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ABSTRACT

Most widely used statistical technique for estimating cause-effect relationships is the Linear regression methodology.
Ordinary least squares (OLS) method, which is valid under certain assumptions, is generally used to estimate the underlying
parameters. If the errors are not homoscedastic, OLS estimates lead to incorrect inferences. In this article, use of the
powerful stochastic optimization technique of Genetic algorithm (GA) is advocated for estimation of regression parameters
and variance parameter simultaneously even when nothing is known about the form of heteroscedasticity. Parametric
bootstrap methodology is employed to obtain standard errors of the estimates. The methodology is illustrated by applying

it to a dataset.

Keywords: Genetic algorithm, Heteroscedasticity, Linear regression model,
White’s general heteroscedasticity test

Linear regression methodology is useful in explaining
cause-effect relationship between a dependent (endogenous
or output) variable, usually denoted by Y, and one or more
independent (exogenous or input) variables, usually denoted
by X, X,,... More technically, linear regression is a method
of estimating the conditional expected value of one variable
Y given the values of some other variable or variables X. A
key feature of all regression models is the error term, which
is included to capture sources of error that are not captured
by other variables. Linear regression models have been
rigorously studied, and are very well understood. They are
only appropriate under certain assumptions, and are often
misused, even in published journal articles.

It is well known that under certain assumptions, the
Ordinary least square (OLS) provides efficient and unbiased
estimates of the parameters. One important assumption is the
homoscedasticity of errors. Unfortunately, the usual practice
is not to make any effort to examine it. Under
heteroscedasticity, it is not advisable to use the OLS estimator.
If we persist with using the usual testing procedures despite
heteroscedasticity, the conclusions or inferences would be
misleading. The proper approach, which is the focus of our
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article, is to use the powerful optimization technique of
Genetic algorithm (GA) for estimation of regression
parameters and variance parameter simultaneously even when
nothing is known about the form of heteroscedasticity. The
GA is a target-oriented parallel search technique, mainly
applied to optimization process searching for universal or
nearly universal extreme values. It processes a population of
individuals, which presents search space solution, employing
three operators, viz. selection, crossover and mutation. A
heartening aspect of GA is that it is capable of obtaining
global optimum solution of parameter estimates.

In the present paper, a brief description of linear
regression models, definition of heteroscedasticity problem,
testing of heteroscedasticity, brief discussion of GA
methodology used to tackle the problem efficiently an
illustration of the methodology for data on expenditure on
total food and total expenditure of 55 rural households from
India are attempted.

MATERIALS AND METHODS

Linear regression model and heteroscedasticity

The linear regression model, in which response variable
(y) is modelled as a linear systematic component plus error,
is typically stated as follows:

y=XB+e (D
where y is an n X 1 vector of observations, X is a fixed matrix
of dimension n x p with full column rank (rank (X) = p<n)
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containing explanatory variables, B = (B,,B,, -...., B) is a p-
vector of unknown linear parameters, and € is an n-vector of
errors, having mean zero and variance ;2. We denote the
covariance matrix of € as X = diag {5,2,06,% ....,0,2}. When
the errors are homoscedastic, 6= 62> 0, i.e. =621, where
I, is an identity matrix of order n. The ordinary least squares
(OLS) estimate of ﬁ is given by ﬁ = (X"X)'X"y, which has
mean ﬁ (i.e. it is unbiased) and variance structure (ﬁ) =V,
with y = 62(X"X).

It is well known that when the assumptions of the linear
regression model are not violated, the OLS provides efficient
and unbiased estimates of the parameters. Heteroscedasticity
occurs when the variance of the errors varies across
observations. When the errors are heteroscedastic, the OLS
estimator remains unbiased, but becomes inefficient. In
addition, the standard errors are biased when
heteroscedasticity is present. This, in turn, leads to bias in
test statistics and confidence-intervals. More importantly,
usual procedures for hypothesis testing are no longer
appropriate. Given that heteroscedasticity is common in cross-
sectional data, methods that correct for heteroscedasticity
are essential for prudent data analysis.

When the form and magnitude of heteroscedasticity are
known, Generalized least squares technique could be
employed to correct for heteroscedasticity. If the form of
heteroscedasticity involves a small number of unknown
parameters, variance of each residual can be estimated first
and these estimates can be used as weights in the second
step. In many cases, however, the form of heteroscedasticity
is unknown, which makes the weighting approach impractical.
When heteroscedasticity is caused by an incorrect functional
form, it can be corrected by making variance-stabilizing
transformations of the dependent variable (Weisberg 2005)
or by transforming both sides (Carroll and Ruppert 1988).

White’s general heteroscedasticity test

Unlike the Goldfeld-Quandt test, which requires
recording the observations with respect to the X variable that
supposedly cause heteroscedasticity, or the Breusch-Pagan-
Godfrey (BPG) test (designed to detect any linear form of
heteroscedasticity), which is sensitive to the normality
assumption, the general test for heteroscedasticity proposed
by H. White does not rely on the normality assumption and
is easy to implement. The White test (Gujarati 2003) proceeds
as follows:

Step 1. Given the data, obtain the residuals ;.

Step 2. The squared residuals from the original regression
are regressed on the original X variables or regressors, their
squared values, and the cross product(s). It is necessary to
add a constant term in this equation even though the original
regression may or may not contain it. Obtain the R? from this
(auxiliary) regression.

Step 3. Under the null hypothesis that there is no
heteroscedasticity, it can be shown that the sample size (n)
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times R? obtained from the auxiliary regression asymptotically
follows the chi-square distribution with degrees of freedom
equal to the number of regressors (excluding the constant
term) in the auxiliary regression. That is,
2 2
n R~ i
asy
Step 4. If the chi-square value obtained in Step 3 exceeds

the critical chi-square value at the chosen level of significance,
the conclusion is that there is heteroscedasticity.

Suggested procedure using Genetic algorithm approach

Fortunately, a very powerful and versatile optimization
technique of Genetic algorithm (GA), motivated by the
principles of genetics and natural selection, has recently
been developed (Goldberg 1989). It is a combination of
Charles Darwin’s principle of ‘natural selection’ and ‘survival
of the fittest’ with computer-constructed evolution mechanism
to select better offspring from the parent population. Then
the information is exchanged randomly among parents,
expecting a superior offspring. Besides, in order to avoid
missing some good species and becoming a local optimization,
several mutations must be processed. In this methodology,
some fundamental ideas of genetics are borrowed and used
artificially to construct search algorithms that are robust and
require minimal problem information. The three operators,
viz. selection, crossover and mutation, make GA an important
tool for optimization. When a string (parameter solution) is
created by GA, it is evaluated in terms of its fitness (objective
function), which is taken to be the Residual sum of squares
(RSS).

Selection operator of GA is performed to identify good
solutions, to make its multiple copies and to eliminate bad
solutions from the population. The most common method of
selection that has better convergence and computational time
efficiency is the Tournament selection (Deb 2002). Since
selection operator cannot create a new solution, the crossover
and mutation operators are used to create a new population
so that global minima may be achieved in succeeding
generations. There exists a number of crossover operators
due to which different string pairs are expected to have some
good bit representation. Such an operator should not be
allowed to use all strings in a population to preserve some
good strings selected during the selection operator. If a
crossover probability p, is used, 100p.% strings in the
population are used in the crossover and rest of the population
is simply copied to the new population.

In real-coded GA, a pair of real-parameter decision
variable vector is used to create a new pair of offspring
vectors by applying crossover operator. Here, an important
operator of this type, called Simulated binary crossover
operator, was developed by Deb and Agrawal (1995). Two
offspring x;(I *D and x,> %D are produced from two parent
solutions x;(.Y and x;%Y, where x,0-Y is the value of i®
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variable of j parent in th generation,i=1,2,...,p;j=1,
2; and t = 1. To this end, after drawing the spread factor 3,
from the probability distribution with mode unity (Deb 2002),
the offspring are calculated as:

XD =0.5 {(1+ Bg) x0 + (1 — Bai) X2} >
X3 D =0.5 {(1 — Bai) ;0 + (1 + Bai)x;>V} -(2)

These offspring are symmetrically distributed and the
points of symmetry are equispaced from the mid-point of
parent solutions. Thus, biasedness towards any particular
parent solution is avoided. Another important aspect of this
crossover operator is that for a fixed nc' the offspring have
a spread which is proportional to that of the parent solution,
ie

Xi<2’ tH) _ Xi(l‘ tH) = qu (Xi(z,t) _ Xi(l‘o) .. (3)

The mutation operator is used to ensure diversity in the
population. It alters a string locally to create a better string
(parameter solution). If certain genes (digits) of all
chromosomes (strings) in the population are identical, their
values will never change after selection and crossover. This
will reduce the chance for some new chromosomes to enter
this population, thereby lending the GA-procedure into the
trap of local optima. To avoid this situation, mutation with
very small probability, say 0.01 is required. In real-coded
GA, mutation operator does the same task as performed by
real parameter crossover operator. The polynomial mutation
operator has the advantage that the probability distribution
does not change with generations, thereby avoiding local
optima and so this mutation operator is used in present study.
It mutates the i variable x;(I #D to y,(I. *D by the
transformation:

Yl D) (L) ¢ {Xi(U)ixi(L) }Sl ()

where §, follows polynomial probability distribution.

The advantage of GA over other optimization methods
is that it works with a population of solutions instead of a
single solution. GA uses probabilistic rules and an initial
random population to guide the search, unlike other traditional
methods which employ fixed transition rules to move from
one solution to another. Another advantage of GA is that it
reduces the overall computational time substantially. The
exploitation and exploration aspects of GAs can be controlled
almost independently. This provides a lot of flexibility in
designing a GA.

RESULTS AND DISCUSSION

As an illustration, data on expenditure on total food
(dependent) and total expenditure (independent), measured
in Rupees, for a sample of 55 rural households from India, as
given in Gujarati (2003), is considered to test presence of
heteroscedasticity, White’s general heteroscedasticity test is
applied to the data. The calculated value of chi-square is
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obtained as 7.29, which exceeds the tabulated value of 5.99
at 5% level of significance, implying presence of
heteroscedasticity. Hence, it is not advisable to apply OLS
for estimation of parameters. Attempts are then made to fit
one variable linear regression equation with heteroscedastic
error of the following form using above described GA
methodology:

o2 =0y + o, X2

To this end, the fitness (objective) function to be minimized
may be written as:

2

é‘,l [(Yi —Bo —BiX; )/Sqrt(% ’r0‘1xi2 )] ...(5)

Relevant computer programmes are developed using C-
language in Microsoft visual C++ compiler and could be
obtained from first author on request. The GA parameters,
viz. population size, crossover probability and mutation
probability for minimization of equation (5), are respectively
computed as 500, 0.9, 0.01 with number of generations as
100. Using above parameter set up, GA has generally
terminated with accuracy level (¢ = 10-3) in 99 out of 100
runs. This confirms that in presence of heteroscedasticity in
linear regression model, the regression coefficients as well
as variance function are successfully estimated
simultaneously using GA-optimization technique. The
standard errors for parameter estimates are obtained using
bootstrap technique. The minimum value of the fitness
function is found as 0.055. The root mean squares error
(RMSE) value is computed as 0.032, which is much lower
than the RMSE values (65.97) obtained through OLS
procedure. The parameter estimates along with estimated
bias and standard errors obtained through GA are reported in
Table 1. It may be noted that the percentage standard errors
throughout is generally quite low, indicating thereby that the
parameters are estimated efficiently.

Utility of genetic algorithm optimization methodology
for fitting of linear regression model with heteroscedastic
errors is highlighted. The proposed procedure is successfully
demonstrated through a dataset. There is no hard and fast
rule for optimum population size for applying this technique
effectively in real life research problems but it is advisable
that there should be at least 30 data points. The significance

Table 1 Parameter estimates with standard errors and estimated

bias
Parameter Estimated  Estimated Standard
value bias error
Regression Bo 135.74 -0.05 8.56
B, 0.35 -0.01 0.09
Variance o 24.92 -0.74 5.78
o, 10.34 -0.16 2.93
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of this work is that this methodology is applicable even in
those cases in which we do not know the form of
heteroscedasticity and Least squares methodology is not
applicable. The results obtained using this technique may be
used for efficient prediction of response variable for a given
value of explanatory variable. Possibility of modifying the
methodology when errors are not independent but follow
autocorrelated AR(1) errors is currently being explored and
the same shall be reported separately in due course of time.
As future research work, methodology needs to be developed
for application of GA to the situation when functional relation
between dependent and independent variables is nonlinear.
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