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Among several important wheat foliar diseases, Stripe rust (YR), Leaf rust (LR), and Stem
rust (SR) have always been an issue of concern to the farmers and wheat breeders.
Evolution of virulent pathotypes of these rusts has posed frequent threats to an
epidemic. Pyramiding rust-resistant genes are the most economical and environment-
friendly approach in postponing this inevitable threat. To achieve durable long term
resistance against the three rusts, an attempt in this study was made searching for
novel sources of resistant alleles in a panel of 483 spring wheat genotypes. This is a
unique and comprehensive study where evaluation of a diverse panel comprising wheat
germplasm from various categories and adapted to different wheat agro-climatic zones
was challenged with 18 pathotypes of the three rusts with simultaneous screening
in field conditions. The panel was genotyped using 35K SNP array and evaluated
for each rust at two locations for two consecutive crop seasons. High heritability
estimates of disease response were observed between environments for each rust
type. A significant effect of population structure in the panel was visible in the disease
response. Using a compressed mixed linear model approach, 25 genomic regions
were found associated with resistance for at least two rusts. Out of these, seven were
associated with all the three rusts on chromosome groups 1 and 6 along with 2B.
For resistance against YR, LR, and SR, there were 16, 18, and 27 QTL (quantitative
trait loci) identified respectively, associated at least in two out of four environments.
Several of these regions got annotated with resistance associated genes viz. NB-
LRR, E3-ubiquitin protein ligase, ABC transporter protein, etc. Alien introgressed (on
1B and 3D) and pleiotropic (on 7D) resistance genes were captured in seedling and
adult plant disease responses, respectively. The present study demonstrates the use of
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genome-wide association for identification of a large number of favorable alleles for leaf,
stripe, and stem rust resistance for broadening the genetic base. Quick conversion of
these QTL into user-friendly markers will accelerate the deployment of these resistance
loci in wheat breeding programs.

Keywords: 35K SNP array, GWAS, leaf rust, resistance, stripe rust, stem rust, wheat

INTRODUCTION

Among the many foliar diseases of wheat, rusts are the
economically most significant fungal diseases threatening the
food security of the world’s growing population. There are three
types of rusts in wheat, stripe, or yellow rust (YR) caused by the
fungus Puccinia stritiformis Westend. f.sp. tritici Eriks. (Pst), leaf,
or brown rust (LR) caused by Puccinia triticina Eriks. (Pt), and
stem or black rust (SR) caused by Puccinia graminis Pers. f. sp.
tritici Eriks. & Henn. (Pgt). More than sixty wheat-producing
countries distributed in all continents other than Antarctica have
encountered the rusts proving their widespread presence. The
damage caused by YR can be as high as 70% in case cultivars
are susceptible and the climatic conditions are favorable for an
early infection (Chen, 2005). LR has a widespread geographical
presence causing considerable yield losses (Marasas et al., 2002).
At an early onset, it causes much more damage to crop resulting
in yield losses as compared to stem and stripe rusts (Bolton
et al., 2008; Huerta-Espino et al., 2011). SR inflicts losses up
to USD 1.12 billion worldwide which results particularly due
to a reduction in yield and hampered end-use quality of the
crop (Pardey et al., 2013). All three rusts pose a major threat
to Indian farmers as well. North Indian conditions support the
survival and spread of the YR fungal spores. LR is more prevalent
in the whole of India as the disease is favored by intermediate
temperatures. Also, LR is the most widely distributed amongst
rusts and commonly visible in all wheat growing areas during
the season. SR is contained mostly in the southern states of the
country and survives throughout the year in the Nilgiri hills of
southern India (Joshi et al., 1985; Nagarajan and Joshi, 1985).

In disease management practices, planting resistant varieties
is the most economical, efficient, and ecologically acceptable
tool to manage wheat rusts worldwide (McIntosh et al., 1995;
Wiesner-Hanks and Nelson, 2016). Wheat cultivars with diverse
resistance are deployed in different areas keeping in mind the
pathotype distribution of three Puccinia species on wheat. To
date, the reported number of officially designated resistance
genes are more than seventy against both YR (78) and LR (77)
in addition to about sixty designated resistance genes against
SR (McIntosh et al., 2017). Two recently identified Yr genes
Yr79 (Feng et al., 2018) and Yr80 (Nsabiyera et al., 2018)
have been added to the rust-resistant gene library. Resistance
to multiple rusts can be broadly categorized as all stage or
seedling resistance (ASR) and adult-plant resistance (APR).
Of these reported genes, many genes provide resistance at the
seedling stage of plants (McIntosh et al., 2017). Since seedling
genes are pathogen race-specific, the cell death phenomenon
is activated due to plant hypersensitive response preventing
pathogen spread (Ellis et al., 2014; Mondal et al., 2016). This

also puts intense selection pressure on the pathogen for its
survival. In such cases, pathogen evades and evolves itself
which in result renders the deployed all stage resistance gene
to be ineffective in a very short time (Line and Qayoum, 1992;
Burdon et al., 2014; Li et al., 2014; Niks et al., 2015). The rust
resistant wheat with ASR favors the selection of new pathotypes
that multiply without any competition on the resistant host
resulting in susceptibility of the cultivar/gene. Several all stage
resistant Yr genes have become susceptible for instance Yr2,
Yr6 to Yr9, Yr17, and Yr 27 (Singh et al., 2008). Other genes
such as Lr1, Lr13, Lr24, Lr26, Lr37; Sr6, Sr8a, and Sr11 against
LR and SR also succumbed (Kolmer et al., 2007; McIntosh
et al., 2009, 2014; Ellis et al., 2014). A well-known outbreak
causing great loss of yield was witnessed in the year 1998 due
to the new Pgt virulent race Ug99. This resulted in the failure
of ASR Sr genes Sr24, Sr31, Sr36, and SrTmp in subsequent
years with the emergence of its new variants (Pretorius et al.,
2000, 2010; Jin et al., 2007, 2008, 2009; Visser et al., 2011;
Newcomb et al., 2016). On the other hand, APR resistance
is usually governed by multiple genes and quantitatively gets
less influenced by race-specific pathogens. The involved genes
provide non-race-specific partial resistance to all the pathotypes
of a given pathogen species, thus making it more durable
(Lagudah, 2011; Burdon et al., 2014). Despite the fact that
incorporating APR into new cultivars can be difficult when
compared to ASR, it was found that many wheat cultivars
possessing APR showed durable resistance (Mcintosh, 1992;
Boyd, 2005; Navabi et al., 2005; Singh et al., 2005; Ren et al.,
2012b; Chen, 2013; Randhawa et al., 2018). Some APR genes
when used in combinations have been known to possess
durable pleiotropic resistance against multiple wheat rusts and
powdery mildew, i.e., Lr34/Yr18/Sr57/Pm38 (on chromosome
7DS), Lr46/Yr29/Sr58/Pm39 (on chromosome 1BL), and
Lr67/Yr46/Sr55/Pm46 (on chromosome 4DL) (Lagudah, 2011;
Risk et al., 2012; Ellis et al., 2014), of which Lr34 has been studied
extensively in different crops including rice, barley, maize,
and sorghum (Krattinger et al., 2013, 2019). Deployment of
seedling (all-stage resistance), adult plant (non-race specific and
race-specific) and slow rusting resistance is to create diversity for
resistance (Bhardwaj et al., 2019b). The wheat lines possessing
rust resistance at the seedling stage will remain resistant during
the whole life of a wheat variety. Therefore, both types of
resistance can be amalgamated to strengthen more extended and
durable resistance in the future.

As most of the ASR genes go ineffective in the long run and
APR genes have only minor effects, more resistance associated
genomic regions are needed to be identified and utilized in wheat
genetic improvement for rust resistance. Not all of the QTL
identified so far were explored for use in marker-assisted selection
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(MAS). Therefore, finding user-friendly markers becomes even
more necessary (Zeng et al., 2019). With the advent of NGS
technologies, it became possible to develop high-throughput
Single Nucleotide Polymorphism (SNP) markers which are
abundant, co-dominant, and present throughout the wheat
genome (Allen et al., 2013; Rasheed et al., 2016; Wu et al.,
2017, 2018). These markers have advantages over traditional
PCR based markers (Chen et al., 1998; Röder et al., 1998; Ren
et al., 2012b; Rosewarne et al., 2013; Zhou et al., 2014) for
being high-throughput, low cost for genotyping, high efficiency,
and allele specificity (Gupta et al., 2008; Colasuonno et al.,
2014; Semagn et al., 2014; Long et al., 2017). Genotyping by
sequencing (GBS) and array-based SNP genotyping platforms
are utilized globally. Several SNP arrays are now available
in the market viz. 9K (Cavanagh et al., 2013), 15K (Boeven
et al., 2016), 35K (Allen et al., 2017), 50K (Bayer et al., 2017),
90K (Wang et al., 2014), 55K, 660K (Jia and Zhao, 2016),
and 820K (Winfield et al., 2016). Genome-wide association
studies (GWAS) using these chips have certain advantages
over bi-parental QTL mapping. Genetic architecture of complex
traits in diverse germplasm collections can be studied using
GWAS, which detects the genomic regions present in linkage
disequilibrium (LD) with genes associated with the trait under
study (Hall et al., 2010; Zhao et al., 2011; Riedelsheimer et al.,
2012). Due to the accumulation of historical chromosomal
recombinations over several generations in a natural population,
QTL can be identified using GWAS at a higher mapping
resolution (Yu and Buckler, 2006; Semagn et al., 2010). GWAS
has been successfully used to study various traits in wheat
such as grain yield (Sukumaran et al., 2018), eyespot disease
resistance (Zanke et al., 2017), pre-harvest sprouting resistance
(Zhou et al., 2017), 36 agro-morphological traits (Sheoran et al.,
2019) and so on.

The current study was undertaken with the objective
of performing a large-scale association study for identifying
genomic regions responsible for resistance to the three rusts
from a very diverse set of germplasm comprising of improved
genotypes, released varieties, exotic collection, genetic stocks,
landraces, and some mutant lines. The study was focused on both
seedling and adult plant stage rust response under controlled
and natural field conditions, respectively. To identify seedling
resistance, the most virulent and predominantly prevalent
pathotypes were used to challenge the wheat material in this
study. Care was taken to select pathotypes with varied avirulence
and virulence structure which would knock down most of the
genes in present-day wheat material (Bhardwaj, 2011). Keeping
the aforesaid points into consideration seven pathotypes of
Pgt (Prasad et al., 2018), five pathotypes of Pst (Gangwar
et al., 2019), and six pathotypes of Pt (Bhardwaj et al., 2019a)
were selected for screening wheat material at seedling stage
under controlled conditions. The optimum conditions ensure
foolproof evaluation and selection of rust resistant material.
The SNP marker enabled the identification of genomic regions
associated with disease resistance will be further firmed up
so as to harness less exploited resistant genes for broadening
the resistance base thereby avoiding any substantial losses due
to rust diseases.

MATERIALS AND METHODS

Plant Materials and Genotyping
The diverse panel of 483 genotypes mentioned in our previous
report (Kumar et al., 2020) was used for this study. The
germplasm comprised of the exotic collection (34), genetic
stocks (44), improved genotypes (120), landraces (96), mutant
lines (2), and varieties (187). Genotypes in the panel are
adapted to different agro-climatic zones of India. Henceforth,
this diverse panel will be recalled as rust association mapping
panel (RAMP). Genotyping of the panel was done using 35K
Axiom R© Wheat Breeder’s Array (Allen et al., 2017, Affymetrix
UK Ltd., United Kingdom) as per manufacturer’s guidelines
with 35,143 SNP markers. The genotyping data was filtered by
retaining markers with minor allele frequency (MAF) > 5%,
genotypes with <10% missing SNP calls, and markers with <10%
missingness. The obtained markers were further ordered
according to the genetic map available at CerealDb (Wilkinson
et al., 2012; Allen et al., 2017). This resulted in a selection
of 14,650 polymorphic SNP markers as described previously
(Kumar et al., 2020) for subsequent genetic analyses.

Phenotypic Evaluation for Stripe Rust,
Stem Rust, and Leaf Rust
The RAMP was evaluated for stripe rust (YR), stem rust (SR),
and leaf rust (LR) both at the seedling stage in controlled
conditions and at the adult plant stage in the field under natural
disease pressure.

The seedling resistance test (SRT) was performed on this panel
against five, six, and seven rust pathotypes/races for Pst, Pt, and
Pgt respectively. The selection of pathotypes was based on the
virulence and their prominence. They are namely YR_110S84,
YR_110S119, YR_T, YR_238S119, YR_46S119 for Pst, LR_77-
1, LR_77-5, LR_77-9, LR_12-5, LR_104, LR_106-2 for Pt and
SR_40A, SR_21A2, SR_11, SR_34-1, SR_40-3, SR_117-6, SR_122
for Pgt. SRT was done under glasshouse conditions at Regional
Station, ICAR-Indian Institute of Wheat and Barley Research
(IIWBR), Shimla, India. The avirulence/virulence formulae for
the 18 pathotypes are provided in Supplementary Table S1.
The experiments were performed as mentioned by Bhardwaj
(2011). The disease response recorded as infection type (IT) using
Stakman scale (Stakman et al., 1962) was converted to a modified
linear 0-9 scale (Riaz et al., 2016) as follows: 0; = 0, ;- = 0.5,
; = 1, 1- = 1.5, 1 = 2, 1 + = 3, 2- = 4, 2 = 5, 2 + = 6, 3- = 6.5,
3 = 7, 3 + = 8 and 4 = 9, where average was considered in case
of complex scores. Genotypes with an IT score of >0 to <3, >3
to <6, and >6 to <9 were considered as resistant, moderate, and
susceptible, respectively (Table 1). Taking pedigree relationships
into consideration, the postulation of resistance genes were made
by comparing the IT response of the pathotypes on the test lines
with controls of known resistance genes.

Field evaluation of YR was done at two locations for
two consecutive years viz. 2017-18 and 2018-19. By counting
each location and year as one environment, a total of four
environments (E1-E4) were considered. The plants were sown
at seed farm, Uchani (29◦42′48.7′′N, 76◦59′51.3′′E), Haryana,
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TABLE 1 | Summary of yellow rust, leaf rust, and stem rust responses at the seedling and adult plant stages.

(A) Disease response summary at the seedling stage

P. stritiformis (Pst) Number of Genotypes (Percentage)

Races YR_110S119 YR_T YR_238S119 YR_46S119 YR_110S84

Resistant 17 (3.5) 131 (27.8) 101(21.5) 227 (48.1) 137 (28.3)

Moderate 17 (3.5) 71 (15.2) 69 (14.7) 72 (15.2) 49 (10.2)

P. triticina (Pt)

Races LR_106 LR_77-1 LR_77-5 LR_77-9 LR_12-5 LR_104-2

Resistant 361 (75.7) 166 (36.8) 63 (13.0) 51 (11.1) 119 (25.5) 98 (20.3)

Moderate 37 (7.7) 116 (25.7) 61 (12.6) 53 (11.6) 156 (33.5) 75 (15.5)

Susceptible 79 (16.5) 168 (37.3) 359 (74.3) 354 (77.3) 190 (40.8) 310 (64.1)

P. graminis (Pgt)

Races SR_40A SR_21A2 SR_11 SR_34-1 SR_40-3 SR_117-6 SR_122

Resistant 76 (15.7) 248 (54.7) 162 (34.3) 357 (75.9) 246 (55.0) 255 (52.8) 273 (57.6)

Moderate 217 (45.0) 149 (32.8) 146 (31.0) 53 (11.3) 115 (25.7) 110 (22.8) 126 (26.6)

Susceptible 189 (39.2) 57 (12.5) 164 (34.7) 60 (12.7) 86 (19.1) 118 (24.4) 75 (15.8)

(B) Disease response summary at the adult plant stage

Stripe rust

Environment COI_YR_E1 COI_YR_E2 COI_YR_E3 COI_YR_E4

Resistant 183 (37.9) 217 (45.0) 142 (29.4) 218 (45.1)

Moderate 148 (30.7) 158 (32.7) 156 (32.3) 168 (34.8)

Susceptible 152 (31.4) 108 (22.3) 184 (38.2) 96 (19.9)

Leaf rust

Environment COI_LR_E1 COI_LR_E2 COI_LR_E3 COI_LR_E4

Resistant 367 (76.0) 343 (74.0) 373 (78.6) 382 (79.1)

Moderate 56 (11.5) 75 (16.0) 59 (12.4) 71 (14.6)

Susceptible 6 (12.5) 46 (10.0) 43 (9.1) 30 (6.2)

Stem rust

Environment COI_SR_E1 COI_SR_E2 COI_SR_E3 COI_SR_E4

Resistant 299 (62.3) 316 (65.6) 233 (49.0) 300 (62.3)

Moderate 129 (26.8) 137 (28.4) 177 (37.2) 152 (31.5)

Susceptible 52 (10.8) 28 (5.8) 65 (13.6) 30 (6.2)

India and ICAR-IIWBR, Karnal (29◦42′10.0′′N, 76◦59′29.7′′E),
Haryana, India. These locations come under stripe rust-prone
areas in the Northern region of India suitable to study natural
disease pressure. Similarly, field evaluation for SR and LR
was done at two locations for two years. The locations were
ICAR-Indian Agricultural Research Institute (IARI), Regional
Station, Wellington (11◦22′47.5′′N, 76◦46′26.1′′E), Tamil Nadu,
India and ICAR-IARI, Regional Station, Indore (22◦42′31.3′′N,
75◦53′29.2′′E), Madhya Pradesh, India. These locations are prone
to natural disease pressure of stem and leaf rusts. A total of
12 environments (4 for each rust) were considered for this
study (Supplementary Table S2). The seeds were planted in a
non-replicated augmented block design with single row of 1 m

and the distance between two rows was 0.3 m. The planting
was done in the first fortnight of November at Indore and
Wellington and in the second fortnight at Karnal and Uchani,
each year. A mixture of check lines susceptible to multiple rusts
was planted as infector rows (at every 20th single row) and in
spreader rows (perpendicular to the 1 m rows) surrounding the
plot for establishing sufficient inoculum and uniform disease
development. To ensure uniform disease distribution, spores
were collected from the early infections that appeared naturally
in the spreader rows and were used to inoculate the infector
rows. The response to rust was recorded using disease severity
(DS) and infection response (IR) as the two measures. DS was
measured using the modified Cobb scale (Peterson et al., 1948)
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as an estimation of percentage coverage (0, 5, 10, 20, 40, 60, 80,
and 100) of rust pustules (uredinia) over the flag leaf. IR was
scored as a host reaction to rust pustules and converted to a 0–
1 scale (Roelfs et al., 1992). The lines showing the mixed response
of moderately resistant to moderately susceptible or vice-versa,
were considered as the fifth category other than mentioned in
Roelfs et al. (1992). Therefore, five scoring categories considered
for the evaluation were: Resistant (R) = 0.2, Moderately Resistant
(MR) = 0.4, Mixed response (M) = 0.6, Moderately Susceptible
(MS) = 0.8, and Susceptible (S) = 1. Data were recorded at weekly
intervals for three times when the flag leaves of the susceptible
checks showed a disease score of 60S (DS: 60; IR: S). Out of
these multiple scores of a test line, the one with the score tending
toward susceptibility was kept for the study. These were further
considered for GWAS in each environment by combining the two
measures into a single value as coefficient of infection (COI). It
is the product of DS and IR on a 0–100 linear scale (Loegering,
1959; Roelfs et al., 1992). Genotypes with COI scores of 0 to 20
were considered as resistant, with score ≥ 60 as susceptible and
the remaining as moderate (Table 1). COI was assumed to be
suitable for GWAS and as a primary trait for the identification
of significant marker-trait associations (MTAs) since it combines
both the information from DS and IR for rust response (Yu et al.,
2012; Gao et al., 2016, 2017; Mihalyov et al., 2017).

Statistical Analysis
The phenotype data (IT, IR, DS, COI) for the three rusts were
visualized and considered for studying Pearson’s correlation
in R statistical programming. Correlation plots for each rust
describing the correlation of disease scores between different
pathotypes and environments were created using corrplot R
package. Mean comparison tests were performed for IT and COI
among population structure based groups using Levene’s test
(Levene, 1960) dependent two-way t-test at a significance level
of P < 0.05 in the R program. The normality of the original data
was tested using the Shapiro-Wilk test in IBM SPSS Statistics v.22.

A Restricted Maximum Likelihood (REML) approach (Corbeil
and Searle, 1976) in R package “lme4” (Bates et al., 2015) was
used for estimating variance components for IR and DS from
field experiments for the three rusts. A linear mixed model was
fitted by considering the overall mean as fixed effect and other
factors as random effects. The random effects included genotype
(g), location (e), genotype × location interaction (g × e) and
year (as replication, r). Following model was applied to estimate
variance components:

ypqr = µ+ gp + rq + eq + gepq + epq

Where, ypq is the observation for the genotype p at location q
in season r, µ is the overall mean, gp the effect of the genotype
p, eq the effect of location q, rq the effect of year (season) r,
gepq the interaction between accession p within location q, and
epq the residual.

Broad sense heritability (H2) was estimated by using the
following equation:

H2
= σ2

g/
{
σ2

g +
(
σ2

e/t
)
+

(
σ2

g×e/t
)
+ (σ2

error/t)
}

Where, σ2
g is the genotypic variance, σ2

e is the environmental
variance, σ2

g×e is the genotype by environment interaction
variance, and σ2

error is the residual error variance and t is the
number of years for each location or location by year for the
estimates of heritability across all environments. To estimate the
stability of genotypes in response to YR, LR, and SR infection
in their respective four environments, COI scores were used
to perform GGE biplot (genotype × environment interaction)
in R package GGEBiplotGUI (Frutos et al., 2014). The COI
scores were reversed with reference to maximum score so
that the resistant genotypes can have higher scores aiding the
interpretation of stable resistant genotypes across environments.

Linkage Disequilibrium (LD), Population
Structure, and Genetic Diversity
For the complete RAMP, LD analysis was performed across
A, B, and D genomes separately. Intra-chromosomal pairwise
marker LD as squared allele-frequency correlations (r2) values
were calculated in TASSEL v5.2 (Bradbury et al., 2007) using a
sliding window approach with default parameters. As a function
of genetic distance, the estimated r2

− values for significant
SNP marker pairs were plotted to understand the extent of LD.
A second-degree “loess” function (Cleveland, 1981) in the R
statistical program was fitted to estimate the rate of LD decay
over genetic distance (cM). Critical r2

− values were estimated
as the 95th percentile of square root transformed r2

− values of
the unlinked SNP marker pairs (Breseghello and Sorrells, 2006)
showing a distance of more than 50 cM for each genome. It
indicates the point beyond which the LD is caused by genetic
linkage (Breseghello and Sorrells, 2006). The genetic distance at
which LD fell below the critical r2

− value was considered as the
confidence interval (CI) of quantitative trait loci (QTL) in this
study. In other words, the point of intersection between LD decay
loess curve and critical r2 was used to adjust the QTL-CI in terms
of genetic distance.

The population structure and genetic diversity for the RAMP
were previously described by Kumar et al. (2020). Briefly,
the population structure was estimated with LD-based pruned
markers using a Bayesian based model. The optimal number of
subpopulations (i.e., K = 2) was determined using parallel runs
in STRUCTURE 2.3.4 (Pritchard et al., 2000) with the Linux
based python program “StrAuto” (Chhatre and Emerson, 2017).
In addition, principal component analysis was also performed
on the study panel using 14,650 SNP markers using ‘prcomp’
function in the R statistical programming language.

Marker-Trait Association Analysis
The seedling response under greenhouse condition and field
evaluation for adult plant response were considered for finding
out associations. In order to identify the loci associated with
the response, 14,650 SNP markers and phenotypic trait values
for seedling (IT) and adult plant (COI) responses were used to
conduct genome-wide association analyses. For the estimation
of marker-trait associations (MTAs), Genomic Association and
Prediction Integrated Tool (GAPIT) (Lipka et al., 2012) was used
by implementing compressed mixed linear model (CMLM) (Yu
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et al., 2006; Zhang et al., 2010) in R environment. A marker-
based VanRaden kinship (K) matrix (VanRaden, 2008) for the
483 accessions was also generated using GAPIT. The K and
Q (Kumar et al., 2020) matrices were considered as random
and fixed components, respectively, to avoid any spurious
associations caused by population structure. Some additional
association testing models were analyzed to compare the
observed probability deviations from the expected distribution
based on the Q-Q plots. A general linear model with kinship
only and no correction for population structure (GLM_K), GLM
(GLM_PC3.K), and mixed linear model (MLM_PC3.K) with
kinship and the first three principal components, MLM with
kinship and correction for population structure (MLM_Q.K),
and MLM with kinship only (MLM_K) were considered. The
comparison was done based on P-values and respective Q-Q
plots for the MTAs obtained from GAPIT. All the comparative
Q-Q plots and circular Manhattan plots were generated using the
CMplot R package1.

GWAS was conducted on each rust pathotypes separately
to identify race-specific seedling resistance loci. In the case of
identifying resistance loci in the adult plant stage, COI was
considered for each rust in four environments. Each environment
(Supplementary Table S2) was considered as a unique set of
phenotypic data to be considered for GWAS. The percentage of
phenotypic variation explained by the MTA (R2) was calculated
as the difference of R2 without SNP from R2 with SNP of the
GAPIT model (Abed and Belzile, 2019; Garcia et al., 2019).
High stringency was observed in GAPIT for false discovery rate
(FDR) adjusted p-values. SNP markers were declared significantly
associated at p ≤ 0.001 {-log10(p) ≥ 3} in the selected model.
Hence, a liberal approach similar to previous studies (Pasam et al.,
2012; Zegeye et al., 2014; Gao et al., 2016; Visioni et al., 2018),
was considered so as to reduce the chance of neglecting any
significantly associated marker annotating for disease resistance.
A putative QTL was designated for intra-chromosomal SNPs of
the MTAs detected and fall within the range for QTL-CI defined
by LD. A representative SNP for such putative QTL was selected
with the lowest p-value as the most significantly associated SNP.

Significant markers observed were further subjected to in silico
annotation. The flanking sequence of these markers was obtained
from the EnsemblPlants database spanning 1 kb both upstream
and downstream of the SNP position2. In order to obtain the
reference physical map positions of these markers, the flanking
sequence was used to make a query against IWGSC RefSeq v1.0
(Appels et al., 2018). The flanking region of the significant SNP
was then used to explore candidate gene overlapping with this
region by using JBrowse (Skinner et al., 2009) from URGI (Unité
de Recherche Génomique Info/research unit in genomics and
bioinformatics). Annotations of found overlapping candidate
genes were obtained from IWGSC Annotation v1.1. For
candidate genes with unavailable annotations, the orthologous
genes from Triticum urartu and Aegilops tauschii with highly
similar sequences were considered for prediction of gene function

1https://github.com/YinLiLin/R-CMplot
2http://plants.ensembl.org/Triticum_aestivum/Info/Index

in wheat by implementing BLASTn3. Further, annotations
for SNPs (e.g., intergenic variants) with no overlapping gene
were searched using a similar approach. The annotations were
then confirmed against the protein sequences for determining
putative molecular functions in wheat using BLASTx with default
parameters in the Blast2Go v5.2 tool (Conesa and Götz, 2008).
This could provide aid in the identification of putative candidate
genes for disease resistance.

RESULTS

Phenotypic Evaluation of Seedling and
Adult Plant Stage
The phenotypic data recorded for disease response to pathotypes
of three Puccinia species on wheat at seedling stage (IT) under
controlled conditions and adult plant stage under field conditions
(IR, DS, and COI) have been provided in Supplementary
Table S3. In the panel, rust gene postulation was successfully
done in about 240 genotypes based on response to multi-
pathotype testing at seedling stage. Known resistance genes
for the three rusts were postulated mostly in varieties (139)
followed by improved genotypes (93) and few genetic stocks (12)
(Supplementary Table S3).

Seedling Response to P. stritiformis Pathotypes
On the linear scale of 0–9, IT scores ranged from 0 (as most
resistant) to 8 (as susceptible) for the Pst pathotypes. Of the 5 Pst
pathotypes, based on IT scores, 93, 63.7, 61.4, and 56.9% of the
tested lines were found susceptible toYR_110S119, YR_238S119,
YR_110S84, and YR_T, respectively (Table 1 and Figure 1A).
This indicates YR_110S119 being the most virulent in the
current study panel. On the other hand, pathotype YR_46S119
was found to be avirulent with 48.1% of the tested lines as
resistant and 36.6% as susceptible. The mean IT scores for
YR_110S119, YR_238S119, YR_110S84, YR_T, and YR_46S119
were 7.56, 5.64, 5.26, 5.11, and 3.51, respectively. Except for
YR_46S119, the IT scores for other pathotypes were skewed
toward susceptibility (Supplementary Table S4). The phenotypic
correlation coefficients among pairs of the five pathotypes were
observed to be significant (at P < 0.01, 0.001) and in the range
of 0.09 (YR_110S119-YR_T) to 0.23 (YR_46S119-YR_110S84)
(Supplementary Table S5 and Supplementary Figure S1).

Seedling Response to P. triticina Pathotypes
Based on the IT score with a range of 8, pathotype LR_106 was
found to be relatively avirulent based on response to the current
study panel. More than two-third (75.7%) of the tested lines
were found resistant against LR_106 (Table 1 and Figure 1B).
Among other Pt pathotypes, LR_77-9 was the most virulent
followed by LR_77-5 and LR_104-2 with 77.3, 74.3, and 64.1% of
the tested lines to be scored as susceptible, respectively. LR_12-
5 and LR_77-1 were found to have an intermediate virulent
response on the tested lines (Table 1). Mean IT scores for LR_106,
LR_77-5, LR_104-2, LR_77-9, LR_12-5, and LR_77-1 were 1.87,

3https://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 1 | Pie chart representation of seedling response against (A) five pathotypes of stripe rust (YR), (B) six pathotypes of leaf rust (LR), and (C) seven
pathotypes of stem rust (SR) of rust association mapping panel (RAMP). The color legend on the right side of each pie chart represents the infection type (IT) score.
The magnitude of arc length is directly proportional to the frequency of genotypes showing corresponding IT scores.

FIGURE 2 | Distribution of adult plant stage disease response as infection response (IR) and disease severity (DS) in corresponding four environments (E1-E4) in the
panel. Frequency of genotypes having IR (y-axis) for YR (A), LR (C), and SR (E) was recorded on the scale of 0-1 (x-axis), whereas the frequency of genotypes
having DS (y-axis) for YR (B), LR (D), and SR (F) was recorded on the scale of 0-100 (x-axis). Each environment is represented with different colors as indicated by
the color legend.

6.68, 6.10, 6.80, 5.00, and 4.43, respectively, with skewness
toward susceptibility except for LR_106 (Supplementary Table
S4). Significant correlation coefficients (at P < 0.001) among
pairs of six Pt pathotypes ranged from 0.26 (LR_106-LR_77-
9) to 0.57 (LR_106-LR_77-1) (Supplementary Table S5 and
Supplementary Figure S1).

Seedling Response to P. graminis Pathotypes
Of the 7 Pgt pathotypes, none of them were found to be virulent
on a range of 8 IT score. SR_40A can be designated as mildly
virulent where only 39.2% of the tested lines were susceptible. For

pathotypes SR_21A2, SR_34-1, SR_40-3, SR_117-6, and SR_122,
resistant reactions were observed in 54.7, 75.9, 55.0, 52.8, and
57.6% genotypes. For SR_11, the tested lines showed similar
type of response in resistant (34.3%), intermediate (31.0%), and
susceptible (34.7%) category (Table 1 and Figure 1C). Mean
IT responses for SR_40A, SR_21A2, SR_11, SR_34-1, SR_40-3,
SR_117-6, and SR_122 were 5.299, 2.452, 4.206, 1.617, 2.721,
3.079, and 2.623, respectively, with skewness toward resistance
except for SR_40A and SR_11 (Supplementary Table S4).
Correlation coefficients between the seven Pgt pathotypes were
found significant (at P < 0.001) and ranged from 0.34 (SR_21A2-
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FIGURE 3 | Phenotypic distribution based on the coefficient of infection (COI) in different environments for the three rust diseases. Different environments are
represented with different colors in the bar-plot. Histograms (A,C,E) represent COI distribution for YR, LR, and SR, respectively. Pearson correlation coefficients
(Supplementary Table S6) heat-map for infection response (IR), disease severity (DS), and COI between four environments are represented for YR (B), LR (D), and
SR (F). All correlation coefficients are highly significant at ∗∗∗P < 0.001.
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TABLE 2 | Variance component estimates for random variables for IR, DS, and COI across four environments per rust type@.

Stripe rust Leaf rust Stem rust

Subject IR DS COI IR DS COI IR DS COI

σ2
g 5.30e-02*** 6.51e + 02*** 6.63e + 02*** 6.80e-02*** 3.49e + 02*** 3.47e + 02*** 6.37e-02*** 1.73e + 02*** 2.23e + 02***

σ2
e 4.77e-05ns 1.16e + 02*** 5.80e + 01*** 5.49e-03*** 9.03e-02ns 1.16e-01ns 9.43e-05ns 1.08e + 01*** 1.02e + 01***

σ2
g×e 0.00e + 00ns 0.00e + 00ns 0.00e + 00ns 1.31e-02*** 1.99e + 00ns 4.60e + 00ns 0.00e + 00ns 2.50e + 01*** 2.58e + 01***

σ2
r 1.30e-03*** 0.00e + 00ns 3.27e + 00** 0.00e + 00ns 4.90e + 00*** 6.36e + 00*** 0.00e + 00ns 6.85e-01ns 9.03e-01*

σ2
error 2.14e-02ns 3.36e + 02ns 2.59e + 02ns 3.92e-02ns 1.49e + 02ns 1.51e + 02ns 2.24e-02ns 1.20e + 02ns 1.11e + 02ns

Mean 0.57 52.37 36.08 0.74 19.08 18.50 0.74 27.55 23.20

Minimum 0.2 0 0 0.2 0 0 0.2 0 0

Maximum 1 100 100 1 100 100 1 100 100

H2 0.91 0.82 0.88 0.78 0.90 0.90 0.92 0.78 0.83

@ IR, Infection response; DS, Disease severity; COI, Coefficient of infection. Asterisks ∗, ∗∗, and ∗∗∗ indicates P < 0.05, 0.01, and < 0.001, respectively, and ns = not
significant.

SR 40-3) to 0.68 (SR_34-1-SR_117-6) (Supplementary Table S5
and Supplementary Figure S1).

Adult Plant Field Response to Stripe Rust
Infection response (IR) with an average score of 0.5 was recorded
at environments YR_E1 and YR_E2, whereas at YR_E3 and
YR_E4, it was 0.6 (Supplementary Table S3). The distribution of
IR was found to be non-biased for any single response category
(Figure 2A). An average disease severity (DS) score of 62.5
at YR_E3 was found maximum among the four environments.
DS with scores of 60-80 was found in most of the tested
lines in all environments (Figure 2B and Supplementary
Table S3). Based on the coefficient of infection (COI) as
the disease response at four environments (COI_YR_E1-E4),
stripe rust-resistant lines were found to be falling in more
than one environment. In the RAMP, 37.9, 45.0, and 45.1%
of the genotypes were recorded as resistant with a COI score
from 0 to 20, in environments COI_YR_E1, COI_YR_E2, and
COI_YR_E4, respectively (Table 1 and Figure 3A). Highly
significant (at P < 0.001) Pearson’s correlation coefficients
between IR, DS, and COI across four environments showed
positive correlations (Supplementary Table S6 and Figure 3B).
Strong correlation coefficients (R = 0.8–0.9) were observed
between COI with IR and DS within the environment, whereas,
it ranged from 0.6-0.8 between IR and DS. For COI among
environments, strong values of R were detected between YR_E1
with YR_E2 and YR_E3 with YR_E4.

Adult Plant Field Response to Leaf Rust
An average high score of IR (0.8) and DS (21.7) was recorded
in environment LR_E2 (Supplementary Table S3). The IR with
score 1.0 (S) was seen in most of the genotypes irrespective of
the environment (Figure 2C). DS with pustules coverage score 0–
20 was present in more than 300 genotypes in each environment
(Figure 2D). Likewise, more than seventy percent of the tested
lines were observed to be resistant in the panel as per the COI
score in all four environments (COI_LR_E1- E4) (Table 1 and
Figure 3C). All correlations across four environments for IR, DS,
and COI were found positive and highly significant (at P < 0.001)
(Supplementary Table S6 and Figure 3D). Interestingly, unlike

most genotypes featuring susceptible IR score, a very strong
correlation (R = 0.99) was found between DS and COI per
environment. This may suggest that a large proportion of the
tested lines were able to resist the spreading of rust pustules. IR
and DS showed a correlation coefficient value of R = 0.5–0.6 and
COI with a correlation coefficient of 0.7, within and among the
four environments.

Adult Plant Field Response to Stem Rust
Like leaf rust, stem rust also had a similar IR frequency
distribution in the panel for the score 1.0 (S) with an overall
average of 0.7 in each environment (Supplementary Table S3
and Figure 2E). Pustules coverage was found in a limited
number of genotypes beyond the DS score of 40, where only 4
genotypes (HTW-6, IC212182, IC28617, and LGM69) attained
rust coverage of 100 (Supplementary Table S3 and Figure 2F).
The average DS was higher in SR_E3 followed by SR_E1. In the
study panel, ∼62% of the tested lines were observed resistant
to stem rust in environment COI_SR_E1 and E4 (Table 1 and
Figure 3E). Results of correlations between DS and COI were
found similar to those for leaf rust field response, whereas
IR and DS showed R ranging from 0.4 to 0.6 within the
environment. It varied from 0.5 to 0.7 for COI across the
environments (Supplementary Table S6 and Figure 3F). All
correlation coefficients were observed to be highly significant at
P < 0.001.

For each of the three rusts in four environments, it was
observed that the susceptible check lines present at regular
intervals of the test genotypes showed maximum disease response
with a score of 100S. This indicates that any possible variations
observed in the reaction of the genotypes in RAMP would be
genetic in nature and not due to the environment or inoculum
load. The disease response at seedling and adult plant stages
were observed to have less than 10% missing observations in the
study panel. The distribution of phenotypic disease response (IT
and COI) were found deviating from the normal distribution.
No improvement in the normality was observed after using
logarithmic and square root transformation. Therefore, the
original data were used for subsequent genetic analyses.
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FIGURE 4 | (A) Chromosome wise significant marker pairs that showed Linkage disequilibrium (LD) due to genetic linkage. LD decay plot is shown as a scatter plot
of pairwise SNP LD r2

− value over the genetic distance between each intra-chromosomal marker pairs for (B) A genome, (C) B genome, and (D) D genome.
LOESS smoothening curve (red curved line) was fitted to the LD decay. Orange dash line represents the 95th percentile unlinked r2 line for (A) (r2 = 0.126), (B)
(r2 = 0.219), and (D) (r2 = 0.215) genomes. The Cyan dash line represents the critical r2 (=0.201) of the whole genome.

Variance Components Estimation and Broad-Sense
Heritability (H2)
Estimation and analysis of variance components, using a linear
mixed model approach, revealed highly significant (P < 0.001)
differences for IR, DS, and COI among the genotypes (g) across
all environments in each rust type. Significant differences for
location (e) and genotype-location interactions (g × e) were not
observed in all cases (Table 2), therefore, by and large, indicating
ample inoculum load and congenial atmospheric conditions for
the appearance of the disease. High H2 estimates were observed
across the four environments for each rust type, ranging from
0.78 to 0.92 for IR, 0.78 to 0.90, and 0.83 to 0.90 for COI
(Table 2). The first two principal components explained together
about 95.05, 88.68, and 86.76% of the total variation in GGE
Biplot analysis for YR, LR, and SR field response, respectively.
In reference to ranking resistant genotypes across environments,
22.15% (for YR), 61.49% (for LR), and 43.89% (for SR) were
found in proximity to the ideal genotype (Supplementary Figure
S2). In this study, a genotype would be considered as an ideal
genotype, which would show a uniformly low and stable disease
response in the tested four environments for all the three rusts.

SNP Markers, Population Structure, and Linkage
Disequilibrium
Of the 35K SNP markers, 14,650 polymorphic mapped markers
were used for LD analysis and subsequently for GWAS. Genome

D was found evident with lower marker density as compared
to A and B genomes. Population structure analysis on RAMP
was previously described by Kumar et al. (2020). The two
subpopulations observed comprised of 106 (in SP1) and 377 (in
SP2) genotypes (Supplementary Table S3). Genotypes that have
been involved mostly in the breeding programs were observed
as a major subpopulation. Principal component analysis (PCA)
concurred with the result of STRUCTURE. Two separate clusters
were observed in the PCA where PC1 (principal component
1) and PC2 contributed with 13.04 and 4.11%, of the total
variation, respectively (Supplementary Figure S3). The effect
of population structure was evident in the seedling response
to multiple rust races. All pathotypes had a significant mean
difference (at P < 0.05) for subpopulation based seedling disease
response except for the pathotypes YR_110S119, YR_238S119,
and YR_46S119 (Supplementary Table S7). The mean of IT
scores for genotypes in subpopulation one (SP1) was higher than
that of those in subpopulation two (SP2). This shows that in
the current study genotypes were more resistant in SP2 than in
SP1 to most of the pathotypes. A similar trend was observed in
adult plant disease response where SP2 was significantly more
resistant than SP1 based on COI (Supplementary Table S7).
Therefore, the influence of population structure on rust infection
was considered as covariates for subsequent association analyses.

Linkage disequilibrium r2
− values were estimated for the

three genomes separately and for all chromosomes within each
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TABLE 3 | Putative QTL significantly (p < 0.001) associated with seedling stage resistance against at least two pathotypes for each rust pathogen.

Associated No. of

Putative QTL* Representative SNP SNPs MTAs −log10(p)

YR pathotypes

SNP (35K) Chroma Position (cM) Allele# MAFb %PVE (R2)$ YR_46S119 YR_110S119 YR_238S119 YR_110S84 YR_T

QYr.ramp-1A.1 AX-94448779 1A 57.21–58.94 T(128)/C(348) 0.27 5.24 AX-94838936 16 – – – 3.3448 8.2227

QYr.ramp-1B.1 AX-95119512 1B 8.24–9.93 T(94)/C(388) 0.20 3.91 AX-94741250 9 – 6.3342 – – 6.3456

QYr.ramp-1B.3 AX-94768106 1B 23.90–26.22 T(106)/C(377) 0.22 4.81 AX-94500816
AX-94451305

75 – 5.6034 3.3111 – 7.6201

QYr.ramp-1D.2 AX-94911855 1D 34.26–35.95 A(387)/G(91) 0.19 2.75 AX-95173669 3 – – – 3.4822 4.6689

QYr.ramp-2A.1 AX-94691448 2A 0.00–1.59 A(29)/G(451) 0.06 4.27 AX-94448314 52 – 5.3691 – 4.7365 –

QYr.ramp-2B.4 AX-94637676 2B 102.12–103.81 T(86)/C(396) 0.18 3.05 AX-94670661 3 – – 3.3727 – 5.1017

QYr.ramp-3B.1 AX-94573417 3B 0.79–2.24 A(394)/G(82) 0.17 2.67 AX-94632746 6 4.1367 – – – 4.5486

QYr.ramp-5A.1 AX-95229410 5A 12.21–12.25 A(177)/G(302) 0.37 2.22 AX-94592812 2 3.0734 – – – 3.8789

QYr.ramp-6A.5 AX-94926681 6A 217.8–221.75 T(367)/C(112) 0.23 4.04 AX-95094933 3 5.0844 – 3.6115 – –

LR pathotypes

LR_106 LR_12-5 LR_104-2 LR_77-9 LR_77-5 LR_77-1

QLr.ramp-1A.2 AX-94979481 1A 69.85–74.11 A(203)/G(277) 0.42 1.96 AX-94449010
AX-94897502

7 3.0647 – – 3.2634 3.2910 –

QLr.ramp-1B.3 AX-94904215 1B 24.64–26.22 C(158)/G(319) 0.33 2.30 AX-94908596
AX-94899483

6 3.0970 3.1977 – 3.2543 – –

QLr.ramp-2B.3 AX-94441179 2B 76.24–76.62 T(213)/C(267) 0.44 3.72 AX-94838738 11 3.1461 – – – – 5.3291

QLr.ramp-2B.7 AX-94554810 2B 103.81–104.59 T(172)/C(306) 0.36 1.56 AX-94705091
AX-94492853

8 4.2393 3.1461 3.1748 – – –

QLr.ramp-3A.6 AX-95226287 3A 239.09 T(50)/C(426) 0.11 3.54–9.37 - 5 – 7.0931 7.5785 10.5717 12.9567 5.1067

QLr.ramp-3A.7 AX-94883935 3A 250.41 A(428)/C(54) 0.11 3.73–10.34 AX-94477684 7 3.3933 5.5415 7.2823 12.1087 14.0301 5.6772

QLr.ramp-3B.5 AX-95176613 3B 83.69–85.27 T(452)/C(25) 0.05 2.83 AX-94852024 22 – 3.8968 – – 4.5076 –

QLr.ramp-3B.8 AX-94871275 3B 202.68–204.37 C(424)/G(53) 0.11 3.06–8.87 AX-94915269 23 – 4.6575 6.5729 7.7139 12.3379 5.0884

QLr.ramp-3B.9 AX-94977862 3B 226.84 T(106)/C(372) 0.22 2.38–3.05 – 3 – – 3.5205 3.4349 4.8088 –

QLr.ramp-3B.11 AX-94805563 3B 245.19–245.57 T(47)/C(434) 0.10 4.39–12.32 – 19 – 6.3846 9.1131 12.3215 16.503 6.2255

QLr.ramp-3D.3 AX-94968108 3D 158.35 A(151)/G(326) 0.32 2.45–3.20 – 3 – – 3.5997 3.8469 5.0179 –

QLr.ramp-3D.4 AX-94874313 3D 160.44–167.71 A(414)/G(67) 0.14 3.51–7.84 – 10 – 5.2404 7.6624 9.1212 11.0555 5.205

QLr.ramp-3D.5 AX-94436339 3D 169.4 T(416)/G(47) 0.12 3.41–10.97 – 10 – 5.1111 8.178 11.0265 14.8984 5.9561

QLr.ramp-3D.6 AX-95224631 3D 174.29–178.60 A(55)/G(422) 0.12 2.56–10.09 AX-94681641 94 – 5.6468 8.0652 9.9604 13.8254 5.8167

QLr.ramp-3D.7 AX-95082799 3D 191.16–194.75 T(255)/C(220) 0.46 3.64 AX-94958018 11 – – 3.252 – 5.6019 –

QLr.ramp-5B.2 AX-94673667 5B 163.54 A(332)/G(149) 0.31 2.15–3.94 – 4 – 3.4472 4.3824 4.8432 6.0107 –

QLr.ramp-5B.7 AX-94480370 5B 270.33–272.82 T(433)/C(40) 0.09 2.10–3.75 – 14 – – – 3.0122 5.7506 –

QLr.ramp-7A AX-95233333 7A 27.21–29.90 T(444)/C(36) 0.08 3.45 AX-94644716 11 – – 3.6353 4.6082 – –

(Continued)
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TABLE 3 | Continued

Associated No. of

Putative QTL* Representative SNP SNPs MTAs −log10(p)

SR pathotypes

SR_40-3 SR_21A2 SR_122 SR_117-6 SR_40A SR_11 SR_34-1

QSr.ramp-1A.1 AX-94448779 1A 58.79–61.06 T(128)/C(348) 0.27 2.57 AX-94432182
AX-94979364
AX-94405956
AX-94963297

17 – – 3.3467 3.8465 4.7283 4.6978 3.0231

QSr.ramp-1A.2 AX-94467908 1A 72.25–74.86 A(91)/C(387) 0.19 3.26 AX-94845461
AX-95080736
AX-94627776

24 3.6987 – 3.3512 – 3.1361 4.2983 7.2645

QSr.ramp-1A.3 AX-94976474 1A 86.34–88.71 A(374)/C(100) 0.21 1.75 AX-94601315 2 – – 3.4656 3.9451 – – –

QSr.ramp-1B.3 AX-94567638 1B 15.65 A(391)/G(91) 0.19 2.05 AX-94518139 6 – – – – 3.0735 3.5196 –

QSr.ramp-1B.4 AX-94608698 1B 23.90–24.64 A(333)/G(145) 0.30 2.20–4.01 AX-95166367
AX-95124337

52 – – 3.674 – 5.4927 6.2792 –

QSr.ramp-1D.2 AX-95015596 1D 30.82–35.95 A(90)/C(392) 0.19 1.59–2.89 AX-94722864 6 – – – – 3.6869 4.7119 –

QSr.ramp-1D.3 AX-94546280 1D 72.10–76.08 T(91)/C(368) 0.20 2.61 AX-94693694 2 – – 3.344 – – 4.3155 –

QSr.ramp-2A.1 AX-94850836 2A 1.59 A(136)/G(344) 0.28 1.93–2.83 AX-94856367 59 – 3.5327 – – – – 6.4025

QSr.ramp-2B.5 AX-95180258 2B 89.05 A(395)/G(84) 0.18 1.92–3.37 AX-94621294 11 – 4.0995 – – – – 7.4726

QSr.ramp-2B.6 AX-94778579 2B 102.12–104.59 C(108)/G(370) 0.23 1.71 AX-94425581
AX-95017376
AX-94492853

11 – 3.3367 - 3.5125 - 3.8347 4.1357

QSr.ramp-3A.1 AX-94407346 3A 70.27–74.06 T(388)/G(87) 0.18 2.55 AX-94518742 6 – – – 3.0052 – – 5.8434

QSr.ramp-3A.6 AX-95226287 3A 239.09 T(50)/C(426) 0.11 1.38–2.93 – 6 3.2747 3.032 3.1341 3.5889 4.0977 4.7693 –

QSr.ramp-3A.7 AX-94883935 3A 250.41 A(428)/C(54) 0.11 1.80–2.53 – 2 – 3.0239 – – – 4.2038 –

QSr.ramp-3B.1 AX-94573417 3B 0.79 A(394)/G(82) 0.17 1.79–2.55 – 2 – – – – 3.4756 4.2301 –

QSr.ramp-3B.3 AX-94779453 3B 83.69–85.27 T(348)/C(125) 0.26 1.40 AX-94902398 2 – – – – – 3.2842 3.4922

QSr.ramp-3B.6 AX-94871275 3B 202.68–204.37 C(424)/G(53) 0.11 1.53–2.54 AX-94978418 4 – – – 3.5242 4.6767 3.5767 –

QSr.ramp-3B.7 AX-94805563 3B 245.19–245.57 T(47)/C(434) 0.10 1.67–3.46 AX-94989774 8 – 3.7911 3.6742 4.1798 4.2937 5.5216 –

QSr.ramp-3D.2 AX-94874313 3D 160.44–167.71 A(414)/G(67) 0.14 1.51–3.51 AX-94391473 6 3.2765 – 3.5944 3.4926 4.161 4.1827 –

QSr.ramp-3D.3 AX-94436339 3D 169.4 T(416)/G(47) 0.12 1.39–3.25 AX-94962712 8 3.7705 – 3.525 3.2463 4.0488 5.2282 –

QSr.ramp-3D.4 AX-94681641 3D 174.67–178.60 C(415)/G(54) 0.12 1.33–3.10 AX-94862539 29 – – 3.3016 4.0116 3.7167 5.0067 –

QSr.ramp-5A.3 AX-94472861 5A 90.15–91.37 A(49)/G(432) 0.10 1.88 AX-95107770 2 – – – 3.1316 3.6164 – –

QSr.ramp-5B.10 AX-94459834 5B 233.87 C(79)/G(393) 0.17 2.40 AX-95100204 2 – – 3.197 – – 4.0229 –

QSr.ramp-5B.11 AX-94677476 5B 270.33 T(114)/C(366) 0.24 1.61–3.11 – 2 – – – – 3.1796 5.0269 –

QSr.ramp-6B.2 AX-94426734 6B 61.67–62.83 T(395)/C(88) 0.18 2.38 AX-94735973
AX-95023059

15 – 3.8498 – – – 3.9954 3.6213

QSr.ramp-6D AX-94409568 6D 17.65–18.61 C(97)/G(386) 0.20 2.18 AX-94413225
AX-94803211

4 – – 3.7012 – 3.2614 3.7021 –

QSr.ramp-7A.1 AX-95092895 7A 29.86–33.34 T(290)/C(191) 0.40 2.66 AX-94634646
AX-95251246

3 3.0999 – 3.0966 – – 4.3851 –

*Remaining QTL associated with single pathotype is provided in Supplementary Table S9. #The numbers in parenthesis indicate the frequency of the allele in the panel; $percentage of phenotypic variation explained
(PVE, R2). aChrom, Chromosome. bMAF, Minor allele frequency.
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FIGURE 5 | A circular Manhattan plot for significance [–log10(p-values)] of the
association of 14,650 SNPs based on CMLM located on 21 chromosomes
with the seedling disease responses against pathotypes of the three rusts.
Associations for the (A) five YR pathotypes YR_110S119, YR_T,
YR_238S119, YR_46S119, and YR_110S84; (B) six LR pathotypes LR_106,
LR_77-1, LR_77-5, LR_77-9, LR_12-5, and LR_104-2; and (C) seven SR
pathotypes SR_40A, SR_21A2, SR_11, SR_34-1, SR_40-3, SR_117-6, and
SR_122 were plotted from inside to outside, respectively. A multi-track Q-Q
plot for each case is presented at the right upper corner of the circular
Manhattan plot. The threshold value at –log10(p) ≥ 3 is indicated as
red-colored circle for each pathotype. A rectangular version of the plots is
shown in Supplementary Figure S4.

genome. The significant marker pairs at P < 0.01 were considered
for the study. Genome A had 69.56% of significant marker pairs
with an average r2

− value of 0.250. Chromosome 2A had the
highest (21.2%) and chromosome 4A had the lowest (10.1%)
percentage of significant marker pairs of LD r2. Genome B had
73.67% of significant markers with an average r2

− value of
0.212. All chromosomes of B genome had a similar percentage
(∼16-18%) of significant marker pairs except for chromosome
4B (5.2%) and 7B (9.6%). Chromosome 1D (31.9%) and 2D
(29.4%) had the highest number of significant marker pairs from
the D genome with chromosome 4D (2.7%) bearing the lowest
count (Figure 4A).

The critical r2-values were 0.126, 0.219, and 0.215 for genome
A, B, and D, respectively. The difference in LD decay analysis
was observed between A, B, and D genome. Whereas, predicted
genome-wide LD decay was below critical r2 = 0.201. As
LD beyond the critical value is considered to be caused by
genetic linkage, chromosome-wise significant marker pairs with
r2 > 0.201 were also estimated (Figures 4B–D). At a genome-
wide scale, 36.35% of significant SNP pairs showed LD beyond
critical r2 (> 0.201). Among the marker pairs in LD due
to linkage, chromosome 5B contained the highest percentage
(11.96%) of these markers, while chromosome 4D contained the
lowest percentage (<< 1%). The percentage of these marker pairs
in the A, B, and D genomes were 39.35, 47.21, and 13.43%,
respectively. The map distance at which the fitted decay curve
intersected with the critical r2 provided an estimate of QTL-CI.
For genome A, B, and D, the estimated QTL-CI was 5, 3, and
8 cM, respectively (Figures 4B–D).

Marker Trait Associations for
Race-Specific Rust Response
A CMLM adjusted for population structure and relatedness
(kinship) was selected to detect marker-trait associations (MTAs)
(Figure 5). This approach gave a minimum deviation in the
observed p-values from the expected values presented as Q-Q
plots when compared with other tested models for controlling
effects of population structure and relatedness (Supplementary
File S1) for all GWAS analyses in this study. The number
of MTAs found significant (at p < 0.001) for race-specific
stripe rust (YR) response were 11, 25, 33, 62, and 99 for
YR_46S119, YR_110S119, YR_238S119, YR_110S84, and YR_T,
respectively. In case of leaf rust (LR), the counts were 41, 42,
47, 53, 69, and 100 for pathotypes LR_77-1, LR_106, LR_12-
5, LR_104-2, LR_77-9, and LR_77-5, respectively. Stem rust
(SR) pathotypes SR_40-3, SR_21A2, SR_122, SR_117-6, SR_40A,
SR_11, and SR_34-1 were observed to have 12, 23, 28, 30, 64,
92, and 100 MTAs, respectively (Supplementary Table S8 and
Supplementary Figure S4). Clearly, LR and SR possessed a large
number of MTAs. In silico annotation of these MTAs associated
with seedling disease response are also reported. Based upon
these annotations, some of the commonly known resistance
associated genes were found such as F-box/LRR-repeat protein
At3g26922-like and protein 23, disease resistance RPP13-like
protein 4, ABC transporter G family member 25, and more
(Supplementary Table S8). The cluster of MTAs on the same
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chromosomes was considered as a putative QTL based on the
confidence interval defined by LD. Therefore, MTAs within range
of 5, 3, and 8 cM on chromosomes of genome A, B, and D,
respectively were considered as a single putative QTL. The SNP
marker with the lowest p-value (or most significant association)
was used to represent such QTL obtained as the representative
SNP. Based on this approach, YR pathotypes bearing 230 MTAs
were grouped into 46 distinct loci. Similarly, MTAs for LR (352)
and SR (349) pathotypes were grouped into 62 and 64 distinct
loci, respectively (Supplementary Table S9). The MTAs observed
can be considered in two categories. The first category comprised
of loci found associated with two or more pathotypes and those
associated with only one pathotype may fall in the second
category. For YR pathotypes, nine loci mapped on chromosomes
1A (1), 1B (2), 1D (1), 2A (1), 2B (1), 3B (1), 5A (1), and 6A
(1) were considered for the first category. Similarly, eighteen loci
were observed on chromosomes 1A (1), 1B (1), 2B (2), 3A (2), 3B
(4), 3D (5), 5B (2), and 7A (1) for LR pathotypes. Likewise, twenty
six loci were observed for SR pathotypes on chromosomes 1A (3),
1B (2), 1D (2), 2A (1), 2B (2), 3A (3), 3B (4), 3D (3), 5A (1), 5B
(2), 6B (1), 6D (1), and 7A (1) (Table 3).

Several representative SNPs were observed for more than
one rust type. Among those SNP markers AX-94573417, AX-
94677476, and AX-94842331 representing loci for YR and SR
seedling response had a bidirectional allelic effect. Whereas,
AX-94871275, AX-94874313, AX-94883935, AX-94977862, and
AX-95226287 had unidirectional allelic effect while representing
loci for LR and SR (Supplementary Tables S8, S9). With
respect to YR, only QYr.ramp-1B.3 was observed in more than
2 pathotypes viz. YR_110S119, YR_238S119, and YR_T, also
having the maximum number of MTAs. Loci QYr.ramp-2A.1
had the second most numbers of MTAs found after QYr.ramp-
1B.3. The most significant association among the nine QTL
were observed for YR_T, more than twice (Table 3). In the
case of LR, QLr.ramp-3A.7 was seen associated with all the 6
pathotypes. Six loci QLr.ramp-3A.6, QLr.ramp-3B.8, QLr.ramp-
3B.11, QLr.ramp-3D.4, QLr.ramp-3D.5, and QLr.ramp-3D.6 were
associated with all LR pathotypes except for LR_106, located
on group 3 chromosomes. Most significant associations were
present for LR_77-5 at more than four loci. The highest number
of MTAs were found located on chromosome 3D at 174.29–
178.60 cM (Table 3). For SR pathotypes, seven loci were found
associated with more than 3 but limited to 6 pathotypes.
These loci were present on chromosomes 1A (QSr.ramp-
1A.1, QSr.ramp-1A.2), 3A (QSr.ramp-3A.6), 3B (QSr.ramp-3B.7),
and 3D (QSr.ramp-3D.2, QSr.ramp-3D.3, QSr.ramp-3D.4). Most
significant association was seen for SR_34-1 at more than two
loci (Table 3).

When compared to other YR seedling resistance loci,
QYr.ramp-1A.1 exhibited a higher level of contribution to IT
with phenotypic variance (R2) of 5.24% being associated with
YR_110S84 and YR_T. Followed by QYr.ramp-1B.3 accounting
for R2 of 4.81% in association with YR_110S119, YR_238S119,
and YR_T. Thirty-seven loci were associated with response to
single YR pathotype, including 12 loci each with YR_238S119 and
YR_T, 8 loci with YR_110S84, 4 loci with YR_46S119, and single
loci with YR_110S119 (Supplementary Table S9). Similarly,

of LR seedling resistance loci, QLr.ramp-3B.11 exhibited the
most contribution to IT within an R2 range of 4.39–12.32% in
association with all pathotypes but LR_106. Also in decreasing
order, QLr.ramp-3D.5, QLr.ramp-3A.7, and QLr.ramp-3D.6
contributed to IT exhibiting a range of R2 from 3.41 to 10.97%,
3.73 to 10.34%, and 2.56 to 10.09%, respectively, associated with
multiple LR pathotypes. Whereas, QLr.ramp-5D contributed with
R2 of 6.86% and significantly associated (−log10p = 9.4711)
with single pathotype LR_12-5. Forty four loci were associated
with response to single LR pathotype, including 12 loci with
LR_106, 10 loci with LR_77-9, 9 loci with LR_77-5, 6 loci
with LR_12-5, 4 loci with LR_104-2, and 3 loci with LR_77-
1 (Supplementary Table S9). In SR seedling resistance, loci
QSr.ramp-1B.4 was accounted for maximum contribution to
IT with R2 ranging from 2.20 to 4.01% and was associated
with SR_122, SR_40A, and SR_11. Another locus QSr.ramp-1A.2
demonstrated a considerable R2 of 3.26% being associated with
five SR pathotypes showing the most significant association with
SR_34-1. Thirty-eight loci were associated with response to single
SR pathotype, including 10 loci with SR_11, 7 loci each with
SR_40-3 and SR_122, 6 loci with SR_21A2, 5 loci with SR_117-6,
and 3 loci with SR_34-1 (Supplementary Table S9).

Marker Trait Associations for the Three
Rusts Field Response
Under natural disease pressure in respective environments,
78, 151, and 252 significant (at −log10p ≥ 3) MTAs were
observed using the CMLM for YR, LR, and SR field response
in adult plant stage, respectively (Figure 6, Supplementary
Table S10, and Supplementary Figure S5). In silico annotation
of these MTAs associated with adult plant disease response
are also reported. Several resistance associated genes were
found in adult plant responses such as E3 ubiquitin-protein
ligase, NB-LRR protein, Lr10 disease resistance locus receptor-
like protein kinase, serine/threonine kinase protein, DEAD-
box ATP- dependent RNA helicase, disease resistance protein
RGA3, etc. (Supplementary Table S10). LD based putative QTL
identification revealed 29 distinct loci on all chromosomes except
for 3D, 4D, 5D, and 7B to be associated with YR response,
where 16 loci were observed in more than one environment.
In case of LR response, 45 distinct loci were observed on all
chromosomes except for 2D, 4D, 5D, and 7A. For SR response,
none of the 44 distinct loci were observed on chromosomes
2D, 5D, and 7D. Eighteen and twenty-seven loci were observed
in more than one environment for LR and SR, respectively
(Table 4 and Supplementary Table S11). Among the identified
representative SNPs, haplotype analysis using Haploview v4.2
(Barrett et al., 2005) markers with LD value r2 > 0.8 were
observed in the case of LR and SR but not in YR. For LR, only
one set of marker pairs comprising two markers was in strong
LD, whereas for SR, three sets of marker pairs comprising of 2,
7, and 11 SNPs were observed in LD (Supplementary Figure S6
and Supplementary Table S11).

For YR field response, QYr.ramp-2D.1 was the only locus
observed in all the four environments (YR_E1-E4), whereas the
remaining 15 loci represented at least two environments. Most
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TABLE 4 | Putative QTL significantly (p < 0.001) associated with resistance at the adult plant stage observed in at least two environments corresponding to the three rust diseases.

Putative QTL* Representative SNP Associated
SNPs

No. of
MTAs

−log10(p)

SNP (35K) Chroma Position (cM) Allele# MAFb %PVE (R2)$ YR_E1 YR_E2 YR_E3 YR_E4

QYr.ramp-1B.3 AX-95222999 1B 24.64 A(405)/C(77) 0.16 2.15 AX-94903617 2 3.0259 3.3988 – –

QYr.ramp-1B.4 AX-94515822 1B 61.73 C(36)/G(440) 0.08 2.42–3.55 AX-94765876 6 – – 4.1825 5.0791

QYr.ramp-1D.1 AX-94508418 1D 3.38 T(448)/C(26) 0.06 2.14–2.44 – 2 3.4973 3.7765 – –

QYr.ramp-1D.3 AX-94444583 1D 95.56–95.70 A(93)/G(386) 0.20 2.19 AX-94918964 4 – – 3.6071 3.0063

QYr.ramp-2B.3 AX-94761935 2B 88.33 C(43)/G(440) 0.09 1.87–2.09 – 2 3.4389 – 3.1554 –

QYr.ramp-2D.1 AX-94842790 2D 25.72 T(22)/C(453) 0.05 1.81–2.59 – 5 3.0408 3.4617 3.4908 3.8662

QYr.ramp-3B.3 AX-94541758 3B 85.27 A(123)/G(348) 0.26 2.10–2.59 – 3 4.1191 3.333 – –

QYr.ramp-3B.4 AX-94680284 3B 245.57 T(255)/C(221) 0.46 2.08–2.62 – 2 3.4187 4.0166 – –

QYr.ramp-4A.1 AX-94437374 4A 56.59 A(33)/G(442) 0.07 2.19–2.27 – 4 – – 3.6111 3.4591

QYr.ramp-5A.2 AX-95684352 5A 70.36–73.80 A(76)/G(400) 0.16 1.85–1.99 AX-95002679 3 3.2955 – 3.2128 –

QYr.ramp-6B.4 AX-95209190 6B 147.99 C(24)/G(401) 0.10 2.53–3.55 AX-94777981 4 4.5647 5.2201 – –

QYr.ramp-6D.1 AX-94953259 6D 0 T(274)/G(192) 0.41 1.93–2.02 – 2 – – 3.2415 3.1352

QYr.ramp-6D.2 AX-95215612 6D 17.65 C(87)/G(385) 0.18 1.80–2.39 AX-95632341 12 – – 3.5407 3.6068

QYr.ramp-6D.3 AX-94385810 6D 173.03–175.55 T(37)/C(436) 0.09 2.20–2.53 – 4 – – 3.6192 3.786

QYr.ramp-6D.4 AX-95176310 6D 183.03 A(415)/G(62) 0.13 2.09–2.22 – 2 – – 3.4617 3.3988

QYr.ramp-7D.2 AX-95205886 7D 6.96–10.82 T(369)/C(107) 0.22 1.20–2.09 – 3 – – 3.4674 3.1032

LR_E1 LR_E2 LR_E3 LR_E4

QLr.ramp-1A.2 AX-95080736 1A 72.25–74.11 A(428)/G(45) 0.10 2.50–2.72 – 11 4.5164 4.098 – 4.5249

QLr.ramp-1B.1 AX-95092361 1B 0.79 A(296)/C(185) 0.38 1.77–2.59 AX-94456747,
AX-95222141

5 – 3.5824 3.8295 3.7671

QLr.ramp-1B.2 AX-94692514 1B 8.24 C(266)/G(212) 0.44 2.55 AX-94997422 4 – – 3.776 3.089

QLr.ramp-1B.3 AX-94517050 1B 24.64–26.22 C(425)/G(48) 0.10 5.03 AX-94571235,
AX-94538509

26 5.8111 – 6.8053 3.0183

QLr.ramp-1D AX-94541931 1D 3.38 A(360)/G(113) 0.24 2.35–3.37 AX-94641589 6 4.0322 5.3001 – 3.0538

QLr.ramp-2B.7 AX-94962080 2B 103.81–104.59 T(297)/G(181) 0.38 2.22 AX-95019501,
AX-95149329

7 3.8429 3.7829 – 3.0912

QLr.ramp-2B.8 AX-94481202 2B 126.67 A(29)/G(448) 0.06 2.48–3.62 – 3 5.0863 5.6499 3.69 –

QLr.ramp-3A.1 AX-94394356 3A 30.91 A(340)/C(136) 0.29 1.90–1.94 – 2 – 3.3009 – 3.3312

QLr.ramp-3B.6 AX-94925132 3B 117.54 T(359)/C(105) 0.23 1.75–1.99 – 2 3.1401 – 3.0643 –

QLr.ramp-4A.4 AX-94708164 4A 214.72 A(131)/G(343) 0.28 2.44–3.61 – 4 5.8523 4.0148 3.9499 4.7453

QLr.ramp-5A AX-94889598 5A 12.25–16.13 A(226)/C(256) 0.47 2.08 AX-95168494 2 3.6276 – – 3.1295

QLr.ramp-5B.2 AX-94515669 5B 161.41–161.85 T(316)/C(156) 0.33 2.26 AX-94996993 4 – 3.7482 3.1212 –

QLr.ramp-6A.1 AX-94653398 6A 0.00–0.82 T(157)/G(316) 0.33 1.74–2.67 AX-94585745,
AX-94800842

14 3.9121 3.5047 3.9293 3.7568

QLr.ramp-6A.4 AX-95147877 6A 217.80–221.75 T(87)/C(385) 0.19 1.83–2.04 AX-94411794,
AX-95014734

6 3.1277 3.3368 – 3.5439

QLr.ramp-6B.5 AX-94638655 6B 142.73 T(265)/C(215) 0.45 1.75–2.53 – 2 4.294 3.027 – –

(Continued)
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TABLE 4 | Continued

Putative QTL* Representative SNP Associated
SNPs

No. of
MTAs

−log10(p)

SNP (35K) Chroma Position (cM) Allele# MAFb %PVE (R2)$ LR_E1 LR_E2 LR_E3 LR_E4

QLr.ramp-6B.6 AX-94877284 6B 147.99–150.38 T(393)/C(76) 0.16 1.84–2.73 – 4 3.1583 4.5831 – –

QLr.ramp-7B.1 AX-95109168 7B 1.72–2.51 A(286)/G(174) 0.38 1.69–2.21 AX-94767893,
AX-94617870

5 3.8311 3.3579 3.0418 3.1978

QLr.ramp-7D.2 AX-94674448 7D 18.37 T(69)/C(408) 0.15 1.94–2.79 – 4 3.4277 – 4.0777 –

SR_E1 SR_E2 SR_E3 SR_E4

QSr.ramp-1A.1 AX-94629244 1A 54.04–58.94 T(355)/C(122) 0.26 2.76–4.07 AX-94831912 16 – 5.5236 3.8788 3.9088

QSr.ramp-1A.2 AX-95092467 1A 74.11–74.86 T(389)/C(92) 0.19 3.80 AX-94739433,
AX-94845461

17 – 3.6209 3.579 5.1442

QSr.ramp-1B.2 AX-95108068 1B 8.24–9.93 A(376)/G(87) 0.19 2.19–2.63 AX-94602901 12 3.6636 3.7892 3.7174 3.5776

QSr.ramp-1B.3 AX-94518139 1B 15.65 C(384)/G(92) 0.19 2.06–2.46 – 3 – 3.5756 3.5198 3.0799

QSr.ramp-1B.4 AX-94608698 1B 24.64–26.22 A(333)/G(145) 0.30 1.81–2.83 AX-94414930,
AX-94538509

34 4.4578 4.1201 4.6302 3.7215

QSr.ramp-1D.1 AX-94842940 1D 1.69 A(88)/G(394) 0.18 1.96–2.60 – 3 – 3.7503 3.3773 3.3816

QSr.ramp-1D.2 AX-94911855 1D 30.82–35.95 A(387)/G(91) 0.19 1.68–2.57 AX-94722864 8 3.1839 3.9222 4.0705 3.4796

QSr.ramp-1D.3 AX-94546280 1D 76.08 T(91)/C(368) 0.20 1.57–3.24 – 4 3.0095 3.3603 5.209 4.1243

QSr.ramp-1D.4 AX-94842331 1D 95.7 T(395)/C(88) 0.18 1.88–2.52 – 3 – 3.6553 3.2692 3.3673

QSr.ramp-2B.6 AX-94637676 2B 102.12–104.59 T(86)/C(396) 0.18 2.07–2.26 AX-94623285 5 3.2455 3.3308 – 3.0644

QSr.ramp-2B.7 AX-94784324 2B 126.67 T(215)/C(265) 0.45 1.71 AX-94481202 2 3.461 3.465 – –

QSr.ramp-3A.6 AX-95226287 3A 239.09 T(50)/C(426) 0.11 1.83–3.83 – 4 3.4185 4.0281 6.0299 4.1187

QSr.ramp-3A.7 AX-94883935 3A 250.41 A(428)/C(54) 0.11 2.39–3.16 – 3 – 3.4977 5.1024 3.4855

QSr.ramp-3B.1 AX-94479164 3B 0.79 A(106)/G(375) 0.22 1.89 AX-94573417,
AX-94581339

5 3.5179 3.3687 3.2188 3.439

QSr.ramp-3B.6 AX-94915269 3B 204.37 C(428)/G(50) 0.10 2.43–2.67 – 5 – 3.5456 4.4059 3.7619

QSr.ramp-3B.7 AX-94805563 3B 245.19–245.57 T(47)/C(434) 0.10 1.96–4.18 – 5 3.6265 4.5159 6.5041 4.532

QSr.ramp-3D.1 AX-94901185 3D 76.05 T(374)/C(88) 0.20 2.02–2.06 – 2 – 3.0328 – 3.0419

QSr.ramp-3D.2 AX-94874313 3D 160.44–167.71 A(414)/G(67) 0.14 2.09–2.40 AX-94391473 6 4.1716 – 5.2554 3.4058

QSr.ramp-3D.3 AX-94436339 3D 167.71–169.40 T(416)/G(47) 0.12 2.28–3.79 – 9 4.1324 4.7983 5.9778 4.2819

QSr.ramp-3D.4 AX-95224631 3D 175.97–178.60 A(55)/G(422) 0.12 1.83–3.53 AX-94681641,
AX-94724171

52 4.1038 4.3769 5.6016 4.3799

QSr.ramp-4A.2 AX-94897136 4A 188.85 A(72)/G(392) 0.16 2.27–3.33 – 3 – 4.646 3.8328 4.3236

QSr.ramp-4A.3 AX-94508043 4A 214.31 T(67)/C(415) 0.14 2.31 AX-94630583 2 3.1965 3.387 – –

QSr.ramp-4D.1 AX-94516693 4D 0 T(352)/C(125) 0.26 1.79–2.10 – 2 – – 3.137 3.0959

QSr.ramp-5A.1 AX-94560538 5A 59.99 T(441)/G(35) 0.08 2.93 AX-94519690 9 3.2318 – – 4.1142

QSr.ramp-5B.10 AX-94459834 5B 233.87 C(79)/G(393) 0.17 1.70–3.06 – 3 – 4.3091 3.0007 3.4288

QSr.ramp-6B.2 AX-94426734 6B 62.83 T(395)/C(88) 0.18 1.88–2.52 – 3 – 3.6553 3.2692 3.3673

QSr.ramp-6D AX-94805944 6D 18.24–18.61 T(68)/C(413) 0.14 2.56 AX-94409568 3 4.5629 3.6741 3.9384 –

∗Remaining QTL associated with single environment are provided in Supplementary Table S11. #The numbers in parenthesis indicate the frequency of the allele in the panel. $Percentage of phenotypic variation
explained (PVE, R2). aChrom, Chromosome. bMAF, Minor allele frequency.
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FIGURE 6 | A circular Manhattan plot for significance [–log10(p-values)] of the
association of 14,650 SNPs based on CMLM located on 21 chromosomes
with the adult plant disease responses in the respective four environments for
the three rusts. Associations in the four (A) YR environments YR_E1, YR_E2,
YR_E3, and YR_E4; (B) LR environments LR_E1, LR_E2, LR_E3, and LR_E4;
and (C) SR environments SR_E1, SR_E2, SR_E3, and SR_E4 were plotted
from inside to outside, respectively. A multi-track Q-Q plot for each case is
presented at the right upper corner of the circular Manhattan plot. The
threshold value at –log10(p) ≥ 3 is indicated as red-colored circle for each
environment. A rectangular version of the plots is shown in Supplementary
Figure S5.

significant association was seen for QYr.ramp-6B.4 in YR_E2
followed by QYr.ramp-1B.4 in YR_E4. For LR field response,
three loci were seen associated in all four environments (LR_E1-
E4) namely QLr.ramp-4A.4, QLr.ramp-6B.3, and QLr.ramp-7B.1.
Most significant association was found for QLr.ramp-1B.3 in
LR_E3 which also holds the most numbers of MTAs observed.
In the case of SR, the most number of loci (nine) affiliated
with all four environments (SR_E1-E4) were observed. Amongst
these and other loci, QSr.ramp-3D.4 holds the most number of
MTAs followed by QSr.ramp-1B.4, where the most significant
association was observed for QSr.ramp-3B.7 in SR_E3 (Table 4).

Among YR field response associated loci, QYr.ramp-6B.4
and QYr.ramp-1B.4 exhibited similar and higher contribution
for COI with R2 ranging from 2.42 to 3.55% in at least
two environments. Thirteen loci were associated with YR field
response in single environment, including 6 loci in YR_E4, 3 loci
in YR_E3, and 2 loci each in YR_E2 and YR_E1 (Supplementary
Table S11). For LR field response, of 45 loci, QLr.ramp-1B.3
accounted for the higher level of R2 of 5.03% while contributing
to COI. To LR field response in single environment, 27 loci were
seen associated where 10 loci in LR_E1, 7 loci in LR_E2, 6 loci
inLR_E3, and 4 loci in LR_E4 were observed (Supplementary
Table S11). In case of SR field response, QSr.ramp-3B.7 explained
the higher level of contribution for COI with R2 ranging
from 1.96 to 4.18%. Seventeen loci were associated with a
single environment, where 8 loci in SR_E1, 4 loci each in
SR_E2 and SR_E4, and single loci in SR_E3 were observed
(Supplementary Table S11).

Like seedling response, some representative SNPs were found
common between two rust type field responses. Among those
SNPs, AX-94638655 and AX-95176310 representing loci for YR
and LR; AX-94874313 and AX-94877284 representing loci for
LR and SR showed a bidirectional allelic effect. Whereas, AX-
94805944 representing loci for LR and SR showed unidirectional
allelic effect (Supplementary Tables S10, S11). Despite having
different representative SNP markers, certain QTL observed for
resistance in the adult plant stage were seen to be sharing QTL-
CI based similar to identical genomic region with those observed
for seedling stage resistance (Supplementary Table S12). In such
case, QTL observed for both seedling and adult plant disease
responses were considered as ASR loci and those observed
only for the adult plant disease response were considered
as APR loci. There were few ASR loci which had identical
representative SNP marker for the QTL observed in seedling
and adult plant stages. Of 12 YR ASR loci, QYr.ramp-3B.4 was
represented by SNP AX-94680284. Similarly, of 15 LR ASR loci,
QLr.ramp-3B.3 and QLr.ramp-3D.4 were represented by SNPs
AX-94741529 and AX-94874313, respectively. In the case of SR,
with the most number of ASR loci (31), there were fourteen
such representative SNP markers (Supplementary Table S12).
The most number of APR loci were observed against LR (30)
disease response followed by that of YR (17) and SR (13).
Several genomic regions in terms of QTL-CI were found common
in more than one rust field response. These robust genomic
regions bearing QTL-CI based co-localized ASR and APR loci
can be harnessed for further exploration and usage (Table 5).
Among these genomic regions, seven of them been found on
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TABLE 5 | Robust genomic regions observed in more than one rust type field response.

Chromosome Position (cM)* QTL for field response$ References#

YR LR SR

1A 72.25–75.74 QYr.ramp-1A.2 QLr.ramp-1A.2 QSr.ramp-1A.2 Rosewarne et al., 2012; Jighly et al., 2015;
Laidò et al., 2015; Gao et al., 2016

1B 8.24–9.93 – QLr.ramp-1B.2 QSr.ramp-1B.2 Singla et al., 2017

1B 24.64–26.22 QYr.ramp-1B.3 QLr.ramp-1B.3 QSr.ramp-1B.4 Schlegel and Korzun, 1997; Maccaferri et al.,
2015a; Mago et al., 2005; Ren et al., 2009

1D 1.69–3.38 QYr.ramp-1D.1 QLr.ramp-1D QSr.ramp-1D.1 Sambasivam et al., 2008; Zwart et al., 2010;
Ren et al., 2012a; Vazquez et al., 2012; Gill
et al., 2019

1D 95.56–95.70 QYr.ramp-1D.3 – QSr.ramp-1D.4 Godoy et al., 2018

2A 83.23–83.60 – QLr.ramp-2A.3 QSr.ramp-2A.2

2A 176.07–179.61 QYr.ramp-2A.4 QLr.ramp-2A.5 – Li et al., 2014; Zhang et al., 2017

2B 102.12–104.59 QYr.ramp-2B.4 QLr.ramp-2B.7 QSr.ramp-2B.6 Feng et al., 2015; Aoun et al., 2019; Liu et al.,
2020

2B 126.67–126.67 – QLr.ramp-2B.8 QSr.ramp-2B.7

2B 182.52–182.52 – QLr.ramp-2B.9 QSr.ramp-2B.8

3A 84.43–84.43 – QLr.ramp-3A.3 QSr.ramp-3A.3

3A 248.16–250.41 – QLr.ramp-3A.7 QSr.ramp-3A.7

3B 245.19–245.57 QYr.ramp-3B.4 – QSr.ramp-3B.7

3D 160.44–167.71 – QLr.ramp-3D.4 QSr.ramp-3D.2

3D 167.71–169.40 – QLr.ramp-3D.5 QSr.ramp-3D.3

3D 175.97–178.60 – QLr.ramp-3D.6 QSr.ramp-3D.4 Friebe et al., 1993; Jiang et al., 1993

4A 214.31–214.72 – QLr.ramp-4A.4 QSr.ramp-4A.3

4B 89.57–92.16 QYr.ramp-4B QLr.ramp-4B.2 –

6A 80.46–80.46 QYr.ramp-6A.2 QLr.ramp-6A.2 –

6A 215.37–221.75 QYr.ramp-6A.5 QLr.ramp-6A.4 QSr.ramp-6A.5 Muleta et al., 2017a; Kolmer et al., 2019;
Sharma et al., 2019

6B 109.86–109.86 QYr.ramp-6B.2 QLr.ramp-6B.4 –

6B 142.73–142.73 QYr.ramp-6B.3 QLr.ramp-6B.5 –

6B 147.99–150.38 QYr.ramp-6B.4 QLr.ramp-6B.6 QSr.ramp-6B.3 Santra et al., 2008; Maccaferri et al., 2015b;
Bulli et al., 2016; Nirmala et al., 2016; Li et al.,
2020

6D 17.65–18.61 QYr.ramp-6D.2 QLr.ramp-6D.1 QSr.ramp-6D Mebrate et al., 2008; Gebrewahid et al., 2020

6D 183.03–183.03 QYr.ramp-6D.4 QLr.ramp-6D.3 –

∗Regions found common for all three rusts are highlighted in bold. $QTL highlighted in bold represents the APR loci. #Details are given in the text.

chromosomes 1A, 1B, 1D, 2B, 6A, 6B, and 6D, had QTL for all
the three rusts.

Pyramiding Effects of Favorable Alleles
on Field Response
The cumulative effect of favorable MTAs for field resistance was
studied based on the estimated number of favorable alleles in
each specific genotype. For this, SNPs representing the distinct
loci for each rust were considered. Alleles associated with a
reduction in disease response were considered as favorable
alleles at each locus of the representative SNP. With 29 SNPs
for YR, the number of favorable alleles ranged from 6 to 26.
Similarly, for LR and SR, it ranged from 10 to 40 and 4 to
39 with 45 and 44 SNPs, respectively (Supplementary Table
S13). The accumulating resistant alleles were expected to be
strongly correlated with the disease response. A significant
negative correlation (at p < 0.0001) was observed in the

case of YR (-0.4825), LR (-0.6256), and SR (-0.5775) between
the number of favorable alleles in individual genotypes and
averaged disease response under their respective environments.
This observation was further supported by the linear regression
coefficients (R2) found significant at p < 0.0001 in all three
cases (Figure 7). The total SNPs (118) estimated as field
response based QTL representative markers were examined using
a hierarchical clustering approach by selecting 72 genotypes
having average COI score ≤ 20 in all the three rusts. Clearly,
these genotypes were found to have the most number of
favorable alleles compared to moderately resistant to susceptible
genotypes except for some resistant genotypes viz. E3257, H957,
HUW679, PBW138, IC321918, and LBRL4. The genotypes were
grouped in same clusters based on the SNP array pattern having
favorable alleles in those genotypes (Supplementary Figure S7).
Pedigree based closeness was also visible in genotypes showing
allelic similarity in terms of favorable alleles, e.g., HPW360-
HPW361, DBW50-DBW88, and VL802-VL804. The present
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FIGURE 7 | Linear regression plots of field disease response toward (A) YR, (B) LR, and (C) SR, to favorable alleles of representative SNPs of identified QTL in each
of the 483 genotypes in the panel and averaged COI score over different environments. All regressions were highly significant at P < 0.0001.

finding provides valuable information to the wheat breeders
in deciding the selection of parents for the crossing program,
particularly those to be utilized as source of rust resistance.
Incorporation of diverse alleles can be ensured if parents are
chosen from the different clusters (Supplementary Figure S7).

DISCUSSION

Crop scientists face dual challenges of increasing productivity and
sustaining it by managing stresses occurring due to biotic and
abiotic factors. Among biotic factors, the three rusts of wheat
cause continuous threat through the rapid evolution of new
races. The development and deployment of resistant cultivars
is the most economical and environmentally safe method
to control diseases. Primary gene pool including indigenous
collections comprising of landraces, old cultivars and breeding
lines are considered as a valuable genetic resource for providing
new and durable resistance that can be exploited for the
development of current day high-yielding varieties (Mujeeb-Kazi
et al., 2013). Utilization of primary gene pool is advantageous
over secondary (comprising of wild relatives) as they carry
homologous genomic regions having a better opportunity as
combiner with hexaploid wheat (Wulff and Moscou, 2014).
To widen the spectrum of rust resistance in modern wheat
varieties, finding lines having new sources of resistance along
with newer alleles for known resistance genes, is the way
forward. High throughput genotyping technologies coupled with
bioinformatics enable us to mine valuable information from
genome database paving the way for a better understanding of
vast germplasm collections.

With this objective, a diverse panel of 483 genotypes found
suitable for GWAS (Kumar et al., 2020) was utilized for
identifying genomic regions associated with rust resistance in
the form of diverse resistant alleles and their combinations for
durable resistance. This panel comprised diverse genotypes both
in temporal and spatial dimensions, i.e., genotypes adapted to
various agro-climatic conditions spanning India and varieties
released during pre and post green revolution era. This panel
encompassing of hitherto less engaged germplasm such as
landraces offers a rich and new accessible source for disease
resistance. Studies have supported the utilization of landraces for

exploring novel resistant alleles (Muleta et al., 2017b; Pasam et al.,
2017; Riaz et al., 2018). The same diverse panel was evaluated
against all the three rusts without aiming any biasness toward
specific rust. The phenotypic distribution of disease response did
not follow a normal distribution, and original phenotypic data
was utilized as such, similar to the previous studies (Gao et al.,
2016; Edae et al., 2018). In this study, more than 50% of genotypes
in the panel showed resistance to five out of seven SR pathotypes.
Similar proportion of genotypes were found resistant to SR in
four environments at the adult plant stage under field disease
situations. This observation strongly suggested the presence of
ASR loci in the panel. Whereas, in the case of LR, the presence
of APR loci was supported by the fact that more than 70% of
the lines were resistant in each of the four LR environments in
spite of the panel showing susceptibility to five out of six LR
pathotypes under seedling stage disease response. This was in
concurrence with most number of ASR and APR loci observed
against SR and LR disease response, respectively. Significant
variations were observed among the genotypes in the panel as
indicated by analysis of variance (ANOVA). High heritability
estimates observed in this study for field disease responses were
supported by significant positive correlations among traits and
occurrence of consistent data recorded across environments.
This indicated reproducibility of the data reliable for GWAS
(Godoy et al., 2018).

Wheat breeder’s 35K array derived from wheat 820K SNP
array provides breeder oriented informative markers (Allen et al.,
2017). It has an added advantage of capturing information on
germplasm derived from secondary and tertiary gene pools as
the array is developed using exome capture of wheat and its wild
relatives (Allen et al., 2017; Rasheed and Xia, 2019). In our study,
LD decay was found strongly different in the three genomes with
B genome to have the quickest decay followed by A genome,
which is supported by previous reports (Gao et al., 2017; Riaz
et al., 2018). This supports the practical use of D genome markers
suitable for association tests even though less in number (Gao
et al., 2017). D genome was found to have the highest LD than
other genomes which has also been mentioned in several previous
studies (Nielsen et al., 2014; Wang et al., 2014; Zegeye et al., 2014;
Voss-Fels et al., 2015; Riaz et al., 2018). The number of significant
marker pairs was found lowest in the chromosome 4D similar to
a previous study (Muleta et al., 2017a).
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Population structure in the panel showed two subpopulations
(Kumar et al., 2020) which was further supported by PCA.
A significant effect of population stratification was observed in
differences based on disease response at seedling and adult plant
stage. The resistant subpopulation of the two subpopulations,
comprised of majorly improved genotypes and released varieties.
It appeared that landraces in the minor subpopulation were
found mostly susceptible. The landraces under study have
originated from central and northwestern states of India namely
Gujarat, Rajasthan, and Madhya Pradesh (Kumar et al., 2020).
Landraces adapted to these regions are mostly tolerant to
abiotic stresses viz. drought, heat, and salinity, e.g., genotype
KHARCHIA LOCAL (origin: Rajasthan, India) is adapted to
long-term salinity stress (Mahajan et al., 2017, 2020). We
hypothesize that landraces adapted to harsh environments, such
as abiotic stresses and low-input conditions give an eluded
appearance of diseases. But under high input conditions, we
observed that landraces appeared to be more susceptible when
compared to improved genotypes. Since not all landraces were
found susceptible (Supplementary Table S3), they may still
be beneficial in the identification of novel resistant alleles. Of
96 landraces in the panel, twenty-one were found resistant
in field response against LR and eleven each against YR and
SR. Landrace IC321998 (origin: Uttarakhand, India) was found
resistant for all three rusts. This suggests an indirect selection
for disease resistance in spite of the fact that landraces are
traditionally selected by the farmers preferring better agronomic
traits (Zeven, 2002).

Care was taken to avoid spurious association due to
population stratification by treating it as a covariate along
with kinship accounting relationship among genotypes for
association studies in this panel (Stich et al., 2008; Lipka et al.,
2012; Yang et al., 2014). The selection of CMLM applied in
this study was found suitable from the comparative study of
different association models. In most of the cases, based on
the Q-Q plots, CMLM was found to have minimum deviations
in observed probabilities with respect to expected probabilities
(Supplementary File S1). Several studies have been successfully
conducted using the CMLM model (Arruda et al., 2016; Muleta
et al., 2017a,b; Sheoran et al., 2019). It also provides efficiently
high statistical power over and is an improvement to the MLM
model for a large sample size (Zhang et al., 2010).

Three ASR loci QYr.ramp-1A.2, QLr.ramp-1A.2, and
QSr.ramp-1A.2 were found co-localized on chromosome
1A against each rust located at 72.25–75.74 cM. Except for
QYr.ramp-1A.2 exhibiting minor effect, other loci were found
associated with disease response to multiple pathotypes and
environments. This was in agreement with the QTL observed
to have a minor effect but also showed seedling resistance on
chromosome 1AL (Rosewarne et al., 2012; Jighly et al., 2015).
QLr.umn-1AL was reported to be associated with both field and
seedling disease response mapped at 149.8 cM on chromosome
1AL (Gao et al., 2016). In this study, QLr.ramp-1A.2 was observed
proximal to this previously reported QTL. APR for LR is not
known to be present on chromosome 1AL (Li et al., 2014) and
the chance of having an association with Lr59 is highly unlikely
as source of such alien introgression (Marais et al., 2008) is not

present in the current study panel. A MTA exhibiting seedling
resistance against Pgt race TTKSK represented by DArT marker
wPt-2014 was reported on chromosome 1AL mapped at 70.5 cM
(Laidò et al., 2015). This could be present in close proximity to
the loci QSr.ramp-1A.2 identified in this study.

LR APR loci QLr.ramp-1B.2 was mapped on the short arm
of chromosome 1B located at 8.24–9.93 cM. It was identified
in close proximity to SSR marker Xswm271 linked to known
APR gene Lr75 (Singla et al., 2017) and proximal to another
APR gene Lr71 (Singh et al., 2013). Genomic region 23.90–
26.22 cM (1B) was found to have a large number of MTAs
in all the three rusts for seedling disease response (Figure 5
and Table 3). This region located on chromosome 1BL harbors
several known Yr genes such as Yr9, Yr10, Yr15, Yr 64, Yr65,
etc. In concurrence ASR loci QYr.ramp-1B.3 was found in a
close proximity to Xbarc119 (27.4 cM) and Xgwm413 (29.9 cM)
which are linked to Yr15 and YrH52 (Maccaferri et al., 2015a).
This region also showed a possible association with wheat-alien
translocation (1RS.1BL) derived from Secale cereale (Schlegel
and Korzun, 1997). Resistance genes for all the three rusts are
known to be associated with this translocation viz. Yr9 (Ren
et al., 2009), Lr26, and Sr31 (Mago et al., 2005). Race-specific
gene postulations demonstrated the presence of these genes in
the panel, possibly being reflected as the co-localized ASR QTL
QYr.ramp-1B.3, QLr.ramp-1B.3, and QSr.ramp-1B.4. The most
virulent Pgt race Ug99 and its lineage have not been observed in
India and its neighboring countries inferring the effectiveness of
Sr31 in Indian germplasm (Prasad et al., 2018; Bhardwaj et al.,
2019b).

So far, five QTL have been reported for resistance against YR
on chromosome 1D, with three present at the distal end (Zwart
et al., 2010; Ren et al., 2012a; Vazquez et al., 2012) and two present
at the proximal end of its short arm (Maccaferri et al., 2015b;
Godoy et al., 2018). Not many reports are present for ASR genes
against YR at locations close to the centromere on chromosome
1DS where Godoy et al. (2018) reported QTL present at 89.58 cM.
Two potential ASR loci QYr.ramp-1D.1 (AX-94508418: 1.03 Mb)
and QYr.ramp-1D.3 (AX-94444583: 34.6 Mb) were observed
both at distal and proximal regions of 1DS, respectively, in this
study. The chromosome 1DS is also known to harbor Lr42 gene
conferring resistance against LR at both seedling and adult plant
stages and recently it has been fine mapped on 1DS flanked by
markers TC387992 and Xwmc432 to a 3.7 cM genetic interval
(Gill et al., 2019). QLr.ramp-1D (3.38 cM) was observed very
close to this location at adult plant stage only. QSr.ramp-1D.1
located at 1.69 cM on 1DS was observed in close proximity of
gene Sr33 which is known to be flanked by Xbarc152 and Xcfd15
at a distance of 1.8 cM on either end on 1DS (Sambasivam et al.,
2008). The gene was introgressed in bread wheat from its wild
relative Aegilopes taushii providing resistance against Ug99 group
races (Periyannan et al., 2013).

The genomic region 102.12–104.59 cM was observed to
have ASR loci for each rust. This region was present on the
chromosome 2BL supported by the physical positions of QTL
associated SNPs spanning ∼612–722 Mb region. Corresponding
to this physical region, Aoun et al. (2019) identified QSr.ace-2B
conferring resistance to Pgt races TTKSK and JRCQC (virulent
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to Sr9e) linked to Sr9 gene flanked by SNP markers IWA6399
and IWA7955 (92.7–105.3 cM) on chromosome 2BL. SR ASR
loci QSr.ramp-2B.6 was identified within this genomic region
supporting possible affiliation to Sr9. In co-localization to which
YR ASR loci QYr.ramp-2B.4 was identified in a single field
environment possibly due to its minor effect. It was located
5 cM proximal to another minor effect QTL QYrAvS.wgp-2BL
(Liu et al., 2020). It was further located 3 cM proximal to
SNP marker IWA638 (724 Mb: 107.58 cM) (Blake et al., 2016)
which has been identified in a close proximity of YrSp gene
(Feng et al., 2015). Another ASR loci QLr.ramp-2B.7 against
LR was identified at 103.81–104.59 cM on chromosome 2BL.
Gao et al. (2016) reported a QTL 2B_3 at 102.28–108.35 cM
interval on chromosome 2B in response to field experiments
only which reduced any possible similarity. Two formally
known LR resistance genes Lr50 and Lr58 are present on the
terminal region of chromosome 2BL (Brown-Guedira et al.,
2003; Kuraparthy et al., 2007). SSR markers Xgdm87 (Lr50)
and Xcfd50 (Lr58) linked to these genes are present distant
to the identified QTL QLr.ramp-2B.7 based on the integrated
consensus map (Maccaferri et al., 2015a). In a previous report,
multiple resistance QTL against YR and LR QYr.ifa-2BL/QLr.ifa-
2BL was identified on chromosome 2BL. It was flanked by DArT
markers wPt-3378 and wPt-7360 (Crossa et al., 2007; Buerstmayr
et al., 2014). However these markers were also present distant
(Maccaferri et al., 2015a) to QLr.ramp-2B.7, leaving it for being
an unexplored ASR loci.

In our study, it was observed that the genomic region 174.29–
178.60 cM on chromosome 3DL harbored the most number
of MTAs for seedling disease response against LR. Pathotypes
LR_12-5, LR_104-2, LR_77-9, LR_77-5, and LR_77-1 collectively
contributed to these MTAs observed (Figure 5 and Table 3).
This region was also found highlighted in seedling disease
response against SR pathotypes SR_122, SR_117-6, SR_40A, and
SR_11. Wheat-alien translocations were known to be carried
out for incorporating resistance genes Lr24/Sr24 (T3DS.3DL-
3Ae#1L) and Lr38 (T3DL.3DS-7Ai#2L) in the chromosome 3D
derived from Agropyron elongatum and Agropyron intermedium,
respectively (Friebe et al., 1993; Jiang et al., 1993). ASR loci
QLr.ramp-3D.6 and QSr.ramp-3D.4 were found associated with
these translocations possibly harboring these resistance genes in
our panel as evident by race-specific genes postulated.

Two APR and one ASR loci were identified co-localized on
chromosome 6AL located at 215.37-221.75 cM (∼605–615 Mb).
QYr.ramp-6A.5 was the ASR loci which provided resistance
against YR in this region. It has been found distal to a previously
reported ASR QTL tagging SNP IWA2129 on chromosome 6AL
mapped at 212.2 cM (596.89 Mb) (Blake et al., 2016; Muleta et al.,
2017a). Chromosome 6AL is also known to harbor the YR ASR
gene Yr38 which is linked with another ASR gene Lr56 for LR
(Park, 2016). None of these genes were postulated in the current
study panel. In a previous study, Lr64 gene was mapped on
chromosome 6AL tightly linked to the KASP marker which was
developed for the SNP marker IWB59855 (Kolmer et al., 2019).
The LR APR QTL QLr.ramp-6A.4 identified was represented by
SNP marker AX-95147877 (615.46 Mb) in this study, found to be
present close to SNP marker IWB59855 (614.17 Mb). Therefore,

QLr.ramp-6A.4 could be strongly associated with the gene Lr64.
Interestingly, Lr64 has not been characterized as ASR or APR
gene so far (Park, 2016), whereas QLr.ramp-6A.4 was identified
exhibiting APR response. This could provide supporting evidence
for the identification of the true resistance nature of Lr64 in
the future. An ASR QTL QSr.fcu-6A was mapped earlier on
chromosome 6AL to the genomic region harboring Sr13 gene
conferring resistance against Pgt races TMLKC, TRTTK, and
TTKSK in emmer wheat (Sharma et al., 2019). An SNP-based
semi-thermal asymmetric reverse PCR (STARP) marker rwgsnp7
was developed from the SNP IWB34398 (6AL: 615.45 Mb) to map
QSr.fcu-6A. Validation of marker rwgsnp7 in hexaploid wheat
provided evidence that chromosome 6D harbors a homoeologous
allele similar to that present on chromosome 6A for this marker
(Sharma et al., 2019). In this study, QSr.ramp-6A.5 was identified
as APR loci mapped at 215.37–221.75 cM (∼605–615 Mb)
interval on chromosome 6AL where the SNP IWB34398 overlaps
with this region. Therefore, QSr.ramp-6A.5 could be present in
the genomic region harboring Sr13. Since none of the Pgt races
mentioned above were used in this study, seedling resistance
could not be confirmed governed by this region in this study.

Chromosome 6B was observed to have co-localized APR
loci for the three rusts. Based on MTAs associated with these
QTL, an estimated physical location of ∼712–714 Mb was
obtained (IWGSC RefSeq v.1.0) representing the long arm of
the chromosome. Among several other reported YR APR QTL
on 6BL (Mu et al., 2019), three QTL viz. QYr.wsu-6B.1 (Bulli
et al., 2016), QYr.ucw-6B (Maccaferri et al., 2015b), and QYr.wgp-
6B.1 (Santra et al., 2008) spanning ∼631–720 Mb genomic
region were found overlapping to some extent with QYr.ramp-
6B.4 identified in this study. LR APR QTL QLr.ramp-6B.6 was
identified distally close to a recently reported APR QTL QLr.cim-
6BL mapped in a durum mapping population on chromosome
6BL (Li et al., 2020). It was located in the interval of SNP markers
AX-95155193 and AX-94562707 spanning 691.07–698.26 Mb
genomic region. Lr3 (Kolmer, 2015) and Lr9 (Schachermayr
et al., 1994) are well known genes present on chromosome 6BL.
QLr.ramp-6B.6 was unlikely to be linked with either of these
genes as Lr3 is an ASR gene and Lr9 has not been deployed in
the current study panel. Similarly, Sr11 gene is also present on
chromosome 6BL but exhibits ASR (origin: Triticum turgidum
ssp. durum) (Park, 2016). It was mapped within the marker
interval of Tdurum_contig55744_822 (IWB72471: 709.53 Mb)
and BS00074288_51 (IWB10724: 715.97 Mb) (Blake et al., 2016;
Nirmala et al., 2016). This region was found to be overlapping
with those of QTL QSr.ramp-6B.3. Several genotypes were
postulated to have this gene in the study panel. Since Sr11
provides a race-specific ASR against Pgt race TKTTF which has
not been used in this study, QSr.ramp-6B.3 could have been
mistakenly identified as an APR loci. Although, without further
investigation a conclusion cannot be made.

The region (17.65–18.61 cM) harboring one ASR loci against
YR and SR each, and one APR loci against LR were identified on
the long arm of chromosome 6D (∼459–460 Mb). Gebrewahid
et al. (2020) reported an APR QTL QYr.hebau-6DL located at
464.6–472.0 Mb interval flanked by SNP markers AX-108848475
and AX-109273869. QTL QYr.ramp-6D.2 identified in this study
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was present proximal to QYr.hebau-6DL, showing ASR property.
There was a clear difference in the nature and position of these
two QTL. LR APR QTL QLr.ramp-6D.1 was observed in a
single environment depicting a possible minor effect. Although,
chromosome 6DL harbors a known ASR gene Lr38 inheritably
linked with SSR marker Xwmc773 (Mebrate et al., 2008) could be
present relatively close to QLr.ramp-6D.1. Of the four known Sr
genes on chromosome 6D, only the ASR gene Sr29 is present on
the long arm (Dyck and Kerber, 1977). In a report, an APR QTL
QSr.cim-6DL was mapped on chromosome 6DL. In our study,
QSr.ramp-6D was identified as an ASR loci which could be in
close proximity of Sr29.

The telomeric region of chromosomes 2AL and 7DS bears
significant importance in YR resistance along with other resistant
systems for barley yellow dwarf virus, powdery mildew and
fusarium head blight (Boukhatem et al., 2002). Apart from the
three known YR seedling resistance genes viz. Yr1 (Bansal et al.,
2009), Yr32 (Eriksen et al., 2004), and YrJ22 (Chen et al., 2016),
a recently identified and temporarily designated YR seedling
resistance gene YrH9017 (Dong-fang et al., 2019) has been
found on chromosome 2AL. None of the genotypes in the
panel harbored these genes based on their pedigree and race-
specific gene postulations. Instead, an unexplored YR APR loci
QYr.ramp-2A.4 (179.61 cM) was observed at the telomeric region
represented by SNP AX-94463225 (764.1 Mb). In co-localization
to which, a LR APR loci QLr.ramp-2A.5 (AX-94995671: 779.6
Mb) was observed 33.07 cM and 73.07 cM distal to APR
QTL QLr.ubo-2A (Li et al., 2014) and QLr.hebau-2AL (Zhang
et al., 2017), respectively, in this study. APR loci QYr.ramp-
7D.2 and QLr.ramp-7D.2 on chromosome 7D (6.96-18.37 cM)
were found associated possibly with pleiotropic resistance gene
Lr34/Yr18/Sr57, where SNPs representing these QTL viz. AX-
95205886 (5.38 Mb) and AX-94674448 (72.94 Mb), respectively
being in high LD (D’ = 0.87) are present on the short arm
of chromosome 7D based on the IWGSC RefSeq v1.0 (Appels
et al., 2018) reference physical map. The association to this
pleiotropic gene can be further supported by the fact that forty
genotypes in the current study panel were characterized for Lr34
in a previous report (Pawar et al., 2013). When compared to
90K SNP array, 35K SNP array used in this study was able to
capture association with this pleiotropic resistance gene, since
none of the 90K SNP markers are known to be linked to this
gene (Muleta et al., 2017b). Since this array is capable of capturing
conserved regions associated with yield-related traits present on
the 1RS.1BL translocation region (Luján Basile et al., 2019) and
was designed using wild relatives (Allen et al., 2017), provided an
advantage over the most utilized 90K SNP array.

Evidence of true QTL can be derived from the results of
having significant associations seen in at least two pathotypes or
environments for a rust type (Edae et al., 2018). Validation of
markers associated with these QTL can be done by comparing
them with the positions of the markers of previously mapped
QTL (Pasam et al., 2012; Hwang et al., 2014; Kertho et al.,
2015; Maccaferri et al., 2015a). In this study, MTAs found
associated with multiple pathotypes may be broadly useful in the
enhancement of future germplasm and breeding programs (Liu
et al., 2017). Accumulation and detection of favorable resistance
alleles often pose challenges in the breeding program upon

consideration (Riaz et al., 2018). In our study, a large number
of favorable resistant alleles were detected in some landraces
and these showed moderate to resistant behavior against the
three rusts. As a separate observation, SNP AX-94394356,
AX-94674448, and AX-95176310 being the QTL representing
markers in field response against LR, had a poor percentage
of resistance alleles accumulated in improved genotypes and
released varieties when compared to landraces, in the panel.
Similarly, AX-94608698, AX-95226309, AX-94485764, and AX-
94805944 observed for SR field response, had more accumulated
favorable alleles in landraces than that in other genotype
categories. Such observations were not distinctively visible in case
of YR response. This observation is possible when these favorable
alleles have accumulated in landraces over time with varying
frequencies (Riaz et al., 2018). The concept of ‘Speed breeding’
introduced (Watson et al., 2018) with the aim of utilizing
latest advancements in phenotyping and high throughput data
generation, can be helpful in developing rust-resistant wheat
cultivars at an accelerated rate (Hickey et al., 2012; Riaz et al.,
2016). To determine the identified QTL to be potentially novel
or are associated with previously mapped QTL, allelism tests
will be required.

Breeders engaged in wheat genetic improvement have a keen
interest in looking for desirable parents or donor lines to
enrich their crossing block. While grain yield is prime focus
area along with end product making quality parameters, yet
stabilization of yield potential through tolerance against abiotic
and biotic stresses will always be a major concern. Therefore,
any information on diverse or novel sources of resistance, in
this case against the three rusts, is of considerable importance
to the breeders. Since wheat cultivation in India corresponds to
many of the agro-climatic regions growing wheat globally, the
information becomes universally important in combating rust
diseases. Our finding of hitherto less utilized sources of stripe, leaf
and stem rust viz. IC321918, IC212153AMB, IC321998, H957,
LBRL4, and some exotic lines shall attract the attention of the
wheat breeders. When present alone, the APR genes/QTL do not
confer adequate resistance especially under high disease pressure;
however, combinations of 4 or 5 minor genes usually result in
“near-immunity” or a high level of resistance (Singh et al., 2014).
Increasing the frequency of QTL for rust resistance through
divergent crossing in the population improvement program of
wheat can provide durable rust resistance by broadening the
genetic base for resistance. The pleiotropic QTL can confer slow
rusting resistance against the three rusts of wheat. Bi-parental and
multi-parent populations developed using resistant landraces and
modern varieties shall enable toward this endeavor.
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FIGURE S1 | Heatmap of correlation coefficients showing the correlation between
the 18 pathotypes representing the three rusts used in the study. The magnitude
of the correlation is represented by the color gradient legend on the right side of
the heatmap. Significant correlations are marked as ∗(p < 0.05), ∗∗(p < 0.01), and
∗∗∗(p < 0.001).

FIGURE S2 | GGE Biplot representing variations explained in the first two principal
components for field disease response against YR, LR, and SR. Concentric circles
represent the ranking of genotypes with respect to being an ideal genotype stable
in corresponding environments.

FIGURE S3 | Population stratification study by using principal component analysis
on 483 genotypes in the panel with variation partitioned between the first two
principal components. (A) Two subpopulations observed in STRUCTURE analysis
are represented with separate colors in the PCA plot. Also, (B) different categories
of genotypes in the panel are represented in different colors.

FIGURE S4 | (A) Q-Q plot, (B) Manhattan plot, and (C) minor allele frequency of
the MTAs observed for seedling stage disease response against 18 pathotypes
representing the three rusts using CMLM.

FIGURE S5 | (A) Q-Q plot, (B) Manhattan plot, and (C) minor allele frequency of
the MTAs observed for adult plant field disease response against the three rusts in
different environments using CMLM.

FIGURE S6 | Haplotype analysis of the representative SNPs observed for putative
QTL in the study for (A) stripe rust, (B) leaf rust, and (C) stem rust field responses.
The number and variations in the grayscale represent the percentage magnitude
of LD r2-value between marker pairs.

FIGURE S7 | Hierarchical clustering based dendrogram representing 72
genotypes resistant to multiple rusts. The numbers suffixed to genotypes in
parenthesis represents the total number of favorable alleles observed for field
response based QTL representative SNPs.

TABLE S1 | Avirulence/ virulence formula of predominant Indian wheat rust
pathotypes used in the present study.

TABLE S2 | Nomenclature of environments (12) considered for the evaluation of
field disease response at adult plant stage.

TABLE S3 | Phenotypic evaluation of RAMP at seedling and adult plant stage
for multiple rusts.

TABLE S4 | Basic statistics of disease response on RAMP at seedling and
adult plant stages.

TABLE S5 | Pearson’s Correlation matrix of seedling resistance test (SRT) for
stripe (5), stem (7), and Leaf (6) rust pathotypes.

TABLE S6 | Correlation analysis of phenotypic data for multiple rusts observed in
different environments (p-value ≤ 0.001∗∗∗, 0.01∗∗, 0.05∗).

TABLE S7 | Phenotypic reactions of the 483 genotypes included in the study to
multiple rusts at seedling and adult stage, grouped based on population structure.

TABLE S8 | Marker trait associations (MTAs) observed at seedling stage for Rust
pathotypes in RAMP at −log10P ≥ 3.

TABLE S9 | Putative QTLs identified significantly associated with seedling stage
disease response against multiple rust pathotypes.

TABLE S10 | Marker trait associations (MTAs) observed at adult plant stage for
multiple rusts in RAMP at −log10P ≥ 3.

TABLE S11 | Putative QTLs identified significantly associated with adult plant
stage disease response against the three rusts.

TABLE S12 | Putative QTL observed at seedling and adult plant stage for
the three rusts.

TABLE S13 | Distribution of favorable alleles of representative SNPs in 483
wheat genotypes.

FILE S1 | Comparative Q–Q plots of six association models for multiple rust
pathotypes and four environments each for YR, LR, and SR. The CMLM was
observed as the best fit model.
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