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SUMMARY

The Self-exciting threshold autoregressive (SETAR) nonlinear time-series model is thoroughly studied. This model is
capable of describing cyclical data. The Genetic algorithm (GA), which is a powerful stochastic search and optimization
procedure motivated by the principles of genetics and natural selection, is employed for estimation of parameters of the model.
As an illustration, India’s lac export annual data for the period 1901-2001 is considered for building the model. Forecasting
for hold-out data for the years 2002-’08 is also carried out. Superiority of GA-methodology over Search algorithm procedure

is demonstrated for the data under consideration.
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1. INTRODUCTION

Time-series data in various fields, like crop
sciences, fisheries and agricultural meteorology quite
often depict cyclical fluctuations. Some examples of
such behaviour are: India’s annual lac production /
export data, India’s summer monsoon rainfall data, and
Population-sizes of several fish species having prey-
predator type of interactions. Prajneshu et al. (2002)
modelled India’s lac production cyclical data through
Structural time-series (STS) approach and have shown
superiority of this approach over the well-known Box-
Jenkins autoregressive integrated moving average
methodology. However, one limitation of this work is
that the underlying model is “linear”. During last three
decades or so, the area of “Nonlinear time-series
modelling” has been rapidly developing. An important
subclass of such models is the Self-exciting threshold
autoregressive (SETAR) model, proposed by H. Tong
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in 1980, and discussed in Fan and Yao (2003). A
heartening aspect of this model is that it is capable of
describing cyclical data having sudden rise and fall.

Nampoothiri and Balakrishna (2000) made
attempts to fit SETAR model to monthly coconut oil
prices at Cochin market by following “Recursive
estimation” method. However, a drawback of this work
is that the estimation procedure is adhoc in nature and
is not based on any sound statistical optimization
principle. Accordingly, the estimates obtained are not,
in general, globally optimal. Ghosh et al. (2006) fitted
the SETAR model by “Search algorithm” (Tong 1995)
to describe India’s lac export data exhibiting prominent
cycles. However, main limitation of this algorithm is
that the number of possible models to be searched is
extremely large due to the fact that the algorithm entails
a complete search technique. Specifically, if the number
of autoregressive models is M, largest order is L,
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number of threshold values is S, and number of delay
parameter values is 7, then the number of models to be

S
computed is (M 1) LM T, which is very large.

The purpose of this paper is to thoroughly study
the powerful stochastic optimization technique of
Genetic algorithm (GA) for estimation of parameters
of SETAR model. GA is a target-oriented parallel
search technique and is mainly applied to optimization
process searching for universal or nearly universal
extreme values. This methodology is then applied to a
real data set. The organization of this paper is as
follows. After a brief introduction in Section 1, the next
section gives a description and identification of SETAR
model. Section 3 discusses working principles of GA.
This is followed by Section 4 dealing with an
illustration of fitting the model through GA to India’s
lac export time-series data. Finally, Section 5 is
concerned with some concluding remarks on the merits
of GA and delineation of some research problems for
future research work.

2. DESCRIPTION AND IDENTIFICATION OF
SETAR MODEL

The SETAR model comprises several linear AR-
models and the switch mechanism amongst AR-models
is based on delay output and threshold values. The
SETAR model is a particular class of Threshold
autoregressive (TAR) models, which is a piece-wise
linearization of nonlinear models over the state space
by introduction of thresholds. In this paper, we shall
confine only to SETAR two-regime model, which is
described below.

A SETAR (2; ky, kp) two-regime model can be
expressed as

ky
a+ 3 8 X +el.if X,_q <
Xe= o @1
al? +3 a® X +eP.if Xp_g >

i=1

where ki, k» are orders of two AR-models
corresponding to two regimes R =(ri_1 ],i=12;
(a Vi =0, 1,2, ..., ki) and {a'?; i = 0,

1,2, ..., kp} are autoregressive coefficients; £t(1), 5t(2)

are white noise terms; d is delay parameter value and r
is threshold value.

Tong and Lim (1980) proposed the “search
algorithm” for estimating delay parameter value d,
threshold value r, and parameters of the two AR-terms
of SETAR model given in eq. (2.1). The key point is
to use pooled Akaike information criterion (AIC), where

AIC(1) = AIC (ky) + AIC (kp),
and

AIC(K) = min {N;log (RSS; (k;)/N;)
0<k<L
2k + 1D}, i=1,2

Here L and N; denote respectively maximum order and
number of observations in the two-regimes defined
above. The estimation procedure is based on first
keeping the delay parameter value as fixed. Then,
minimum AIC values for varying thresholds are
computed. Finally, the best SETAR model is identified
by minimizing the AIC values over varying delay
parameter values.

3. ESTIMATION OF PARAMETERS USING
GENETIC ALGORITHM

The genetic algorithm (GA), first proposed by
Holland (1975), is a stochastic search and optimization
procedure motivated by the principles of genetics and
natural selection. It combines Charles Darwin’s
principle of “Natural selection” and “Survival of the
fittest” with computer-constructed evolution mechanism
to select better species from the original population.
This is done by random exchange of information among
them, expecting a superior offspring. Besides this, in
order to avoid missing some good species and
producing a local optimum, several mutations must be
processed. Thus the problem encountered in classical
optimization may be overcome by using GA.

In this paper, an attempt is made to implement real-
coded GA (RCGA) to estimate SETAR parameters
optimally. The crossover operator in RCGA is based on
coding of solutions, where a solution is represented in
terms of binary string(s). The basic concept of GA is
to encode the solution into an appropriate range by
using finite-length digital string(s) of length B. Here the
string or chromosome exhibits biological representation
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of the optimization problem of interest. A widely used
decoding formula is

c=1+{A/(2®-1)}x(U-L)

where ¢ is encoded value of a string, U and L are upper
and lower bounds of the optimal solution to be
searched, and 4 denotes decoded value of the string.

(3.1)

The three operators, viz. selection, crossover, and
mutation make GA an important tool for optimization.
When a string or a solution is created by GA, it is
evaluated in terms of its fitness value given by

NAIC = [AIC(ky) + AIC(k)I/(N —d)  (3.2)

Selection operator of GA is performed to identify good
solutions and to eliminate bad solutions from the
population (Deb 2002). Since selection operator cannot
create a new solution, crossover and mutation operators
are used in mating pool to create a new population of
solutions. Although, there exists a number of crossover
operators in the GA literature, a number of difficulties
arise while using the binary-coded GA to handle
problems having a continuous search space. One of
these is that of Hamming cliffs, which causes artificial
hindrance to a gradual search. The other difficulty is
its inability to achieve any arbitrary precision in arriving
at the optimal solution. Thus, crossover operator used
in binary coding needs to be redesigned in order to
increase propagation of more meaningful schemata
pertaining to a continuous search space. From the
viewpoint of better search power, solving a real-valued
optimization problem using RCGA which follows
similar single-point binary crossover operator and
applied on real solutions is more efficient than
transforming it into binary-coded GA. Similar to binary-
coded GA, selection operator using Tournament
selection is applied and the set of solutions with
improved fitness value is obtained in the next
generation. A pair of real-valued decision variable is
used to create a new pair of offspring using most
popular RCGA, viz. Simulated binary crossover (SBX),
which is described below. This is followed by
perturbing the variable using mutation operator. Thus,
a new set of solutions in the next generation are
obtained. The process is continued until desired
convergence is achieved.

3.1 SBX Operator

There exists a number of real-parameter GA
implementations, where crossover and mutation
operators are applied directly on real solutions. The
SBX operator works with two parent solutions and
creates two offspring. As the name suggests, SBX
operator simulates the working principle of single-point
crossover operator on binary strings. This operator
respects the interval schemata processing in the sense
that common interval schemata between parents are
preserved in offspring. The procedure of computing

(,t+1)

offspring X and Xi(z'Hl) from parent solutions

Xi(l.t)
(offspring) in /A generation is as follows. A spread
factor f; is defined as ratio of absolute difference in
offspring values to that of parents:

and xi(z’t) , where Xi(j’t) is value of jth parent

(2t+1)  (Lt+1)
X2
pi= % NEDEN %

(3.3)

The probability density function (p.d.f.) of f; used to
create an offspring is derived from the principle of
single-point binary crossover and has similar search
power in binary-coded GA. Deb and Agrawal (1995)
derived the p.d.f. of f; as

05(nc +1) B, if f <1

P(f)=
/ 0.5(nc +1) 7%~ 2, otherwise

(3.4)

Fig. 1 shows above p.d.f. with 7. =2 and 5 for

creating offspring from two parent solutions (Xi(lt) =

2.0 and Xi(z’t) = 5.0) in real space. It may be pointed

out that distribution index 77. is a non-negative real
number. A large value of 77, gives a higher probability
for creating ‘near-parent’ solutions while its small value
allows distinct solution to be selected as offspring.

To perform SBX operator, first a Uniform random
number U; between 0 and 1 is created. Thereafter,
ordinate [y is found so that the area under probability
curve from 0 to f is equal to the chosen random
number U;. Here [ represents qith quantile of the
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Probability density function per child

1 0 1 2 3 4 5 6 7 8
Children solution

Fig. 1. p.d.f. for creating offspring under an SBX with 77, operator
(Solid line for 7, = 2 and dotted lines for 77, = 5). Parents
are marked with an “0”

p.d.f. given in eq. (3.4) and is calculated by equating
area under the probability curve ¢; = u;, as follows:

(2u) et if u <05

(3.5)
[2(1-u)] "2, otherwise.

Subsequently, offspring are calculated using

Xi(l v = 0'5{(1+ By )Xi(L Vs (1‘ By ) X% t)}
(3.6)

(2D 0_5{(1_ fa )Xi(l’t) +(1+ B )Xi(z,t)}

3.7

It may be noted that two offspring are
symmetrically distributed about their respective parent
solutions. This is deliberately enforced to avoid bias
towards any particular parent solution. Another
important aspect of this crossover operator is that, for
a fixed 7., offspring have a spread which is proportional
to that of parent solution, i.e.

R (&(2’ V- >ﬁ(1't)) 68

3.2 Mutation Operator

This operator does the same task as performed by
real-parameter crossover operator. The only difference
is that the former perturbs every parent parameter
solution to create a new population while the latter

perturbs two parent parameter solutions at a time to
produce two new offspring. With only one parent, a
range of perturbation must be predefined. There are
several mutation operators, like Polynomial, Random,
and Non-uniform. However, one advantage of the
Polynomial mutation operator is that the p.d.f. does not
change with generations, thereby avoiding local optima.
Therefore, in our study, we shall be employing this

operator. It mutates i variable Xi(lHl) to yi(lHl) by
the transformation:

i(J,t+1) _ Xi(1,t+1) +{Xi(u)_ _(|_)}Si (3.9)
where & is drawn from the p.d.f.

P(6)=05(n,+1) A-|5)™, |5/ <1,and 7, >0
(3.10)

The parameter 77, is responsible for controlling the

shape of p.d.f. of yi(lHl) .

4. AN ILLUSTRATION

India’s annual lac export data for the period 1901-
2001 1is obtained from the website http://
www.shellacepc.com/statistics.html of “Shellac and
Forestry Produce Export Promotion Council, Kolkata”
and several issues of “Agricultural Statistics at a
Glance, Directorate of Economics and Statistics, New
Delhi”. Before making attempts to fit the SETAR model
using GA, significant features of the data noticed are:

(i) Obvious cycles of approximately 13 years with
varying amplitudes.

(i) The rise period from a local minimum to next
local maximum, exceeding descent period from a
maximum to next local minimum, thereby
showing time irreversibility.

To apply SETAR two-regime model to above data,
it is desirable to carry out a preliminary Exploratory
data analysis for justifying choice of this model. For
the data under consideration, this has already been done
in Section 3 by Ghosh et al. (2006). Some of the
important conclusions from that study are reproduced
here. The Directed scatter diagram of the time-series
{x;}, =1, 2..., indicated that the joint distribution of
(x;, xt_j), t=j+1,j+2,...N;j=1,2, ..., p are non-
Gaussian. The kernel density estimation revealed that
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the data exhibit multimodality. The lag regression
function analysis showed a gradual shift from a linear
function through a single hump curve back to a linear
function with single hump. Periodogram function
analysis indicated presence of at least one peak at
approximate frequency of 2 cycles per 13 years besides
a fundamental frequency of a cycle per 13 years. In
view of all this, it is desirable to apply SETAR
nonlinear time-series model to Indian lac export data.

The RCGA with SBX and 7. = 2 is used for
estimation of parameters of SETAR model. The other
RCGA parameters, viz. population size, crossover
probability, and mutation probability for minimization
of'eq. (3.2) are respectively 100, 0.9, 0.01 with number
of generations as 100. Relevant computer program is
developed using C-language and is appended as an
Annexure. The proposed algorithm enables us to select
SETAR (2; 1, 1) model, when delay parameter d =1,
ki =1 and k> = 1. The optimal threshold value comes
out as 10500 metric tonnes, which is 30" percentile of
the data. The best-identified model on the basis of
minimum NAIC value, viz. 15.63, is

if X;_1 <10500

it X,_,>10500 (+V)

_ [2178.870+0.718 X;_1,
' ]6441.216+ 0.723 X;_1.

with Var (gt(l)) = 67.83 and Var (gt(z)) = 124.45. The
of
(a(()l), ail) a(()z), a1(2)) are respectively computed as
(64.29, 0.05, 121.03, 0.09). The fitted SETAR (2; 1, 1)
model along with data points is exhibited in Fig. 2.

standard  errors parameter estimates

A mechanistic interpretation of fitted SETAR
model is as follows. Eq. (4.1) can be rewritten as

42000
37000
32000
27000
22000
17000
12000

7000

if X;_; <10500
if X;_1 >10500

4.2)

In the upper regime, i.e. X;_1 > 10500, X, — X, | tends
to be negative, implying decrease in lac export. In the
lower regime, i.e. X; | < 10500, X; — X, | tends to be
marginally positive, implying slow increase in lac
export. This phenomenon leads to cyclicity, which is
in agreement with observed lac export data.

v (2178870~ 0.282 X;_y,
(LT 16441.216 - 0.277 X g,

4.1 Forecasting for Hold-out Data

Using observed data and fitted model in eq.(4.1),
one-step-ahead predicted value xp4+1 of Xp4 are
obtained. Now, treating this Xy as observed value of
Xn+1, same calculation is repeated and predicted value
xn+2 of Xy42, and so on, are obtained. Forecast values
for years 2002, 2003,...,2008 are computed and
reported in Table 1.

Table 1. Forecasting for hold-out data of India’s lac export
data (metric tonnes) by SETAR two-regime model

Year | Actual Forecast values using
value Search algorithm | Genetic algorithm

2002 | 7015.00 6274.06 6856.25
2003 | 5819.00 7407.90 6222.50
2004 | 10500.00 621543 10576.78
2005 | 8540.00 10804.23 9717.87
2006 | 9300.00 8922.63 8310.59
2007 | 7510.00 9652.23 8856.27
2008 | 7980.00 7933.83 7571.05

2000

1922
19364

All-India lac export (metric tonnes)
1901

1943]

o T
el
N

1957
197 H
1985
19972]
1999

—

Year

Fig. 2. Fitted SETAR (2; 1, 1) two-regime model for modelling and forecasting India’s lac export data
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The forecast performance for hold-out data on the
basis of Root mean square error and Mean absolute
error for fitted SETAR model using search algorithm
are respectively computed as 2109.19 and 1659.33. The
corresponding values for fitted SETAR model using
genetic algorithm are respectively computed as 881.59
and 867.66. Thus, SETAR model fitted using GA
technique is superior to that fitted using Search
algorithm for forecasting purposes.

To sum up, it may be concluded that, for given
data, SETAR two-regime nonlinear time-series model
fitted through Genetic algorithm procedure has
outperformed that fitted using Search algorithm
procedure for modelling as well as forecasting.

5. CONCLUDING REMARKS

In this paper, superiority of Genetic algorithm
stochastic optimization technique over Search algorithm
technique for fitting of Self-exciting threshold
autoregressive nonlinear time-series model to India’s lac
export data is demonstrated. It may be pointed out that
Search algorithm determines final value of threshold (7)
only from a set of discrete potential values {30, £9.40,
10.50- 10.60- 1070} - On the other hand, Genetic algorithm
enables obtaining the optimum value of threshold (7)
by using Stochastic optimization algorithm in the entire
solution space, thereby ensuring global optimum.
Further, given a fixed threshold (#), Search algorithm
requires computation of Akaike information criterion
values for all combinations of orders of the two
regimes. Thus, this algorithm is computationally
inefficient. In contrast to this, Genetic algorithm is
based on selection criterion, which employs “Selection
operator”, ensuring thereby that fitness values over
successive iterations are non-increasing. In other words,
Genetic algorithm is computationally more efficient
than Search algorithm.

As future work, possibility of employing Fast
rectangular window type algorithm to estimate
threshold () may be explored. For the purpose of

inference, use of Bayesian methods, like MCMC
simulation technique may be considered. Another
direction of future research may be to develop efficient
estimation procedures for fitting Self-exciting threshold
autoregressive nonlinear time-series model with three
or more regimes.
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ANNEXURE

OBJECTIVE FUNCTION (TO BE MINIMIZED):

void objective(indv)
INDIVIDUAL *indv;
{int i;
double term3, pi, your_func;
double gfMAXCONSTR], gsum, x[2*MAXVECSIZE];
double sigl1=0,sig12=0,sig13=0,sig14=0,sig2 1=0,s1g22=0,s1g23=0,51g24=0;
double AIC11,AIC12,AIC13,AIC14,AIC21,AIC22,AIC23,AIC24;
double AIC_A[8]; double templ,temp2,r;
int k1=0,k2=0,d,count1=0,count2=0; int j,k=0;
double NAIC[1000],NAIC_Sorted[1000],VALUE_R[1000];
int VALUE KI1[1000],VALUE K2[1000],VALUE_D[1000];
FILE *(create file);
for (i=0; i < nvar_bin; i++)
x[i] = indv->xbin][i];
for (i=nvar_bin; i < nvar_bin+nvar_real; i++)
x[i] = indv->xreal[i-nvar_bin];
#ifdef (define problem number)
term3=0;
MINM = 1;
try1=fopen(path for text file for);
for(loop for d)
{for (loop for r)
{for (j=13j<1303++)
{if (y[j-dl<=r)
{for(k1=1:k1<=4:k1++)
{if (k1==1)
{sigl1=sigl 1+pow((y[I-x[01-x[1]*y[j-11).2):}
else if (k1==2)
{sig12=sig1 2+pow((y[jIx[01-x[ 1T*y[j-11=x[21*y[j-21).2):}
else if (k1==3)
{sig13=sig13+pow((y[jI-x[O1-x[ 1T¥y[j-11-x[21*y[]-2]-x[3]*y[j-31).2):}
else if (k1==4)
{sigl4=sigl 4+pow((y[j1-x[O1-x[ 1T¥y[j-11-x[21*y[j-2]-x[31*y[j-31-x[4T*y[i-41).2):3 } }

else
{for(k2=1;k2<=4;k2++)
{if (k2==1)

{sig2 1=sig2 1+pow((y[j]-x[SIx[6]*y[j-11).2):}
else if (k2==2)
{s1g22=sig22+pow((y[j]-x[5]-x[6]*y[j-1]-x[7]*y[j-2]).2);}
else if (k2==3)
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{sig23=sig23-+pow((y[j I-x[S1-x[6]*y[j-1 1-x[7]*y[j-21-x[81*y[j-31).2):}
else if (k2==4)

{sig24=sig24-+pow((y[j I-x[SI-x[6]*y[j-11-x[71*y[j-21-x[81*y[j-31-x[91*y[-41).2):} } }}
AIC11=countl*log(sigl 1)+2*(1+1);
AIC_A[0]=AICII;

AIC12=count] *log(sigl2)+2*(2+1);
AIC_A[1]=AIC12;
AIC13=count]*log(sigl13)+2*(3+1);
AIC_A[2]=AIC13;

AIC14=countl *log(sigl4)+2*(4+1);
AIC_A[3]=AIC14;
AIC21=count2*log(sig2 1)+2*(1+1);
AIC_A[4]=AIC21;
AIC22=count2*log(sig22)+2*(2+1);
AIC_A[5]=AIC22;
AIC23=count2*log(sig23)+2*(3+1);
AIC_A[6]=AIC23;
AlIC24=count2*log(sig24)+2*(4+1);
AIC_A[7]=AIC24;

//Calculate AIC Value

for (i=0;i<=3;i++)

{for(j=4;j<=7;j++)

{NAIC[K]=(AIC_A[i]+AIC_A[j]/(100-d));
NAIC_Sorted[k]=NAICJ[k];
VALUE_KIl1[k]=i+1;

VALUE K2[k]=j-3;
VALUE_D[k]=d;
VALUE_R[k]=r;
k533 } 3

for(i=0;i<k;i++)

{For(j=05j<k-15j++)

{if(AIC[j]>=AIC[j+1])

AIC[J]=AIC[j+1];

AIC[j+1]=templ;}}}

fprintf(try 1, \nAIC=%4.51f,”,AIC[0]);

for(i=0;i<k;i++)

{if(NAIC_Sorted[i]==NAICJ[0])

{break; }}

fprintf(“k1=%d,k2=%d,d=%d,r=%I{",VALUE_KI1[i],
VALUE KZ2Ji], VALUE_DJi],VALUE_R[i]);

fclose(try1);

your_func=NAICJ[0];



