and representative phenomics simulating nat-
ural occurrence of salts under field conditions is of cru-
cial importance for reaping benefit of any genomics
program. Phenomic data can furnish a better genotype–
phenotype map, thus can decipher molecular pathways
along with key candidate genes to connect genotypes to
phenotypes. Phenomics must be treated as necessary
and integral component of genomics in practical per-
spective (Houle et al. 2010). Genotype-phenotype know-
ledge gap can be bridged by new phenomics based on
the state-of-art protocols. Metabolic pathways and intra-
cellular regulatory networks affecting trait of interest of
a given crop is a reflection of physiological and biochem-
ical phenotype. To reap the benefit of genomics based
technology, a high-dimensional physiological phenotyp-
ing is need of the hour in high-throughput mode
(Großkinsky et al. 2015).
The more the intimate relationship between the mor-

phological, physiological or biochemical trait in phe-
notyping with final end product yield, the more
indispensable it would be for any successful mapping
and QTL transfer programme. In rice salinity phenotyp-
ing related with yield, there is unfortunately, no single
clear cut trait or criterion. In fact, the germplasm toler-
ant to salinity is also tolerant to sodicity or vice versa,
yet few exceptions cannot establish this as a rule. The
major visible phenotypic symptoms include leaf yellow-
ing tip burning or panicle whitening and withering (sal-
inity), leaf browning and necrosis (sodicity), stunted
plant growth, reduced tillering, spikelet sterility, low har-
vest index, less florets per panicle, less 1000-grain
weight, low grain yield, altered flowering duration, leaf
rolling, white leaf blotches, poor root growth and patchy
growth in field. Often the symptoms of salt stress also
find overlap with those of other abiotic stresses, there-
fore their diagnosis needs careful attention. Following
morphological and physiological parameters are consid-
ered for salt tolerance phenotyping in rice:

Agro-Morphological Parameters

Plant Survival (%) Plant establishment and survival
constitute a direct measure of tolerance at seedling as
well as adult stages. Under moderate stress, plant sur-
vival is not a problem but under severe stress, it is a sim-
ple and better selection criterion to select a few, but
robust tolerant segregates from large populations or
lines from large collections.

Injury Score Individual plant or group of genotypes are
scored usually on 1 to 9 (1, 3, 5, 7, 9) scale where odd
number lower score (1) indicates tolerant and higher
score (9) denotes sensitive genotypes.
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Phenotypic Expression Yellowing and excessive tip
burning especially in younger leaves, spikelet tip whiten-
ing and withering, stunted growth and vigour are associ-
ated traits for judging the overall phenotypic expression
of the genotype.

Root/shoot Growth Salt stress severely hampers the
root/shoot dry and fresh weights. In rice, salt stress
affects these traits but genotypic differences are also
observed for the relative degree of reduction.

Spikelet Fertility (%) Rice being vulnerable to salt stress
at flowering stages is distinctly affected through reduced
grain filling at reproductive and maturity stages. The
ratio of filled grains to total number of grains is used to
calculate spikelet fertility.

Grain Yield It is the major selection criterion of prac-
tical importance which can be used for phenotyping the
mapping populations and core collections. Generally, in
the absence of any simple and reliable selection criteria,
grain yield performance of the genotypes remains the
ultimate and unequivocal measure of tolerance.

Salt Stress Indices

Stress Susceptibility Index Stress susceptibility index is
perceived as a better criterion of adjudging the tolerant
genotypes than the per se stress performance of geno-
type alone because it accounts for the differences in yield
potential as well. Tolerance to salt stress can be worked
out by stress susceptibility index (S) on the principle of
yield minimization under stress compared to non-stress
environment (Fischer and Maurer 1978). The S values
for individual genotype are calculated as:

S ¼
1−Y s

.
Y p

D

where S = Stress susceptibility index, Ys =Mean grain
yield of a genotype under stress, Yp =Mean grain yield
of the same genotype under non stress.
D = Stress intensity, which is calculated as under:
1-(Xms/Xmp), where Xms is the mean stress yield of

all genotypes and Xmp is the mean non stress yield of
all genotypes.
The higher value of ‘S’ means more stress susceptibil-

ity and lower value of ‘S’ denotes better tolerance.

Stress tolerance index The stress tolerance index (STI)
has been proposed by Fernandez (1992) from the yield
measurements and is calculated as:

STI ¼ Yp � Y s
� �

= Xp
� �2

Where Yp and Ys denote the grain yield of a genotype
under non stress and stress conditions, respectively and
Xp is the mean yield of all genotypes under non stress
conditions. Higher STI means better tolerance and vice
versa.

Mean productivity Mean productivity (MP) for each
genotype is calculated (Rosielle and Hamblin 1981) as
per following formula:

MP ¼ Xs þ Xp
� �

=2

Where, Xs = Yield of a given genotype in a stress envir-
onment, Xp = Yield of the same genotype in the non-
stress environment.

Tolerance index Tolerance index (TOL) for each geno-
type is calculated (Rosielle and Hamblin 1981) as given
below.

TOL ¼ Yp−Ys
� �

Where Yp = Potential yield of a given genotype in a
non-stress environment, Ys = Yield of the same genotype
in a stress environment.

Geometric mean productivity Geometric mean prod-
uctivity (GMP) for each genotype can be calculated (Fer-
nandez 1992; Schneider et al. 1997) as per following
method:

GMP ¼ √ Ys � Yp
� �

Where Yp = Potential yield of a given genotype in a
non- stress environment, Ys = Yield of the same geno-
type in the stress environment.
Higher values of MP, TOL and GMP indicate better

tolerance and vice versa.
The above stress indices have been used by our group

for phenotyping of mapping populations and breeding
material for tolerance to salinity as well as sodicity (Pan-
dit et al. 2010; Ali et al. 2013; Krishnamurthy et al. 2014,
2016, 2017; Tiwari et al. 2016).

Physiological and biochemical parameters
Several physiological mechanisms are perceived to con-
tribute to the overall ability of rice plant to cope up with
excess salts (Yeo et al. 1990; Flowers 2004; Blumwald
and Grover 2006; Ismail et al. 2007). Physiological mech-
anisms that confer tolerance include Na exclusion, tissue
tolerance, low Na/K ratio, efficient salt partitioning abil-
ity within plant to retain harmful salts in functionally
less active organs like vacuoles and older plant parts
(Singh et al. 2004). Besides Na and K, other plant
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nutrients like Zn, Mn, Fe, Cu and P etc. have also im-
mense role to play in offsetting the harmful effects of
sodicity in rice (Qadar 2002).Bio-chemically, esterase
isozyme pattern, glyoxalase, trehalose phosphate syn-
thase phosphatase (TPSP), increase of non-toxic organic
compatible solutes like abscisic acid, proline, ethylene,
glycine betaine, sugars and polyamines etc. are reported
to be affected under salt stress (Singh and Mishra 2004).
The mechanism of overexpression of inositol- a ubiqui-
tous 6-carbon cyclohexane hexitol and its methylated
derivative pinitol have been reported to be associated
with salt tolerance in a halophyte and wild relative of
rice Porteresia coarctata (Sengupta and Majumdar
2010). Kumar et al. (2013) have excellently reviewed the
past works on rice functional genomics for the regula-
tory mechanisms which includes associated genes and
networks for synthesis of osmoprotectants (proline, gly-
cine betaine, TPSP, myo-inositol and fructans etc.),
signalling molecules (Ca, abscisic acid, jasmonates, bras-
sinosteroids) and ion transporters which are reported to
regulate the salt stress response in rice. Since earlier re-
sults showed that no single mechanism could confer the
absolute tolerance, pyramiding genes for diverse phy-
siological mechanisms into one genetic background
through marker assisted breeding holds lot of promise.
A wide spectrum of germplasm in rice has been evalu-
ated and categorized based on tissue tolerance, Na ex-
clusion, K uptake, Na/ K ratio and reproductive stage
tolerance for their use as donors for strengthening
breeding program for improvement of salt tolerant var-
ieties (Singh et al. 2004, 2010). Classifying these geno-
types or donors for salinity tolerance mechanisms, inter-
mating of the genotypes with high degree of expression
of the contrasting salinity tolerance mechanism and
identifying/screening of the recombinants for pooling of
the attributes should be followed to further raise the
level of salt tolerance. Crossing between the parents/do-
nors possessing contrasting physiological traits like ex-
clusion of Na and Cl, preferential K uptake and tissue
tolerance to Na+, to pyramid the genes for salinity toler-
ance into one agronomically superior background with
an objective to attain overall tolerance is the objective of
such breeding programs.
Salinity causes three main effects on plants: lowering

of water potential, direct toxicity of the absorbed Na and
Cl and impaired uptake of essential nutrients (Flowers
and Flowers 2005). Munns and Tester (2008) have
opined that plant adaptations to salinity are of three dis-
tinct types: osmotic stress tolerance, Na or Cl exclusion
and tolerance of tissue to accumulated Na or Cl. De-
pending upon the stress severity, salinity reduces growth
through osmotic stress, increases cellular Na and Cl con-
tents and exerts negative imbalance of K, Ca and NO3

nutrition (Flowers and Colmer 2008). The attribute of

salt tolerance is governed by different physiological
mechanisms and genes (Ren et al. 2005; Ismail et al.
2007; Rahman et al. 2016) and is thus amenable to gen-
etic improvement (Gregorio et al. 2002; Flowers 2004;
Singh et al. 2010). Singh et al. (2004) have extensively
reviewed the progress and proposed the future thrust
areas of harnessing salt tolerance in enhancing actual
agricultural productivity especially in the perspective of
sodic soils. Various studies have illustrated that salt
tolerance is controlled by multitude of mechanisms like
Na exclusion, K mining ability, lower Na/K ratio, low Cl
uptake, tissue tolerance, better cellular compartmenta-
tion and higher growth vigour etc. and tolerance being
believed to be growth stage-dependent (Tester and
Davenport 2003; Munns 2005; Singh et al. 2008). Re-
cently a better methodology of pruning older leaves with
a view to push up Na ions into younger and flag leaves
of plants subjected to salinity stress has been suggested
as a better criterion for judging reproductive stage toler-
ance of mapping populations and germplasm lines
(Ahmadizadeh et al. 2016).

Genetic mechanisms of salinity tolerance
It has been revealed at molecular level that in plants
exposed to saline conditions the key transport systems
involved in ion homoeostasis are regulated by the salt
overly sensitive (SOS) signal pathway (Hasegawa et al.
2000; Zhu 2000). Shi et al. (2000) and Qiu et al. (2003)
found that the SOS1 (plasma membrane Na+/H+antipor-
ter)-aided Na+ efflux from the cytosol is regulated by
SOS2, a serine/threonine protein kinase which also regu-
lates vacuolar Na+/H+ antiporter-mediated Na+ seques-
tration into the vacuole. Liu et al. (2012) unravelled that
a salt-inducible AP2/ERF type TF gene, OsERF922–ox
rice showed decreased tolerance to salt stress with an
increased Na+/K+ ratio in the shoots. A total of 10mem-
bers of SnRK2 family were found activated by hyperos-
motic stress through phosphorylation (Kobayashi et al.
2004) out of whichSAPK4 has been indicated to play an
instrumental role in the salt tolerance due to decreased
Na+ concentration in the cytosol. Similarly, Martinez-
Atienza et al. (2006) also detected a plasma membrane
Na/H exchanger (OsSOS1) gene which is functional
counterpart of the Arabidopsis SOS1 protein.
Senadheera et al. (2009) reported that as a result of

salt stress, genes encoding aquaporin, a silicon trans-
porter and N transporters were activated in the 2 con-
trasting genotypes i.e. FL478 (salt tolerant line carrying
SALTOL QTL for lower Na uptake) and IR29 (sensitive).
Furthermore, the transcripts for cation transport pro-
teins like OsCHX11, OsCNGC1, OsCAXand OsTPC1
showed differential regulation between these contrasting
genotypes which could become future molecular targets
for understanding and improving salt tolerance. The

Jaiswal et al. Rice           (2019) 12:89 Page 5 of 19



protein changes due to salinity stress were noticed in the
roots of a salt-sensitive rice cultivar wherein eight pro-
teins were induced with partia1 sequences of one with a
molecular mass of 15 kilodaltons and an isoelectric point
of 5.5 (Claes et al. 1990). In their study, salTmRNA ac-
cumulated very rapidly in sheaths and roots from mature
plants and seedlings upon treatment with Murashige
and Skoog salts (1%), air drying, abscisic acid (20 pM),
polyethylene glycol (5%), sodium chloride (l%), and po-
tassium chloride (1%). In general, no protein induction
was observed in the leaf lamina even after the salt stress
affected all parts of the plant uniformly.
Through comparative proteomics Ruan et al. (2011)

identified a rice cyclophilin gene, OsCYP2 that conferred
salt tolerance in transgenic rice seedlings when over-
expressed. Xu et al. (2013) also found a novel rice
calmodulin-like gene OsMSR2, conferring enhanced salt
tolerance in rice and this gene function was unravelled
through the expression pattern and effects of overex-
pression of OsMSR2 on salt stress. Strong and rapid in-
duction of OsMSR2 gene expression under salt stress
was further regulated by the accumulation of proline
and soluble sugar and the electrolyte leakage in rice
under salt stress.
Interestingly a novel gene OsMYB2 getting overex-

pressed in transgenic rice conferred triple tolerance to sal-
inity, drought and cold stresses without hindering the
growth rate compared with control (Yang et al. 2012). In
rice, Hoshida et al. (2000) examined the effect of increased
photorespiration on the salt tolerance by overexpressing
chloroplastic glutamine synthetase (GS2) gene wherein
GS2-ox rice showed increased salinity tolerance by retain-
ing more than 90% activity of photosystem II. Jan et al.
(2013) observed an increased level of expression of a num-
ber of stress-related genes, including OsDREB2A, OsP5CS,
OsProT, and OsLEA3 in the transgenic rice. In another
case, overexpression of OsWRKY13 gene decreased the
salt tolerance through antagonistic inhibition of SNAC1 in
rice revealing that OsWRKY13 is a negative regulator of
salt stress response (Qiu et al. 2008). In rice, 10 members
of SnRK2 family were found activated by hyperosmotic
stress through phosphorylationwhereinSAPK4 seemed to
play a role in the salt stress tolerance via reduced Na+ ac-
cumulation in the cytosol (Kobayashi et al. 2004). The
vacuolar Na+/H+antiporter gene, OsNHX1 got less
expressed in the transformed plants, indicating the re-
stricted Na+ influx due to exclusion mechanism rather
than vacuolar sequestration of the Na+ ions (Diedhiou
et al. 2008). Through BLAST search and sequencing in
Pokkali rice, Kumar et al. (2012) identified a candidate
gene named as mannose-1-phosphate guanyltransferase
(OsMPPg1) which got overexpressed in specific tissues like
roots, leaves, short apical stems and panicles following the
exposure to multiple abiotic stresses including salinity.

Phenomics of rice salinity tolerance
For knowledge discovery and its applied use in rice sal-
inity improvement breeding program, it is critical and
imperative to have precise, efficient, reproducible and
representative phenotyping techniques for screening of
germplasm. Each of these protocols have strengths as
well as limitations and therefore depending upon the
specific requirements and available resources, a combin-
ation of methodologies is considered for evaluation.
There are two major approaches of salinity screening,
namely, invasive and non-invasive. It is also important to
identify genomic regions based on phenotyping for salt
stress indices like stress susceptibility index and stress
tolerance index which account for minimal yield reduc-
tion under stress compared to normal conditions (Pandit
et al. 2010; Ali et al. 2013; Krishnamurthy et al. 2016) ra-
ther than stress performance alone.

Invasive approach
Among invasive approaches, at least six different tech-
niques are used to generate phenomics data for associ-
ation studies, QTL mapping and variety improvement
program. These techniques have widely been used for
genes/QTLs mapping and introgression of salt tolerant
genes in rice varietal improvement (Gautam et al. 2014a,
2014b).

Saline hydroponics In this method, rice seedlings are
planted in artificially prepared nutrient solution and
pH~ 4.5 is maintained (Singh et al. 2004). Salt is added
in solution to create desired level of salt stress. This
method has advantages of even distribution of salts for
uniform screening, screening at seedling stage at any
time under controlled conditions and scope of screening
large number of lines very efficiently with rapidity. How-
ever this methodology has limitations also because the
salt constitution and ambient conditions of naturally salt
affected soils can be exactly mimicked. Besides this,
there are further limitations like feasibility of screening
confined to seedling stage only and such methodology is
relatively technical and costly.

Metal trays For this approach of phenomics data gener-
ation, rectangular metallic trays are used which are filled
with salt stressed soil for planting the seedlings. Advan-
tages of this methodology are better control of prelimin-
ary screening at seedling stage at any time, control over
desired level of stress and large number of lines can be
screened rapidly. However this technique has limitation
because adequate and natural soil depth is not fully en-
sured. Moreover, data generation is confined to seedling
stage from limited space only.
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Porcelain pots In this, round porcelain pots of 20 or
30 cm diameter, with a capacity of 8 or 16 kg soil are
used for screening. Screening can be done at seedling
stage. Advantageously, here we can control the level of
salt stress along with rapidity and high number of lines.
Plants can be easily uprooted at desired growth stage
for physiological/nutrient studies. However, micro-
environment uniformity may be compromised while
screening large number of genotypes in different pots.

Micro-plots with roof In this method, micro-plots are
constructed through reinforced concrete cement (RCC)
walls and floors having dimension of about 6 m (length),
3 m (width) and 1m (depth). These tanks are filled with
normal soil which is made artificially sodic or saline.
Such method has advantage of being “hybrid approach”
having efficient local control along with distribution of
targeted amount of salts in a plot. Besides this, it has
advantage of much more closer simulation of natural
conditions with desired salt concentration which is not
diluted by rainfall due to translucent sheet covered roof
and keeping the sides open to allow natural sunlight on
the crop. However, the soil to be added in these micro-
plots from external source should have natural nutrient
composition with respect to crop requirement. Further it
can be effectively used for screening large number of
lines for reproductive stage tolerance due to more depth
of soil. Some institutions in India like ICAR-CSSRI,
Karnal, NRRI, Cuttack, CCARI, Goa and CIARI, Port
Blair have established state-of- art micro-plots facility
for rice salinity work. Though, establishing such facility
requires more initial investments, it is worth-investing.

Natural fields Here, the paddy seedlings are planted in
natural sodic /saline soils. Alternatively, the normal soils
are also subjected to irrigation with sodic or saline water.
This method has advantage like screening of large num-
ber of lines in larger plots/longer rows under natural
target conditions upto reproductive stage. This method-
ology has a great advantage in seed harvesting of salt tol-
erant lines from bigger plots for better estimation.
However, this methodology has limitation of comprom-
ising spatial field variation for salts which often mars the
quality and effectiveness of screening because there is no
control over salt stress levels and rains etc.

Farmers’ fields In this method, the paddy seedlings are
planted in natural sodic /saline soils at farmers’ fields
under their own management. The farmers are involved
in variety selection and ranking (Gautam et al. 2014a,
2014b; Singh et al. 2014). This method has an advantage
of its effectiveness for large number of lines in larger
plots conditions upto reproductive stage. Besides this, it
has further advantage of seed harvesting from lines along

with feedback of farmers. This enables to assess impact
of varietal adoption and adaptation under actual target
conditions which also takes into account the farmers’
preference traits other than salinity tolerance alone.
However, farmers’ fields are prone to less supervision
control and there could be crop damage by stray ani-
mals, rodents and birds etc. Moreover, getting farmers’
fields of desired salt stress is sometimes a practical
difficulty.

Non-invasive approach
In non-invasive approach, high tech image based and
high throughput technologies have been recently de-
ployed to phenotype germplasm for salt tolerance
(Campbell et al. 2015; Al-Tamimi et al. 2016). In con-
ventional methods of salt stress induced phenotyping,
physiological parameters such as stomatal conductance,
osmotic potential, dark-adapted quantum yield and bio-
mass allocation are recorded. This manual method is
time consuming, labour intensive and destructive in na-
ture. Modern phenotyping based on high tech imaging
system has advantage of high throughput, less time con-
suming, higher automation with higher accuracy (Awada
et al. 2018). Such machine based high-end phenomics
accelerates selection of plant varieties which can perform
relatively better in the field with more reproducibility
when affected by salt stress (Siddiqui et al. 2014). Since
root is the first tissue to sense salinity thus phenome
data of root system architecture generated by non-
invasive X-ray tomography can be used to study geno-
type and environment interaction. (Rogers et al. 2016).
Besides this, such new Phenomics methods are also

required as salinity tolerance mechanism and indicators
vary across between tissues as well as varieties. Thus it is
imperative to have non-invasive stage- and tissue- spe-
cific accurate data for advance genomics based associ-
ation studies. Salinity response in rice has two phases. In
shoot ion-independent ‘osmotic stress’ phase, there is
stomatal closure with increase in leaf temperature as
well as inhibition of shoot elongation. In shoot ion
dependent ‘ionic phase’, there is growth inhibition and
senescence of older leaves (Reddy et al. 2017). This has
been clearly demonstrated by specific experimental stud-
ies having non-destructive image-based phenotyping of
salt tolerance traits of two rice varieties (IR64 and
Fatmawati) and phenomic data of shoot area (Reddy
et al. 2017). High precision non-destructive approach of-
fers accurate “new phenomics data” with better repeat-
ability in real time mode which can be used to decipher
genetic basis of salinity tolerance mechanisms required
in pyramiding of different tolerance mechanism in the
targeted genetic backgrounds.. Different levels of salt
stress can be quantified by spectral imaging over time by
total area of shoot and senescent part, obtained by
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images in RGB (red-green-blue) and fluorescence mode
(Hairmansis et al. 2014).
Different spectra of imaging can be used for gener-

ation of tissue specific phenomic data, for example, root
and shoot imaging can be done by near infra-red and
visible colour range at desired angle in timeline. A
phenotypic data can be generated by image processing
to correlate with various traits/ parameters for growth
rate, biomass, photosynthetic and transpiration use effi-
ciency (TUE), concentration of metabolites in response
to differential salinity stress in timeline. Phenotype geno-
type interaction model can be generated using different
software to measure the productivity parameters of rice
in response to salinity (http://www.iari.res.in/files/Latest-
News/PlantPhenomicsCentre_inauguration_News_13102
017.pdf). Such high throughput phenotyping (HTP) has
been found successful in rice phenomics data generation
for GWAS studies. In such work, phenotypic data are
generated by canopy level sensors having high precision
real time kinematic GPS controlled movement. Here, 3-
band reflectance sensor, namely, infrared canopy
temperature sensor, ultrasonic canopy height sensor and
spectral reflectance bands of near infrared (760–800
nm), red edge (730 nm) and red (670 nm) are used. Such
system of phenomics also records air temperature, hu-
midity and photosynthetically active radiation measure-
ment (Tanger et al. 2017). Artificial intelligence like
deep learning techniques have been used for plant stress
(biotic and abiotic) phenotyping for identification, classi-
fication, quantification, and prediction (ICQP) to make
best use of digital image–based phenomics data (Singh
et al. 2018). Such technique based panicle segmentation
algorithm has been found promising in rice to study dif-
ferent reproductive stage in different field environment
for non-destructive yield estimation (Xiong et al. 2017).
Rice plant copes up with salt stress by 3 distinct mech-

anisms, (i) osmotic tolerance, (ii) exclusion of sodium
ion from shoot and (iii) tissue tolerance. Osmotic and
tissue tolerance being dynamic processes require real
time, uninterrupted and non-destructive measurements.
Because of this, automated imaging systems are impera-
tive and efficient for the measurement of salinity effects
(Berger et al. 2012). Using contrasting genotypes, non-
destructive image-based phenotyping protocols have
been very promising for screening rice for salinity toler-
ance with advantage of specificity, accuracy and time.
Such advanced phenotyping protocols are now available
in many part of the globe, for example Australian Plant
Phenomics Facility (http://www.plantphenomics.org.au),
European Plant Phenomics Network (http://www.plant-
phenotyping-network.eu) (Hairmansis et al. 2014), UK
(https://www.plant-phenomics.ac.uk/), India (at ICAR-
IARI: http://www.iari.res.in/files/Latest-News/PlantPhe-
nomicsCentre_inauguration_News_13102017.pdf; ICAR-

NIASM: http://www.niam.res.in/Phenomics-facility; ICAR-
IIWBR: http://www.iiwbr.org/phenotyping-facility/). Drone
based field data observation can further enhance both pre-
cision and speed of phenotyping with lot of cost reduction.
Since genetic basis of salinity tolerance is polygenic

and is mediated by myriad of physiological responses
thus non-invasive high throughput real time spectral im-
aging can be used for association studies of physiological
and biochemical traits/events. Such approach in rice for
salinity response study has revealed genomic regions on
different chromosomes and their association with differ-
ent time and dose lines of salinity. For example, chromo-
some 3 and chromosome 1 are strongly associated with
early growth response and controlling ionic stress at
early growth stage by change in fluorescence shift, re-
spectively (Malachy et al. 2015). Thus it can be con-
cluded that both invasive and non-invasive approaches
have their specific advantages and disadvantages with re-
spect to spatial variability of salt distribution, precision
control and monitoring in hydroponics and natural soil
system, weather interference, rainfall control, soil and
water medium, appropriateness for seedling, reproduct-
ive and seed harvesting stage etc. Therefore, a particular
phenotyping methodology can be opted as per the re-
quirement, genetic nature and quantum of the breeding
lines, technical and financial feasibility besides the scale
and rapidity of screening.

QTLs/ genes for salt tolerance and their database
Through an F2 population derived from salt tolerant
mutant and sensitive genotype, Zhang et al. (1995) found
that enhanced salt tolerance was governed by a major
tolerant gene which showed incomplete dominance. By
using a doubled haploid population Prasad et al. (2000)
mapped 7 QTLs for tolerance to salinity stress at seed
germination and seedling stages. Koyama et al. (2001)
revealed that the QTLs for Na and K uptake were found
on different rice chromosomes. Lin et al. (2004) through
a cross Nona Bokra (salt tolerant) x Koshihikari (sensi-
tive) varieties detected 3 QTLs on chromosomes 1, 6
and 7 accounting for the number of survival days of
seedlings under salt stress. Later in the same mapping
population, Ren et al. (2005) discovered a QTL SKC1 ac-
counting for about 40% phenotypic variation in shoot
for the K mining ability under salt stress. Takehisa et al.
(2004) also reported QTLs on chromosomes 2, 3 and 7
for stable tolerance to saline flooded conditions through
backcross-inbred lines derived from Nipponbare (mod-
erately salt-tolerant variety, as recurrent parent) and
Kasalath (salt sensitive). From the mapping population
derived from salt-tolerant japonica rice (Jiucaiqing) and
sensitive indica variety (IR26), Wang et al. (2012)
mapped 6 large effect QTLs and concluded that one
QTL caused decreased Na+ concentration in shoots
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which could be a strong candidate gene for marker
assisted selection. Lee et al. (2006) located two QTLs viz.
qST1 and qST3 respectively on chromosomes 1 and 3
for seedling stage tolerance through RILs developed
from Milyang 23 x Gihobyeo cross.
Ammar et al. (2007, 2009) mapped a major QTL for

multiple salt tolerance parameters on chromosome 8
and three other major QTLs for Cl ion concentration
through F2–3 mapping population derived from CSR27
(tolerant) X MI48 (sensitive) cross. Subsequently
through RILs derived from the same population, 8 sig-
nificant QTLs were mapped on chromosomes 1, 8 and
12 including an important QTL for higher spikelet fertil-
ity at reproductive stage salt tolerance on chromosome 8
(Pandit et al. 2010). In another study, five major QTLs
with considerable effects for root and shoot traits under
salt stress were reported (Sabouri and Sabouri 2008).
Ahmadi and Fotokian (2011) identified a major QTL on
chromosome 1 conferring higher K+ mining ability
under salt stress. Ghomi et al. (2013) conducted the
QTL analysis of physiological traits related to salt toler-
ance using F2:4 population developed from a cross be-
tween a tolerant variety (Gharib) and a sensitive variety
(Sepidroud) and reported 41 QTLs for 12 physiological
traits under salinity stress. In other studies, many new
QTLs for seedling stage tolerance have been mapped in
rice (Alam et al. 2011; Lee et al. 2007; Pushparajan et al.
2011). Through an association mapping involving 347
global rice germplasm lines, Cui et al. (2015) discovered
a total of 40 markers of which 25 and 15 were associated
with tolerance to salinity and alkalinity, respectively
wherein 3 markers were common for both salinity and
alkalinity stress tolerance. Molla et al. (2015) studied a
total of 220 salt responsive genes and employed 19 pri-
mer sets to detect polymorphism across tolerant and
sensitive groups and revealed the utility of salt respon-
sive candidate gene based SSR (cgSSR) markers for dis-
tinguishing tolerant and sensitive genotypes. Recently,
Bizimana et al. (2017) mapped 20 new QTLs located on
chromosomes 1,2,4,6,8, 9 and 12 in a novel source
Hasawi, a Saudi landrace which could diversify the
nature of salt tolerance. Based upon stress susceptibility
indices, Shi et al. (2017) identified 11 loci on chromo-
somes 1,5,6,11 and 12 containing 22 important SNPs
conferring tolerance at seed germination stages and con-
cluded that japonica types have better salt tolerance than
indica types. Regarding wild relatives of rice, a study
conducted in Oryza rufipogon identified four QTL clus-
ters located on chromosomes 6,7,9 and 10 explaining 19
to 26% phenotypic variation for root and shoot traits
under salt stress (Tian et al. 2011). Kaur et al. (2016)
have performed a meta-analysis of many known genes
for controlling salt tolerance in rice to prioritize can-
didate genes. In our overall compilation, maximum

number of salt tolerance associated QTLs are reported
on chromosome 1, followed by 3, 4, 6, 7, 2 and 9 (Add-
itional file 1 Table S1).
There are several available QTL databases of rice and

rice informatics. One of the major plant QTL databases,
Gramene-QTL (Ni et al. 2009) records more than 8000
QTLs of rice along with their chromosomal distribution
and various trait association but there is no comprehen-
sive database specific to the rice salinity associated
QTLs. Even the rice species specific database like, Q-
TARO: QTL Annotation Rice Online Database contains
more than 1000 QTLs for 21 different traits (Yonemaru
et al. 2010) but again salinity trait is limited. Even in
OGRO database (Overview of Functionally Character-
ized Genes in Rice Online database) module of Q-
TARO (http://qtaro.rd.naro.go.jp/ogro) contains 1949
entries of genes over QTL but hardly 100 entries of
genes related to salinity having chromosomal positions
and coordinates over genome are reported. Nagamura
and Antonio (2010) reviewed the rice informatics
resources having 37 web genomic resources but none of
these resources are specific to rice salinity tolerance.
Even in International Rice Informatics Consortium,
there is no publicly accessible salinity trait specific QTL
information. Another informatics resource for rice,
RiceXPro Version 3.0 also does not contain rice salinity
specific resource (Sato et al. 2012).

The discovery of SALTOL QTL-a success story
At International Rice Research Institute (IRRI),
Philippines, a major QTL called as SALTOL associated
with seedling stage tolerance and explaining about 40%
variation for salt uptake was detected on chromosome 1
through a RIL population derived from tolerant (Pokkali)
x sensitive (IR29) cross (Bonilla et al. 2002). Subse-
quently, SALTOL was deeply characterized through
linked SSR markers flanking the QTL region (Thomson
et al. 2010). Another study revealed that within SALTOL
QTL region in the Pokkali variety, precise salinity in-
duced factors (SIFs) were found expressed which could
be putatively associated with vegetative growth, fertility,
viability and early flowering under salinity stress (Soda
et al. 2013).
For SALTOL QTL, FL478 (IR66946-3R-178-1-1) a line

developed from IR29/Pokkali population has been pro-
moted as an improved donor for introducing salinity tol-
erance in rice breeding programs through marker
assisted back-crossing (MABC). Using MABC, the
SALTOL was transferred into BR11 and BRRI dhan28 in
Bangladesh (Rahman et al. 2008), AS996 and BT7 in
Vietnam (Huyen et al. 2012; Hien et al. 2012), Rassi in
West Africa (Bimpong et al. 2016) and Pusa Basmati
1121 and PB6 in India (Babu et al. 2017; Singh et al.
2011). In India, the SALTOL introgression in mega rice
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varieties is in progress through multi-institutional pro-
grams (Singh et al. 2016; Geetha et al. 2017).

Limitations of salinity tolerance QTLs in marker assisted
breeding
Unfortunately, not a single significant QTL with large
effect for rice salinity conditions with practical impact is
available. Moreover, marker assisted selection and back-
cross breeding are considered to have limitation of
higher cost, linkage drag of undesirable traits because of
poor resolution of chromosome beyond few centi-
Morgan having QTL (Martinez et al. 2002) and statis-
tical inaccuracy in estimating environmental and genetic
background effect on the trait (Flowers 2004). Though
SALTOL and most of other reported QTLs are effective
at seedling stage, our study aimed at reproductive stage
tolerance and grain yield performance under both saline
and sodic stress conditions could not establish the su-
periority of the SALTOL QTL derived material com-
pared to the conventionally developed check varieties
(Ali et al. 2013). These indications call for a need to ex-
plore and utilize other QTLs with better potential espe-
cially for reproductive stage traits.

QTLs for reproductive stage salinity tolerance
QTLs for reproductive stage tolerance to salinity have
been reported by many workers (Lang et al. 2001, Pandit
et al. 2010, Islam et al. 2011, Mohammadi et al. 2013,
Chai et al. 2014, Hossain et al. 2015), but limited studies
have been reported for sodicity tolerance (Tiwari et al.
2016). However, successful validation and transfer of
these QTLs into mega varieties for practical gains are
still awaited.

QTL refinement by NGS data for fine mapping and
molecular breeding
The marker assisted selection (MAS) can accelerate the
speed and precision of conventional plant breeding be-
cause it is growth stage independent, unaltered by envir-
onment, free from dominance and epistatic effects and is
quite effective in early segregating generations. Never-
theless, a practically useful QTL for any trait should
ideally (i) have been identified through phenotyping
under representative and reproducible stress conditions
(ii) have large contributory effect on total trait expres-
sion, (ii) have desirable expression across different envi-
ronments and genetic backgrounds (iii) be < 1 cM away
from linked markers to reduce linkage drag and (iv) have
additional markers identified within the QTL region for
fine mapping and use in marker assisted selection.
In the process of QTL mapping, sharper the contrast

between two parents for salinity/sodicity tolerance,
higher will be the chances of unravelling the strong and
useful QTLs. Secondly, the tolerant and sensitive parents

selected for development of mapping population like re-
combinant inbred lines (RILs) should have preferably
similar flowering/maturity times to practically facilitate
advancement of all lines with equal and unbiased prob-
ability for stabilization. The precise understanding of
molecular basis of salt tolerance and genomic informa-
tion can lead us towards realizing the concept of “breed-
ing by design” as advocated by Peleman and Vander
Voort (2003). Here it is also important to mention that
some mapping populations like RILs may not allow full
detection of the useful QTLs due to small population
size and presence of lesser functionally polymorphic
alleles (Tuberosa and Salvi 2007). Therefore, working on
multi-parental crosses of MAGIC (Multi-parent ad-
vanced generation inter-cross) population and mini core
collections can also enlarge the spectrum of genetic and
molecular variability to enhance the chances of mapping
and utilizing functionally useful alleles. Development of
NILs (near isogenic lines) each having QTL for specific
physiological trait for salt tolerance in a common genetic
background can be useful to quantify and harness the
advantage of each component of tolerance. Since differ-
ent growth stages in rice are differentially vulnerable to
salinity effects (Singh et al. 2008, 2010), studies on iden-
tification of QTLs for tolerance at vulnerable stages can
be given more priority. Different QTLs thus identified
can be pyramided in a single recipient variety through
marker assisted breeding for genetic tailoring of “super
tolerance”.

Genome sequencing and GWAS revealing rice salinity QTL
into QTN
Rice is a model crop species due to its relatively smaller
genome size (430MB) but with wide genetic variability
having adaptive attributes for tolerance to acidity, sodi-
city, salinity, nutrients toxicities and deficiencies etc.
Moreover, smaller genome size facilitates genome se-
quencing, gene detection and transfer through molecular
approaches. There is unlimited and unthinkable oppor-
tunities for genetic improvement by genomics approach
(IRGSP 2005; Edwards et al. 2016). Such approach is
highly promising in improvement of salt tolerance with
the help of molecular markers to enhance the precision
and efficiency of crop for better productivity (Jena and
Mackill 2008). Genomic data of rice has been very suc-
cessfully used for marker discovery like SSRs, SNPs and
InDels which has been used for knowledge discovery like
QTL mapping and germplasm management. For ex-
ample, Singh et al. (2009) have validated and described a
genome wide set of 436 highly variable SSR (HvSSR)
markers with repeat lengths of 51–70 bp for their con-
sistent amplification and higher degree of polymorph-
ism. These HvSSR loci showed more than twice the level
of polymorphism than random SSR markers with
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average repeat length of 34 bp which enable them a bet-
ter choice for QTL mapping and fingerprinting studies
in rice for varietal signature.
Recently, the development of high quality reference

genome of rice has facilitated the high density genotyp-
ing (McCouch et al. 2016) and re-sequencing of more
than 3000 rice varieties (Alexandrov et al. 2015; Duitama
et al. 2015). Therefore, genetic and molecular dissection
of salt tolerance and its components can pave the way
for systematic and precise gene transfer in salt sensitive
but otherwise superior cultivars through marker assisted
breeding for large and long term impacts. Though there
have been numerous attempts to review work on genes/
QTLs for salt tolerance (Ashraf and Foolad 2013; Blum-
wald and Grover 2006) the present review offers ex-
haustive and exclusive account of QTL mapping and
utilization for salt tolerance, specifically in rice which is
genomically the most explored and economically im-
portant cereal crop.
Using computational genomics, now it is possible to

dissect QTL into genic regions along with nucleotide
variants called quantitative trait nucleotide (QTN) which
is responsible for variation in quantitative traits. Now it
is possible to understand adaptive phenotypes along with
population structure having attributes of SNPs with in-
heritance, allele frequencies and evolutionary dynamics
(Lee et al. 2014). GWAS has advantage of computing
statistical association of all nucleotide variants which are
accumulated in a particular genotype due to ecological
and agricultural selection to decipher phenotypically im-
portant QTNs. It is also correlated with population
structure which may differ between two populations.
These refined QTNs of specific traits can be used for
faster and accurate selection in varietal improvement
program by introgression of desirable alleles (Mitchell-
Olds 2010).
GWAS based QTN mapping is more efficient than

linkage mapping of QTL (Naveed et al. 2018). In a
GWAS study based on mini-core (25 countries, > 200
varieties) using 700 K SNP chip of rice, 22 candidate
genes and 20 QTNs have been identified which are asso-
ciated with 11 different salt tolerant traits at germination
and seedling stages (Naveed et al. 2018). In another
study using SNP chip 50 K, a total of 6068 polymorphic
SNPs were obtained in biparental population studies
wherein a total of 11 desirable and 23 undesirable QTNs
were reported associated with salt tolerant traits (Tiwari
et al. 2016).
In GBS (Genotyping By Sequencing) approach of

GWAS using 235 temperate japonica rice accessions,
association study has been conducted with 30,000
SNP markers wherein 27 QTLs were validated along
with the discovery of candidate genes related to salin-
ity (Frouin et al. 2018).

Wild rice has been used as a source of salinity toler-
ant genes. For example, the salt tolerant Chinese Dong-
xiang wild rice has been successfully used to introgress
genes conferring salinity tolerance into recipient rice
variety NJ16through repeated back-crossing (Quan
et al. 2018). Such resources are used for genome rese-
quencing to get SNP and indel markers and can also be
used for QTL discovery. Both approaches supplement
each other by discovery of candidate genes and har-
bouring QTNs.
SNP and Indel discovery has been done through whole

genome sequence analysis of representative salinity tol-
erant variety Godawee. Such variety specific whole gen-
ome data can be used to mine putative SNP and Indel
markers from Salt Tolerance Related Genes (STRGs)
which could be used in future association studies (Sin-
ghabahu et al. 2017). The 3 K RG 6.5 m SNP dataset
(478 accessions from 46 countries) available at Rice
SNP-Seek Database (http://www.oryzasnp.org/) (Alexan-
drov et al. 2014) has been used successfully in GWAS
for revealing 22 SNP from 11 loci associated with stress-
susceptibility indices (SSIs) of vigor index (VI) and mean
germination time index of salinity tolerance (Shi et al.
2017). In another study of very same 3 K RGP SNP set
using 203 temperate japonica rice accessions with 9 sal-
inity traits, 26 QTLs were analysed which revealed 6
candidate genes in 11 known QTLs having SNPs. This
study also reconfirmed the well-known major Saltol
QTL having OS HKT1; 5 (SKC1) gene controlling Na+/
K+ ratio (Batayeva et al. 2018).
It is interesting to note that earlier findings of the

QTL discovery based on the statistical genetics are sup-
plementing the findings based on GWAS. In a study
based on the diversity panel of 306 rice accessions in-
volving HD 700 K has revealed 1900 significant SNPs
and ~ 2300 candidate genes involved in rice salinity tol-
erance. This study clearly dissected a well-known major
QTL, Saltol-1 associated with shoot Na/K ratio located
on chromosome 1 (~ 9.3 Mb – 16.4Mb) (Bonilla et al.
2002; Soda et al. 2013) having its key candidate gene,
OsHKT1; 5 (positioned at 11.45Mb) which controls so-
dium ion uptake in xylem (Ren et al. 2005).
Through rice GWAS using 700 K SNP chip and HTP

phenotyping, new QTLs have been discovered which are
associated with flowering time, height, biomass, grain
yield, and harvest index. This study demonstrated that
such approach can be used to discover new QTLs having
influence on yield and yield components that can be
mapped non-destructively in a fraction of time. Thus
HTP and GWAS can be used for efficient screening of
large populations along with accuracy in breeding value
prediction. Rapid and early prediction of phenotypes can
enable the breeder to enter into the next breeding cycle
thus accelerating rate of genetic gain per unit time
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which is the main endeavour of molecular breeding pro-
gram (Tanger et al. 2017).

Transgenic approach
Transgenic approach has been a powerful tool in plant
breeding where genes are taken from other species in
order to get insertion of gene (s) controlling traits with-
out dilution of any desirable trait of a recipient elite
genotype (Bhatnagar-Mathur et al. 2008). Transgenic ap-
proach has been used to improve salinity tolerance in
rice by various approaches like control of organic sol-
utes, antioxidants detoxifying ROS, transport of ion, late
embryogenesis proteins (LEP) and heat-shock proteins,
programmed cell death (PCD), signal transduction and
transcription factor (TF) which are involved in coping
mechanism against higher salinity.
Various novel genes have been used for development

of salinity tolerant transgenic rice. These include genes
which are involved in antioxidants and ROS detoxifica-
tion activity such as CAT1 and GST from Suaeda salsa
(Zhao and Zhang 2006), GlyII from Oryza sativa (Sin-
gla-Pareek et al. 2008), GS2 from Oryza sativa (Hoshida
et al. 2000), katE from Escherichia coli (Nagamiya et al.
2007; Moriwaki et al. 2008), Mn-SOD from Saccharomy-
ces cerevisiae (Tanaka et al. 1999), Sod1 dismutase from
Avicennia marina (Prashanth et al. 2008). Similarly,
genes involved in ion homeostasis and compartmenta-
tion have been used such as nhaA from Escherichia coli
(Wu et al. 2005), AgNHX1 from Atriplex gmelini (Ohta
et al. 2002), OsNHX1 Vacuolar from Oryza sativa
(Fukuda et al. 2004; Biswas et al. 2015; Chen et al. 2007),
SOS2 from Schizosaccharomyces pombe (Zhao et al.
2006), PgNHX1 from Pennisetum glaucum (Verma et al.
2007) and OsKAT1 from Oryza sativa (Obata et al.
2007). Genes involved in osmotic adjustment, such as
ADC from Avena sativa (Roy and Wu 2001), codA from
Arthrobacter globiformis (Sakamoto and Murata 1998;
Mohanty et al. 2002), COX from Arthrobacter pascens
(Su et al. 2006), P5SC from Vigna aconitifolia (Karthike-
yan et al. 2011), P5CSF129A from Vigna aconitifolia
(Kumar et al. 2010), SAMDC from Tritordeum (Roy and
Wu 2002), TPS, TPP and TPSP from Escherichia coli
(Garg et al. 2002; Jang et al. 2003; Joshi et al. 2019) have
shown considerable success. Genes involved in pro-
grammed cell death (PCD) are also successfully reported
for development of salinity tolerant transgenic rice using
genes like AtBAG4 from Arabidopsis, p35 from Baculo-
virus, Hsp70 from Citrus tristeza virus and SfIAP from
Spodoptera frugiperda (Hoang et al. 2014; Hoang et al.
2015). Even genes like CNAtrCalcineurin gene from ani-
mal (mouse) were used to get transgenic rice having en-
hanced salt tolerance due to less sodium accumulation
in roots with growth under high sodium chloride stress.

Though lot of efforts with commercial success have
been made in transgenic rice for various traits, such suc-
cess in salinity tolerant transgenic rice is yet to be
achieved. Most of the transgenic rice are developed in
USA (11.5%), Europe (8.9%), Oceania (1.1%) and Africa
(1%) but majority of the field trials are in Asian coun-
tries (77.5%), predominantly in China (47.8%) and Japan
(20.2%). Among the commercialised transgenic rice var-
ieties, herbicide tolerance and insect resistance were
first. Salinity tolerant transgenic rice varieties have been
developed using various genes of both ABA dependent
and independent pathway genes which has been
reviewed by Reddy et al. 2017. Recently, a salt-tolerant
transgenic rice has been developed using over-
expressing a gene, OsIF (Oryza sativa intermediate fila-
ment) from wild rice (Porteresia coarctata) which is na-
tive to India, Bangladesh, Sri Lanka and Myanmar (Soda
et al. 2018). Salinity tolerant transgenic rice development
is complex due to critical events like ion homeostasis
and compartmentation, programmed cell death, signal
transduction and transcription factors based regulations
several set of genes are involved. In fact, there is no sin-
gle transgene which can increase salinity tolerance in
rice for the entire life cycle (Hoang et al. 2016). This
issue is further compounded by specificity of the salinity
tolerance genes for seedling and reproductive stages and
their expression in all genetic backgrounds and above all
the social, ethical and environmental concerns about
transgenic technology. However, efforts have been made
to dispel fears about genetically engineered crops (Pental
2019). Though transgenic rice varieties have been devel-
oped successfully, their expansion is not uniform across
globe due to complex process of statutory guidelines.
Being GMO, each transgenic rice variety must comply
international guidelines of Cartagena protocol which is
implemented by each country by its own biosafety
guidelines in its territory (Pythoud 2004). Major impedi-
ments in expansion of transgenic rice are asynchronous
approval and release, illegal propagation of seed, con-
taminated/ accidental detection in non-labelled trans-
genic rice produce in countries having zero tolerance
(Fraiture et al. 2016).

Genome editing approach
Genome manipulation by targeted editing of the ge-
nomes has brought revolution in plant genomics ap-
proach for improvement of traits against biotic and
abiotic stresses (Kamburova et al. 2017; Yin et al. 2017).
Genome editing can be accomplished through ap-
proaches like meganucleases, TAL effector nucleases
(TALENs) and zinc finger nucleases (ZFNs) and clus-
tered regularly interspersed short palindromic repeats
(CRISPR)/Cas system (Hoang et al. 2016;Kamburova
et al. 2017). Among these, CRISPR–Cas9, has widely
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been used to develop transformable plants by inducing
mutations through non-homologous end joining of
double-stranded breaks (Yin et al. 2017). This approach
is effective, desirable and achievable through precise
gene editing to develop salinity tolerant transformation-
recalcitrant rice varieties. Unlike transgenic approach it
does not involve alien gene integration and precisely in-
corporates DNA modification (editing) which is directed
by homology-dependent repair. Being non-genetically
modified approach having high precision for editing of
specific genomic region for achieving the desired pheno-
type it is socially accepted and much more preferred
over transgenics development (Kamburova et al. 2017).
Genome editing can be used with novelty in rice to

make new varieties having attributes of higher yield
and quality along with robust tolerance to abiotic and
biotic stresses. CRISPR/Cas has been used widely in
many crops and in rice also it has shown huge success
in making desirable changes against various biotic and
abiotic stresses (Khang 2018). There are many suc-
cessful examples of gene editing in rice like genes con-
trolling albino (OsPDS), photo-period sensitive male
sterility (OsPMS3), transcription factor MYB family
(OsMYB1 and 5), lethal (OsEPSPS), albino young
seedling (OsYSA), pleotropic phenotype (OsMSH1),
abaxial leaf rolling (OsROC5), drought tolerance
(OsDERF1) and early seedling leaf chlorosis (OsSPP)
etc. (Zhang et al. 2014). Recently there are successful
examples of abiotic trait improvement in rice using
genome editing which include enhanced cold toler-
ance by using TIFY1b transcription factor gene editing
using Nipponbare rice variety (Khang 2018), improved
blast disease resistance in rice variety Kuiku131 by tar-
geted editing of gene OsERF922 and improvement of
herbicide resistance trait by editing Acetolactate Syn-
thase 1 (ALS1) gene (Sun et al. 2016). These examples
clearly indicate that there is a huge potential of gen-
ome editing for trait improvement. However, more
gene editing research is required specifically for en-
hancing salinity tolerance in rice.
Functionally relevant SNP obtained from GWAS studies

can be pragmatically used for genome editing (Tak and
Farnham 2015). If GWAS is applied in rice to identify so
called non-phenotypic variations like eQTL (expression
QTL), methylation QTL (meQTL), metabolite QTL along
with novel and valuable alleles, then genome editing can
be used to facilitate combination of new set of alleles
(Druka et al. 2010; Vidalis et al. 2016). Such approach has
potential to make paradigm shift in rice breeding espe-
cially through genomics-driven crop design.

Soil metagenomics in salinity management
Soil metagenome can be an alternative strategy to identify
and characterize salt-tolerant microbes which can

promote crop growth (Dodd and Pérez-Alfocea 2012). Soil
salinity tolerant microbes have been successfully demon-
strated in promoting growth of many crops which can be
potentially harnessed to further supplement the advan-
tages of crop tolerance and under those conditions where
salt tolerant germplasm development is a great challenge
(Dodd and Pérez-Alfocea 2012). Besides conferring stress
tolerance to plants, such microbes have also been found
advantageous as plant growth-promoting rhizobacteria
(Etesami and Beattie 2017; Etesami 2018). The rhizo-
sphere microbiome has a key role to play during plant sur-
vival under adverse conditions. Therefore, if inventory of
such soil bacteria from different saline environments is
studied then it might be a source of discovery of potential
inoculants and gene prospecting which can be applied in
saline lands to manage or improve crop productivity
(Mukhtar et al. 2018). Such culture-independent method
can be used for knowledge discovery of halophiles for
unique osmotolerant mechanism under salt stress. There
are three classes of halophilic bacteria with range of slight
(0.2–0.85M NaCl), moderate (0.85–3.4M NaCl), and ex-
treme (3.4–5.1M NaCl) saline adaptation (Ventosa et al.
2008). Such microbes constitute a potential repository of
novel enzymes like proteases, xylanases, cellulases, and
amylases having properties of extremophiles which can be
relevant not only for soil remediation but can also be used
in the industrial application (Delgado-García et al. 2014;
Dastgheib et al. 2011).
Scientists have developed a wide range of methods to

study microbial diversity, community structure and
functions to understand plant-microbe interactions and
soil biology (Rincon-Florez et al. 2013; Mukhtar et al.
2017). High throughput sequencing approaches have
been developed to understand the complexity of micro-
bial communities in a wide range of environments. Con-
tinuing advances in sequencing technology enable us to
study the dynamics of microbial population by using
metagenomics and meta-transcriptomics. Such ap-
proaches may uncover not only the composition of the
microbiome community, but also the altered functional
mechanisms of the microbes enabling them to survive
under harsh conditions. NGS based approach can be
used for metagenomics as well as meta-transcriptomics
to have diversity profile of microbiome community along
with functional traits deciphering the mechanism of sur-
vival under harsh condition ((Mukhtar et al. 2018). Such
studies are not only useful for knowledge discovery of
osmo-tolerance genes but they can also be used to get
potential gene constructs for enhanced salinity tolerance
for crop improvement (Ahmed et al. 2018).

Conclusion and the way forward
There is an urgent need to re-orient our strategy to-
wards practical delivery in terms of development of
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robust and widely adaptable salt tolerant rice varieties in
light of available databases, accumulated knowledge re-
sources and advances in both phenomics and genomics.
However, harmonizing the high throughput techniques
for phenomics and genomics is both a challenge and op-
portunity. The aim of this first ever comprehensive re-
view is to systematically align and harmonize the past
progress with current developments, available opportun-
ities, and present a futuristic orientation for harnessing
the genetic worth of salt tolerance in rice. System biol-
ogy approach having convergence of phenomics, tran-
scriptomics, proteomics and metabolomics data can be
used to decipher the molecular mechanism of salt toler-
ance in rice varieties by discovering the key candidate
genes. Phenomic analysis is the key to functional genom-
ics. Image analysis has been used to compare shoot ion
independent and dependent stress for elucidating genetic
basis of physiological events. It concludes that plant
physiology must be used to evaluate the function of tar-
get genes controlling salinity tolerance and such ap-
proach can bridge the gap between genomics and
phenomics data. Evaluation of key candidate genes con-
trolling salinity will be more pivotal and pragmatic in
development of salinity tolerant varieties. Physiological
data must be generated by non-invasive phenotyping. If
a parallel set is used for invasive phenotyping to generate
transcriptome and proteomics data, then function of key
candidate genes can be associated to visualize “live gene
function” at physiological level. Various mechanisms are
involved in morpho-physiological traits associated with
salinity tolerance like high shoot/root biomass, shoot
Na + accumulation, shoot Na+/K+ ratio, water uptake
and transpiration, stomatal transpiration. Such approach
can identify the genetic basis of different salt tolerance
mechanisms. Key candidate genes associated with differ-
ent physiological mechanism can be used in pyramiding
of different tolerance mechanisms in salinity tolerant
varietal improvement. Though spectacular and phenom-
enal success has been obtained in development of salin-
ity tolerant varieties by conventional breeding which has
several limitations, yet there is no replacement of it. All
molecular breeding programmes must supplement or
complement it.
Conclusion can be drawn from this review that though

spectacular knowledge and phenomenal success have
been obtained in various domains related with the devel-
opment of salinity tolerant varieties, there is need to fill
the potential gaps. There is no replacement of the con-
ventional breeding, but its limitations in terms of speed,
accuracy and drudgery can be overcome by molecular
breeding programmes. In molecular breeding for salinity
tolerance, initial success has been made by the discovery
of many QTLs and several rice salinity GWAS reports,
but still there is a considerable gap between knowledge

discovery and actual use of molecular breeding in
realization of its full potential to cater to the needs for
development of field oriented salt tolerant rice varieties
to befittingly address the global challenge of soil and
water salinity. While the conventional phenotyping and
breeding approaches are sound, the advantages and op-
portunities thrown open by automated phenotyping
should be availed for faster gains.
Since modern genotyping protocols are well developed

and high throughput in rice, phenotyping models need
more consideration because capturing “right QTL”
largely depends upon right phenotyping. It is suggested
to precisely phenotype the mapping population across
diverse salinity locations and crop seasons to come out
with practically useful and adaptable QTLs. Stage-
specific and stress-specific QTLs may be identified for
need based deployment. In this regard, the screening
methodology should be simple and high throughput, re-
producible and representative of near-field conditions.
In summary, QTLs with maximum contribution to the
overall variation for reproductive stage yield traits should
be identified besides their performance validation across
locations, salt stress levels and genetic backgrounds.
Marker assisted pyramiding of QTLs for different

tolerance mechanisms in a popular variety can pay rich
dividends. Genome editing has great commercial poten-
tial as an adjunct for rice molecular breeding not only
for salinity trait improvement also for the multi-trait im-
provement of economically and agronomically relevant
market based desirable traits like biofortification, nitro-
gen use efficiency, diabetic friendly rice, grain length/
texture and aroma coupled with tolerance/resistance to
other abiotic and biotic stresses. In other words, marker
assisted breeding should go hand in hand with market
assisted breeding.
Therefore salinity improvement research must be in-

tegrated with other plant traits and market oriented
factors. More global efforts are required to develop
statistical models from different geo-climatic conditions
to capture genotype-phenotype relationship along with
development of genomic resources. Such efforts are
also required for high precision and reproducible
phenotyping of rice salinity tolerance which would
strengthen the very age-old backbone of conventional
breeding but with much accelerated pace and
manoeuvrability in the desired direction than ever be-
fore by convergence of QTL into QTN and MTA of
GWAS into genome edited salt tolerant rice varieties.
As such information explosion requires its conversion
into true knowledge having practical perspective of rice
breeding in the field rather than academic and techno-
logical advancements alone.
It is opined that sustainable country-wide networks for

periodic convergence are required among plant breeders,
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agronomists, physiologists, microbiologists and molecu-
lar biologists in a symphony, all aiming at the same goal
with practical perspective. While doing so, discovery and
utilization of practically relevant genes/QTLs should be
accelerated to justify the research investments in the era
of climate change and rising salinity. Since development
of market and field problem oriented salt tolerant rice
varieties through required QTLs identification and intro-
duction are important in increasing productivity of dis-
advantageous degraded lands in an eco-friendly manner
without additional costs on chemical amendments and
drainage interventions, more societal gains are expected
through research investments in this domain of crop
improvement.
However, while using genome editing the potential

threat to diversity sustainability by sweep-off due to
“gene drive” (selective dominance of limited varieties)
should not be overlooked. Global consortium for eco-
nomic and efficient use of knowledge along with germ-
plasm development is required in altruistic spirit for
crop like rice which is grown under unfavourable condi-
tions and is a grain in the bowl of poor to rich. Neither
classical breeding nor the molecular breeding approach
alone can be successful in development of salt tolerant
rice varieties. Convergence of phenomics, GWAS, tran-
scriptomics, proteomics and metabolomics data is war-
ranted to fill the huge gap in rice breeding endeavour
required in response to global rise in salinity.
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