Effect of Non-normality and Inadmissible Estimates on Estimation of Heritability

Amrit Kumar Paul, S.D. Wahi, Ranjit Kumar Paul and Wasi Alam

Indian Agricultural Statistics Research Institute, New Delhi-12. E-mail: pal@iasri.res.in, ranjitstat@iasri.res.in, wasi@iasri.res.in

Heritability is one of the most important genetic parameter widely used in plant and animal breeding genetic improvement studies. In literature, several methodologies are available for estimation of heritability for different experimental situations. Unfortunately none of these provide always a valid estimate of heritability and the estimate is so inadmissible that no conclusions can be drawn for the inheritance of the trait under consideration. Further in particularly, there is no unique methodology, which is suitable for estimation of heritability in unbalanced situations. Keeping this in view , need has been felt that with the help of computer, the sensitivity and robustness of the very widely used genetic parameter, heritability might be studied at length. The sensitivity here refers to that how the estimate of heritability is dependend upon the aberrant or outliers. The paper contains some of the results as obtained by Bhatia et al (2003).

1. Methodology:

\As the heritability is a function of variance components so the following three methods are used for variance components estimation and subsequently the estimate of heritability has been obtained from the estimates of variance components.

- (1) ANOVA (Henderson, 1963)
- (2) REML (Patterson and Thompson, 1971)
- (3) ML (Harville, 1977), and

Following Bhatia et al (2003), in the present study the parametric value of heritability has been considered as 0.1, 0.25, 0.5 and 0.75. Computer program for analysis were done in SAS-IML (1995).

2. Effect of inadmissible estimates

In order to gain information about the effect of inclusion of inadmissible estimates of heritability, different data sets were simulated with various parametric values. Different samples were generated for different parametric values of heritability and for these samples estimates of additive variance components were obtained by using ANOVA, ML and REML methods. and subsequently the estimates of the heritability were worked out. The results for both balanced and unbalanced situation with inclusion and rejection of inadmissible estimates of h^2 are given in the Table 1. It is seen from this table that for both balanced and unbalanced situation, the results obtained are more or less similar for the cases of inclusion and rejection of inadmissible estimates of heritability. Since the occurrence of inadmissible estimates is due to inherent biology of the experimental material and the layout of the design, it is, therefore, not desirable to discard these type of estimates but in fact they must be included in arriving at the final estimate. Non-inclusion will certainly violate the statistical assumption and will also induce a bias in the estimate of heritability. Because of this reason, it is concluded that in the further analysis of the data, the discarding of the inadmissible estimates should not be carried out.

3. Effect of non normality and mixture of two populations:

For the methods of ML and REML, we generally assume that the records along with other effects are distributed normally but this assumption may not hold true always and the resultant distribution of the observations may be non-normal. Keeping this in mind, various non-normal populations were simulated by mixing two populations with the different proportions and having different parameters. The resulting mixture population may thus be non-normal and these were simulated for both the situation of zero location and non-zero location parameters. Here also, initially the effect of inclusion and discarding of the inadmissible estimates were examined and the results are presented in Table No. 2. From the Table 2 it is once again reiterated that estimates are more close to true parametric values(weighted average) and one should consider the final estimate by including all the estimates whether admissible or inadmissible. Though the resultant populations are non-normal so strictly theoretically speaking REML and ML are not applicable but just to get inside, the empirical estimates have been obtained. For studying the role of location parameter also, two populations with different location as well as other parameters were mixed in different proportions and resultant non-normal populations were simulated and the results thus obtained are presented in Table No. 3. From the Table 3 it is seen that in none of the case, the estimate is close to the parametric value, which thus advocates that the methodology for the mixture of the two populations need to be re-examined.

Situation Para Balanced			
Balanced	ametric Value	Methods	With inadmissible estimates
	0.1	ANOVA	0.0750 (0.1665)
		REML	0.1099 (0.1665)
		ML	0.0878 (0.1488)
	0.25	ANOVA	0.2201 (0.2509)
		REML	0.2347 (0.2729)
		ML	0.2011 (0.2483)
	0.50	ANOVA	0.4638 (0.4876)
		REML	0.4681 (0.4876)
		ML	0.4217 (0.4486)
	0.75	ANOVA	0.7077 (0.7156)
		REML	0.7085 (0.7156)
		ML	0.6525 (0.6658)
Unbalanced	0.1	ANOVA	0.0795 (0.1661)
		REML	0.1192 (0.1661)
		ML	0.0879 (0.1418)
	0.25	ANOVA	0.2356 (0.2873)
		REML	0.2468 (0.2773)
		ML	0.2102 (0.2532)
	0.50	ANOVA	0.4809 (0.5070)
		REML	0.4900 (0.5051)
		ML	0.4392 (0.4623)
	0.75	ANOVA	0.7340 (0.7471)
		REML	0.7349 (0.7348)

Table 1: Estimates of heritability obtained by methods in balanced and unbalanced situations.

*Figures in the brackets indicate estimates of heritability obtained only for the case of admissible estimates.

Table 2: Estimates of heritability obtained by different methods from contaminated populations.

Proportion of	Parametric	Weighted	Methods	With Inadmissible
Contamination	Values	Average		Estimates
0.8, 0.2	0.1, 0.75	0.23	ANOVA	0.1519 (0.2243)
			REML	0.1797 (0.2174)
			ML	0.1507 (0.2093)
	0.1, 0.5	0.18	ANOVA	0.1304 (0.1136)
			REML	0.1549 (0.2093)

			ML	0.1278 (0.1853)
	0.25, 0.1	0.22	ANOVA	0.1866 (0.2523)
			REML	0.2046 (0.2589)
			ML	0.1735 (0.2256)
	0.25, 0.5	0.30	ANOVA	0.2626 (0.3049)
			REML	0.2745 (0.3049)
			ML	0.2377 (0.2764)
	0.25, 0.75	0.35	ANOVA	0.2996 (0.3401)
			REML	0.3095 (0.3401)
			ML	0.2707 (0.3042)
	0.50 ,0.75	0.55	ANOVA	0.5091 (0.5282)
			REML	0.5124 (0.5282)
			ML	0.463 9(0.4883)
0.8, 0.2	0.75, 0.1	0.62	ANOVA	0.5468 (0.5665)
			REML	0.5495 (0.5665)
			ML	0.4995 (0.5203)
	0.5, 0.1	0.42	ANOVA	0.3672 (0.3984)
			REML	0.3745 (0.3984)
			ML	0.3323 (0.3652)
	0.1, 0.25	0.13	ANOVA	0.0989 (0.1777)
			REML	0.1287 (0.1777)
			ML	0.1043 (0.1630)
	0.5, 0.25	0.45	ANOVA	0.4106 (0.4383)
			REML	0.4173 (0.4383)
			ML	0.3722 (0.4002)
	0.75, 0.25	0.65	ANOVA	0.5969 (0.6171)
			REML	0.5989 (0.6171)
			ML	0.5467 (0.5636)
	0.75, 0.50	0.70	ANOVA	0.6573 (0.6719)
			REML	0.6584 (0.6719)
			ML	0.6042 (0.6165)
	· · ·			· · /

*Figures in the brackets indicate estimates of heritability obtained only for the case of admissible estimates.

Table 3: Effect of contaminated population on the estimates of heritability with mixture of two populations with heritability 0.10 and 0.25 having different proportion of contamination and with different location parametric value.

Proportion of	Parametric	Weighted	Location	A.	Methods	With
Contamination	Values	Average	parameters			Inadmissible
		_				Estimates

0.10, 0.25	0.22	0,10	ANOVA	0.0040 (0.1437)
			REML	0.0661 (0.1467)
			ML	0.0516 (0.1341)
0.10, 0.25	0.22	10,0	ANOVA	-0.0097 (0.1320)
			REML	0.0594 (0.1320)
			ML	0.0453 (0.1191)
0.10, 0.25	0.22	0,10	ANOVA	0.0093 (0.1451)
			REML	0.0683 (0.1452)
			ML	0.0534 (0.1302)
0.10, 0.25	0.22	10,0	ANOVA	-0.0031 (0.1360)
			REML	0.0639 (0.1360)
			ML	0.0490 (0.1256)
0.25, 0.75	0.35	10,0	ANOVA	0.0055 (0.1413)
			REML	0.0692 (0.1413)
			ML	0.0530 (0.1205)
0.25, 0.75	0.35	0,10	ANOVA	0.0162 (0.1407)
			REML	0.0718 (0.1407)
			ML	0.0564 (0.1374
0.75, 0.25	0.35	10,0	ANOVA	0.0309 (0.1648)
			REML	0.0857 (0.1648)
			ML	0.0677 (0.1410)
0.75, 0.25	0.35	0,10	ANOVA	0.0388 (0.1594)
			REML	0.0845 (0.1594)
			ML	0.0670 (0.1456)
	0.10 , 0.25 0.10 , 0.25 0.10 , 0.25 0.10 , 0.25 0.25 , 0.75 0.25 , 0.75 0.75 , 0.25	0.10, 0.25 0.22 0.10, 0.25 0.22 0.10, 0.25 0.22 0.10, 0.25 0.22 0.25, 0.75 0.35 0.25, 0.75 0.35 0.75, 0.25 0.35	0.10, 0.25 0.22 0.10, 0.25 0.22 0, 10 0.10, 0.25 0.22 0, 10 0.10, 0.25 0.22 10, 0 0.10, 0.25 0.35 10, 0 0.10, 0 0.25, 0.75 0.35 10, 0 0.10, 0 0.10, 0 0.25, 0.75 0.35 0, 10 0, 1	REML ML 0.10, 0.25 0.22 10, 0 ANOVA 0.10, 0.25 0.22 10, 0 ANOVA 0.10, 0.25 0.22 0, 10 ANOVA 0.10, 0.25 0.22 0, 10 ANOVA 0.10, 0.25 0.22 0, 10 ANOVA 0.10, 0.25 0.22 10, 0 ANOVA 0.25, 0.75 0.35 10, 0 ANOVA 0.25, 0.75 0.35 0, 10 ANOVA REML ML ML 0.25, 0.75 0.35 0, 10, 0 ANOVA REML ML 0.75, 0.25 0.35 10, 0 ANOVA 0.75, 0.25 0.35 0, 10 ANOVA 0.75, 0.25 0.35 0, 10 ANOVA

*Figures in the brackets indicate estimates of heritability obtained only for the case of admissible estimates

References

- [1] Bhatia V K and Paul A. K.(2003) On Robust Estimation of Heritability, (Unpublished Project Report), IASRI, New Delhi-12
- [2] Harville D A 1977. Maximum likelihood approaches to variance component estimation and to related problems, *Journal of the American Statistical Association* **72**: 320-340.
- [3] Henderson C R 1963. Selection index and expected genetic advance, *Statistical Genetics and Plant Breeding*, National Research Council Publication 98L, National Academy of Sciences, 141-163.
- [4] Patterson H D and Thompson R 1971. Recovery of inter block information when block sizes are unequal, *Biometrika* **58** :545-554.
- [5] SAS-IML 1995. SAS documentation, SAS institute Inc. Cary, NC, USA.

Amrit Kumar Paul et al

1128