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Abstract

The conventional ordinary least squares (OLS) variance-covariance matrix estimator for a linear
regression model under heteroscedastic errors is biased and inconsistent. Accordingly, several estima-
tors have so far been proposed by various researchers. However, none of these perform well under the
finite-sample situation. In this paper, the powerful optimization technique of Genetic algorithm (GA)
is used to modify these estimators. Properties of these newly developed estimators are thoroughly
studied by Monte Carlo method for various sample sizes. It is shown that GA-versions of the esti-
mators are superior to corresponding non-GA versions as there are significant reductions in the Total
relative bias as well as Total root mean square error.
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1. Introduction

Linear regression models are widely used in various fields. Though these are primarily
aimed at specifying the mean of a response variable as a function of explanatory variables,
the nature of error variances plays an important role in the estimation and testing of regres-
sion parameters. The ordinary least squares (OLS) variance-covariance matrix estimator is
biased and inconsistent under heteroscedastic errors (Cribari-Neto, 2004). The most com-
monly used heteroscedasticity-consistent covariance matrix estimator (HCCME or HC) is
the one proposed by Halbert White (White, 1980). This estimator, which is also known as
the HC0 estimator, is implemented into a number of statistical software, such as LIMDEP
and SHAZAM, and is commonly used by practitioners. Though White’s paper continues
∗1559-8608/08-1/$5 + $1pp – see inside front cover
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to have a profound impact, Monte Carlo evidence indicates that the HC0 estimator can be
considerably biased in finite samples and that it tends to underestimate the true variances,
thus leading to the liberal associated quasi-t tests. Therefore, Cribari-Neto et al. (2000)
developed a bias-correction scheme for the above estimator. Other estimators proposed
are: HC1 estimator (Hinkley, 1977), HC2 estimator (MacKinnon and White, 1985), HC3
estimator (Davidson and MacKinnon, 1993), and HC4 estimator (Cribari-Neto, 2004). In
terms of Error in rejection probability (ERP), the HC0 estimator is outperformed by the
HC1 estimator, which in turn is outperformed by the HC2 and HC3 estimators. However,
these last two estimators can not generally be ranked, although the HC3 estimator is shown,
in a number of Monte Carlo experiments, to be superior in typical cases. Even if the HC2
and HC3 estimators perform better than the HC0 and HC1 estimators in finite samples, their
ERPs are still quite large. The HC4 estimator plays an important role in testing of regres-
sion parameters but it performs poorly in estimation. All the above mentioned estimators
have been studied through the resampling method, which does not guarantee any limiting
property analogous to that of the true estimator. Accordingly, it makes sense to consider
whether the bootstrap methods might be used to improve poor small sample performance in
estimation of OLS variance-covariance matrix. To this end, Wu (1986) proposed a weighted
bootstrap (wboot) estimator of OLS, which is consistent but biased under heteroscedasticity
of unknown form.

In this paper, we propose a set of new estimators for variance-covariance matrix using
a recently developed optimization technique, viz. Genetic algorithm (GA). Since OLS es-
timators do not take into account the heteroscedasticity aspect, a linear model under het-
eroscedasticity may be transformed to a standard linear model when the variance-covariance
matrix is known, and to a nonlinear model, otherwise. For the latter case, GA is applied to
estimate the regression and variance parameters simultaneously. After estimating the for-
mer by GA, the squared residuals are used to modify the HCCMEs and the modified ones
are denoted respectively as the HC0-GA, HC1-GA, HC2-GA, HC3-GA, HC4-GA estimators.
Further, a modified wboot estimator, denoted by wboot-GA, is also proposed by using the
GA residuals. The proposed estimators are thoroughly studied by the Monte Carlo method
for various sample sizes and their superiority over existing ones is demonstrated using the
two criteria, viz. Total relative bias, and Total root mean square error (Total RMSE).

2. The model and estimators

The linear regression model, in which response variable (yyy) is modeled as a linear sys-
tematic component plus error, can be expressed as

yyy = Xβββ + ε (2.1)

where yyy is an n×1 vector of observations, X is a fixed matrix of dimension n× p with full
column rank (rank(X) = p < n) containing explanatory variables, βββ = (β1,β2, . . . ,βp)′ is
a p-vector of unknown linear parameters, and εεε is an n-vector of errors, having mean zero
and variance σ2

i . We denote the covariance matrix of ε as Σ = diag{σ2
1 ,σ2

2 , . . . ,σ 2
n }. When

the errors are homoscedastic, σ2
i = σ2 > 0, i.e. Σ = σ2In, where In is the identity matrix of

order n. The OLS estimator of β̂ββ is given by β̂ββ = (X ′X)−1X ′yyy, which has mean βββ (i.e. it is
unbiased) and variance var(β̂ββ ) = (X ′X)−1X ′ΣX(X ′X)−1 = ψ , say.



A Bootstrap Study of Variance Estimation under Heteroscedasticity 57

The most commonly used consistent estimator for ψ is the HC0 estimator:

ψ̂ = (X ′X)−1X ′Σ̂X(X ′X)−1 (2.2)

where Σ̂ = diag{e2
1,e

2
2, . . . ,e

2
n}, i.e. Σ̂ is a diagonal matrix formed out of the vector of squared

OLS residuals. However, this estimator can be substantially negatively biased in small sam-
ples (MacKinnon and White, 1985). In order to overcome this shortcoming, several other
estimators have been proposed. The HC1 estimator uses

Σ̂ = n/(n− p)diag{e2
1,e

2
2, . . . ,e

2
n} (2.3)

It thus includes a finite-sample correction, namely n/(n− p), which accounts for the fact
that the OLS residuals tend to fluctuate less than the unknown errors. The HC2 estimator
employs

Σ̂ = diag{e2
1/(1−h1),e2

2/(1−h2), . . . ,e2
n/(1−hn)} (2.4)

where hi is the ith diagonal element of the‘hat matrix’ H = X(X ′X)−1X ′, i = 1,2, . . . ,n.
The quantities hi are usually viewed as a measure of the leverage of corresponding observa-
tions.

Since statistical inference based on data resampling has drawn great attention, ordinary
jackknife variance estimator for β̂ββ was proposed by Miller (1974). Since this estimator ne-
glected the unbalanced nature of heteroscedastic data, Hinkley (1977) proposed a “Weighted
jackknife variance estimator”, which is identical with the HC1 estimator. Further improve-
ment towards robustness for estimating Var(β̂ββ ) was suggested by Wu (1986), which is called
the “Weighted delete-one jackknife variance estimator”:

v j(1) =
n

∑
i=1

(1−hi)(β̂ββ (i)− β̂ββ )(β̂ββ (i)− β̂ββ )′ (2.5)

or equivalently

v j(1) = (X ′X)−1
n

∑
i=1

(1−hi)−1e2
i xix′i(X ′X)−1 (2.6)

where β̂ββ (i) is the OLS estimator of βββ with the ith observation deleted, ei = yi− x′i β̂ββ is the
ith residual and hi = x′i(X ′X)−1xi, x′i is the ith row of X . Wu (1986) showed that

E(e2
i ) = (1−hi)σ2

i +O(n−1),

which leads to

E(v j(1)) = Var(β̂ββ ){1+O(n−1)} (2.7)

Hoaglin and Welsch (1978) used the diagonal elements h1,h2, . . . ,hn of the hat matrix H =
X(X ′X)−1X ′ as a measure of leverage of n observations, since hi = ∂ ŷi/∂yi, where ŷi is the
ith fitted value. As noted by Davidson and MacKinnon (1993):

β̂ββ (i) = β̂ββ −{1/(1−hi)}(X ′X)−1x′iei, i = 1,2, . . . ,n (2.8)

It follows that, when ei is large and/or (1− hi) is small (i.e., hi is large), effect of the ith
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observation on at least some of the elements of β̂ββ is likely to be sizable. We can also write

x′iβ̂ββ (i) = x′iβ̂ββ −{hi/(1−hi)}ei, i = 1,2, . . . ,n (2.9)

thus implying that the change in the ith fitted value caused by omission of observation i
equals−eihi/(1−hi). As a direct consequence, change in the ith residual is {hi/(1−hi)}ei.
Hence, it is quite meaningful to obtain an estimator of variance of β̂ββ through jackknifing
in such a way that the OLS estimator obtained by deleting high leverage point will get a
low weight as in eq. (2.5). Accordingly, an alternative estimator, widely known as the HC3
estimator, with superior finite-sample behavior, was defined by modifying Σ̂ appearing in
eq. (2.2) as

Σ̂ = diag{e2
1/(1−h1)2,e2

2/(1−h2)2, . . . ,e2
n/(1−hn)2} (2.10)

It discounts the squared OLS residuals more heavily and provides a close approximation
to the jackknife estimator considered by MacKinnon and White (1985). The finite-sample
corrections included in the definition of the HC2 and HC3 estimators are therefore based on
the degrees of leverage of different observations.

Another estimator proposed by Cribari-Neto (2004), known as the HC4 estimator, uses

Σ̂ = diag{e2
1/(1−h1)δ1 ,e2

2/(1−h2)δ2 , . . . ,e2
n/(1−hn)δn} (2.11)

where δi = min{4,hi/h̄}, and h̄ = n−1
n
∑

i=1
hi. The exponent controls the level of discounting

for observation i and is given by the ratio between hi and the average of hi’s. Since δi > 0,
it follows that 0 < (1− hi)δi < 1. Hence, the ith squared OLS residual is more strongly
inflated, when hi is large relative to h̄. However, when hi/h̄ > 4 (i.e. hi > 4p/n), δi = 4;
thus maximum amount of discounting is restricted to 4.

3. Genetic algorithm optimization procedure

Monte Carlo evidence shows that the HCCMEs described in previous section tend to
display poor finite-sample behavior in terms of the downward bias when the design matrix
X contains high leverage points. As mentioned in the Introduction section, the resultant
model is nonlinear when variance-covariance matrix is unknown. Generally, Levenberg-
Marquardt’s nonlinear estimation procedure is used to obtain the parameter estimates. This
is an iterative method and requires initial values. The procedure is repeated till conver-
gence takes place. Nevertheless, it may converge to a local optimum. This problem may
be avoided by using GA, which is a Stochastic search and optimization procedure motivated
by the principles of genetics and natural selection. Some fundamental ideas of genetics are
borrowed and used artificially to construct the search algorithms that are robust and require
minimal problem information. The working principle of GA is very different from that of
the classical optimization techniques. We first discuss the binary-coded GA in short and
then shift our attention to real-coded GA, which is used in the present study. The first step
of GA is to encode the parameter values into an appropriate range with finite-length digital
strings (i.e. chromosomes, usually binary strings of length α). A widely used formula for
decoding is
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c = L+{A/(2B−1)}× (U−L) (3.1)

where c is the encoded value of a chromosome, U and L are the upper and lower bounds of
the parameter to be estimated, and A and B are respectively the decoded value and number
of digits of the chromosome.

The three operators, viz. Selection, crossover, and mutation make GA an important tool
for optimization. When a string or a parameter solution is created by GA, it is evaluated in
terms of its fitness, which is the Residual sum of squares (RSS). Selection operator of GA
is performed to identify good solutions, to make its multiple copies and to eliminate bad
solutions from the population. There exists a number of ways to achieve the above tasks.
Some common methods are: Tournament selection, Proportionate selection, and Ranking
selection (Deb, 2002). The most common method of selection that has better convergence
and computational time efficiency is the Tournament selection. Since selection operator can
not create a new solution, the crossover and mutation operators are used in mating pool to
create a new population. There exists a number of crossover operators in the GA literature.
Different string pairs are expected to have some good bit representation. This is because only
α pairs of different string representations are possible to be created and the pairs of strings
used in crossover have already survived selection pressure. If bad solutions are created, they
get eliminated in the next selection operation and hence have a short life. The crossover
operator should not be allowed to use all strings in a population in order to preserve some
good strings selected during the selection operator. If a crossover probability pc is used,
100 pc% strings in the population are used in the crossover and rest of the population is
simply copied to the new population. The mutation operator is used to ensure diversity
in the population. It alters a string locally to create a better string (parameter solution).
If certain genes (digits) of all chromosomes (strings) in the population are identical, their
values will never change after selection and crossover. This will reduce the chance for some
new chromosomes to enter this population, thereby lending the GA procedure into the trap
of local optima. To avoid this situation, mutation with very small probability, say 0.01 is
required.

When the binary-coded GA is used to handle problems having a continuous search space,
a number of difficulties arise. One of these is that of Hamming cliffs, which causes artificial
hindrance to a gradual search. The other difficulty is its inability to achieve any arbitrary pre-
cision in arriving at the optimal solution. Thus, the crossover operator used in binary coding
needs to be redesigned in order to increase the propagation of more meaningful schemata
pertaining to a continuous search space. Since real parameters are used directly (without
any string coding), solving a real-parameter optimization problem is easier as compared to
one with a binary-coded GA. To use the selection operator in real-coded GA, the Tournament
selection is generally employed. Here, tournaments are played between two solutions and
the better solution is chosen and placed in the mating pool. The process is continued and
the set of solutions with improved fitness value is obtained in the next generation. A pair
of real-parameter decision variable vector is used to create a new pair of offspring vectors
and a decision variable vector is perturbed to a mutated vector in a meaningful manner, as
discussed below.
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3.1. Crossover operator

Search power of a crossover operator is defined as a measure of flexibility of the oper-
ator to create a pair of offspring in the search space. The design of crossover operator is
characterized by the spread factor β (Deb, 2002) as

β = |(c1− c2)/(p1− p2)| (3.2)

where ci’s and pi’s are the offspring and parent points respectively, i = 1,2. Crossover oper-
ators having spread factor β < 1, β = 1 and β > 1 are called the Contracting, Stationary and
Expanding crossovers respectively. Specifically, we first consider those two parent strings
of length α , which are crossed at a site k ∈ (0,α−1) from the rightmost bit. Represent two
parent strings as ai,bi ∈ (0,1), whose decoded values are:

x1 =
α−1

∑
i=0

ai2i, x2 =
α−1

∑
i=0

bi2i

Using the property of single-point crossover operator, decoded values of offspring strings
become

y1 =
k−1

∑
i=0

bi2i +
α−1

∑
i=k

ai2i, y2 =
k−1

∑
i=0

ai2i +
α−1

∑
i=k

bi2i

It is easy to show that the mean of parent point is same as that of the offspring point. Thus,
we can write the spread factor β as

β (k) = {1−ξ (k)}/{1+ξ (k)}
where

ξ (k) =
k−1

∑
i=0

ui2i
/α−1

∑
i=k

ui2i, ui = (ai−bi), for i = 0,1, . . . ,(α−1).

Substituting ui = 1, we obtain the following expression for β :

β (k) = 1−2(2k−1)/(2k−1)≈ 1−2(−α+1)2k (3.3)

For a particular value of β , the number of cross-sites that will produce spread factor β in the
range (β ,β +dβ ) is obtained by calculating the slope dk = 1/|dβ/dk|β dβ . The frequency
of cross-sites may be considered as a probability distribution of β in the limiting case as
dβ → 0. Hence, by differentiating eq. (3.3) with respect to k and substituting the expression
for k in terms of β , we obtain

C(β ) = ω/(1−β ) (3.4)

where C(β ) is the probability of occurrence of β , and ω is a constant. The functional form
of the above distribution for 0≤ β ≤ 1 is shown in Figure 1. As β is increased towards one,
probability increases and this is true for the other values of ui, i = 0,1,2, . . . ,(α − 1). For
each contracting crossover with spread factor β , there exists an expanding crossover with
the spread factor 1/β obtained by treating an offspring as parent and vice-versa. Thus for
expanding crossover, i.e. β > 1, we obtain the probability of occurrence of spread factor
between β and (β +dβ ) the same as that of the contracting crossover with the spread factor



A Bootstrap Study of Variance Estimation under Heteroscedasticity 61

between 1/(β +dβ ) to 1/β . Therefore

ε(β )[(β +dβ )−β ] = C(1/β )[1/β −1/(β +dβ )]

Taking limits as dβ → 0, a straightforward algebra yields

ε(β ) = C(1/β )/β 2 (3.5)

Thus, the probability density function for the expanding crossover β is:

ε(β ) = ω/{β (β −1)} (3.6)

which is also plotted in Figure 1. As the probability of creating the offspring strings having
a large β is small, the probability of creating offspring points closer to parent points is larger
than that of the points far away from parents.

Figure 1. Probability density function of contracting and expanding crossovers

In order to simulate the crossover operator of a single-point binary crossover directly
on real variables, a crossover operator that uses a similar probability distribution, called
Simulated binary crossover (SBX) operator, was developed by K. Deb in 1995. It works with
two parent solutions and creates two offspring. The procedure of computing the offspring
x(1,t+1)

i and x(2,t+1)
i from parent solutions x(1,t)

i and x(2,t)
i , where x( j,t)

i is the value of ith
variable of jth parent in tth generation, i = 1,2, . . . , p; j = 1,2; and t ≥ 1 is described below.
By drawing a rectangular random variable over [0,1] and using

βqi =

{
(2ui)−(ηc+1) if ui ≤ 0.5

{2(1−ui)}ηc+1, otherwise
(3.7)

the probability distribution of the spread factor βi in ith variable, similar to that in the single-
point crossover in binary-coded GA, is obtained. Specifically, the probability density func-
tion of βi is (Deb and Agrawal, 1995):

P(βi) =

{
0.5(ηc +1)β ηc

i , if βi ≤ 1

0.5(ηc +1)(1/βi)ηc+2, otherwise
(3.8)

where ηc is a nonnegative real number. These are better approximations for C(β ) and ε(β ),
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when ηc is large, which gives higher probability for creating ‘near-parent’ solutions, while
its small value allows distant solutions to be selected as an offspring. So, a moderate value
of ηc, say in the range 2 to 5, is chosen. After obtaining βqi from eq.(3.8), the offspring are
calculated as follows:

x(1,t+1)
i = 0.5{(1+βqi)x

(1,t)
i +(1−βqi)x

(2,t)
i }

x(2,t+1)
i = 0.5{(1−βqi)x

(1,t)
i +(1+βqi)x

(2,t)
i } (3.9)

It may be noted that βqi satisfies the relation

x(2,t+1)
i − x(1,t+1)

i = βqi{x(2,t)
i − x(1,t)

i } (3.10)

Eq. (3.9) implies that the two offspring are symmetrically distributed and the points of sym-
metry are equi-spaced from the mid-point of parent solutions. Thus, biasedness towards any
particular parent solution is avoided.

3.2. Mutation operator

The Mutation operator does the same task as performed by the real parameter crossover
operator. The only difference between the two is that the former perturbs every parent
parameter solution to create a new population while the latter perturbs two parent param-
eter solutions at a time to produce two new offspring. With only one parent, a range of
perturbation must be predefined. There are several mutation operators, like Polynomial,
Random, and Non-uniform. However, one advantage of the Polynomial mutation operator
is that the probability distribution does not change with the generations, thereby avoiding
local optima. Therefore, in our study, we shall be employing this operator. It mutates the ith
variable x(1,t+1)

i to y(1,t+1)
i by the transformation:

y(1,t+1)
i = x(1,t+1)

i +{x(U)
i − x(L)

i }δ̄i (3.11)

where δ̄i follows the Polynomial probability distribution

P(δ ) = 0.5(ηm +1)(1−|δ |)ηm , |δ | ≤ 1, and ηm ≥ 0

The parameter ηm is responsible for controlling the shape of probability distribution of
y(1,t+1)

i .

4. Development of new estimators using genetic algorithm

In the presence of heteroscedasticity, if we ignore the effect of estimation of the variance-
covariance matrix of OLS through conventional statistic, it will lead to an invalid inference
of the regression parameters. All attempts made so far to improve the finite-sample relia-
bility of the HC estimators considered use of leverage-based modifications. An advantage
of GA technique is that it is capable of estimating the regression and variance parameters
simultaneously. The residuals obtained through GA are expected to estimate σ2

i with re-
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duced bias as compared to those obtained through OLS residuals. Therefore, we propose
a modification of existing estimators by using squared OLS residuals obtained through GA
technique and study their finite-sample properties. The modified forms for estimator of Σ,
viz. HC0-GA, HC1-GA, HC2-GA, HC3-GA, HC4-GA are respectively as follows:

Σ̂GA = diag{e2
GA1,e

2
GA2, . . . ,e

2
GAn},

Σ̂GA = n/(n− p)diag{e2
GA1,e

2
GA2, . . . ,e

2
GAn},

Σ̂GA = diag{e2
GA1/(1−h1),e2

GA2/(1−h2), . . . ,e2
GAn/(1−hn)},

Σ̂GA = diag{e2
GA1/(1−h1)2,e2

GA2/(1−h2)2, . . . ,e2
GAn/(1−hn)2},

and

Σ̂GA = diag{e2
GA1/(1−h1)δ1 ,e2

GA2/(1−h2)δ2 , . . . ,e2
GAn/(1−hn)δn},

where eGAi, i = 1,2, . . . ,n are the residuals obtained after fitting the nonlinear model through
GA.

5. Comparison of estimators through bootstrap simulation

Numerical results show that the estimators based on asymptotic HCCMEs can be se-
riously misleading for small samples (Flachaire, 2005). Instead of recomputing the point
estimator by deleting observation(s) each time, bootstrap estimators are considered due to
their limiting property analogous to that of the true estimator. Two methods are consid-
ered here for studying the performance of estimators of OLS variance-covariance matrix
under heteroscedasticity for regression model (2.1). In the first method discussed below,
performance of the HCCMEs is studied based on drawing i.i.d. samples {u∗i }n

1 from the
normalized residuals {ei/(1− pn−1)1/2}n

1, where ei = yi − x′i β̂ββ is the ith OLS residual.
Define the ith bootstrap observation y∗i = x′iβ̂ββ + u∗i by treating β̂ββ as “true” parameter and
{ei/(1− pn−1)1/2} as the “population” of residuals. From each bootstrap replication, the
HCCMEs are computed.

We now study the performance of newly proposed estimators by modifying the above
mentioned bootstrap resampling method through GA. In this case, β̂ββ and ûGA are treated
as “true” parameter and “population” of residuals respectively, where ûGAi = {eGAi/(1−
pn−1)1/2} and eGAi = (yi − x′iβ̂ββ GA) is ith residual obtained through fitting of nonlinear
model using GA. A large number, say B of bootstrap samples each of size n are constructed
by drawing i.i.d. samples {u∗GAi}n

1 from the population of GA residuals ûGAi and y∗i , the
ith response variable is calculated using y∗i = x′iβ̂ββ + û∗GAi. From each bootstrap replication,
residuals are obtained through GA. These GA residuals are used to compute different esti-
mators, viz. HC0-GA, HC1-GA, HC2-GA, HC3-GA and HC4-GA for Var(β̂ββ ). This method,
however, does not adapt well to the possibility of heteroscedasticity.

The second method of resampling residuals to construct the bootstrap estimator, pro-
posed by Wu (1986), which is consistent for both homoscedasticity and heteroscedasticity



64 Himadri Ghosh, M. A. Iquebal & Prajneshu

of unknown form, is as follows:

(i) A master data set is generated using the heteroscedastic model. Now, the model is
fitted using OLS method to get regression parameter estimator β̂ββ and residual e

(ii) For each i, i = 1,2, . . . ,n, draw a random number t∗i from a population with mean zero
and variance one

(iii) Construct a bootstrap sample (y∗,X), where y∗i = x′iβ̂ββ + t∗i ei/
√

(1−hi), x′i denoting
the ith row of X

(iv) Compute OLS estimator of βββ as β̂ββ
∗
= (X ′X)−1X ′y∗

(v) Another bootstrap sample (y∗∗,X) is constructed, where y∗∗i = x′iβ̂ββ
∗
+t∗∗i e∗i /

√
(1−hi),

and e∗i is the ith residual generated from fitted model to bootstrap sample in Step (iii)

(vi) Variance of β̂ββ
∗∗

= (X ′X)−1X ′y∗∗ is computed as

v∗ = (X ′X)−1
n

∑
i=1

(e∗i )
2/(1−hi)xix′i(X

′X)−1

(vii) Repeat Steps (iii) to (vi) a large number of times, say, B.

In respect of regression model given in Step (v), the variance-covariance matrix of β̂ββ
∗∗

given in Step (vi) is known as the “Weighted bootstrap (wboot) estimator”. The above
bootstrap method is modified using the residuals obtained from GA to study the quantum of
reductions of the Total relative bias and Total RMSE for Var(β̂ββ ). Thus, Steps (iii) and (v)-
(vi) are respectively modified on replacing ei by eGAi, and e∗i by e∗GAi, where eGAi’s and e∗GAi
are respectively the GA residuals generated from fitted model to master data and bootstrap
sample. Accordingly, in respect of the modified regression model given in modified Step (v),
variance-covariance matrix of β̂ββ

∗∗
given in Step (vi) is known as the “Weighted bootstrap-

GA (wboot-GA) estimator”.
The numerical results are obtained using the model:

yi = β1 +β2xi +σiεi, i = 1,2, . . . ,n (5.1)

To obtain the heteroscedastic data, we consider

σ2
i = exp{γxi + γx2

i }
for different values of γ , viz. γ = 0.0,0.04,0.08,0.12. The degree of heteroscedasticity can
be expressed using λ = (maximum σ2

i )/(minimum σ 2
i ), where λ = 1 under homoscedastic-

ity and λ > 1, otherwise. The sample sizes considered are n = 50,100,150. When n = 50,
the values of xi are independent random draws from a lognormal distribution. These obser-
vations are each replicated twice and thrice respectively, when n = 100 and 150. The errors
εi follow i.i.d N(0,1) distribution. Using β1 = 1, and β2 = 0, the master data set is generated.
The number of bootstrap replications is 999. The Total relative bias is defined as the sum of
absolute values of individual relative biases of estimated variances of β1 and β2, where the
individual relative bias is the difference between means of all variances and true variance
divided by the true variance. Further, the Total RMSE is defined as the square root of sum of
mean square errors of β1 and β2. Using the above mentioned bootstrap methods, the Total
relative bias and Total RMSE for the existing estimators, viz. HC0, HC1, HC2, HC3, HC4
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and wboot estimators are computed. As there is hardly any difference in the results obtained
in respect of the HC1 and HC2 estimators, results for the former, in subsequent discussion,
are omitted to save space.

The Total relative bias using OLS residuals for the HC0, HC2, HC3, HC4 and wboot
estimators are computed and reported in Table 1. A perusal shows that it generally decreases
as the sample size increases, but for a fixed sample size, it increases as the heteroscedasticity
increases. For instance, when n = 50 and γ = 0.12, the Total relative bias of the HC0, HC2,
HC3, HC4, and wboot estimators are 0.58, 1.44, 0.36, 1.88, and 0.32 respectively. But with
increase in the sample size (from 50 to 150) and the same level of heteroscedasticity, the
Total relative bias reduces to 0.21, 0.97, 0.15, 1.00, and 0.14 respectively. However, its rate
of increase corresponding to various levels of heteroscedasticity decreases as the sample
size increases. For instance, the Total relative bias for the HC3 estimator increases from
0.21 to 0.36, 0.15 to 0.24, and 0.09 to 0.15, when n = 50,100, and 150 respectively. The
HC4 estimator provides most biased results, followed respectively by the HC2 and HC0
estimators. Further, the Total relative bias is minimum in the case of the HC3 and wboot
estimators, except for the case of homoscedasticity (i.e. γ = 0.0) for the HC0 estimator. For
instance, when n = 50, and γ = 0.08, the Total relative bias for the HC0, HC2, HC3, HC4,
and wboot estimators are 0.47, 1.40, 0.36, 1.88, and 0.32 respectively.

Table 1. Total relative bias (using residuals obtained through OLS)

n γ λ HC0 HC2 HC3 HC4 wboot

50

0.00 1.00 0.1936 0.6125 0.2123 0.6783 0.2195

0.04 4.57 0.3255 0.9065 0.2866 1.1881 0.2725

0.08 20.86 0.4739 1.4044 0.3146 1.6238 0.3119

0.12 95.27 0.5867 1.4434 0.3610 1.8884 0.3217

100

0.00 1.00 0.1083 0.4319 0.1571 0.4071 0.1073

0.04 4.57 0.2472 0.9123 0.1967 0.9534 0.1744

0.08 20.86 0.2922 0.9816 0.2249 1.0274 0.1741

0.12 95.27 0.3177 1.1349 0.2465 1.2033 0.2311

150

0.00 1.00 0.0877 0.3977 0.0987 0.3001 0.0916

0.04 4.57 0.1114 0.5916 0.1079 0.6492 0.1038

0.08 20.86 0.1954 0.7083 0.1437 0.7178 0.1347

0.12 95.27 0.2166 0.9706 0.1573 1.0017 0.1469

We now describe the procedure for computation of the Total relative bias in respect of
GA-versions of the above estimators. The model used for fitting through the Real-coded
GA is

y1i = x1iβ1 + x2iβ2 + εi, i = 1,2, . . .n (5.2)

where y1i = yi/σi, x1i = 1/σi, x2i = xi/σi. Now, the transformed model is nonlinear in the
parameters. Using GA, we can compute the estimators for regression parameters βββ and
variance parameter γ simultaneously, which in turn is used to obtain σ̂i. During the GA
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process, the objective (fitness) function, which is to be minimized, is:

n

∑
i=1

(y1i− x1iβ1− x2iβ2)
2 (5.3)

The real-coded GA with SBX operator for ηc = 2 is applied for simulation study. The GA
parameters, viz. population size, crossover probability, and mutation probability for mini-
mization of eq.(5.3) are taken as 50, 0.9, 0.01 respectively and the number of generations is
100. The GA terminated with an accuracy level of 10−3 in generally 9 out of 10 runs. This
shows that the GA methodology is successful in fitting the linear regression models with
heteroscedastic errors.

By drawing a large number, say B = 999 of i.i.d. samples each of size n (= 50, 100
and 150) from “population” of GA residuals ûGAi, 999 bootstrap samples are constructed.
From each bootstrap replication using the real-coded GA, the residuals are computed to
obtain various estimators, viz. HC0-GA, HC1-GA, HC2-GA, HC3-GA, and HC4-GA for
Var(β̂ββ ). Also, by performing modified weighted bootstrap using residuals obtained through
GA, a set of wboot-GA variance estimators is obtained. The Total relative bias for each
estimator is computed and presented in Table 2. It may be pointed out that the GA-versions
of all the estimators perform much better than their corresponding non-GA counterparts.
For example, the Total relative bias is 33% less for the wboot-GA estimator as compared
to that of the wboot estimator. The simulation study shows that the improvement through
the GA-versions is more marked in the presence of heteroscedasticity. Further, the wboot-
GA estimator generally performs best followed respectively by the HC3-GA and HC0-GA
estimators, except for some homoscedastic situations. It may be noted that almost same
amount of reduction in the Total relative bias by the wboot estimator can be achieved by
using the GA-version of the HC0 estimator. The added advantage of the latter is that it is
computationally much easier than the former.

Table 2. Total relative bias (using residuals obtained through GA)

n γ λ HC0-GA HC2-GA HC3-GA HC4-GA wboot-GA

50

0.00 1.00 0.1883 0.4318 0.2191 0.4378 0.2157

0.04 4.57 0.2253 0.5905 0.1830 0.5786 0.1524

0.08 20.86 0.2754 0.6617 0.2077 0.6498 0.1859

0.12 95.27 0.4155 0.8192 0.2634 0.8034 0.2279

100

0.00 1.00 0.1793 0.3851 0.1809 0.3119 0.1782

0.04 4.57 0.1491 0.4788 0.1384 0.4769 0.1195

0.08 20.86 0.1974 0.5997 0.1437 0.5734 0.1248

0.12 95.27 0.2123 0.6139 0.1739 0.6267 0.1466

150

0.00 1.00 0.0952 0.3151 0.0962 0.3037 0.0936

0.04 4.57 0.1048 0.3747 0.1031 0.3945 0.1015

0.08 20.86 0.1156 0.4987 0.1072 0.5152 0.1061

0.12 95.27 0.1284 0.5535 0.1089 0.5338 0.1073
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The Total RMSE (using residuals obtained through OLS) for various variance estimators
are presented in Table 3. It may be pointed out that the HC0 estimator has smallest Total
RMSE followed by that of the wboot estimator while the HC2 and HC4 estimators generally
perform poorly. Table 4 depicts the Total RMSE for the GA-versions of various estimators.
A perusal shows that these provide a good improvement over the corresponding conven-
tional estimators. For instance, when n = 150 and γ = 0.12, the Total RMSE for the HC0,
HC2, HC3, HC4 and the wboot estimators are 0.20, 0.32, 0.24, 0.28 and 0.25 respectively,
which are decreased to 0.17, 0.26, 0.18, 0.24 and 0.20 respectively for the HC0-GA, HC2-
GA, HC3-GA, HC4-GA and wboot-GA estimators. It is noticed from Table 4 that the HC0-
GA estimator generally performs best followed by the wboot-GA estimator. Further, from
Tables 3 and 4, the HC0-GA estimator is found to perform better than the wboot estimator.

Table 3. Total RMSE (using residuals obtained through OLS)

n γ λ HC0 HC2 HC3 HC4 wboot

50

0.00 1.00 0.0135 0.0312 0.0166 0.0285 0.0168

0.04 4.57 0.0382 0.0915 0.0572 0.0901 0.0559

0.08 20.86 0.1319 0.4482 0.2319 0.3969 0.2264

0.12 95.27 0.6991 1.9612 0.8464 1.8754 0.9282

100

0.00 1.00 0.0049 0.0142 0.0051 0.0193 0.0052

0.04 4.57 0.0111 0.0533 0.0146 0.0347 0.0139

0.08 20.86 0.1016 0.2478 0.1149 0.2217 0.1195

0.12 95.27 0.4184 0.8605 0.4852 0.8083 0.5257

150

0.00 1.00 0.0033 0.0093 0.0039 0.0068 0.0051

0.04 4.57 0.0136 0.0327 0.0149 0.0327 0.0153

0.08 20.86 0.0984 0.1944 0.1073 0.1158 0.1107

0.12 95.27 0.1966 0.3197 0.2379 0.2819 0.2464

Table 4. Total RMSE (using residuals obtained through GA)

n γ λ HC0 HC2 HC3 HC4 wboot

50

0.00 1.00 0.0064 0.0107 0.0088 0.0126 0.0082

0.04 4.57 0.0151 0.0499 0.0369 0.0883 0.0139

0.08 20.86 0.1909 0.4125 0.1855 0.3863 0.1927

0.12 95.27 0.7129 0.9393 0.7618 0.9157 0.6242

100

0.00 1.00 0.0041 0.0095 0.0047 0.0097 0.0043

0.04 4.57 0.0074 0.0281 0.0013 0.0141 0.0125

0.08 20.86 0.0909 0.1951 0.1066 0.2065 0.1019

0.12 95.27 0.3824 0.8246 0.3369 0.7962 0.3233

150

0.00 1.00 0.0027 0.0063 0.0028 0.0052 0.0024

0.04 4.57 0.0067 0.0141 0.0068 0.0173 0.0069

0.08 20.86 0.0813 0.1758 0.0905 0.1078 0.0934

0.12 95.27 0.1722 0.2613 0.1814 0.2409 0.2031
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To sum up, it may be concluded from the above study that the GA-versions of the wboot
and HC0 estimators perform best when both the criteria, viz. Total relative bias and Total
RMSE are taken into consideration. Therefore, if existence of high-power computational
facilities is not a limitation, the wboot-GA estimator may be employed for the purpose.
Otherwise, priority should be given to the HC0-GA estimator over the wboot estimator.
This clearly brings out the important role played by Genetic algorithm in the Linear re-
gression analysis for estimation of OLS variance-covariance matrix with unknown form of
heteroscedasticity.

6. Conclusion

The importance of recently developed powerful optimization technique of Genetic algo-
rithm is highlighted to develop GA-based estimators of OLS variance-covariance matrix for
the linear regression model under heteroscedasticity. In finite sample study, our simulation
results show that the proposed estimators perform better than the corresponding existing es-
timators in terms of their capability to reduce the Total relative bias and the Total root mean
square error. It is recommended that either the wboot-GA estimator or the HC0-GA estimator
may be employed for estimation of the OLS variance-covariance matrix with unknown form
of heteroscedasticity. This would enable efficient computation of the standard errors of OLS
of regression parameters in a real-life data analysis. The estimators of the standard errors
may, in turn, be used to carry out interval estimation of the regression parameters.

As a future research work, performance of the proposed GA-based estimators of variance-
covariance matrix of OLS estimator is being currently studied for testing of regression pa-
rameters by quasi-t test. In this regard, bootstrap critical value would be computed for testing
the null hypothesis regarding significance of regression parameter by using the GA residu-
als obtained from the restricted model. Performance of the critical value would be studied
through bootstrap procedure for various sample sizes and levels of heteroscedasticity. In
the case of bootstrap variance estimation, the null rejection probability would be estimated
through the bootstrap p-value. The error in rejection probability would be examined by
using this value along with the asymptotic critical value. Finally, power function of the
test statistic based on the newly developed estimators of variance-covariance matrix of OLS
estimator would be computed. Some progress on the above aspects is already made and
shall be reported separately in due course of time.
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