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SUMMARY
Long range dependency or long run persistence is a common issue in agricultural price data. These type of phenomena in time-series process can 

be modeled with the help of Autoregressive fractionally integrated moving average (ARFIMA) model. The feature often arises when working with 
real time-series data which might exhibit long memory is the possible presence of structural break in mean or in long memory parameter. In this study, 
the statistical tests for testing presence of long memory and structural break have been discussed. The joint test (Gil-Alana, 2002) for testing degree 
of fractional integration and possible presence of structural break at known time epoch is also discussed. Two stage forecasting (TSF) algorithm by 
Papailias and Dias (2015)is used to obtain the forecasts of a long memory process in presence of structural break. In the present investigation, TSF 
approach is considered for forecasting daily wholesale price of pigeon pea in Bhopal market of Madhya Pradesh, India. A comparative study of 
predictive performances has also been carried out among the existing forecasting methodology of a long memory time-series subjected to structural 
break viz. AR approximation method and AR truncation method. It is concluded that TSF approach outperforms the other methods as far as forecasting 
is concerned for the series under consideration. 
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1.	 INTRODUCTION

Time-series analysis is an important statistical 
technique used as a basis for manual and automatic 
planning in many application domains (Gooijer 
and Hyndman, 2006). Forecasting or prediction is a 
challenging area in scientific research. Price forecast 
are largely done by using time-series approaches. 
Much effort has been devoted over last few decades to 
develop and improve several time-series forecasting 
models. Most of the research works in time-series 
analysis assume that the observation separated by 
long time lags are independent of each other or nearly 
so. But in many agricultural data, particularly in 
daily commodity price data it is seen that the distant 
observations are dependent that means the data set 
have characteristic feature of long memory or long 
range dependency. Long range dependence or long 
memory of a time-series is a phenomenon that states 
statistical dependence between the observations 

separated at distant lags. A time-series process is 
called as long memory process if the autocorrelation 
function decays very slowly towards zero unlike the 
exponential decay in usual Autoregressive integrated 
moving average (ARIMA) model. The autocorrelation 
function of a long memory process exhibits 
persistency structure which is neither an I(1) process 
nor an I(0) process. The time-series process having 
long memory in the mean equation can be modeled by 
using Autoregressive fractionally integrated moving 
average (ARFIMA) model by allowing non-integer 
or fractional differencing parameter (Granger and 
Joyeux, 1980). Paul (2014) and Paul et  al. (2014a, 
2015) have applied ARFIMA model for forecasting of 
agricultural commodity prices. The good performance 
of model has demonstrated in terms of variability 
explanation and prediction performance. A time-series 
process may sometimes exhibits long memory due 
to presence of structural break in mean or a shift in 
long memory parameter. Literally, structural change 
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can be described as fundamental shift in the structure 
of the series under consideration which may be due 
to economic growth, policy decisions, revolution etc. 
Ignoring the presence of breaks can lead to seriously 
biased estimates and poor forecasts. Hence detection 
of structural break before forecasting is very important 
to get more accurate forecasts. In this paper, the 
joint test (Gil-Alana, 2002) for testing simultaneous 
presence of fractional integration and structural break 
at known period of time is studied along with its 
application to the agricultural commodity price data. 
In literatures, there are several existing methodologies 
to obtain forecasts of a long memory process subjected 
to structural break. Among these, the most well-known 
approaches are Autoregressive (AR) approximation 
method (Wang et al.,2013), a truncated version of the 
infinite autoregressive representation of the model 
(Peiris, 1987) and Two stage forecasting (TSF) 
algorithm by Papailias and Dias (2015). The TSF 
approach has been successfully applied for modelling 
maximum temperature series in India (Paul and Anjoy, 
2017). But in that study, joint test has not been applied 
to identify simultaneous presence of long memory and 
structural break. In this present study the TSF approach 
to obtain the predictions of a long memory process 
having structural break in mean or long memory 
parameter along with the joint test for testing presence 
of both the property has been discussed in detail. To 
demonstrate the predictive ability of TSF approach 
of forecasting pigeon pea wholesale price data of 
Bhopal market, Madhya Pradesh, India is considered 
and comparison has been made with respect to simple 
ARFIMA (without considering structural break), AR 
approximation method (using AIC criteria) and AR 
truncation method. 

2.	 Long memory process

Most of the research works in time-series analysis 
assume that the observation separated by long time 
span are independent of each other or nearly so. But in 
many practical situations it is seen that many empirical 
economic series show that the distant observations 
are dependent, though the correlation is small but not 
negligible. Diebold and Inoue (2001) studied first the 
joint analysis of long memory and structural break and 
proved the way of misinterpretation of structural break 
as long memory. The statistical dependence of any 
time-series data is generally measured by plotting the 
ACF of the dataset. Let Xt; (t =1,2,...) be a stationary 

time-series process and the autocorrelation function of 
the time-series with a time lag of k is given as

rk = cov(xt, xt–1)/var(xt)� (1)

The series Xt; (t =1,2,...) is said to have short 
memory if the autocorrelation coefficient at lag 
k approaches to zero as k tends to infinity, i.e. 
limk→∞ rk = 0.The autocorrelation functions of most of 
stationary and invertible (ARMA) time-series process 
decay very rapidly at an exponential rate, so that 
rk ≈ |m|k, where |m|<1.

For long memory processes, decaying of 
autocorrelations functions occur at much slower rate 
(hyperbolic rate) which is consistent with rk ≈ Ck2d–1, 
as k increases indefinitely, where C is a constant and 
d is the long memory parameter. The autocorrelation 
function of a long memory process exhibits persistency 
structure which is neither consistent with an I(1) 
process nor an I(0) process.

In other words a short memory process is defined 
as

0 kk
ρ

∞

=
< ∞∑ � (2)

And a long memory process is defined as

0 kk
ρ

∞

=
= ∞∑ � (3)

where rk is the coefficient of autocorrelation with 
lag of k.

In frequency domain a long memory is defined in 
terms of rates of explosion of low frequency spectra as

2d( ) g  as 0xf ω ω ω− += → � (4)

In general the low-frequency spectral definition of 
long memory is simply as

( )  as 0xf ω ω += ∞ → � (5)

Berran (1995a) have discussed some properties of 
a stationary long memory process.

3.	 ARFIMA model

The Autoregressive fractionally integrated 
moving-average (ARFIMA) model (Granger and 
Joyeux, 1980) is used for modeling time-series in 
presence of long memory. Fractional integration is a 
generalization of integer integration. Here, time-series 
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is usually presumed to be integrated of order zero or 
one. For example, an autoregressive moving-average 
process integrated of order d [denoted ARFIMA (p, d, 
q)] can be represented as 

( ) (1 ) ( )d
t tB y B B uφ θ−== − � (6)

where, mt is an independently and identically 
distributed (i.i.d.) random variable having zero mean 
and constant variance, B denotes the lag operator; 

( )Bφ  and ( )Bθ  denote finite AR and MA polynomials 
in the lag operator having roots outside the unit circle. 
For d = 0, the process is stationary, for -0.5 < d < 0.5 

the process yt is stationary and invertible, for 10,
2

d  ∈ 
 

 

the process is said to have long memory. For any value 
of d we have

( )
2

0

( 1)(1 ) 1 ... 1
2

jd j
j

dB d dB dB B
j

∞

=

 −
− = − + + + − 

 
∑ � (7)

with binomial coefficients

! ( 1)
!( )! ( 1) ( 1)

d d r d
j j d j r j d j

  +
= =  − + Γ − + 

� (8)

where (.)Γ  represents the gamma function.

4.	 �Testing for presence of long 
memory and structural break

Following approaches are generally used for 
estimating long memory parameter 

	 (i)	 Parametric method - Maximum Likelihood 
method of estimation (MLE)(Berran, 1995b).

	 (ii)	 Semi-parametric method – Whittle (Robinson, 
1994), GPH (Geweke and Porter-Hudak, 
1983) etc.

	 (iii)	 Heuristic method - R/S statistic (Hurst, 1951), 
ACF plot, variance plot, log-log correlogram 
and least square regression in spectral domain.

	 (iv)	 Nonparametric method – Wavelet 
methodology (Jensen, 1999).

Literally, structural change can be described as 
fundamental shift in the structure of the series under 
consideration which may be due to economic growth, 
policy decisions, revolution etc. If the presence of 
breaks is completely ignored, forecasts may become 
poor. Therefore detection of structural break is prime 
importance prior to the analysis of time-series. 

For detection of structural break cumulative sum 
(CUSUM)(Ploberge and Krame, 1992), Chow test etc. 
can be used. A detailed description of these tests along 
their application for detection of structural break in 
mean temperature in different agro-climatic zones of 
India is found in Paul et al. (2014b).

5.	 �Joint test of fractional 
integration and structural 
break at known time period

Gil-Alana (2002) has developed a joint test for 
simultaneous testing of fractional integration and a 
need of a structural break at a known period of time. 
The joint test is a modified version of the test proposed 
by Robinson (1995) for testing a wide range of null 
hypothesis, mainly for non stationary null hypothesis 
particularly in the form of unit root.

Robinson (1995) considered the following model

, 1, 2, ...t t ty z x tβ ′= + = � (9)

where yt is the observed time-series process; b is 
a (p×1) vector of unknown parameters; Z t  is a (p×1) 
known vector of deterministic regressors.

He considered testing of the following hypothesis

H0: d = d0� (10)

Under the null hypothesis the least squares 
estimate of b and residuals are given as 

0 0
1

1
(1 ) ; (1 )

T d d
t t t t tt

w w w L y w L Zβ
−

=
 ′= − = − 
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T
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 0(1 )d
t t t tu w L y wβ′= − −

The Lagrange multiplier (LM) test statistic for 
testing m0 is given as







1
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where I(li) is the periodogram of  tu , with 
Fourier frequencies 2j j Tλ π= , and g is a known 
function derived from the spectral density of 

2: ( ; ) (2 / )tu f λ τ π σ= , evaluated at 2arg min ( )rττ σ′∈= .

Robinson (1995) showed that under the null 
hypothesis H0 the test statistic r  is asymptotically 
distributed as

(0,1) as Tdr N→ →∞ � (13)

H0 is rejected against the alternative hypothesis 
H1 : d > d (d < d0) if (r Z r Zα> >  )α , where Z α  is the 
critical value of a standard normal variate at 100α% 
level.

To test the long memory parameter in presence of 
structural break at a point Gil-Alana (2002) considers 
the following model

( ) ; (1 ) , 1, 2,...d
t b t t t ty SB T x L x u tβ= + − = = � (14)

where Tb denotes the known break point and 
1,

( )
0,

b
b t

b

t T
SB T

t T
≥

=  ≤
.

The test based on testing the following hypothesis

H0 : d = d0 and b = 0� (15)

against the alternative

H1 : d ≠ d0 or b ≠ 0

The test statistic is given as


 

* *2 *2

1 1 1
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t t t
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where 0* (1 ) ( )d
t b tw L SB T= −  and 0(1 )d

t tu L y= − ; 
and r  is as defined earlier.

H0 is rejected against the alternative hypothesis H1 
if  2

2,S αχ> , where 2
2,αχ  is the upper 100α% limit of a 

chi-square distribution with 2 degrees of freedom.

6.	 �Forecasting long memory 
process in presence of 
structural break

Sometimes real time-series data may exhibit 
long memory pattern due to possible presence of 
structural change. This phenomenon is commonly 
called as spurious long memory. There are mainly two 
situations –

	 (a)	 The structure of the time-series process might 
be mistaken as long memory due to presence 
of structural break and 

	 (b)	 The co-existence of long memory and 
structural break in the given data set. There are 
different approaches to obtain the forecasts of 
a long memory process subjected to structural 
break (Ngene and Lambert, 2015). Only three 
methods are discussed below.

6.1	 AR truncation method

An ARFIMA (p, d, q) process subject to a mean 
shift and a change in the long memory parameter 
can be well approximated by an autoregressive (AR) 
modelof infinite order(Peiris,1987)and the AR(∞) 
representation of {yt}, t = 1,2,... is given as

1t j t j tj
y xβ

∞
−=

= +∈∑ � (17)

where tt is a white noise process with mean zero 

and constant variance s2 and 
( )

( 1) ( )i
j d

j d
β Γ −

=
Γ + Γ

 with 

(.)Γ  being gamma function.

Using information available information up to 
time T and equation (17) the s-step ahead forecast can 
be obtained as

 

1
T s T S jjj

x xβ
∞

+ + −=
=∑ � (18)

Using a truncated version of equation (18) the 
s-step ahead forecast is given by

 



1

p
T s T S jjj

x xβ+ + −=
=∑ � (19)

The optimal lag order p  can be chosen as 
 [(ln ) ], (.)vp T= Γ  denotes floor function and T is total 
number of data points.
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6.2	 AR approximation method

Wang et al. (2013) suggested to use two selection 
criteria namely AIC or Mallows’ Cp to choose the 
order of the approximation of anAR(∞) model. This 
method avoids the issue of estimation inaccuracy of 
the long memory parameter and the issue of spurious 
breaks in finite sample. 

6.3	 Two-Stage Forecast (TSF) Algorithm

Papailias and Dias (2015) have proposed a 
forecasting methodology known as two-stage forecast 
(TSF) to obtain the forecasts of a long memory 
process subjected to structural break in the mean or in 
the long memory parameter. These forecasts are more 
accurate and robust forecasts. The TSF algorithm 
avoids the loss of information which might be a case 
in the truncated version of an infinite AR model. It is 
an intuitive, simple and commonly used methodology 
to obtain the forecasts. The methodology begins with 
the estimation of long memory parameter. In the next 
step the fractional differencing operator is applied to 
the underlying process in order to obtain the weakly 
dependent series. The multi-step ahead forecasts 
of the later series are computed and finally obtain 
the corresponding forecasts of the original series 
by employing the fractional cumulation operator. 
Therefore, the TSF algorithm has mainly two steps. 
In first step forecasts of the underlying weakly 
dependent time-series are computed and in the second 
step corresponding forecasts of the original series 
are computed by applying the fractional cumulation 
operator. TSF procedure can be envisaged in the 
following steps:

	 (i)	 The methodology starts with estimation of 
long memory parameter of the long memory 
process (xt, (t =1,2,...) using any consistent 
estimator and obtain d .

	 (ii)	 In the next step the differencing operator is 
applied to the original long memory process 
and obtain weakly dependent process yt as

		


(1 ) , 1, 2,...d
t ty L x t= − = � (20)

	 (iii)	 Fit an AR(P) model and compute the one step 
ahead forecast	

		   



11 1

p
i T iT i

y yπ + −+ =
=∑ � (21)

		  The p  can be chosen based on (i) minimum AIC 
value or (ii) sample size as  2[(lnT) ], ( .)p = Γ  
denotes integer part).

	 (iv)	 Write the weakly dependent series 
incorporating the one step ahead forecast, 
such that 

		   1 1( ,..., , )T TTy y y y += � (22)

	 (v)	 Apply fractional cumulation operator to the 


Ty  series to go back to the original series and 
obtain the one step ahead forecast for original 
long memory series

		  


(1 ) , 1, 2,..., , 1d
t Tx L y t T T−

′= − = + � (23)

		  The one-step ahead forecast is given as  1tx + .

	 (vi)	 Iterating over the previous steps recursively 
provide the h step ahead forecast for the 
underlying process T hx + .

7.	 Empirical illustration

7.1	 Data set

For the present investigation, daily pigeon pea 
wholesale price data is collected from AGMARKNET 
(www.agmarknet.nic.in) website for the period 
1stJanuary, 2010 to 3rdMay, 2017 considering Bhopal 
market of Madhya Pradesh, India. The data is composed 
of maximum price, minimum price and model price 
of pigeon pea. The dataset is partitioned into two 
sets namely training set and test or holdout dataset. 
The training dataset comprises 1078 observations 
which are used for model estimating purpose. The test 
dataset includes last 50observations which are used 
for forecast evaluation and model validation.

The first and foremost step in time-series analysis 
is to plot the data and visualize the presence of several 
time-series components. The time plots of the series 
under consideration are given in Fig. 1. A perusal 
of figure 1 indicates that maximum, minimum and 
modal prices of pigeon pea in Bhopal market has 
increased suddenly in February 2015 and it stayed 
high up to end of 2016. It indicates that the variability 
in price increases during this period in comparison 
to the previous period. One of the reasons for 
almost constant price before 2015 is due to very less 
differences in production and consumption of pigeon 
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Minimum

Maximum

Modal

Fig. 1. Time plot of pigeon pea price data

pea. The increasing mismatch between production and 
consumption of pulses has resulted in larger imports of 
pulses in recent year resulting increase in price.

7.2	 Descriptive statistics

Table 1 reports the descriptive statistics of all 
the series under consideration. A perusal of table 1 
indicates that the average maximum pigeon pea price 

is higher than the minimum and the modal price of 
pigeon pea of the selected market. Higher value of 
coefficient of variation in minimum price data indicates 
the higher variability as compared to other price data. 
Higher deviations between maximum and minimum 
value for each of the series indicate more dispersive 
nature of the data set. All the series are consideration 
are positively skewed and leptokurtic.
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Table 1. Descriptive statistics of pigeon pea price data

Statistics Maximum Minimum Modal

Observations 1128 1128 1128

Mean (Rs/quintal) 3644.73 3137.26 3535.87

Median 3310.50 2800.00 3201.50

Minimum 1500.00 1100.00 1500.00

Maximum 12000.00 9800.00 11100.00

Standard deviation 1480.24 1490.01 1487.02

Coefficient of 
variation (%)

40.61 47.49 42.05

Skewness 1.82 1.72 1.80

Kurtosis 6.43 5.62 6.16

7.3	 Test for stationarity, presence of long memory 
and structural break

The first step in analyzing the time series data is 
to check for presence of unit root. Several tests are 
available for this purpose. In the present investigation, 
PP test (Phillips and Perron, 1988) is employed to see 
the presence of unit root in the data set as it is more 
robust. The results of the test are reported in table 2. 
It is clear from the results of PP test that the null 
hypothesis of unit root test is rejected at 5% level of 
significance indicating stationarity of the series. 

Table 2. PP test for stationarity

Price series
PP test

Test statistic p-value

Maximum -5.736 <0.001

Minimum -7.524 <0.001

Modal -5.249 <0.001

The autocorrelation function (ACF) and partial 
autocorrelation function (PACF) of the original price 
series are investigated. The ACF plots of the maximum, 
minimum and modal price series are shown in Fig. 2 
and it is clear that the autocorrelation functions are 
decaying very slowly towards zero indicating the 
possible presence of long memory. The dotted lines 
in this figure represent 95% confidence intervals. The 
pattern is in contradiction to the usual Box Jenkins 
ARIMA methodology. In general, the stationary 
series will have rapid decay of autocorrelation 
function towards zero. But as depicted in Fig. 2, the 
autocorrelation function is significant even beyond 
200 lags which clearly indicates the possible presence 
of long memory property.

After investigating the ACF plot, the long memory 
test is conducted to the data set and the test results 
are provided in table 3. Since the calculated Z-value 
greater than 1.96 for all the series under consideration, 
the test is found to be significant. It establishes the 
significance presence of long range dependency in 
price series. Hence we can use long memory time-
series models to get forecasts of the under lying series.

Table 3. Long memory parameter estimate of pigeon pea 
price data

Maximum Minimum Modal

d 0.221 0.225 0.222

S.E. 0.013 0.013 0.013

Z 17.000 17.307 17.076

S.E.: Standard Error

Empirical fluctuation process according to OLS 
based CUSUM test is applied to the price series and the 
results are presented in figure 3. Structural changes in 
the price series of the selected market are shown here. 
A perusal of figure 3 indicates that there is a structural 
break in the price series during the year 2015-2016. 
To confirm this OLS based CUSUM test, Chow test is 
applied to the price series and the results are reported 
in table 4. The tests for significance of tentatively 
selected structural break are highly significant for both 
the tests in all the series. According to these tests there 
is a break point in the data set which at 11th February, 
2015 and it is same for all the series.The F-statistic 
values of the Chow test are plotted in Fig. 4. From 
the plot it is clear that break is present at 0.8 which is 
euivaltent to the serially numbered 902 observation for 
all the sries. The 902 numbered observation refers to 
the observation corresponding to 11th February, 2015.

Table 4. Test for detection of structural break

Series OLS-based CUSUM test Chow test

Test statistic p-value Test statistic p-value

Maximum 10.23 <0.001 1544.60 <0.001

Minimum 10.62 <0.001 1461.30 <0.001

Modal 10.16 <0.001 1497.60 <0.001

7.4	 Joint test and Forecasting using TSF

To detect presence of spurious long memory, 
the joint test for testing fractional integration and 
structural break is carried out by the procedure 
described in Section 5. The test results are highly 
significant at 5% level of significance indicating 



56 Dipankar Mitra et al. / Journal of the Indian Society of Agricultural Statistics 72(1) 2018   49–60

Maximum

Minimum

Modal

Fig. 2. ACF plot of pigeon pea price data
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Fig. 3. OLS based CUSUM test for structural break in price series
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Maximum

Minimum

Modal

Fig. 4. Plot of F-statistics of Chow test for structural break

simultaneous presence of long memory and structural 
change.The critical value at 5% level of significance is 
5.99 and the calculated test statistics for all three series 
are much higher than the critical value. Accordingly, 
TSF approach of forecasting is applied to the data set 
under consideration. The forecasting methodology 

starts with estimation of long memory parameter 
and differencing the price series to obtain the weakly 
dependent series. Then a suitable ARMA model is fitted 
to the weakly dependent series based on minimum 
AIC or SBC value and obtain one step ahead forecast 
of the underlying weakly dependent series using best 
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chosen AR model. Finally, by applying cummulation 
differencing operator the one-step ahead forecast of 
the original price series is computed. The previous 
steps are repeated 50 times to compute 50-steps ahead 
forecasts for the dataset. 

7.5	 Forecasting using AR truncation method and 
AR approximation method

Truncated AR model of order 49 is fitted to the 
each of price series and the one-step ahead forecast 
of 50 observations is obtained using equation (19) for 
each of the series.

An approximate AR model with order chosen 
based on minimum AIC value is fitted to each of the 
price data. The orders of approximated AR models 
along with corresponding AIC values are provided 
in table5. After fitting best selected AR model to the 
price data one-step ahead forecast is calculated for last 
50 observations for each of the price series.

Table 5. Approximated AR model

Series Order of AR model AIC value
Maximum 19 17124.89
Minimum 18 17408.18

Modal 18 17057.94

7.6	 Validation of results

Last 50 observations of the data set were kept for 
the validation of the models. After confirming for the 
structural break and long memory in the series, TSF 
approach was used to obtain forecasts of the price 
series. A comparative performance of forecasting 
ability of TSF approach with usual ARFIMA model 
(without considering structural break), AR truncation 
method and AR approximation method has been 
carried out in terms of Mean absolute percentage error 
(RMAPE) and Root mean square error (RMSE) value. 
The computed RMAPE and RMSE values for each of 
the forecast horizons are reported in tables 6, 7 and 
8 for maximum, minimum and modal price series 
respectively. Forecast evaluation is carried out for five 
moving windows (10-step, 20-step, 30-step, 40-step, 
50-step ahead). For each series, the final columns of 
tables 6-8labeled as “Average” show average RMAPE 
and RMSE, across all the forecast horizons. A perusal 
of tables 7-9 indicate that the forecast performance 
of TSF approach is better than the other approaches. 
To test for the significance difference in forecast 

Table 6. RMAPE and RMSE values for maximum price dataof 
pigeon pea

Forecasting 
methods

Forecast horizon

10 20 30 40 50 Average

RMAPE (%)

TSF 8.44 6.03 7.75 19.71 15.95 11.57

ARFIMA 57.33 49.14 46.53 44.57 40.90 47.69

AR(P) 24.32 23.39 22.42 21.71 20.84 22.53

AR(AIC) 8.46 9.54 13.01 15.79 16.67 12.70

RMSE

TSF 577.85 730.78 665.81 717.65 661.98 670.81

ARFIMA 1880.46 1726.52 1668.21 1613.09 1509.74 1679.60

AR(P) 817.51 832.27 866.23 880.02 865.35 852.27

AR(AIC) 679.60 749.92 709.05 669.33 647.12 691.00

Table 7. RMAPE and RMSE values for minimum price dataof 
pigeon pea

Forecasting 
methods

Forecast horizon

10 20 30 40 50 Average

RMAPE (%)

TSF 28.25 8.28 5.54 12.20 4.64 11.76

ARFIMA 25.60 25.48 27.35 27.01 29.24 26.94

AR(P) 10.11 11.84 13.11 13.60 17.60 16.25

AR(AIC) 16.65 17.15 14.92 12.58 13.38 14.93

RMSE

TSF 169.38 317.82 288.76 441.61 178.87 279.28

ARFIMA 735.35 746.44 798.81 798.95 880.69 792.07

AR(P) 336.59 314.50 324.16 457.89 687.97 424.22

AR(AIC) 160.78 220.99 235.88 252.79 610.78 296.24

Table 8. RMAPE and RMSE values for modal price data of 
pigeon pea

Forecasting 
methods

Forecast horizon

10 20 30 40 50 Average

RMAPE (%)

TSF 9.00 5.13 8.93 9.06 8.13 8.05

ARFIMA 8.92 8.75 9.11 7.84 8.20 8.56

AR(P) 18.99 16.83 20.10 20.68 20.34 19.38

AR(AIC) 8.99 9.13 9.85 10.08 10.15 9.70

RMSE

TSF 320.46 344.03 369.92 341.57 354.01 345.99

ARFIMA 322.00 348.24 365.81 357.35 362.89 351.26

AR(P) 625.29 582.90 740.21 791.97 807.24 709.52

AR(AIC) 364.28 395.26 422.48 412.26 465.19 411.89
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performance of TSF approach with others, Diebold-
Mariano test has been performed based on five moving 
windows for last 50 observations and it is revealed 
that the predictive performance of TSF approach is 
significantly different from other approaches for the 
data under consideration. 

8.	 Conclusions 

In this paper, the forecasting of long memory time-
series focusing on spurious long memory is discussed. 
CUSUM test, Chow test have been applied to identify 
the structural break and Joint test is also applied in order 
to detect simultaneous presence of structural break as 
well as long memory in the series under consideration. 
In all the series it is found that there is presence of 
structural break as well as long memory. Single break 
was found in the series and it was observed that the 
break appears in February, 2015. Accordingly, TSF 
approach of forecasting along with the other methods 
e.g. AR approximation and AR truncation method are 
investigated for forecasting the maximum, minimum 
and modal price of pigeon pea in Bhopal market of 
Madhya Pradesh. Simple ARFIMA model was also 
used in order to see the effect of ignorance of structural 
break on forecasting performance. A comparative 
study is carried out among the existing forecasting 
methodologies. Tables 6to8 clearly indicate the 
outperformance of TSF approach over usual ARFIMA 
model, AR approximation and AR truncation method 
in terms of RMAPE and RMSE value. 
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