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SUMMARY
Gutierrez et al. (2005) studied Gompertz homogeneous diffusion process with exogenous variables that affect the trend. The purpose of present 

article is to modify this work in two directions. The first one is that the diffusion term is taken as time-dependent, which is more realistic. Another 
direction of modification is that the powerful technique of Wavelet analysis is employed to estimate the drift term, rather than the elementary piece-
wise time-varying linear functions approach. The methodology, after incorporating the above two aspects is developed. Relevant computer programs 
for its application are written and the same are included as an Appendix. Finally, as an illustration, India’s total foodgrain production time-series data 
dependent on rainfall, fertilizer, and pesticide time-series data as exogenous variables are considered and superiority of our proposed model is shown 
over the model proposed by Gutierrez et al. (2005) for given data.
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1.	 INTRODUCTION

Gompertz nonlinear growth model is widely 
employed in various disciplines, such as agriculture, 
medicine, and industry. A heartening aspect of 
this model is that it is mechanistic in nature and so 
the underlying parameters have specific biological 
interpretations. This model is generally expressed in 
terms of a nonlinear differential equation, which can 
be converted to linear form by means of logarithmic 
transformation. Consequently, exact  solution of the 
underlying differential equation can be obtained, 
which is nonlinear in parameters. Usual practice for 
applying the corresponding Gompertz nonlinear 
statistical model to data is to assume an additive term, 
with suitable assumptions, on the right hand side of 
the deterministic solution and to apply Nonlinear 
estimation procedures, such as Levenberg-Marquardt 
procedure (Seber and Wild  2003) for estimation of 
parameters. 

Although the above methodology has served 
many useful purposes in the past, its main limitation 

is that, fitting a nonlinear deterministic model 
by simply adding an error term, is not capable of 
describing the underlying fluctuations of the system 
satisfactorily, particularly for longitudinal data (Seber 
and Wild 2003). Accordingly, Stochastic modelling 
approach based on ‘Stochastic Differential Equation 
(SDE)’ (See e.g. Cohen and Elliott 2015) has been 
employed. Several articles dealing with various 
aspects of Stochastic Gompertz model have so far 
been published (See e.g. Ferrante et al. 2000, Behera 
and O’Rourke 2008, Gutierrez et  al. 2009, Skiadas 
2010, and Ghosh and Prajneshu 2017). However, one 
drawback of all the above models is that they model 
the development of a process only over time. In a 
seminal paper, Gutierrez et al. (2005) developed the 
methodology for application of Stochastic Gompertz 
model by introducing the exogenous variables as 
functions of time that affect its trend. The purpose of 
the present article is to modify the work of Gutierrez 
et al. (2005) (Called Gutierrez model hereinafter) in 
two directions. In Gutierrez model, the diffusion term 
is time-independent, so for a more realistic modelling, 
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we relax this assumption and take the diffusion term 
as time-dependent. Another direction of modification 
is that, in Gutierrez model, the exogenous factors 
were used to approximate the drift term by piecewise 
time-varying linear functions, which is not realistic. 
So, the drift term would be estimated by applying the 
powerful technique of Wavelet analysis (Ghosh et al., 
2010). The resultant model hereinafter would be called 
‘Modified Gutierrez model’.

2.	 METHODOLOGY

Gutierrez et al. (2005) studied nonlinear Gompertz 
homogeneous diffusion process by introducing time 
functions that affect its trend. To this end, the stochastic 
system processes driven by almost everywhere 
continuous function is widely used. Among these 
processes, diffusions (strong Markovian process) 
have been widely considered, which is studied by 
characterizing drift and diffusion coefficients. The 
SDE as one of the characterizations of diffusion 
process is capable to describe a continuous stochastic 
process by appropriate limiting operation of changes 
in state and time of corresponding discrete parameter 
process. Let  be the Gompertz one-
dimensional diffusion process taking values on  
and with infinitesimal first order moment (drift) 

 and half of second order 
infinitesimal moment (diffusion)  , 
where  
and  are continuous functions in  This 
process can be studied from the viewpoint of 
Kolmogorov forward and backward partial differential 
equations of transition probability density  
satisfying 

Since, it is known that  
and  for geometric Brownian 
motion  where  is Brownian 
motion with drift  and  given by 

 is zero-mean Brownian 
motion with scale parameter 2, therefore as  
the Gompertz homogeneous diffusion process leads 
to results of lognormal transition probability density 

 in the limit. Note that, non-homogeneous 
analogue of above type of lognormal diffusion process 
has been widely used in stochastic modelling in 
stochastic economics and environmental sciences (See 
e.g. Gutierrez et al. 2005). In this case, infinitesimal 
first order moment 

However, one limitation of the above methodology 
is that it is not capable to describe the data in certain 
time-intervals when there is presence of exponential 
trend. It may be noted that, in this case, the conditional 
mean of  is non-homogeneous due to time-varying 
exponential trend only in the Gaussian mean function 
of the logarithmic process, i.e. . 
Therefore, in this article, we propose to generalize the 
process  to the process , say, by taking 
into account the effect of time trend in the diffusion, 
i.e.  is now of the form  
where 

In an article that is apparently little known in the 
western world, Cherkasov has proved an interesting 
theorem characterizing the class of one-dimensional 
diffusion process (See e.g. Ricciardi 1976). The 
process can be derived from Wiener process provided 
it satisfies Kolmogorov partial differential equation. 
Following Cherkasov’s notation, denote the following 
transformations for change of state and time by

 and � (1) 

so that it is capable to transform Kolmogorov 
backward partial differential equation into the 
differential equation of process with  and 

 In other words, transition probability 
density  of the transformed process  
satisfies the equation

� (2) 

To this end, transition probability density 
 of  is obtained by

� (3) 

It is important to get partial differential with 
respect to state and time for  in terms of 

 in above eq.(3) satisfying eq. (2), so that 
both transformations given by eq.(1) are related by the 
identity 

� (4)
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where  is a function of the time variable alone and 
 belongs to state space. Eq. (4) can now be used to 

establish necessary and sufficient condition for Wiener 
process transformation (Ricciardi 1976), which is 
essentially the relation between  and  
given by 

� (5)

Using eqs. (3) and (5), Gutierrez et  al. (2005) 
obtained  which is lognormal. However, it 
may be pointed out that there are typographical errors 
in the expressions for mean, variance, and  of 
the process  The correct formulae are given 
below:

� (6a) 

� (6b)

� (6c)

where  and  are suitable constants for obtaining 
transition probability density function.

Further, for generalizing the nonlinear Gompertz 
SDE model with time-dependent diffusion 

 for the process , 
following along similar lines as Gutierrez et al. (2005), 
it is found that  is lognormal with mean of 

the process  given by

 

�(7)

Note that, the conditional variance of  is 
non-homogeneous, therefore it is capable to describe 
exponential trend by specifying both the time varying 
drift and diffusion coefficients. Using eq.(5), we obtain

, 

and using eq.(7), we get

� (8a)

� (8b)

                                         (8c)

We now discuss the method for fitting our proposed 
model. Let  be the observed values. Now 
we transform these values by means of and 

. Therefore, the 
likelihood function for the transformed sample is 

�(9)

where  
 and  

is the  matrix with 

Following along similar lines and using eq. (7), 
the likelihood function of the process  is given 
by

� (10) 
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where

 and

 is the  

matrix with 

.

In line with Gutierrez et al. (2005), we also assume 
for simplicity, that the length of the time-intervals 

 is equal to one. This assumption may not be 
too restrictive because quite often time-series data are 
available at equal intervals. Gutierrez et  al. (2005) 
employed the polygonal function comprising  
piecewise linear functions   

 passing through the coordinates  , 
where  are the increments. However, this may not 
appropriately describe a realistic situation. Therefore 
we adopt the more general approach of Wavelet 
analysis (See e.g. Ghosh et al. 2010). Unlike Fourier 
analysis, wavelet analysis is used to decompose 
observed data into various components with respect to 
frequency or scale and time. Multiresolution analysis 
based on Pyramid algorithm is then employed to obtain 
wavelet transforms at various scales, which is used 
to explain smooth part of exogenous variables in the 
synthesis phase of wavelet analysis. Basis functions, 
like Haar and Daubechies filters are tried, which are 
capable to describe high-pass filter with significant 
gain function of respective spectral densities in the 
nominal pass-bands at various scales. The smoothed 
part is treated as mean function over time and is 
used to construct functions . Accordingly, a 
new approach of approximating polygonal function 
by using wavelet transform in place of observed 
values of exogenous variables is proposed. To this 
end, the sub-matrix of wavelet transformation  is 
multiplied with the vector of wavelet transforms of 
exogenous variables to smooth the effect of drift term 
in the process  Relevant computer 
code in R and SAS software package for fitting the 

Modified Gompertz model is developed and the same 
is appended as an Appendix.

3.	 ILLUSTRATION

As an illustration, India’s total foodgrain production 
time-series data for the period 1982-83 to 2015-16, 
available in ‘Agricultural Statistics at a Glance 2015’, 
are considered. The data for the period up to 2013-14 
are used for fitting of the model while those for the 
remaining two years are used for validation purpose. As 
total foodgrain production depends mainly on rainfall, 
fertilizer consumption, and pesticide consumption in 
the country, therefore these three variables are taken 
as exogenous variables. Time-series data on rainfall 
are available at the website www.tropmet.res.in of the 
Indian Institute of Tropical Meteorology, while those 
for fertilizer and pesticide consumption are obtained 
from various issues of Fertilizer Statistics and from the 
website www.Indiastat.com respectively. 

In the first instance, the data on three exogenous 
variables were smoothed using the R code given in 
the Appendix. Several basis functions, such as Haar 
and Daubechies filters were tried and it was found 
that Daubechies (db4) filter provided the best results 
and the same are exhibited in Fig.1. Subsequently, 
Gutierrez model was fitted to the data and the results 
are reported in the second column of Table 1. Using 
the SAS code given in the Appendix, Modified 
Gutierrez model was fitted to the data and the results 
are reported in the third column of Table 1. Using 
the estimates of parameters given in Table 1, year-
wise India’s foodgrain production (in million tonnes) 
for the two models are computed and the results are 
reported in Table 2. The last row of this table gives 
the Average Mean Square Error (MSE) computed 
for the two models. Evidently, the lower value, viz. 
209.61 for the fitted Modified Gutierrez model vis-
a-vis the value 224.82 for the fitted Gutierrez model, 
reflects superiority of the former over the latter for 
fitting purpose for given data. In order to compare 
the performance of the two models for validation 
purpose, forecasts were developed for two years and 
the results are reported in Table 3. A perusal of this 
table shows that the forecasts obtained by Modified 
Gutierrez model are much closer to actual values 
than the forecasts obtained by Gutierrez model. Thus, 
for forecasting also, Modified Gutierrez model has 
performed better than Gutierrez model for given 
data. To get a visual idea, the graph of fitted Modified 
Gutierrez model along with data is exhibited in Fig. 2.
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(i)	 Rainfall:

(ii)	 Fertilizer:

(iii)	Pesticide:

Fig. 1. Smoothing of exogenous variables by Daubechies (db4) filter

Table 1. Estimates of Parameters of Gutierrez and Modified 
Gutierrez models

Parameter
Estimate

Gutierrez model Modified Gutierrez model

a0  4.700X10-2  1.800X10-2

a1  3.000X10-5 -1.607X10-5

a2  1.412X10-5  -1.266X10-10

a3 -8.249X10-3 -1.007X10-2

β  4.172X10-3  8.021X10-9

s2  3.213X10-3 -

k -  2.749X10-3

g -  7.401X10-3

Table 2. Year-wise fitting of India’s Foodgrain production  
(in million tonnes) for various models

Year Actual Gutierrez model Modified Gutierrez model

1983-84 152.37 133.31 132.32

1984-85 145.54 160.97 154.11

1985-86 150.44 151.86 157.27

1986-87 143.42 152.46 139.47

1987-88 140.35 146.56 155.79

1988-89 169.92 143.07 143.50

1989-90 171.04 174.58 173.87

1990-91 176.39 175.35 173.79

1991-92 168.38 180.95 179.67

1992-93 179.48 172.73 171.43

1993-94 184.26 184.07 182.74

1994-95 191.50 188.96 187.61

1995-96 180.42 196.35 194.98

1996-97 199.34 185.00 183.70

1997-98 192.26 204.53 202.87

1998-99 203.61 196.80 196.16

1999-00 209.80 204.69 206.17

2000-01 196.81 211.78 208.45

2001-02 212.85 198.12 206.09

2002-03 174.77 214.32 210.13

2003-04 213.19 179.42 178.42

2004-05 198.36 218.41 216.58

2005-06 208.60 203.08 202.24

2006-07 217.28 214.53 211.75

2007-08 230.78 222.69 222.83

2008-09 234.47 230.07 232.15

2009-10 218.11 234.28 230.80

2010-11 244.49 225.70 220.60

2011-12 259.29 261.27 254.30

2012-13 257.13 275.20 274.23

2013-14 265.04 266.69 265.50

Average MSE 224.82 209.61
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table 3. Year-wise forecasting of India’s Foodgrain production 
(in million tonnes) for various models

Year Actual Gutierrez model Modifi ed Gutierrez model

2014-15 252.02 274.43 263.18

2015-16 251.57 280.02 272.37

4. CoNClUDINg REMARKS

Here, the methodology is developed for Gompertz 
nonlinear diffusion model with exogenous variables 
and time-dependent diffusion. However, this 
methodology is applicable only when time-series data 
on all the variables are available at equal intervals. 
It may be noted that collection of time-series data 
involves constraints of time, personnel, and budget, 
etc., which may not always be possible. Dennis 
and Ponciano (2014) emphasized that the data with 
missing observations or data at unequal time-intervals 
are potentially informative, and precluding such data 
from analysis could affect conclusions adversely. Thus, 
there is a need to extend the methodology developed in 
this article for the case when data are available only at 
unequal intervals. Work is in progress in this direction 
and shall be reported separately in due course of time. 
Further, as future work, similar type of work as done 
in this article may be carried out for other growth 
models, such as Richards and Logistic models.

fig. 2. Fitting of Modifi ed Gutierrez model along with data
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APPENDIX

(i)	 R code for computation of DWT:

library (wavelets)
mydata<-read.csv (“LINK_TO_DATA_FILE”, header 
=TRUE)
attach (mydata)
mydata
y<-ts (mydata)
#for computing dwt
dwt<-dwt (y,filter=“NAME_OF_FILTER”, n.levels= 
VALUE_OF_LEVEL)
dwt
plot(dwt)

(ii)	 SAS code for fitting Modified Gutierrez model:

(a)	 Estimation of parameters

proc optmodel;
number x{1..n,1..1} = [RESPONSE_VARIABLE_
DATA];
number xx{1..1,1..n} = [RESPONSE_VARIABLE_
DATA];
number r{1..n,1..1} = [EXPLANATORY_VARIA-
BLE1_DATA];
number rr{1..1,1..n} = [EXPLANATORY_VARIA-
BLE1_DATA];
number f{1..n,1..1} = [EXPLANATORY_VARIA-
BLE2_DATA];
number ff{1..1,1..n} = [EXPLANATORY_VARIA-
BLE2_DATA];
number p{1..n,1..1} = [EXPLANATORY_VARIA-
BLE3_DATA];
number pp{1..1,1..n} = [EXPLANATORY_VARIA-
BLE3_DATA];
set dim={2..n};/*n represents number of data points */

set len={1..n-1};
var zz1>=-0.0000000001 <=0.0000000001;
var zz2>=-0.0000000001 <=0.0000000001;
var zz3>=-0.0000000001 <=0.0000000001;
var zz4>=-0.0000000001 <=0.0000000001;
var zz5>=0 <=0.0001;
var zz6>=-0.00000001 <=0.00000001;
var zz7>=-0.00000001 <=0.00000001;
max func= (sum{t in len}((zz5+(2*zz7))/
(2*3.14*(1-exp(-2*(zz5+zz7)))*exp(2*(zz7*(t+1)+z
z6)))**0.5))*exp(((-1*(zz5+(2*zz7)))*(sum{tindim}
(((( log(xx[1, t])-(exp(-zz5)*log(xx[1, t-1])))-
(((exp(2*zz7*(t+1))-exp(-zz5+2*zz7*t))*(‑exp 
(2*zz6)/(zz5+2*zz7)))+zz1*((1-exp(-zz5))/(zz5))+ 
((1-exp(-zz5))/zz5)**(1)*(rr[1,t‑1]+((rr[1,t]-rr[1, 
t‑1])*((zz5-1+exp(-zz5))/(zz5*(1‑exp(-zz5))))))* 
zz2+((1-exp(-zz5))/zz5)**(1)*(ff[1,t‑1]+((ff[1,t]-
ff[1,t-1])*((zz5-1+exp(-zz5))/(zz5*(1-exp(‑zz5))))))* 
zz3+((1-exp(-zz5))/zz5)**(1)*(pp[1,t-1]+((pp[1,t]-
pp[1 , t -1 ] )*( (zz5-1+exp( -zz5) ) / (zz5*(1-exp 
(‑zz5))))))*zz4))*((1-exp(-2*(zz5+zz7)))*(exp(2* 
(zz7*(t+1)+zz6))))**(-1))*((log(x[t,1])-(exp(‑zz5)* 
log(x[t-1,1])))-(((exp(2*zz7*(t+1))-exp(‑zz5+ 
2*zz7*t))*(-exp(2*zz6)/(zz5+2*zz7)))+zz1*((1‑exp 
(‑zz5))/(zz5))+((1-exp(-zz5))/zz5)**(1)*(r[t‑1,1]+ 
((r[t,1]-r[t-1,1])*((zz5-1+exp(-zz5))/(zz5*(1-exp 
(-zz5))))))*zz2+((1-exp(-zz5))/zz5)**(1)*(f[t‑1,1]+ 
((f[t,1]-f[t-1,1])*((zz5-1+exp(-zz5))/(zz5*(1‑exp 
(-zz5))))))*zz3+((1-exp(-zz5))/zz5)**(1)*(p[t‑1,1]+ 
((p[t,1]-p[t-1,1])*((zz5-1+exp(-zz5))/(zz5*(1‑exp 
(‑zz5))))))*zz4)))))/2);
solve;
print func;
print zz1 zz2 zz3 zz4 zz5 zz6 zz7;
quit;

(b)	 Fitting and Forecasting

proc iml;
rr={EXPLANATORY_VARIABLE1_DATA};
ff={EXPLANATORY_VARIABLE2_DATA};
pp={EXPLANATORY_VARIABLE3_DATA};
xx={RESPONSE_VARIABLE_DATA};
alpha0=ESTIMATED_VALUE;	
alpha1=ESTIMATED_VALUE;	
alpha2=ESTIMATED_VALUE;	
alpha3=ESTIMATED_VALUE;	
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beta=ESTIMATED_VALUE;	
k=ESTIMATED_VALUE;	
gamma=ESTIMATED_VALUE;	
do i=2 to n;/*n represents number of data points */
b1=(1-exp(-beta))/beta;
b2=exp(-beta);
b3=(exp(2*k)/(beta+(2*gamma)))*(exp(2*gamma* 
(i+1))-exp(-1*beta+2* gamma*i));
var=((1-exp(-2*(beta+gamma)))*exp(2*(gamma* 
(i+1)+k)))/(beta+gamma);
bexpr=(beta-1+exp(-beta))/(beta*(1-exp(-beta)));
rexpr=alpha1*(rr[i-1]+((rr[i]-rr[i-1])*bexpr));
fexpr=alpha2*(ff[i-1]+((ff[i]-ff[i-1])*bexpr));
pexpr=alpha3*(pp[i-1]+((pp[i]-pp[i-1])*bexpr));
expr=alpha0*b1+rexpr +fexpr+pexpr;

final=b2*log(xx[i-1])-b3+expr;
value=exp(final+0.5*var);
value1=value1//value;
end;
xy=xx[,2:n];
v=t(value1);
diff=abs(xy-v);
print value1;
difff=diff##2;
summ=sum(difff);
av=summ/(n-1);
print av;
quit;


