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PREFACE 

 

 Climatic change has been much debated in the scientific world in recent decades. The 

detection and estimation of trends in the presence of noise, long memory, periodicities, or 

discontinuous patterns is important in climate research studies. The problem of predicting 

seasonal monsoon rainfall, and indeed of assessing the degree of predictability in the 

monsoon, continues to be of great fundamental and practical importance. Detection of 

significant periodicities in the available rainfall data can be of great value in prediction and 

has attracted much attention for nearly a century. For modelling time-series in presence of 

long memory, the autoregressive fractionally integrated moving-average (ARFIMA) model 

is used. A time-series may perhaps show long memory, not because it is really I(d) but 

sometimes because of the neglected structural breaks in the series. Ignoring the presence of 

breaks can lead to seriously biased estimates and forecasts. Most of the periodicities tests 

have been developed to deal with periodic component processes with additive white noise. 

In recent years, the wavelet transform has been developed as an alternative to the Fourier 

transform. The discrete wavelet transform (DWT) has been extensively used for the analysis 

of FD processes, since it matches the structure of such processes.  

 A common issue that often arises when working with real time-series which might 

exhibit long memory is the possibility of structural change. In literature of studying long 

memory in presence of structural break, the joint test of fractional integration and structural 

break in Indian condition has hardly been used. The existing test for testing periodicities in 

presence of long memory in climate variable needs to be used in the Indian climate. It is 

well recognized that the MK test is not robust against autocorrelation and cross correlation, 

and also depends on the sample size as well as magnitude of the trend to be identified. As 

such, there remains a need for using new types of methods in order to detect and test for 

trends. Forecasting of climate variables using wavelets is of prime importance now a days.  

The long memory behaviour of monthly maximum temperature of India for the 

period 1901 to 2007 is investigated. Significant increasing trend is found in the maximum 

temperature series in India. The rate of increase in maximum temperature accelerated after 

1960s as compared to the earlier period. Here, an attempt is also made to detect the 

structural break for seasonally adjusted monthly maximum temperature series. It is found 



that there is a significant break in maximum temperature during July, 1963. Two Stage 

Forecasting (TSF) approach to deal with the coexistence of long memory and structural 

change in temperature pattern is discussed thoroughly. The forecast performance of the 

fitted model is assessed on the basis of RMAPE (Relative Mean Absolute Prediction Error), 

SSE (Sum of Squared Errors) and MSE (Mean Squared Errors) for different forecast 

horizons. 

A procedure for estimating the fractional differencing parameter in semiparametric 

contexts, namely exact local Whittle (ELW) estimator proposed by Shimotsu and Phillips 

(2005) is employed to analyze seasonal rainfall data across different zones of India. The 

results indicate that some of the series exhibit long memory. Furthermore, an empirical 

fluctuation process using the ordinary least square (OLS)-based Chow test for the break date 

is applied. The sub-divisional rainfall data of India during the period 1871 to 2016 has been 

investigated by using wavelet analysis. On the decomposed series, ARIMA as well as 

Artificial Neural Network (ANN) model is applied and by means of inverse wavelet 

transform, the prediction of rainfall for different sub-divisions have been obtained. To this 

end, empirical comparison was carried out toward forecast performance of the approaches 

namely Wavelet-ANN, Wavelet-ARIMA and ARIMA. It is reported that Wavelet-ANN and 

Wavelet-ARIMA approach out performs the usual ARIMA model for forecasting of rainfall 

for the data under consideration. 
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Chapter I  

 

INTRODUCTION AND REVIEW OF LITERATURE 

 

Introduction 

  Climatic change has been much debated in the scientific world in recent decades. The 

detection and estimation of trends in the presence of noise, long memory, periodicities, or 

discontinuous patterns is important in climate research studies. The problem of predicting 

seasonal monsoon rainfall, and indeed of assessing the degree of predictability in the monsoon, 

continues to be of great fundamental and practical importance. Detection of significant 

periodicities in the available rainfall data can be of great value in prediction and has attracted 

much attention for nearly a century. One persistent question that arises in the quest for 

identifying periodicities is the heterogeneity of the Indian rainfall at regional level. In spite of 

such heterogeneity, the analysis is still focused on all-India level.  

 

Time series modeling and forecasting is a dynamic research area which has attracted the 

attentions of researcher community over last few decades for analyzing climatic data. Although 

most economic time series are non-stationary and do require differencing of some kind it is not 

necessarily true that taking integer order differences and then using an ARMA model will be 

the best remedy. In Box-Jenkins ARIMA methodology, it is assumed that if the series is non-

stationary, the integer order differenced series will be well behaved, as long as there are no 

seasonal components. In particular, it is hoped that differenced series will have rapidly 

decaying autocorrelations, so that it can be well described by a stationary invertible ARMA 

model. But, this is not always the case. However, some series evidently do not possess a further 

unit root, while they show signs of dependence and possess long memory. The long memory 

models provide us with a way to define such a fractional difference, and would provide a useful 

alternative to an ARMA model. For modeling time-series in presence of long memory, the 

autoregressive fractionally integrated moving-average (ARFIMA) model (Granger and Joyeux, 

1980) is used.  
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A time-series may perhaps show long memory, not because it is really I(d) but sometimes 

because of the neglected structural breaks in the series (Granger and Hyung, 2004) Literally, 

structural change can be described as fundamental shift in the structure of the series under 

consideration. Ignoring the presence of breaks can lead to seriously biased estimates and 

forecasts. Many time series in different fields can be modeled as an underlying process with 

some periodic variations, contaminated by additive random noise. Fourier showed that almost 

any periodic function can be represented by a series of sine and cosine functions (sinusoids) or 

a mixtures of sine and cosine functions (Priestley 1981). But for many time series, it is more 

complicated in that several periodic terms may be present with unknown cycles. The so-called 

hidden periodicities can be determined from peaks in the periodogram, although not all peaks 

correspond to a genuine periodic component in the process.  

Most of the periodicities tests have been developed to deal with periodic component processes 

with additive white noise. Many processes, however, exhibit some sort of correlation structure 

which makes the additive white noise assumption unrealistic. A variety of such dependence at 

long ranges, can be modeled by a class of processes called fractional difference processes (FD). 

In recent years, the wavelet transform has been developed as an alternative to the Fourier 

transform. The discrete wavelet transform (DWT) has been extensively used for the analysis 

of FD processes, since it matches the structure of such processes. The key property of the DWT 

is that it transforms a time series into coefficients that reflect changes at various scales and at 

particular times. For FD processes, the DWT wavelet coefficients for a given scale are 

approximately uncorrelated; see Percival and Walden (2000). 

Frequency-domain analysis tools are very appealing to study the variables that exhibit a 

cyclical behaviour and/or are affected by seasonal effects. Spectral analysis and Fourier 

transforms can be used to quantify the importance of the various frequency components of the 

variable under investigation. Many methods have been used for trend detection and testing in 

literature, none have emerged as standard. Perhaps the most common test for trends is the rank-

based nonparametric Mann–Kendall (MK) method.  

It is, however, well recognized that the MK test is not robust against autocorrelation and cross 

correlation, and also depends on the sample size as well as magnitude of the trend to be 

identified. Moreover, the test of presence of trend in climate variable needs to be studied 

properly by using recent development in this field. 

 

A common issue that often arises when working with real time-series which might exhibit long 

memory is the possibility of structural change. It would be interesting to see the effect of 
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structural break in long memory time series model with reference to forecast performance. In 

literature of studying long memory in presence of structural break, the joint test of fractional 

integration and structural break in Indian condition has hardly been used. There is a need to 

use the test for more precise interpretation. Sometimes long memory is coupled with volatility 

and the corresponding model may be ARFIMA-GARCH model. For this model, optimal out-

of-sample forecast formulae does not exist. The existing test for testing periodicities in 

presence of long memory in climate variable needs to be used in the Indian climate. It is well 

recognized that the MK test is not robust against autocorrelation and cross correlation, and also 

depends on the sample size as well as magnitude of the trend to be identified. As such, there 

remains a need for using new types of methods in order to detect and test for trends. Forecasting 

of climate variables using wavelets is of prime importance now a days. But it is very difficult 

to apply in the real data because of non-availability of readymade module in software. There 

is a need to develop a package (R) for the above propose. 

 

Paul (2014) and Paul et al. (2015a,b) have applied ARFIMA model for forecasting of 

agricultural commodity prices. The authors have also compared different estimation techniques 

for estimating the long memory parameter by means of MCMC and concluded that wavelet 

based estimation outperforms the other techniques 

 

Agricultural performance of a country, generally, depends to a large extent on the quantum and 

distribution of rainfall. Therefore accurate modelling is vital in planning and policy making. 

Azad et al. (2008) developed a Wavelet-based significance test for periodicities in Indian 

monsoon rainfall. Sunilkumar and Prajneshu (2008) carried out modelling and forecasting of 

marine fish production of India using Wavelet thresholding with autocorrelated errors.  

 

Paul et al. (2011) applied Wavelet methodology for detection of trend in Indian monsoon 

rainfall and found that there is a significant declining trend. Ghosh et al. (2013) applied Periodic 

ARCH model for modelling rainfall data. Ghosh et al. (2010) investigated wavelet frequency 

domain approach for statistical modelling of rainfall time-series data 

 

Recently wavelet based hybrid time series models are widely used in forecasting time series 

data. (Anjoy and Paul, 2017). The authors have applied the technique for forecasting 

agricultural commodity prices. Paul et al. (2014) studied the structural changes in mean 

temperature over agro-climatic zones in India. Paul et al. (2015) studied Temperature trend in 



Introduction and Review of Literature 

 

4 

 

different agro-climatic zones in India. Paul and Birthal (2015). Investigated rainfall trend in 

different agro-climatic zones over India using the nonparametric wavelet technique. Granger 

and Joyeux (1980), Granger (1980, 1981) and Hosking (1981) developed an autoregressive 

fractionally integrated (ARFIMA) model and provided a parametric tool for long memory 

analysis. Booth et al. (1982) and Helms et al. (1984) stated that the long memory process is the 

explanation of irregular cyclical patterns of certain financial series. Helms et al. (1984), Peters 

(1989, 1991, 1994), applied rescaled range (R/S) analysis to detect the existence of long 

memory in the futures prices of the soybean. Daubechies (1988), Hernandez and Weiss (1996) 

have found rapid decay in the wavelet coefficient's covariance. A good description of Long-

Memory Processes can be found in Beran (1994). 

Estimation of long-memory parameter 

  (1) Frequency domain approach 

                   GPH estimator (Geweke and Porter-Hudak, 1983)  

                   Gaussian semiparametric estimator (Robinson, 1995, 2003) 

  (2) Wavelet (time-frequency) domain approach (Abry and Veitch, 1996 and Jensen, 

1999) 

Lo (1991) modified the above R/S method and produced a new statistic that is robust. Robinson 

(1995), Hurvich et al. (1998) and Tanaka (1999) have analyzed the GPH estimate in detail. 

Diebold and Inoue (2001) studied first the joint analysis of long memory and structural break 

and proved how structural change can be misinterpreted as long memory. Wang et al. (2013) 

suggested to fit an autoregressive model directly to the long memory series choosing the order, 

k, via a selection criteria, i.e. AIC or 𝐶𝑝. Papailias and Dias (2015) introduced a two-stage 

approach for forecasting of long memory time-series focusing on spurious long memory cases 

 

Using time domain, Fryzlewicz et al. (2003) developed Wavelet process model for forecasting 

nonstationary time-series. For the frequency approach, Renaud et al. (2003) developed 

methodology for prediction of time-series data based on multiscale decomposition. 

Aminghafari and Poggi (2007, 2012) used Wavelets and kernel smoothing approach for 

forecasting nonstationary time-series. Recently hybrid time series models are widely used in 

forecasting time series data. (Aminghafari and Poggi, 2012). But it is very difficult to 

implement the hybrid model based on wavelet in the real data due to non-availability of 

readymade software. So there is a need to develop an R package 
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Mann–Kendall tests are widely used in environmental science because they are simple, robust 

and can cope with missing values and values below a detection limit. Since the first proposals 

of the test by Mann (1945) and Kendall (1975), the test was extended in order to include 

seasonality (Hirsch et al., 1982), multiple monitoring sites (Lettenmaier, 1988), and covariates 

representing natural fluctuations (Libiseller and Grimvall, 2002). In addition to the studies 

mentioned earlier, the nonparametric Mann–Kendall test has been used in a variety of climate 

and streamflow studies in Canada (e.g. Gan, 1995, 1998; Gobena and Gan, 2006). Kallache et 

al. (2005) used a Discrete Wavelet Transform (DWT) to assess trends in flood data. Partal and 

Kucuk (2006) used a DWT to assess trends in precipitation data. Almasri et al. (2008) used a 

DWT to assess trends in temperature. Almasri (2010) introduced two tests for testing the trend 

in long memory processes, based on the wavelet and band periodogram. They have compared 

with the OLS-based test. The results have shown that the OLS tests perform better when the 

FD parameter is smaller, and the wavelet based tests and the band periodogram based tests are 

much better as d approximate 0.5. Periodicity tests have a long history, including, for example, 

the contributions of Schuster (1898), Fisher (1929), and Siegel (1980). Almasri (2011) 

proposed a New Approach for Testing Periodicity. Adamowski et al. (2009) Developed of a 

new method of wavelet aided trend detection and estimation. 

 

Keeping the above points in mind, this study was undertaken with the following objectives: 

1. To investigate the trend and variability in climate variable in presence of long memory 

using wavelets. 

2. To investigate the joint effect of long  memory and structural break on forecasting 

3. To develop formulae for out-of-sample forecast for ARFIMA-GARCH model 

4. To identify periodicities in the climate variables 

5. To develop R-package for forecasting using hybrid models based on wavelets 

 



Chapter II  

 

LONG MEMORY IN MAXIMUM AND MINIMUM 

TEMPERATURE SERIES IN INDIA 
 

 

1. Introduction  

Large number of research papers have been published on long memory and fractionally 

integrated processes since the initial publication of the work of Granger (1980); Granger and 

Joyeux (1980) and Hosking (1981) which parameterized the processes of Hurst (1951) on the 

time series with hyperbolically decaying autocorrelations. The long memory or long term 

dependence property describes the high-order correlation structure of a time series. If a series 

exhibits long memory, there is persistent temporal dependence even between distant 

observations. Such series are characterized by distinct but non-periodic cyclical patterns. The 

presence of long memory dynamics causes nonlinear dependence in the first moment of the 

distribution and hence a potentially predictable component in the series dynamics. Fractionally 

integrated processes can give rise to long memory (Beran, 1994).  

A popular class of models for time series with long memory behaviour is the autoregressive 

fractionally integrated moving average (ARFIMA) model by Granger and Joyeux (1980). This 

kind of models extended classical ARIMA models by assuming the differencing parameter d 

as a fractional value. It is well known that ARFIMA models are linear time series model. 

Fractional integration is part of the larger classification of time series, commonly referred to as 

‘long memory’ models. The recent empirical evidence suggests that temperature series may be 

well described in terms of fractionally integrated processes (Gil-Alana, 2004). Fractionally 

integrated I(d) processes have attracted growing attention among empirical researchers. In fact 

this is because I(d) processes provide an extension to the classical dichotomy of I(0) and I(1) 

time series and equip us with more general alternatives in long range dependence (Shimotsu, 

2010). Empirical research continues to find evidence that I(d) processes can provide a suitable 

description of certain long range characteristics.  
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Understanding the nature and scale of possible climate changes in India is of importance to the 

policy makers and farmers as it gives them a chance to be prepared for better mitigation and 

adaptation measures. For that purpose time series analysis of weather data can be a very 

valuable tool to investigate its variability pattern and, maybe, even to predict short- and long-

term changes in the time series. Various researchers have carried out studies on temperatures. 

Woodcock (1984) described some experimental MOS forecasts of daily maximum and 

minimum temperature for seven Australian cities. Raj (1998) evolved a scheme for predicting 

minimum temperature at Pune by analogue and regression methods. Mohan et al. (1989) 

developed a method for forecasting maximum temperature over Ozar situated in Maharastra 

using maximum and dew point temperature of the previous day. In the present investigation 

monthly minimum temperatures in India, for the period 1901–2007 were examined by means 

of fractional integration techniques. Dhimri et al. (2005) have carried out forecast of minimum 

temperature at Manali, India. Paul et al. (2014) have investigated the trend in mean surface 

temperature in different agro-climatic zones in India. Paul et al. (2015) have also investigated 

the structural break in mean surface temperature in different agro-climatic zones in India and 

reported that there is significant structural break during 1970’s. However, in none of the above 

studies, long memory nature in maximum and minimum surface temperature in India has been 

investigated. In the present investigation, an attempt has been made to apply long memory 

model for forecasting maximum and minimum surface temperature in India with more 

accuracy. To this end, nonparametric wavelet technique has also been applied to study the 

pattern of maximum and minimum surface temperature in India over the last century or so both 

globally as well as locally. Some applications of this technique in modelling climate variables 

may be found in Paul et al. (2013), Paul et al. (2011), Paul and Birthal (2015). The paper is 

organized as follows: section 2 describes the data set used in the present investigation; section 

3 describes the long memory definition, ARFIMA model, testing stationarity and testing of 

presence of long memory followed by section 4 which deals with results and discussion. 

2. DATA 

For the present investigation, all India monthly maximum and minimum temperature data 

during the period January, 1901 to December, 2007 is used. The data is collected form Indian 

Institute of Tropical Meteorology, Government of India. The data for the period January 1901 

to December, 2006 have been used for model building and the remaining data have been used 

for model validation purpose.  
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3. METHODOLOGY 

Long Memory Process 

Long memory in time-series can be defined as autocorrelation at long lags (Robinson, 1995). 

According to Jin and Frechette (2004), memory means that observations are not independent 

(each observation is affected by the events that preceded it). The autocorrelation function (acf) 

of a time-series yt is defined as    

 𝜌𝑘 = 𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡−1)/𝑣𝑎𝑟(𝑦𝑡)      (1) 

for integer lag k. A covariance stationary time-series process is expected to have 

autocorrelations such that lim
𝑘→∞

𝜌𝑘 = 0. Most of the well-known class of stationary and 

invertible time-series processes have autocorrelations that decay at the relatively faster 

exponential rate, so that 𝜌𝑘 ≈ |𝑚|𝑘, where |m|<1 and this property is true, for example, for the 

well-known stationary and invertible ARMA(p,q) process. For long memory processes, the 

autocorrelations decay at an hyperbolic rate which is consistent with 𝜌𝑘 ≈ 𝐶𝑘2𝑑−1, as k 

increases without limit, where C is a constant and d is the long memory parameter. 

 

ARFIMA Model 

Fractional integration is the primary conceptual framework for describing long memory in 

financial time-series. Fractional integration is a generalization of integer integration, under 

which time-series are usually presumed to be integrated of order zero or one. For example, an 

autoregressive moving-average process integrated of order d [denoted by ARFIMA(p, d, q)] 

can be represented as  

                             (1 − 𝐿)d𝜑(𝐿)𝑦𝑡 =  𝜃(𝐿)𝑢𝑡                     (2) 

where 𝑢𝑡 is an independently and identically distributed (i.i.d.) random variable with zero mean 

and constant variance, L denotes the lag operator; and 𝜑(𝐿) and 𝜃(𝐿) denote finite polynomials 

in the lag operator with roots outside the unit circle. For d = 0, the process is stationary, and 

the effect of a shock to u(t) on y(t + j) decays geometrically as j increases. For d = 1, the process 

is said to have a unit root, and the effect of a shock to u(t) on y(t + j) persists into the infinite 

future. In contrast, fractional integration defines the function (1 - L)-d for noninteger values of 

the fractional differencing parameter d. It turns out that for -0.5< d< 0.5 the process y(t) is 

stationary and invertible.  A detail description of ARFIMA model can be found in Robinson 

(2003). 

 

Estimation procedures 
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We deal with some well known estimation methods of the long memory parameter d. The first 

one is the semiparametric method based on an approximated regression equation obtained from 

the logarithm of the spectral density function of a model. This method is proposed by Geweke 

and Porter-Hudak (1983). The second is the Gaussian semiparametric method developed by 

Robinson (1995).  

 

Testing of Long Memory 

H=1-d, a Hurst exponent produced by the rescaled range analysis, or R/S, analysis and applied 

to economic price analysis by Booth et al. (1982) and Helms et al. (1984). For a given time-

series, the Hurst exponent measures the long-term non-periodic dependence, and indicates the 

average duration the dependence may last.  

The time period spanned by the time series of length T is divided into m contiguous sub-periods 

of length n such that m*n = T. In each sub-period Xij, the elements have two subscripts. The 

first subscript (i = 1,…,n) denotes the number of elements in each sub-period and the second 

one (j = 1,…,m) denotes the sub-period index. For each sub-period j the R/S statistic is 

calculated as follows: 

       








k

i

jij
nk

k

i

jij

nk

jj xxxxSSR
1

1
11

1
minmax/     (3) 

where Sj is the standard deviation for each sub-period. In (3), the k deviations from the sub-

period mean have zero mean; therefore the last value of the cumulative deviations for each sub-

period will always be zero. Because of this, the maximum value of the cumulative deviations 

will always be greater or equal to zero, while the minimum value will always be less or equal 

to zero. Rescaling the range is crucial since it allows diverse phenomena and time periods to 

be compared, which means that R/S analysis can describe time series with no characteristic 

scale. The (R/S)n is computed by the average of the (R/S)j values for all the m contiguous sub-

periods with length n as  

    jn SRmSR // 1                  (4) 

Eq. (4) computes the R/S value which corresponds to a certain time interval of length n. This 

is repeated by increasing n to the next integer value, until n = T/2, since at least two sub-periods 

are needed, to avoid bias. 



10 
 

As n increases, the following holds: 

   nHSR n loglog/log       (5) 

When 0.5<H<1, the long memory structure exists. If H ≥ 1, the process has infinite variance 

and is nonstationary. If 0<H<0.5, anti-persistence structure exists. If H=0.5, the process is 

white noise.  

Geweke and Porter-Hudak (GPH) estimate 

The GPH estimation procedure is a two-step procedure, which begins with the estimation of d. 

This method is based on least squares regression in the spectral domain, exploits the sample 

form of the pole of the spectral density at the origin:   0,~ 2   d
xf . To illustrate this 

method, we can write the spectral density function of a stationary model Xt , t = 1, . . . ,T as 

   














 
 



ff

d

x
2

sin4 2  

where  f  is the spectral density of t  , assumed to be a finite and continuous function on 

the interval   , . Taking the logarithm of the spectral density function  xf  the log-

spectral density can be expressed as 

     
 
 0

log
2

sin4log0loglog 2























 


f

f
dff x  

Let  jxI   be the periodogram evaluated at the Fourier frequencies Tjj /2 ; j = 1, 2, . . 

. , m; T is the number of observations and m is the number of considered Fourier frequencies, 

that is the number of periodogram ordinates which will be used in the regression 

     
 
 

 
 jx

jx

jx
f

I

f

f
dfI























 





 log

0
log

2
sin4log0loglog 2  

where   0log f   is a constant,   2/sin4log 2  is the exogenous variable and 

    jxjx fI  /log  is a disturbance error. The GPH estimate requires two major assumptions 

related to asymptotic behaviour of the equation 

H1: for low frequencies, we suppose that     0/log   ff  is negligible. 

H2: the random variables     jxjx fI  /log ; j = 1, 2, . . ., m are asymptotically iid. 

Under the hypotheses H1 and H2, we can write the linear regression 
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   j

j

jx edI 
























 


2
sin4loglog 2  

where  6/,~ 2 ciide j . Let   2/sin4log 2
jjy   the GPH estimator is the OLS 

estimate of the regression log  jxI   on the constant   and yj. The estimate of d is 

    

  

 







m

j
j

m

j
jxj

GPH

yy

Iyy

d

1

2

1

log
ˆ , where myy

m

j
j /

1



 

The parameter m is selected so that m = Tu, with u = 0.5; 0.6; 0.7. Robinson (1995), Hurvich 

et al. (1998) and Tanaka (1999) have analyzed the GPH estimate in detail. Under the 

assumption of normality for Xt, it has been proved that the estimate is consistent and 

asymptotically normal. An alternative semiparametric estimator has been proposed by 

Robinson (1995). 

 

 

Wavelets    

Wavelets are fundamental building block functions, analogous to the trigonometric sine 

and cosine functions. As with a sine or cosine wave, a wavelet function oscillates about zero. 

This oscillating property makes the function a wave.  However, the oscillations for a wavelet 

damp down to zero, hence the name wavelet. If (.)  is a real-valued function defined over the 

real axis   ,  and satisfies two basic properties: (i) Integral of (.)  is zero, i.e. 

0)( 




duu  (ii) Square of (.)  integrates to unity, i.e. 1)(2 




duu , then the function (.)  

is called a wave. A good description of wavelets can be found in Daubechies (1992), Ogden 

(1997) and Percival and Walden (2000). 

 

Maximal Overlap Discrete Wavelet Transforms (MODWT) 

The Maximal overlap discrete wavelet transforms (MODWT) is a linear filtering 

operation that transforms a series into coefficients related to variations over a set of scales. It 

is similar to DWT, in that, both are linear filtering operations producing a set of time-dependent 



12 
 

wavelet and scaling coefficients. Both have basis vectors associated with a location t and a unit 

less scale   j

j 12  for each decomposition level j =1,..,J0. Both are suitable for the analysis 

of variance (ANOVA) and for multiresolution analysis (MRA). However, MODWT differs 

from DWT in the sense that it is a highly redundant, nonorthogonal transform (Percival and 

Walden, 2000). It retains downsampled values at each level of the decomposition that would 

otherwise be discarded by DWT. The MODWT is well defined for all sample sizes N, whereas 

for a complete decomposition of J levels, DWT requires N to be a multiple of 2J.  

MODWT Coefficients 

For a redundant transform, like MODWT, an N sample input time-series will have an N 

sample resolution scale for each resolution level. Therefore, features of wavelet coefficients in 

a multiresolution analysis (MRA) will be lined up with original time-series in a meaningful way. 

For a time-series X with arbitrary sample size N, the jth level MODWT wavelet ( jW
~

) and scaling 

( jV
~

) coefficients are defined as:  

                  





1

0
mod,,

~~ jL

l
Nltljtj XhW ,      







1

0

mod,, ,~~ jL

l

Nltljtj XgV                                             (6) 

where 2/
,, 2/

~ j
ljlj hh   are jth level MODWT wavelet filters, and 2/

,, 2/~ j
ljlj gg   are jth level 

MODWT scaling filters, Lj is  width of jth level equivalent wavelet and scaling filters. For a 

time-series X with N samples, MODWT yields an additive decomposition or MRA given by 

                            ,
~~

J

J

j

j 0

0

1

SDX 


                                                                                            (7) 

where 

                          





1

0

N

l

Nmodlt,jl,jt,j W
~

  u~  D
~

,      ,V
~

  v~  S
~ N

l

Nmodlt,jl,jt,j 





1

0

                                  (8) 

l,ju~   and  l,jv~    being the filters obtained by periodizing ljh ,

~
 and ljg ,

~ . According to eq. (7), at 

a scale j, a set of coefficients {Dj} each with the same number of samples (N) as in the original 

signal (X) is obtained. These are called wavelet “details” and capture local fluctuations over 

whole period of a time-series at each scale. Set of values 
0JS  provide a “smooth” or overall 

“trend” of the original signal and adding Dj to 
0JS , for j = 1, 2,…, 0J , gives an increasingly 

more accurate approximation for it. This additive form of reconstruction allows prediction of 
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each wavelet subseries (Dj,
0JS ) separately and adding individual predictions an aggregate 

forecast is generated.  

Choosing Number of Levels 

A time-series can be completely or partially decomposed into a number of levels. For 

complete decomposition of a series of length N = 2J using DWT, maximum number of levels 

in the decomposition is J. In practice, a partial decomposition of level 0J  ≤ J suffices for many 

applications. A 0J  level DWT decomposition requires that N be an integral multiple of 02
J .  

The MODWT can accommodate any sample size N and, in theory, any 0J . In practice, largest 

level is commonly selected such that  N log J 20     in order to preclude decomposition at 

scales longer than total length of the time-series. In particular, for alignment of wavelet 

coefficients with the original series, condition  N  LJ 
0

  (i.e.  width of  equivalent filter at  0J

th  level is less than sample size) should be satisfied to prevent multiple wrappings of the time-

series at level J0. Selection of 0J  determines the number of octave bands and thus number of 

scales of resolution in the decomposition.  

 

4. RESULTS AND DISCUSSION 

 

A perusal of the Figure 1 and 2 indicate that both the series are stationary. In order to 

test for stationarity, two tests namely Augmented Dickey-Fuller unit root test (Said and Dickey, 

1984) and Philips-Peron unit root test (Philips and Peron, 1988) are conducted. The descriptive 

statistics for monthly maximum and minimum temperature have been computed and are 

reported in table 1. A perusal of table1 reveals, the variability in minimum temperature is more 

than maximum temperature. The same can also be observed from the histogram plotted in 

Figure 3 and 4. The results of the stationarity tests are given in Table 2. A perusal of Table 2 

reveals that both the test statistics reject the null hypothesis of presence of unit root indicating 

that series are stationary.  
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Fig. 1. All India minimum temperature in degree centigrade (dark line is seasonally 

adjusted series and light line is average monthly minimum temperature) 

 

 

Fig. 2. All India maximum temperature in degree centigrade (dark line is seasonally 

adjusted series and light line is average monthly minimum temperature) 

 

Table 1. Descriptive Statistics of maximum and minimum temperature 

Descriptive Statistics Maximum Temperature Minimum Temperature 

Mean 30.24 18.33 

Median 30.7 19.7 

Maximum 38.2 25.4 

Minimum 22.5 8.6 

Std. Deviation 3.81 5.15 

CV 12.60 28.10 
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Skewness -0.12 -0.39 

Kurtosis 2.13 1.6 

 

 

 

 

Fig. 3. Histogram of maximum temperature  

 

 

Fig. 4. Histogram of minimum temperature  

 

Table 2: Testing stationarity of seasonally adjusted temperature series 

Test Test Statistic 1%   Critical 

Value 

5%   Critical 

Value Max Temp Min temp 
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40

80
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160
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Augmented Dickey 

Fuller (ADF) 

-40.821 -12.174 -3.438 -2.864 

Philips and Peron (PP) -12.190 -27.966 -3.438 -2.864 

 

 

 

Structure of Autocorrelations 

For a linear time series model, typically an autoregressive integrated moving average 

(ARIMA(p,d,q)) process, the patterns of autocorrelations and partial autocorrelations could 

indicate the plausible structure of the model. At the same time, this kind of information is also 

important for modelling nonlinear dynamics. The long lasting autocorrelations of the data 

suggest that the processes are nonlinear with time-varying variances. The basic property of a 

long memory process is that the dependence between the two distant observations is still 

visible. For the series of daily wholesale price, autocorrelations were estimated up to 100 lags, 

i.e., j=1,...,100. The autocorrelation functions of these series are plotted in figure 5-6. A perusal 

of figures indicate that, these do not decay exponentially over time span, rather, there is 

hyperbolic decay of the autocorrelations functions towards zero and they show no clear 

periodic patterns. There is no evidence that the magnitude of autocorrelations become small as 

the time lag, j, becomes larger. No seasonal and other periodic cycles were observed. 

 

 

Fig. 5. Autocorrelation function (ACF) of seasonally adjusted Min temp series up to 200 

lags 
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     Fig. 6.  Autocorrelation function (ACF) of seasonally adjusted Max temp series up to 

200 lags 

 

Accordingly, ARFIMA model was fitted to the above seasonally adjusted dataset. The best 

ARFIMA model has been selected on the basis of minimum Akaike Information Criteria (AIC) 

and Bayesian Information Criteria (BIC) values. It is found the both the maximum as well as 

minimum temperature series follow ARFIMA (0,d,0) process. The value of long memory 

parameter for maximum and minimum temperature are found to be 0.262 and 0.217 

respectively. Both values are also significant at 1% level as reported in table 3. 

Table 3. Parameter estimate of ARFIMA(0,d,0) 

Parameters 

Maximum Temperature Minimum Temperature 

Estimat

e 

Standard 

Error 

P 

Value 

Estimate Standar

d Error 

P 

Value 

const 30.025 

 

0.137 

 

<0.001 17.543 0.093 <0.001 

d 0.262 

 

0.022 

 

<0.001 0.217 0.021 <0.001 

Log likelihood 406.956 452.398 

Akaike Information 

Criteria (AIC) 

-807.912 

 

-898.797 

Bayesian Information 

Criteria (BIC) 

3038.09 

 

2947.200 
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Diagnostic Checking and Validation 

The model verification is concerned with checking the residuals of the model to see if 

they contained any systematic pattern which still could be removed to improve the chosen 

ARFIMA. For this purpose, autocorrelations of the residuals were computed and it was found 

that none of these autocorrelations was significantly different from zero at any reasonable level. 

This proved that the selected ARFIMA model was an appropriate model for forecasting the 

data under study.  

 

One-step ahead forecasts of temperature series using naïve approach for the period 

January, 2007 to December, 2007 in respect of above fitted model are computed. For measuring 

the accuracy in fitted time series model, Root mean square prediction error (RMSPE), Mean 

absolute error (MAE) and Relative mean absolute prediction error (RMAPE) are computed by 

using the formulae given below and are reported in Table 4.  

MAE = 


 
12

1

ˆ12/1
i

itit yy    

RMSPE =   
2/1

12

1

2
ˆ12/1 














i

itit yy              

RMAPE =   100/ˆ12/1
12

1






i

ititit yyy   

                       

 

                           Table 4: Validation of Models 

Temperature MAE RMSPE RMAPE (%) 

Maximum 0.46 0.54 1.51 

Minimum 0.44 0.56 2.72 

 

A perusal of above table indicates that for both the temperature series data, RMAPE is less 

than 5% indicating the performance of the model is satisfactory. The fitted vs observed 

maximum as well as minimum temperature series are plotted in figure 7 and 8 respectively. 

Both the figures justify the accuracy of the model fitting. 
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Fig. 7. Observed (marker) vs predicted (line) of minimum temperature 

 

 

 

 

Fig. 8. Observed (marker) vs predicted (line) of maximum temperature 

 

Modelling of Temperature Series by Wavelet Approach  

        For computation of MODWT of temperature series by Wavelet approach, methodology 

discussed in methodology section is followed. Here, we take 0J  as 7. Haar wavelet is used for 

analysing the data on a scale by scale basis to reveal its localized nature as exhibited by MRA 
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coefficients at level 7 in Fig. 9 and 10. A perusal indicates that localized variation in the data 

is detected at lower scale, whereas global variation is detected at higher scale. The wavelet 

coefficients are related to differences (of various order) of (weighted) average values of 

portions of Xt concentrated in time. Coefficients at the top (below) provide “high frequency” 

(“low frequency”) information. Wavelet coefficients do not remain constant over time and 

reflects changes in the data at various time-epochs. Locations of abrupt jumps can be spotted 

by looking for vertical (between levels) clustering of relatively large coefficients.  
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Fig. 9. MRA of Maximum temperature at level 7 D1, D2, D3, D4, D5, D6, D7 and S7 

(From bottom to top) 
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Fig. 10.  MRA of Minimum temperature at level 7 D1, D2, D3, D4, D5, D6, D7 and S7 

(From bottom to top) 
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Conclusion 

Long memory time series have been analysed by using ARFIMA models. Model parameter d 

reflects the long memory in the maximum and minimum temperature series. It is found that in 

the both the series long memory parameter is significant. The study has revealed that the 

ARFIMA model could be used successfully for modelling the temperature series. The 

predictive ability of ARFIMA model was investigated in terms of relative mean absolute 

percentage error. The model has demonstrated a good performance in terms of explained 

variability and predicting power. Multiresolution analysis (MRA) was carried out to explore 

the local as well as global variations in both the temperature series over the years. The 

variability in minimum temperature is found to be more than maximum temperature. The study 

reveals that there are pockets of change in the temperature pattern (both in maximum as well 

as in minimum temperature) which may be clearly visible by vertical clustering of coefficients 

in MRA.  

 

 



Chapter III 

 

FRACTIONALLY INTEGRATED MAXIMUM 

TEMPERATURE SERIES IN INDIA IN PRESENCE OF 

STRUCTURAL BREAK 
  

 

1. Introduction 

 

Being an integral part of the natural environment, Climate continues to play a leading role in 

determining natural and human life. Climatic behaviours constitute a complex domain of 

learning, which is atypical and uncontrollable. Studying the past climate pattern or through 

simulation studies we can only understand its behavioural development, whereas sound 

statistical and numerical methodology paves an indispensable way. According to the various 

climate change impact assessment reviews, agriculture, vegetation, water resources and 

tourism are the sectors worst affected directly due to climatic vagaries and temperature being 

one of the most important climatic parameters. It has a direct impact on the evaporation, 

snow melting, frost and an indirect impact on the atmospheric stability and precipitation 

conditions (Ustaoglu et al., 2008). Therefore, there is a need to forecast temperature 

accurately in order to prevent unexpected hazards caused by temperature variation, such as 

frost and drought which may cause financial and human losses. 

Climatic conditions have a crucial effect on the variability and production of crops while the 

economy of the region is based on agriculture. Climate change has become a global concern 

because of its potential threats to agricultural development. Agriculture is more sensitive to 

climate change (Mendelsohn et al., 2006). The consequences of climate change are predicted 

to be more severe for the developing countries like India on account of their heavy 

dependence on agriculture (Birthal et al., 2014). Available literatures suggest a considerable 

reduction in agricultural productivity due to climate change in most developing countries (DE 

Salvo et al., 2013; Birthal et al., 2014). In India, the literature on climate impacts on 

agriculture is limited but has been growing fast. Aggarwal (2009), using production function 

approach estimated that a 1.0°C rise in mean temperature would reduce yields of wheat, 

soybean, mustard, groundnut and potato by 3-7 per cent. The forecasting of surface 
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temperature has long been an area of interest of the scientific community in general, and 

meteorologists in particular. Since the late 1930s, different statistical methodologies have 

been attempted to forecast the surface temperature on hourly (Spreen, 1956), daily (Mantis 

and Dickey, 1945; Gilbert, 1953), monthly (Kangieser, 1959), and seasonal (Van Loon and 

Jenne, 1975; Kumar et al., 1997) time scales. Paul et al. (2015) have investigated the trend in 

mean temperature in different agro-climatic zones in India. Mills (2016) has analyzed the 

temperature series of Kefalonia with Seasonal autoregressive-integrated moving average 

(SARIMA) model.  

It is a well-known fact that temperatures are time-dependent. Mathematically, there exist 

different ways of modelling that dependence and a key issue here is to determine if the series 

is stationary (around a linear time trend) or not (Gil-Alana, 2008). Climate memory has been 

a well-known statistical concept since last several decades. Affected by the slowly 

responding subsystems (such as the ocean), the climate variability usually exhibits long-term 

memory, which means the present climate states may have long-term influences on the states 

in far future (Malamud et al., 1999). Normally, this kind of characteristic is considered as 

fractal properties or scaling behaviors in climate (Yuan et al. 2014). Rohini et al., (2016) 

investigated the variability and increasing trends of heat waves over India. They found that 

the anomalous persistent high with anti-cyclonic flow, supplemented with clear skies and 

depleted soil moisture are primarily responsible for the occurrence of heat waves over India. 

Variability of heat waves is also influenced by both the tropical Indian Ocean and central 

Pacific SST anomalies. Nowadays, an important new environmetric application for long 

range dependence (LRD) is to climate research. Here Autoregressive fractionally integrated 

moving average (ARFIMA) model plays an important role in understanding long-term 

climate variability and in trend estimation, but remains less well known in the researcher’s 

communities compared to, for example, Autoregressive-integrated moving average (ARIMA) 

models of the Box-Jenkins type, of which AR(1) is still the most frequently applied model. A 

number of studies suggest that atmospheric temperature have long-range memory. Although 

there is increasing evidence of the presence of LRD in such time series, a precise physical 

explanation of the phenomenon has been elusive. Studies of instrumental data indicate that 

sea surface temperature is more persistent than air temperature over land (Pelletier, 1997, 

Eichner et al., 2003, Monetti et al., 2003, Lennartz and Bunde, 2009), so ocean dynamics 

seem to be an important component. Spatial averaging also influences the persistence, as 

temperature averages over larger regions are more persistent than local data (Lennartz and 

Bunde, 2009). Some studies also indicate that persistence is largely close to the equator, and 
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is reduced with location closer to the poles (e.g., Pattantyús-Ábrahám et al., 2004, Huybers 

and Curry, 2006, Vyushin and Kushner, 2009).  

India is situated north of the equator between 8°4' to 37°6' north latitude and 68°7' to 97°25' 

east longitude. In the south, India projects into and is bounded by the Indian Ocean in 

particular, by the Arabian Sea on the southwest, the Lakshadweep Sea to the south, and the 

Bay of Bengal on the southeast. Present paper discusses the modeling aspect of Maximum 

temperature series of India which possess a long memory pattern. For modeling such long-

range persistence pattern in climatic behaviours, traditional Autoregressive-integrated 

moving average (ARIMA) or SARIMA, termed as short-memory models are not suitable to 

capture the long term behaviour of the series. Moreover, possible structural shift in the 

temperature series has also been identified. Now, to deal the coexistence of long memory 

and/or structural break use of ARFIMA is mostly observed (Gil-Alana, 2005). Wang et al. 

(2013) investigated that for series with possible break in the mean, ARFIMA model may not 

lead optimal forecasting result (), and they proposed infinite AR truncation method to deal 

with the situation.  Papailias and Dias (2015) reported that the AR truncation method may 

also lead to loss of information and accordingly they have proposed two stage forecasting 

(TSF) approach for this situation. Hence, TSF approach has been addressed to deal the 

modeling and forecasting of maximum temperature series possessing the property of long 

memory with structural break which is claimed to be more robust to tackle the problem of the 

coexistence of long memory and structural shift. Besides this, Wavelet analysis tool has been 

envisaged to capture the variation in maximum temperature series in both time and frequency 

scale. 

 

2. Long Memory: Concepts and Forecasting 

2.1 Basic Concept 

Long memory processes generalize linear ARIMA models by allowing for non-integer 

differencing parameter and thereby providing a more flexible framework for analyzing time 

series data. This flexibility enables fractional processes to model stronger data dependence 

than that is allowed in stationary ARMA models. The autocorrelation functions of ARMA or 

conventional short memory processes decay faster (exponentially) than the fractionally 

integrated processes which decay hyperbolically and are therefore known as long memory 

processes. Long memory in time series can be defined as autocorrelation at long lags. The 

autocorrelation function (acf) of a time-series tx  is defined as, cov( , ) / var( )k t t k tx x x   for 
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integer lag k. A covariance stationary time-series process is expected to have autocorrelations 

such that lim 0k
k




 . For short memory process 
k

k m  , where 1m   and this property is 

true, for example, for the well-known stationary and invertible ARMA structure. For long 

memory processes, the autocorrelations decay at a hyperbolic rate which is consistent with 

2 1d

k Ck  , as k increases without limit, where C is a constant and d is the long memory 

parameter. For more details on long memory one can refer to Beran (1995). 

 

2.2 Existing Framework 

Long memory process for tx  can be modeled as a fractionally integrated I(d) process 

(1 )d

t tL x   , t=1, 2,…, T                                                                                         (1) 

where L denotes the lag operator, d is the fractional difference parameter and t  is white 

noise with   0tE   ,  2 2

tE    and   0t sE t s     . The process tx  is stationary and 

invertible provided -1/2<d<1/2, 0d   and exhibits non-stationary long memory if 1/2d<1.  

A flexible parametric process called the ARFIMA (p, d, q) model incorporates both long term 

and short term memory, 

 ( )(1 ) ( )d

t tL L x L    , t=1, 2,…, T                                                                          (2) 

where 2

1 2( ) 1 ... p

pL L L L         and 2

1 2( ) 1 ... q

qL L L L         are the 

autoregressive and moving average polynomials respectively, with roots lie outside the unit 

circle and t is white noise. 

 Now, let us represent tx as infinite autoregressive process 

 
1

t i t i t

i

x x 






  , t=1, 2,…, T                                                                                    (3) 

where
1

i

i d

i d






, with  .  being the gamma function. 

For AR-truncation method, theoretical h-step head forecast is obtained from canonical 

representation of the model using a truncated version of the autoregressive weights as 

 
1

ˆˆ
P

T h i T h i

i

x x  



                                                                                                         (4) 

Akaike Information Criteria (AIC) or other different criterions can be used to determine the 

lag order P. 
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Wang et al. (2013) have recommended the use of AR approximation method as an alternative 

to the ARFIMA set up for modeling long memory process with spuriousness. This 

methodology suggests to apply an autoregressive model directly to the long memory series 

with order k chosen by AIC or pC (Malllows, 1973) statistic. 

1

ˆˆ
k

c

T h i T h i

i

x x  



                                                                                                         (5) 

where, ˆ c

i denote the autoregressive parameter corresponding to ith lag. 

For long memory series with a break in the mean at point b, the process is represented as 

follows 

, 1

, 1

t

t

t

x t b
y

x b t T





  
 

   
                                                                                      (6) 

 

There are various popular approaches for estimating long memory parameter such as 

Rescaled Range Analysis (Hurst, 1951), GPH (Geweke and Porter-Hudak, 1983), Maximum 

Likelihood Method of Estimation (MLE) (Sowell, 1992), Wavelet method (Jensen, 1999) etc. 

Paul et al. (2015) have demonstrated the performance of different estimation techniques of 

long memory parameter by means of Markov Chain Monte Carlo (MCMC) and reported that 

wavelet method performs better than the other methods.  

 

2.3 A two-stage forecasting Algorithm 

Let us specify the ARFIMA model as 

 
1

(1 ) ( ) ( )d

t tx L L L  
                                                                                         (7) 

The short run effects are obtained by setting d = 0 and the behavior of the fractionally 

differenced process can be described from (1 )d

tL x .  

TSF approach is suggested by Papailias and Dias (2015) to deal with spurious long memory. 

The procedure can be envisaged in the underlying steps: 

1. Estimate the long memory parameter via any consistent method of estimation to obtain 

fractional difference operator d̂ such that ˆ( ) ( )pd d O T   , where 0  . Then apply the 

differencing operation to have the weakly dependent process t , 

                                
ˆ

(1 )d

t tL x   , t=1, 2,…, T                                                                   (8) 

2. Fit an AR(P) to t and compute the one step ahead forecast 
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                                    1 1

1

ˆ ˆ
P

t i t i

i

   



 , t=1, 2,…,T                                                             (9) 

where ˆ
i is the autoregressive term associated with i th lag. The lag P can be selected in two 

different ways either via AIC or using higher order with respect to sample size,  
2ˆ lnP T 

 

; .   denoting the integer part. 

3. Expand the weakly dependent series t including the one step ahead forecast, such that

1 1
ˆ( ,..., , )t t t    

 . Apply the fractional cumulation operator using the estimated d̂ and 

obtain the one step ahead forecast 1tx   for original long memory series. 

                                    
ˆ

(1 ) , 1,2,..., , 1d

t tx L t T T                                                          (10) 

4. Iterating over the previous steps recursively provide the h step ahead forecast t hx   for the 

long memory process. 

The main advantages of using TSF approach in modeling long memory series is two-fold, 

first, weakly dependent series obtained through fractional differencing operation, is less 

persistent as compared to the original long memory series and hence the idea of 

implementing AR based forecast to the weakly dependent process t  enable TSF method to 

provide better forecast than the existing methodologies. Secondly, employing AR-truncation 

approach or relying on the post-break data to provide forecasting results may lead to loss of 

information which is avoidable through TSF technique.  

  

 

3. Results and Discussion 

Seasonally adjusted all India monthly maximum temperatures (in degree centigrade) for the 

period January, 1901 to December, 2007 has been used. Out of total 1284 observations, 1272 

observations have been used for estimation of models and the remaining 12 observations for 

validation purpose. The data has been obtained from Indian Institute of Tropical Meteorology 

(IITM), Pune, India (http://www.tropmet.res.in). For computation of monthly maximum 

temperature in India, IITM considers the data of 388 well-spread stations of India 

Meteorological Department (IMD). They first interpolate the station wise monthly 

temperature anomaly time series onto a 0.5° x 0.5° grid. Then, the climatological normals of 

temperature at all stations are interpolated onto the same grid, resulting in high-resolution 

grid point temperature climatology for the country. The gridded monthly anomaly values are 
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then added to the gridded climatology, finally producing a long-term gridded data set of 

actual temperatures for India for the period 1901-2007. India’s monthly temperature series 

are computed by simple averages of the constituent grid point data of the respective regions. 

For more details regarding the procedure see Kothawale and Rupakumar (2005). 

 

3.1. Descriptive Statistics 

Table 1 reports the descriptive-statistics of the maximum temperature series. It is clear from 

table 1 that the mean maximum temperature is 30.240C. The variability as expressed by 

coefficient of variation (CV) is around 13%. And the maximum temperature series is 

negatively skewed and leptokurtic. The time series plot of seasonally adjusted temperature 

data is exhibited in figure 1. A perusal of the plot indicates that the data series is stationary. In 

order to test for stationarity, Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests 

have been performed and the result is reported in table 2. The stationarity test results reveal 

that the series is weakly stationary. 

Table 1.  Descriptive statistics of temperature series (degree centigrade) 

Statistics Temperature series Statistics Temperature series 

Mean (0C) 30.24 Standard Deviation (0C) 3.81 

Median (0C) 30.7 CV (%) 12.60 

Maximum (0C) 38.2 Skewness -0.12 

Minimum (0C) 22.5 Kurtosis 2.13 
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Figure 1. Seasonally adjusted monthly maximum temperature series 

Table 2. Testing for stationarity 

Temperature 

series 

ADF Test PP Test 

 Test 

statistic 

P-value Result  Test 

statistic 

P-value Result 

Single Mean 11.52 <0.001 Stationary -1344.04 <0.001 Stationary 

With Trend 28.55 <0.001 Stationary -1006.50 <0.001 Stationary 

 

3.2. Change Point Detection 

The usual assumption of constant mean and variance over time for a time series data is often 

violated in practice. Sometimes, the series shows an interesting behaviour of stationarity for 

some time, then suddenly the variability of the error term changes, it stays constant again for 

some time at this new value, until another change occurs. Detection of change points in a 

series is very important to correctly interpret the behaviour of the series. For single structural 

change one can use the At most one Change point (AMOC) algorithm (Killick et al., 2014). 

Paul et al. (2014) applied different techniques for identification of structural break in mean 

temperature of different agro-climatic zones in India. Werner et al. (2015) modeled global 

and hemisphere temperature anomalies by piecewise linear regression and found break points 

in the temperature evolution. Paul (2017) has investigated the presence of long memory in 

maximum and minimum temperatures in India. In the present study, an attempt has been 

made to detect the structural break in mean for seasonally adjusted monthly maximum 

temperature series. By using AMOC algorithm, it is found that there is a significant break in 

maximum temperature during July, 1963 which may be due to drought year as found in 

Nagarajan (2009). According to study by Paul et al. (2014), anthropogenic activities are the 

main drivers behind climate change. The changes in land use, intensive cropping, 

deforestation, and industrial development have led to a rise in carbon-di-oxide emissions and 

a structural break in temperature series. It is to be noted here that overall trend in the 

maximum temperature series is positive and statistically significant. The trend coefficient is 

found out to be 0.00064 i.e. there is an average increase of 0.000640C temperature per month 

in the maximum temperature in India. When the trend estimation was computed in two 

phases i.e. during 1901 to 1962 and during 1963 to 2007, the respective trend component 

found out to be 0.00039 and 0.00083. Both the trend are statistically significant. It is clear 

that after 1962 the rate of increase in maximum temperature is higher in comparison to the 



32 
 

years up to 1962. Figure 2 displays the shift in mean temperature in the time series plot for 

the entire study period. 

 

 

Figure 2. Change point in mean for the maximum temperature series 

 

3.3. Quantitative Analysis of Long Memory Process 

Estimating the long memory parameter (d) is the milestone of modeling long memory 

property. The hyperbolically slow decay of autocorrelation function (ACF) and partial 

autocorrelation function (PACF) initially gives an indication of possible presence of long 

memory in a time series.  But to be sure about the presence of long memory and estimating 

the value of long memory parameter one should rely on statistical techniques as described in 

section 2.2, Figure 3 depicts the ACF and PACF of the temperature series estimated up to 500 

lag respectively. As clearly indicated, correlogram is following a hyperbolic decay; the 

correlation decreases very slowly, a typical shape for time series having the long memory 

property. The estimated long memory parameter has been found to be 0.266 which is within 

the range of persistence and highly significant at 1% significance level. The estimated long 

memory parameter value is less than 0.5 ensures the stationary long memory phenomena of 

the series. 
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Figure 3. Correlogram of temperature series 

 

 

 

 

 3.4. Examining variation in Temperature Series by Wavelet Approach  

        For computation of Maximal overlap discrete wavelet transform (MODWT) of 

temperature series by Wavelet approach, methodology by Percival and Walden (2000) is 

followed. The MODWT can accommodate any sample size N. In practice, largest level ( 0J ) 

is commonly selected such that  N log J 20     in order to preclude decomposition at scales 

longer than total length of the time-series. Here, we take 0J  as 7. Haar wavelet is used for 

analyzing the data on a scale by scale basis to reveal its localized nature as exhibited by 

MODWT coefficients at level 7 in Figure 4. A perusal indicates that localized variation in the 

data is detected at lower scale, whereas global variation is detected at higher scale. The 

wavelet coefficients are related to differences (of various order) of (weighted) average values 

of portions of Xt concentrated in time. Coefficients at the top (below) provide “high 

frequency” (“low frequency”) information. Wavelet coefficients do not remain constant over 

time and reflects changes in the data at various time-epochs. Locations of abrupt jumps can 

be spotted by looking for vertical (between levels) clustering of relatively large coefficients. 

The trend in maximum temperature is detected as top most plot of figure 4. As in the wavelet, 

the series is smoothen, therefore the break in mean may not be prominent in this case. A 



34 
 

closer look at the top most plot in figure 4 indicates that initially there was decreasing trend 

in maximum temperature series till 1914 then started increasing and after 1962 the rate of 

increase in temperature becomes higher. 
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Figure 4. MODWT of Maximum temperature at level 7 (W1, W2, W3, W4, W5, W6, W7 

and V7 From bottom to top) 

3.5. Modeling of the temperature series 

For the seasonally adjusted stationary temperature series data, presence of long range 

dependence has been established including the presence of a break in the mean of the series. 

We compute multi-step ahead forecasts using the following methodologies: 

(i) AR(AIC)-Trunc: Truncate the infinite autoregression representation up to a 

specific lag chosen by the AIC (Wang et al., 2013), as in equation (4). 

(ii) AR(AIC): Fit an AR(k) model to the original long memory process with order k 

selected by AIC (Wang et al., 2013) using equation (5). 

(iii)  TSF: Using TSF algorithm with order chosen by AIC for the underlying weakly 

dependent process (Papailias and Dias, 2015). 

Table 3 represents the parameter estimates of AR(AIC)-Trunc and AR(AIC) model. For the 

AR-Trunc model, the optimum lag was selected as 2 and for AR(AIC) model lag 3 was 

chosen as indicated from minimum AIC criterion. Both this models have been compared with 

the TSF approach empirically for the aforementioned temperature series. In case of TSF 

algorithm parameter estimates varies in each subsequent steps including AR parameters and 

fractional difference operator. 

 

Table 3. Parameter estimates of the AR-Trunc and AR model 

Model Parameters Estimate Probability 

AR(AIC)-Trunc d 0.26 <0.0001 

AR 1 0.70 <0.0001 

AR 2 0.10 0.0003 

AR(AIC) d 0.26 <0.0001 

AR 1 0.32 <0.0001 

AR 2 0.08 0.01 
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AR 3 0.07 0.018 

 

3.6. Evaluation of Forecast Performance 

The forecasting performance of TSF procedure has been computed for an out of-sample 

cross-validation period of 12 observations (i.e., 12 months). Predictive abilities of different 

models have been compared using SSE, MSE and RMAPE for different forecast horizons. 

The corresponding results of forecast comparison have been reported in table 4. 

 

Table 4. Comparing predictive abilities of various models 

Forecast 

Horizon 

Models AR(AIC)-

Trunc 

AR(AIC) TSF 

h=4 SSE 2.37 2.27 2.13 

MSE 0.59 0.58 0.53 

RMAPE (%) 1.99 1.98 1.81 

h=8 SSE 2.71 2.65 2.54 

MSE 0.34 0.34 0.32 

RMAPE (%) 1.37 1.40 1.38 

h=10 SSE 3.23 3.28 2.75 

MSE 0.32 0.33 0.27 

RMAPE (%) 1.38 1.45 1.26 

h=12 SSE 5.85 6.08 4.49 

MSE 0.49 0.51 0.37 

RMAPE (%) 1.73 1.81 1.51 

 

 

Comparing the validation results of all the three models, it is observed that TSF produces the 

best results over the other methods. For AR(AIC)-Trunc method, there is possibility of loss of 

information due to truncation at specific lag. Moreover, for this procedure break may be 

mistaken as long memory, so sometimes may render moderately good result and provide 

minor differences with the result of AR(AIC). Overall, for the aforesaid maximum 

temperature series data, TSF methodology provides smallest forecast errors in most of the 
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forecast horizons. Employing the fractional filtering, the presence of break is smoothed, 

which is the key strategy of TSF that makes the out-performance of the TSF approach over 

the other methodologies. 

 

 

4. Conclusions 

The surface temperatures over a given region vary seasonally and annually depending upon 

latitude, altitude and location with respect to geographical features such as a water body 

(river, lake or sea), mountains, etc. Probably one of the most widely quoted aspects of 

climatic change is the significant increase in global mean air temperature during the past 

century. Since the hydrologic cycle is a thermally driven system, rise in global temperature is 

likely to accelerate this cycle. Demand for the identification of the temperature trend/shift and 

their projection has been growing substantially. Present paper addresses the modeling issue of 

maximum temperature series in India which possesses characteristic of long-term memory 

and TSF has proven to be a robust approach of capturing such long memory even in the 

presence of detected structural break. Time series modeling of temperature series assume 

prime importance both in the local and global levels. One of the major significance is the 

worldwide interest in the issues of global warming and climate change. Wavelet 

transformation was applied to decompose the temperature series into time–frequency domain 

in order to study the local as well as global variation over different scale and time epochs. It 

is found that there is significant increase in maximum temperature over the years in India. 

The shift in maximum temperature in India occurred during mid of 1963 as detected by the 

statistical test. Temperature data series exhibiting long-range dependence property combined 

with structural break required to be modeled with a concrete and valid technique which can 

overcome the issue of loss of information, biased estimates and inaccurate forecast. In this 

regard, TSF approach has been found to serve the better results. For long memory processes 

with a change in mean level, the present study on maximum temperature data has established 

the outperformance of TSF methodology in terms of SSE, MSE and RMAPE criterions over 

both AR-Truncation and AR(AIC) approach. Implementation of TSF has been found to be 

more robust with regard to multi-step ahead forecast for spurious long memory. Further, the 

TSF approach can be employed for forecasting of temperature series in different agro-

climatic zone and existence of structural shifts in different zones of India can be investigated. 
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Chapter IV  

Wavelets Based Estimation Of Trend In Sub-Divisional 

Rainfall In India  

1. Introduction 

A common issue in time series analysis is the decomposition of several time series components 

viz. low frequency (trend) component and high frequency (noise and periodicity) component. Most 

of the time series of aggregated variables show a steadily increasing or decreasing pattern, known 

as trend. Over last few decades Box Jenkin’s Autoregressive integrated moving average (ARIMA) 

methodology (Box et al., 2007), a parametric approach of time series analysis has been used for 

forecasting time series data. But there are certain circumstances where it is not possible to postulate 

appropriate parametric relationship for the underlying phenomena; in this case nonparametric 

approach is called for.  

A plausible statistical model for such series can consist of non-stochastic or trend component and 

stochastic component: Y (t) = T(t) + X(t), where Y(t) is the value of an observable time series at 

time t, T(t) is the trend  component and X(t) is called the noise process with mean zero. Trend 

assessment is the problem of determining whether or not T(t) is actually present in the time series, 

i.e. test the null hypothesis  H0: T(t)= 0. In many agricultural data, like daily commodity price data, 

daily rainfall and temperature data it is seen that the distant observations are dependent that means 

the dataset have characteristic feature of long memory or long range dependency. A time-series 

process is called as long memory or Fractional differenced (FD) process if the autocorrelation 

function decays very slowly towards zero unlike the exponential decay in usual ARIMA model.  

A major problem in practice is the discrimination of a FD(d) (d denotes the long memory 

parameter) process with trend from a FD(d) process without trend, since FD(d) processes for 0 < 

d < ½ usually looks like having some trend in the series. This makes it hard to distinguish the 

existence of trend in the time series.  
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Here our interest lies on the testing of low-frequency part or called as trend, in wavelet domain 

(Antoniadis 1997). Let us consider the assumptions that the trend T(t) is well approximated at least 

locally by a low order polynomial (such as linear) and that the stochastic component X(t) is a FD 

process. Under these assumptions, the discrete wavelet transform (DWT) (Percival and Walden 

2000) based upon the Haar family of wavelet filters can be used to transform the series Y(t). The 

ability of the DWT to cleanly separate Y(t) into these components allows us to  test for its 

significance. 

Almasri et al. (2010) have proposed a test statistic by using wavelet decompositions to test the 

significance of trend in a time series data. The most difficult problem of testing for linear trend is 

the presence of dependence among the residuals because of which, tests for trend based on the 

classical ordinary least squares (OLS) regression are inappropriate. In many situations, the error 

autocovariance function exhibits a slow decay reflecting the possible presence of long memory 

process. The wavelet analysis, however, has been extensively used for such purposes, since it 

suitably matches the structure of these processes. Paul et al. (2011) studied wavelet methodology 

for estimation of trend in Indian monsoon rainfall time-series data and reported significant trend. 

Indian agriculture is mainly rain-dependent; approximately two-third net cropped area is under 

rain-fed cultivation. Therefore, regular and uniform rainfall pattern is crucial for betterment of 

agriculture; extreme situations can affect the agriculture devastatingly. But problem is that the 

regular rainfall pattern may not be observed all the time. Several studies have been done on the 

pattern of regional rainfall in India (Kumar et al. 2004; Gowsami et al. 2006). Guhathakurta and 

Rajeevan (2006) have found that there is a decline in rainfall in the months of June, July and 

September and an increase in the month of August in few sub-divisions in India. Goswami et al. 

(2006) have studied the rainfall behaviour over central India of the period 1951-2000 and found 

that a significant increase in heavy rainfall events and a decrease in moderate rainfall events. Some 

studies have also carried out to predict the rainfall and estimate the trend using some non-

parametric methods like wavelet (Kallache et al., 2005). Paul et al. (2013) have investigated the 

modelling of Indian monsoon rainfall data and concluded that wavelet methodology has greater 

accuracy than that of ARIMA model. Paul et al. (2015) investigated the trend in mean temperatures 

in different agro-climatic zones in India using both parametric and nonparametric methods. Paul 

and Birthal (2016) have applied wavelet approach for describing variability in rainfall in different 

agro-climatic zones of India. Paul (2017) found the significance presence of long memory in 
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maximum and minimum temperatures in India. In this study we use wavelet based test statistic 

and non-parametric Mann-Kendall test statistic to test the existence of trend in the time series data. 

The paper is organized as follows: section 2 describes about long memory process; section 3 deals 

with the basics of wavelets; section 4 describes methods of detection of trend; section 5 deals with 

empirical illustration followed by conclusions in section 6.  

 

2. Long memory process 

Most of the research works in time-series analysis assume that the observation separated by long 

time span are independent of each other or nearly so. But in many practical situations it is seen 

that many empirical economic series show that the distant observations are dependent, though the 

correlation is small but not negligible. Let 𝑋𝑡; (𝑡 = 0,1,2, … . ) be a stationary time-series process 

and the autocorrelation function of the time-series with a time lag of 𝑘 is 𝜌𝑘. For long memory 

processes, decaying of autocorrelations functions occur at much slower rate (hyperbolic rate) 

which is consistent with 𝜌𝑘 ≈ 𝐶𝑘2𝑑−1, as 𝑘 increases indefinitely, where 𝐶 is a constant and 𝑑 is 

the long memory parameter. A study of long memory time series in climate can be found in Paul 

and Anjoy (2018). 

 

3. Wavelet 

Wavelets (Daubechies 1992; Ogden 1997 and Vidakovic 1999) are fundamental building block 

functions, analogous to the trigonometric sine and cosine functions. As with a sine or cosine wave, 

a wavelet function oscillates about zero. This oscillating property makes the function a wave.  

However, the oscillations for a wavelet damp down to zero, hence the name wavelet. If (.)  be a 

real valued function defined over the real axis   ,  and satisfying two basic properties: the 

integral of (.)  is zero and the square of (.)  integrates to unity. The detail discussion of wavelets 

can be found in (Percival and Walden 2000). 

3.1. Discrete Wavelet Transform (DWT) 

DWT of a time-series observation is used to capture high and low frequency components. The 

DWT re-expresses a time-series in terms of coefficients that are associated with a particular time 

and a particular dyadic scale 2j-1 (Nason et al. 1999). Let,   110 ,...,, NXXXX  be a column vector 

containing N observations of a real-valued time series, where we assume that N is an integer 
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multiple of 2M, where M is a positive integer. The DWT of level J is an orthonormal transform of 

X defined by 

                                          WXs,d,...,d,...,d,dd JJj21 


                                                         (1) 

where W is an orthonormal N × N real-valued matrix, i.e. WW 1 
so 

NIWWWW  , and 

called the wavelet matrix. Dj = {dj,k}, j = 1, 2, . . . , J , are N/λj × 1 real-valued vectors of wavelet 

coefficients at level j associated with scale λj  and location k, where λj = 2j . The real-valued vector 

SJ = {sJ,k} is made up of N/2J scaling coefficients. Thus, the first N − N/2J elements of D are wavelet 

coefficients and the last N/2J elements are scaling coefficients, where J ≤ M. In DWT several filters 

can be used, “Haar filter” is one of them.  

 

4. Trend  

Trend is defined as a long term change in the underlying mean level per unit time (Jain and Kumar, 

2012). There are different models for describing various forms of trend, both linear and nonlinear, 

and both stochastic and deterministic. The model that represents the time series by using a jth-order 

polynomial function is given as 

                                                       j

jt tatataaT  ...2

210                                                    (2) 

when j = 0, there is no long-run increase or decline in the time series over time, and j = 1, implies 

that there is a straight-line long-run growth (if 1a  > 0) or decline (if 1a  < 0) over time.  

 

4.1. Mann-Kendall Test  

The non-parametric Mann-Kendall test is commonly employed to detect monotonic linear trend 

(Jayawardane et al., 2005) in time series data. The null hypothesis, H0, is that the data come from 

a population with independent realizations and are identically distributed. The alternative 

hypothesis, H1, is that the data follow a monotonic trend. The Mann-Kendall test statistic is 

calculated according to 

  


 


1

1 1

sgn
n

k

n

kj

kj XXS  ;               with,         𝑠𝑔𝑛(𝑥) = {

1 𝑖𝑓  𝑥 > 0
0 𝑖𝑓 𝑥 = 0

−1 𝑖𝑓 𝑥 < 0
 

where, sgn is the signum function. If S is greater than zero, trend is said to be increasing otherwise 

if S is less than zero trend is decreasing. More details of the test can be found in Paul et al. (2014). 
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4.2. Wavelet-based estimation of the trend in presence of long memory 

Yajima (1988) considered a polynomial regression consisting of a polynomial trend with p = 1 and 

a stationary process with long memory. Based on that we consider the following model: 

                                        Xt= Tt+ Zt = a + βt + Zt   for  t=0,…,N-1                                             (3) 

where the process Zt is a residual term which is a long-memory process defined by 

                                                                  ttZB 


1 ,                                                          (4) 

where 2/10   is the long-memory parameter,  t is a Gaussian white noise process with 

mean zero and 2

 >0.  

From (1), we can write                            sW ddd                                                                               (5) 

where dw is an N×1 vector containing the wavelet coefficients and zeros at all other positions, and 

ds is an N×1 vector containing the scaling coefficients and zeros at all other positions. Since

dWΧ  , we can write, 

                                                          ,ZTdWdWdWX ˆˆ  wS                                      (6) 

where T̂  is an estimator of the polynomial trend T at level J , while Ẑ is a tapered ‘version’ of X. 

 An important issue is how to choose the wavelet filter. The Haar wavelet, which is a piecewise 

constant function, preserves the discontinuities, and therefore it is most suitable to identify a 

structural break in the data.  

4.3. A Wavelet-Based Test for Testing the Trend 

A test statistics to test the null hypothesis H0: Tt = 0 against the alternative H1: Tt ≠ 0 (Almasri et 

al., 2010) is defined as follows: 

 




J

j

jX

Sj

v

G

1

2

2

)(ˆ

ˆ




                                                                                                                 (7) 
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0 1

1 1 1 1
ˆ

N J

X t j j

t j

X X X X
N N N N




 

       D D S

 




J

j

SjjXv
1

22 ˆ)(ˆ 

 

)(ˆ2

jXv   is the estimated variance of the wavelet coefficients at scale λj , and 
2ˆ
Sj  is the estimated 

variance of the trend. The test statistic (N − N/2J)/(N/2J − 1)G will follow an F-distribution with 
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(N/2J− 1) and (N −N/2J) degrees of freedom (under the normality assumption of the scaling 

coefficients). The null hypothesis is rejected if the calculated value is greater than the tabulated F-

value.  

 

5. Empirical Illustration 

5.1. Dataset 

In this study monthly rainfall data corresponding to different zones of India is collected from 

Indian Institute of Tropical Meteorology (www.tropmet.res.in), Pune, India for detection as well 

as estimation of trend in monsoon rainfall data of different sub-divisions of India. The data set 

comprises of monthly rainfall over 128 years (from 1887 to 2014) measured in mm. There are total 

30 sub-divisions in India, out of which 10 zones are considered in this present study. These 10 

zones are selected in such a manner that it can represent the whole India. Here we are considering 

only four monsoon months (namely June, July, August, and September). The names of the selected 

sub-divisions along with their short names are listed below: 

1. Assam & Meghalaya sub-divisions (ASMEG) 

2. Gangetic West Bengal sub-divisions (GNWBL) 

3. West Uttar Pradesh Plains sub-divisions (WUPPL) 

4. Punjab sub-divisions (PUNJB) 

5. East Rajasthan sub-divisions (ERJST) 

6. East Madhya Pradesh sub-divisions (EMPRA) 

7. Gujarat Sub-divisions (GUJRT) 

8. Madhya Maharashtra sub-divisions (MADMH) 

9. Coastal Andhra Pradesh sub-divisions (COAPR) 

10. Tamilnadu and Pondichery sub-divisions (TLNAD) 

 

5.2 Descriptive statistics:  

The descriptive statistics of the rainfall data is reported in table 1. Here we consider mean, 

maximum value, minimum value, standard deviation (SD), coefficient of variation (CV), skewness 

and kurtosis to represent the data set. The values of these statistics are calculated for each of the 

monsoon months corresponding to each of the sub-divisions under consideration. A perusal of 
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table 1 indicates that the average monthly monsoon rainfall is higher for Assam & Meghalaya 

(ASMEG) and Gangetic West Bengal (GNWBL) sub-divisions than the other sub-divisions. The 

table also indicates that the maximum rainfall is higher for Assam & Meghalaya (ASMEG), 

Gangetic West Bengal (GNWBL), Gujarat (GUJRT) and Madhya Maharashtra (MADMH) sub-

divisionss for each of the monsoon months. In terms of CV the variability in the monthly monsoon 

rainfall data is higher for West Uttar Pradesh Plains (WUPPL), Punjab (PUNJB) and Gujarat 

(GUJRT) sub-divisions. Almost all the series under consideration are positively skewed (except 

July month of WUPPL and MADMH) and all the series are leptokurtic. 

 

Table 1: Descriptive Statistics 

Zone Month Mean SD Maximum Minimum CV 
Skewness Kurtosis 

ASMEG 

June 4405 1060.08 7760 2333 24.065 0.380 3.217 

July 4158 1029.17 7812 2398 24.751 0.844 3.625 

Aug 3508 823.553 6672 1952 23.476 0.664 4.104 

Sept 2867 785.427 5325 1308 27.395 0.641 3.291 

GNWBL 

June 2502 980.389 5835 699 39.184 0.731 3.477 

July 3316 900.475 6736 1590 27.156 0.647 3.837 

Aug 3236 865.187 5632 1721 26.736 0.713 2.894 

Sept 2522 939.822 5967 924 37.258 1.308 4.813 

WUPPL 

June 890 646.674 3007 39 72.660 1.116 3.889 

July 2589 876.867 4320 201 33.869 -0.263 2.585 

Aug 2568 937.033 4948 650 36.489 0.149 2.663 

Sept 1497 905.677 3732 41 60.499 0.451 2.355 

PUNJB 

June 547 486.415 3360 13 88.875 2.597 13.572 

July 1774 800.455 5390 221 45.122 1.078 6.016 

Aug 1669 788.405 3847 237 47.238 0.637 3.134 

Sept 953 968.369 4412 0 101.55 1.749 5.671 

GUJRT 

June 1279 941.213 5682 8 73.590 1.322 6.302 

July 3433 1567.91 8625 126 45.672 0.59 3.27 

Aug 2441 1311.06 6385 101 53.710 0.533 2.738 

Sept 1435 1184.49 5800 25 82.560 0.979 3.532 

EMPRA 

June 1559 857.622 3863 262 55.025 0.667 2.790 

July 3842 1082.27 6716 869 28.169 0.113 2.615 

Aug 3715 1041.44 7424 1779 28.033 0.607 3.776 

Sept 1977 999.278 5627 177 50.545 0.856 4.122 

MADMH June 1261 515.891 2642 233 40.905 0.457 2.995 
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July 1815 614.799 3201 409 33.873 -0.025 2.507 

Aug 1315 515.319 3198 261 39.191 0.296 3.289 

Sept 1403 621.782 2977 212 44.312 0.208 2.396 

COAPR 

June 893 433.041 2528 252 48.509 1.222 4.714 

July 1334 459.005 3155 477 34.408 0.764 4.169 

Aug 1343 468.634 2920 285 34.895 0.486 3.317 

Sept 1556 623.493 3910 587 40.070 0.934 4.119 

TLNAD 

June 464 222.054 1838 141 47.836 2.289 13.644 

July 622 317.790 1873 162 51.116 1.500 5.357 

Aug 903 402.817 2491 282 44.599 0.885 3.977 

Sept 1100 412.480 2173 267 37.498 0.311 2.572 

ERJST 

June 743 507.121 2275 30 68.299 0.847 3.063 

July 2257 837.666 4287 213 37.114 0.154 2.814 

Aug 2223 978.826 4652 58 44.032 0.233 2.532 

Sept 1026 747.785 3442 25 72.855 0.939 3.723 

*SD: Standard Deviation and CV: Coefficient of Variation 

 

 

5.3. Test for long memory 

The presence of long memory in a time series data can be confirmed either by investigating the 

autocorrelation function (ACF) plot of the data set or by using some parametric and nonparametric 

tests like GPH (Geweke and Porter-Hudak, 1983) and Sperio test (Reisen, 1994). In this study we 

have applied Sperio test to test the presence of long memory for each of the monsoon month 

rainfall data of the selected zones and the test results are provided in table 2. It is found that the 

test is significant at 5% level for some of the series which establishes the presence of long range 

dependency in the respective monthly rainfall data like July(ASMEG), August(WUPPL) etc. 

 

Table 2: Test for long memory 

Zone Month d Zone Month d 

ASMEG June 0.233 EMPRA June -0.189 

July 0.266* July 0.429* 

Aug 0.101 Aug 0.239* 

Sept 0.211 Sept -0.339* 

GNWBL June 0.142 MADMH June 0.132 

July -0.111 July 0.206 

Aug -0.153 Aug 0.000 
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Sept 0.172 Sept -0.107 

WUPPL June 0.089 COAPR June -0.622* 

July 0.000 July 0.129 

Aug 0.449* Aug -0.039 

Sept -0.170 Sept -0.242* 

PUNJB June 0.112 TLNAD June -0.181 

July 0.421* July 0.170 

Aug 0.010 Aug -0.089 

Sept 0.039 Sept 0.111 

GUJRT June -0.160 ERJST June -0.079 

July -0.149 July 0.087 

Aug -0.439* Aug -0.174 

Sept 0.133 Sept -0.031 

*denotes significance at 5% level. 

 

5.4. Variation in rainfall using DWT 

DWT plots of rainfall in different zones for the months of June, July, August and September using 

Haar wavelet filter at level 5 are reported in fig.1. The number of the plots in fig. 1 are given for 

the different zones accordingly to the order as per section 5.1. Wavelet coefficients are plotted as 

bars, up or down. The sizes of the bars are relative to magnitudes of coefficients. The number of 

wavelet coefficients at the lowest resolution level (level = 1) is exactly half the number of original 

data points and the number of coefficients decreases by half at each level (Nason and Sachs, 1999). 

The plot of actual data is shown at the bottom of each plot of fig 1 which is very rough and it is 

full of noise component. DWT attempts to extract the actual signal from the noisy time series data 

at each level. The graph of W2 is much smoother than the W1. Similarly smoothness increases as 

we are going to top of the graphs with upper coefficients. In the graph V5 scaling coefficient shows 

the smooth plot.  
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Fig. 1. DWT plot of different zones using Haar wavelet filter 
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Fig. 2.Trend plots of different zones 

5.5. Detection of trend using Wavelet 

Trends of different sub-divisional zones are estimated using “Haar” DWT and plotted in the Fig-

2. Each plot in figure 2 is represented by two subscripts. The first subscript refers to zone as 

described in section 5.1 and the second subscript refers to the monsoon months i.e. 1 for June; 2 

for July; 3 for August and 4 for September. Therefore, the first plot i.e. 1.1 represents the trend in 

rainfall in ASMEG zone for the month June. The rainfall trend in the month of June for ASMEG 

zone clearly indicates that trend is negative. From the year 1887 to 1915 trend remains constant 

then it falls during 1916. Again it remains stagnant during the year 1918 to 1949. After that a slight 

increase in the rainfall has been detected till the year 1951. A rapid decreasing trend has been 

observed from 1997 to 2014. For other three months of this zone, the rainfall pattern remains same 

with a difference in magnitude. The trend in other zones can be interpreted in similar pattern. The 

overall pattern of trend in rainfall remains almost same in all the zones except the variation in 

different time epochs. 

 

5.6. Test for detection of trend 

In this section we test the existence of trend using Mann-Kendall test. The values of test statistics 

along with corresponding p-values are given in table 3. This table also includes the values of G 

statistic along with their corresponding F-values for testing the significance of existing trend as 

described in section 4.3. It has been seen that the Mann-Kendal test could not capture the 

significant trend in many of the series whereas the Wavelet based test successfully captured the 

trend in almost all the months of different zones. This is because, wavelet based test has more 

power than that of the Mann-Kendall test in capturing the trend particularly when there is long 

memory present in the series. 

 

Table 3: Test for detection of trend 
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Zone Months Method 

Haar Filter Mann-Kendall 

 

G F S tau p-value 

ASMEG June 0.171 7.068* -1121 -0.138* 0.021 

July 0.046 1.901 -229 -0.028 0.630 

Aug 0.043 1.777 -1316 -0.162* 0.006 

Sept 0.034 1.405 -520 -0.064 0.285 

GNWBL June 0.494 20.419* -505 -0.062 0.299 

July 0.232 9.589* 8 0.001 0.989 

Aug 0.474 19.592* 569 0.070 0.242 

Sept 0.615 25.420* 1133 0.139* 0.019 

WUPPL June 0.127 5.249* 338 0.041 0.487 

July 0.08 3.307* -235 -0.028 0.629 

Aug 0.345 14.260* -407 -0.050 0.403 

Sept 0.018 0.744 -167 -0.020 0.732 

PUNJB June 0.442 18.269* 1168 0.144* 0.016 

July 0.51 21.080* 270 0.033 0.579 

Aug 0.277 11.449* -28 -0.003 0.950 

Sept 0.102 4.216* 612 0.075 0.208 

GUJRT June 0.037 1.529 -111 -0.013 0.820 

July 0.272 11.243* -190 -0.023 0.690 

Aug 0.1 4.133* 585 0.072 0.220 

Sept 0.134 5.539* 372 0.045 0.440 

EMPRA June 0.199 8.225* -305 -0.030 0.530 

July 1.15 47.533* -879 -0.108 0.070 

Aug 0.272 11.243* -612 -0.075 0.208 

Sept 0.025 1.033 -517 -0.060 0.287 

MADMH June 0.475 19.633* 722 0.088 0.137 

July 0.17 7.027* -568 -0.069 0.242 

Aug 0.69 28.520* 1145 0.141* 0.010 

Sept 0.112 4.629* 48 0.005 0.922 

COAPR June 0.195 8.060* -32 -0.003 0.949 

July 0.259 10.705* 446 0.054 0.359 

Aug 0.441 18.228* 858 0.106 0.077 

Sept 0.021 0.868 -151 -0.018 0.757 

TLNAD June 0.054 2.232 -468 -0.057 0.336 

July 0.26 10.747* 403 0.049 0.407 

Aug 0.103 4.257* 29 0.003 0.954 

Sept 0.152 6.283* -141 -0.017 0.773 
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ERJST June 0.056 2.315 322 0.039 0.508 

July 0.566 23.395* -34 -0.004 0.940 

Aug 0.063 2.604 94 0.011 0.840 

Sept 0.075 3.100* 178 0.021 0.710 

*denotes significance at 5% level. 

 

6. Conclusion 

In the present study, tow non parametric methods namely wavelet analysis and Mann-Kendall test 

have been used for estimation of trend in monthly rainfall in ten selected sub-divisions of India. 

Presence of long memory in rainfall data was tested using suitable statistical test and it was found 

that long memory was significantly present in rainfall for the month of June in COAPR; July of 

ASMEG, PUNJB and EMPRA; August of GUJRT and EMPRA; September of EMPRA and 

COAPR. In presence of long memory, Mann-Kendall test may not be appropriate to detect the 

trend. Therefore, wavelet based trend test was advocated and it was found that in most of the sub-

divisions, the rainfall trend was significant at 5% level. Mostly, significant negative trend in 

rainfall has been found in the monsoon months which is not a positive signal for the water sector 

in the country. The variation in monthly rainfall for June-September for the studied zones were 

also investigated by wavelet using Haar filter. The local as well as global variation in rainfall is 

observed by DWT plot of the respective months in the respective locations. The variability in 

rainfall is evident in the recent decades in all the locations.  
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Chapter V  

 

Wavelets Based Combination Approach for Modeling Sub-

Divisional Rainfall In India 

 

1. Introduction 

Modeling climatic variables in general and rainfall in particular is intended to be useful for 

many stakeholders namely the farmers, policy makers and governments. Modeling of time series 

helps in extracting many inherent features present in that data set and based on the extracted 

features it helps in extrapolating the time series into future. In the last few decades, much effort 

has been devoted to the development and improvement of time series forecasting models and 

there are infinitely many stochastic processes which can be implemented to model and forecast 

for a particular series. The quantum and distribution of rainfall mostly determines the 

performance of agriculture of a country. Therefore, from proper planning and policy making 

point of view, accurate modeling of rainfall is vital. In literature, several attempts have been 

found regarding developments of models for describing climatic variables like rainfall and 

temperature. In Indian context, Parthasarathy et al. (1995) reported some statistical details and 

long-term changes of the All-India monsoon rainfall. Rajeevan et al. (2004) have reported an 

excellent review of different statistical models employed since 1988 along with various 

modifications made in these models from time to time, particularly in the identification of 

relevant explanatory variables for modeling and forecasting of climatic variables. Kakatkar et al. 

(2017) investigated Indian summer monsoon rainfall variability.  

In statistical and stochastic models, Box-Jenkins ARIMA methodology has virtually 

dominated analysis of time series data for last several decades. This model has gained much 

popularity in modeling linear dynamics. However, this models is based on the assumptions of 

stationarity. Moreover, many a times, presence of high chaotic nature and complex nonlinearity 

of series under consideration distorts the actual model specification and thereby in the forecast 

performance. Therefore, preprocessing of input data become essential to minimize the noise level 
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and improve the performance of forecasting model. An example of such a powerful method is 

nonparametric wavelet analysis. Wavelet analysis decomposes the original time series into both 

high and low frequency components, in order to improve the ability of a forecasting model by 

capturing useful information at different resolution levels (Antoniadis, 1997; Percival and 

Walden, 2000; Vidakovic, 1999). Quite good number of literatures is available towards 

theoretical development of wavelet functions and their application in economics and finance. 

However, the application of wavelet to real data analyses is scarce particularly in climatic series. 

Fryzlewicz et al. (2003) developed Wavelet process model for forecasting nonstationary time-

series. Renaud et al. (2003) developed methodology for prediction of time-series data based on 

multiscale decomposition. Wavelet thresholding approach was applied by Sunilkumar and 

Prajneshu (2004) for modeling and forecasting of monthly meteorological subdivisions rainfall 

in Eastern Uttar Pradesh, India. Almasri et al. (2008) proposed a test statistic by using wavelet 

decompositions for testing presence of significant trend in a time-series data. Aminghafari and 

Poggi (2007, 2012) used Wavelets and kernel smoothing approach for forecasting nonstationary 

time-series. Ghosh et al. (2010) have computed the size and power of test based on wavelet for 

testing presence of trend in time series. Kisi (2010, 2011) studied wavelet regression model and 

compared the forecasting efficiency with that of neural network model. Paul et al. (2011) applied 

Wavelet methodology for detection of trend in Indian monsoon rainfall and found that there is a 

significant declining trend. Venkata Ramana et al. (2013) attempted to find an alternative method 

for rainfall prediction by combining the wavelet technique with ANN. Paul and Birthal (2015) 

have used wavelet method for estimation of trend in rainfall in different agro-climatic zones of 

India. Paul et al. (2013) studied wavelet frequency domain approach for forecasting of Indian 

monsoon rainfall. Paul (2017) studied modeling of maximum and minimum temperature in India 

by using wavelet methods. Paul and Anjoy (2018) used wavelet and long memory model for 

modeling maximum temperature in India. Meena et al. (2019) studied homogeneity of monthly, 

seasonal, and annual rainfall over arid region of Rajasthan, India. Paul et al. (2019) have applied 

wavelet technique for estimation and testing of trend in ten selected sub-divisional rainfall in 

India. There is a need to study the predictive performance of different combination models based 

on wavelet decomposition. In the present investigation, an attempt has been made for modeling 

and forecasting of annual rainfall for 30 sub-divisions of India based on combination of 
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decomposition approach e.g. wavelet, the stochastic model e.g. ARIMA and machine learning 

technique like ANN and evaluate the efficiency of forecast in comparison to ARIMA model.  

 

2. Dataset 

In this study annual rainfall data corresponding to different zones of India is collected from 

Indian Institute of Tropical Meteorology (www.tropmet.res.in), Pune, India. The data set 

comprises of annual rainfall of 146 years (from 1871 to 2016) measured in mm. For all the 30 

sub-divisions of India, rainfall modeling is carried out. The names of the selected sub-divisions 

along with their short names are listed in table 1. 

 

Table 1. The sub-divisions considered for present study 

Abbreviation Name of Sub-divisions 

ASMEG Assam & Meghalaya Sub-division 

NMAMT Nagaland, Manipur, Mizoram and Tripura Sub-division 

SHWBL Sub Himalayan West Bengal Sub-division 

GNWBL Gangetic West Bengal Sub-division 

ORISS Orissa Sub-division 

JHKND Jharkhand Sub-division 

BIHAR Bihar Sub-division 

EUPRA East Uttar Pradesh Sub-division 

WUPPL West Uttar Pradesh Sub-division 

HARYA Haryana Sub-division 

PUNJB Punjab Sub-division 

WRJST West Rajasthan Sub-division 

ERJST East Rajasthan  Sub-division 

WMPRA West Madhya Pradesh Sub-division 

EMPRA East Madhya Pradesh Sub-division 

GUJRT Gujarat Sub-division 

SAUKU Saurashtra & Kutch Sub-division 

KNGOA Konkan and Goa Sub-division 
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MADMH Madhya Maharashtra Sub-division 

MARAT Marathwada Sub-division 

VDABH Vidarbha Sub-division 

CHHAT Chattisgarh Sub-division 

COAPR Coastal Andhra Pradesh Sub-division 

TELNG Telangana Sub-division 

RLSMA Rayalaseema Sub-division 

TLNAD Tamil Nadu Sub-division 

COKNT Coastal Karnataka Sub-division 

NIKNT North interior Karnataka Sub-division 

SIKNT South interior Karnataka Sub-division 

KERLA Kerala Sub-division 

 

3. Methodology: 

3.1.Autoregressive Integrated Moving Average (ARIMA) Model 

ARIMA model is a generalization of ARMA models which incorporate a wide range of 

non-stationary time-series by suitable order of differencing. The simplest example of a non-

stationary process which reduces to a stationary one after differencing is 'Random Walk'. A 

process { ty } is said to follow an Integrated ARMA model, denoted by ARIMA (p, d, q), if 

t

d

t

d By )1(   is ARMA (p, q). The model is written as:  

tt

d ByBB  )()1)((                                                                      (1) 

where, ),0(~ 2 WNt , WN indicates white Noise, 
p

pBBBB   ...1)( 2

21  and 

q

qBBBB   ...1)( 2

21 . The integration parameter d is a non-negative integer.  

There are four major stages of ARIMA model building. These are identification, 

estimation, validation and forecasting. A detailed discussion on various aspects of this approach 

is given in Box et al. (2007).  

 

3.2. Wavelets    
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Wavelets are fundamental building block functions, analogous to the trigonometric sine 

and cosine functions. A wavelet function oscillates about zero. If (.)  is a real-valued function 

defined over the real axis   ,  and satisfies two basic properties: (i) Integral of (.)  is zero, 

i.e. 0)( 




duu and (ii) Square of (.)  integrates to unity, i.e. 1)(2 




duu , then the function 

(.)  is called a wave. A good description of wavelets can be found in Daubechies (1992), Ogden 

(1997) and Percival and Walden (2000). 

            There are mainly two types of wavelet transforms: the continuous wavelet transform 

(CWT) designed to work with time-series defined over the entire real axis and the discrete 

wavelet transform (DWT) which deals with series defined essentially over discrete time points. 

In order to capture high and low frequency components in a time series, DWT is applied. Again, 

through computation of inverse DWT, this, in turn would enable modeling of time-series data.  

 

3.3. Maximal Overlap Discrete Wavelet Transforms (MODWT) 

The MODWT is an undecimated wavelet transform over dyadic scales. Similar to DWT, 

the Maximal Overlap Discrete Wavelet Transforms (MODWT) also produces a set of time-

dependent wavelets (details) and scaling (smooth) coefficients based on linear filtering operation. 

Both the transformations use basis vectors associated with a location parameter t and a scale 

parameter   j

j 12  for each level of decomposition i.e. j =1,..,J0. However, MODWT differs 

from DWT in the sense that it is a highly redundant, nonorthogonal transform (Percival and 

Walden, 2000). The main drawback associated with the application of the DWT in time series 

analysis is that it suffers from lack of translation invariance. Which implies that, circularly 

shifting the time series will not necessarily shift its DWT coefficients in a similar manner. The 

downsampled values at each level of decomposition are discarded by DWT but retained in 

MODWT. The MODWT is applicable for all the time series with any integer length of the series, 

whereas for a complete decomposition of levels J, DWT requires the length of the series to be a 

multiple of 2J. Redundancy of MODWT facilitates alignment of the decomposed wavelet and 

scaling coefficients at each level with original time-series, thus enabling a ready comparison 

between the series and its decomposition. ANOVA derived using MODWT is not influenced by 
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circular shifting of input time-series, whereas values derived using DWT depend on starting 

point of a series (Percival and Mofjeld, 1997; Percival and Walden, 2000). 

 

 3.4 Artificial neural network (ANN) 

Artificial neural networks (ANNs) are nonlinear data driven self-adaptive approach and are 

powerful tools for modeling, especially when the underlying data relationship is unknown. A 

very important feature of these networks is their adaptive nature, where “learning by example” 

replaces “programming” in solving problems. Most commonly used ANN is multi-layer 

perceptron (MLP), a class of feed forward neural network. MLP consists of three types of nodes 

viz. input nodes, hidden nodes and output nodes. Except for the input nodes, each node is a 

neuron that uses a nonlinear activation function. MLP utilizes a supervised training scheme, 

which means, it learns from labeled training data. In reality, most of the time series data is not 

linearly separable by using linear perceptron therefore MLP is used which has multiple layers 

and non-linear activation function.  

 

Mathematically, MLP network is a function consisting of compositions of weighted sums of the 

functions corresponding to the neurons. Let us consider following notations with p input and h 

hidden nodes: 𝑥𝑖(i=1,2…p) are network inputs; wij ,refer the synaptic weight connection  between 

neuron i and j; wj refer the synaptic weight connection  between jth neuron of hidden node and 

output node.𝑎0, 𝛽0𝐽 are bias term for output layer and hidden layer; 𝜑 is hidden output layer 

activation function, mainly logistic 𝜑(𝑣𝑗) =
1

1+𝑒
−𝑣𝑗

 and I as identity function. The output of a 

MLP with p input and h hidden nodes is expressed as 

Y= 𝐼[𝑎0 + ∑ 𝑤𝑗𝜑𝑗[𝛽0𝐽 + ∑ 𝑤𝑖𝑗𝑥𝑖
𝑝
𝑖=1

ℎ
𝑗=1 ]]= 𝐼[𝑎0 + ∑ 𝑤𝑗[𝑣𝑗

ℎ
𝑗=1 ]]= 𝐼[𝑦𝑗] 

where 

vj= 𝜑𝑗[𝛽0𝐽 + ∑ 𝑤𝑖𝑗𝑥𝑖
𝑝
𝑖=1 ], yj=[𝑎0 + ∑ 𝑤𝑗[𝑣𝑗

ℎ
𝑗=1 ]] 

 

3.5 Proposed algorithm for modeling using combination of Wavelet with ARIMA and 

ANN: 
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Each of the sub-divisional rainfall series is decomposed by means of MODWT using Haar 

wavelet filter. The level of decomposition is taken to be  N log J 20   , where N is the length of 

the series. In the present investigation J0 comes out to be 7. One advantage of this wavelet 

methodology is that one can capture the multi-scale information at different resolution level. So 

model precision will be more as chances of losing information is less. This is termed as 

denoising, because unexplained error part or information loss is checked through decomposition 

at different frequency level. In the present investigation, MODWT has been considered for 

modeling purpose as there is no restriction for sample size determination. Furthermore, 

redundancy of MODWT wavelet coefficients increases effective degrees of freedom on each 

scale and thus decreases variance of certain wavelet-based statistical estimates.  

The algorithm used is as follows: 

(i)  Original time-series is decomposed into a certain number of sub time-series {W1, 

W2, …,WJ,VJ} by non-decimated wavelet transform (MODWT). W1, W2 ,…,WJ are 

wavelet detail component, and VJ  is smooth component. These play different role in 

the original time-series and the behaviour of each sub time-series is distinct from 

other. Therefore, the contribution to original time-series varies from each other. 

(ii) For Wavelet-ARIMA (Wavelet-ANN) Suitable ARIMA (ANN) model is fitted on 

each of the decomposed sub-series and prediction is computed. The lags of 

decomposed series are the input for ANN to get the prediction of individual 

decomposed series as output. The optimum value of input lag and hidden node in case 

of ANN is obtained based on minimum mean square error. Whereas, the suitable 

order of ARIMA model is selected based on minimum information criterion. 

(iii) By means of inverse wavelet transform (IWT), prediction of actual rainfall series is 

obtained. 

To implement the above algorithm, two R-packages namely WaveletArima (Paul and 

Samanta, 2018) and WaveletANN (Paul, 2019) have also been developed and 

uploaded in CRAN 

The schematic diagram of the above algorithm for Wavelet-ARIMA and Wavelet-ANN is 

presented below. 
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4. Validation of models for hold-out data 

One-step ahead forecasts of sub-divisional rainfall for the years 2002 to 2016 in respect 

of ARIMA, Wavelet-ARIMA and Wavelet-ANN are computed. A comparative study of 

forecasts by these models is carried out on the basis of Mean Absolute Prediction Error (MAPE) 

and Root Mean Square Error (RMSE) as  

MAPE =   100y/ŷy15/1
15

1i
ititit  


                                                                         

(2) 

RMSE =  
2/1

215

1i
itit ŷy15/1












 


                                                                               

(3) 
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5. Results and Discussions 

5.1 Summary statistics:  

The descriptive statistics of the rainfall data is reported in table 2. Here we consider mean, 

median (Med), maximum value (Max), minimum value (Min), standard deviation (SD), 

coefficient of variation (CV), Skewness (Skew) and kurtosis (Kurt) to represent the data set. The 

values of these statistics are calculated for each of the sub-divisions under consideration. A 

perusal of table 2 indicates that the average annual rainfall is comparatively higher for Coastal 

Karnataka Sub-division (COKNT), Konkan and Goa Sub-division (KNGOA), Sub Himalayan 

West Bengal Sub-division (SHWBL), Kerala sub-division (KERLA) and Assam & Meghalaya 

sub-division (ASMEG). The variability in annual rainfall is highest in Saurashtra & Kutch Sub-

division (SAUKU) and lowest in Assam & Meghalaya sub-division (ASMEG). Almost all the 

series under consideration are positively skewed and leptokurtic. The Jarque-Bera (J-B) statistic 

as reported in table 2 indicates that the annual rainfall series in COAPR, COKNT, PUNJB, 

SAUKU and WRJST subdivisions are nor-normal whereas in all other sub-divisions, the annual 

rainfall follows normal distribution. The pattern in annual rainfall in all the sub-divisions along 

with the linear trend equation as estimated by using linear regression model is reported in figure 

1. 

  

 

 

 

 

Table 2. Summary statistics of sub-divisional annual rainfall in India 

 

 

ASME

G 

BIHA

R 

CHHA

T 

COAP

R 

COKN

T 

EMPR

A 

ERJS

T 

EUPR

A 

GNWB

L 

GUJR

T 

Mean 23398 12184 13560 9841 32924 12496 6937 10090 15307 9088 

Med 23226 12029 13598 9569 32388 12423 6834 10103 15196 9033 

Max 31029 17295 20817 17047 55526 17491 13368 17131 21823 16142 

Min 17799 6483 8212 5318 20330 7078 2757 5693 10632 2220 

SD 2577 2111 2268 1996 5497 2127 1693 2126 2219 2717 

Skew 0.18 0.08 0.28 0.55 0.77 0.03 0.10 0.40 0.19 0.02 
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Kurt 3.06 2.79 3.27 3.47 4.72 2.67 3.66 3.40 2.69 2.72 

CV 

(%) 11.01 17.32 16.73 20.28 16.70 17.02 24.41 21.07 14.49 29.89 

J-B 0.85 0.43 2.28 8.82 32.37 0.67 2.86 4.95 1.45 0.47 

Prob. 0.65 0.81 0.32 0.01 0.00 0.71 0.24 0.08 0.48 0.79 

 

HARY

A 

JHKN

D 

KERL

A 

KNGO

A 

MADM

H 

MARA

T 

NIKN

T 

NMAM

T ORISS 

PUNJ

B 

Mean 5536 13356 28167 25824 7353 8279 8269 19565 14729 6238 

Med 5470 13272 28016 25572 7452 8041 8281 19496 14678 5966 

Max 9976 18628 39449 39746 11284 15009 12364 27423 19883 11955 

Min 2293 8559 18374 13027 3446 2838 4129 14064 9276 2332 

SD 1453 1929 4151 5010 1441 2143 1485 2585 2008 1752 

Skew 0.31 0.20 0.21 -0.06 0.02 0.21 0.06 0.18 0.08 0.81 

Kurt 3.07 2.89 2.86 3.27 3.31 3.07 2.94 3.01 3.28 3.56 

CV 

(%) 26.25 14.44 14.74 19.40 19.60 25.89 17.96 13.21 13.63 28.09 

J-B 2.43 1.07 1.18 0.52 0.59 1.07 0.09 0.80 0.63 17.87 

Prob. 0.30 0.59 0.56 0.77 0.74 0.59 0.95 0.67 0.73 0.00 

 

RLSM

A 

SAUK

U 

SHWB

L SIKNT 

TELN

G 

TLNA

D 

VDAB

H 

WMPR

A 

WRJS

T 

WUPP

L 

Mean 7213 4783 25038 8851 8944 9256 10874 9545 2989 8679 

Med 7171 4366 25128 8891 8835 9245 10986 9402 2918 8744 

Max 12274 12407 33936 12323 14846 12792 15858 14209 7223 13051 

Min 2254 712 17059 5156 4887 5272 4447 4968 366 3791 

SD 1581 2082 3310 1492 1904 1536 2074 1765 1083 1801 

Skew 0.19 0.87 0.15 -0.20 0.29 0.07 -0.06 0.19 0.60 -0.05 

Kurt 3.74 4.27 2.87 2.82 2.79 2.86 3.15 2.94 4.32 2.74 

CV 

(%) 21.92 43.53 13.22 16.85 21.29 16.60 19.08 18.49 36.24 20.76 

J-B 4.22 28.32 0.63 1.13 2.39 0.25 0.25 0.94 19.28 0.47 

Prob. 0.12 0.00 0.73 0.57 0.30 0.88 0.88 0.63 0.00 0.79 
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Figure 1. The variability in sub-division wise rainfall along with linear trend 

 

5.2 Test for detection of trend 

In this section we test the existence of trend in annual rainfall of 30 sub-divisions of India using 

Mann-Kendall (M-K) test. The values of test statistics along with corresponding p-values are 

given in table 3. The linear regression trend test is also conducted and the result is reported in 

table 3. The M-K test is more robust than that of the linear regression trend test as the former 

does not depend on distributional assumption of the dataset. Moreover, M-K test is robust against 

presence of outlier if any in the dataset. A perusal of table 3 implies that there is significant 

decreasing trend in rainfall in ASMEG, NMANT, EUPRA, WUPPL, EMPRA, CHHAT whereas 

in KNGOA, COAPR, TELNG and COKNT sub-divisions, significant increasing trend in rainfall 

is observed. The last column in table 3 implies the direction of the trend in rainfall of individual 

sub-division. The same pattern can also be seen in the plot and linear trend line depicted in figure 

1. 

 

Table 3: Test for detection of trend 

 M-K test Linear regression Direction 

Zone Statistics Probability b value Probability 
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ASMEG -1.839 0.066 -8.460 0.095  

NMAMT -3.570 0.000 -19.202 0.000  

SHWBL -0.548 0.584 -1.389 0.832  

GNWBL 1.145 0.252 4.705 0.282  

ORISS -0.761 0.446 -4.142 0.295  

JHKND -1.152 0.249 -4.693 0.216  

BIHAR -1.093 0.274 -4.395 0.291  

EUPRA -2.042 0.041 -7.987 0.055  

WUPPL -1.875 0.061 -4.604 0.194  

HARYA 0.981 0.326 2.139 0.455  

PUNJB 0.398 0.691 0.831 0.810  

WRJST 1.557 0.120 2.897 0.174  

ERJST 0.132 0.895 0.216 0.948  

WMPRA 0.259 0.796 1.963 0.573  

EMPRA -2.528 0.011 -10.166 0.014  

GUJRT -0.264 0.792 -1.037 0.847  

SAUKU 1.101 0.271 4.686 0.253  

KNGOA 3.733 0.000 32.735 0.001  

MADMH -0.052 0.958 -0.380 0.894  

MARAT -0.078 0.938 -0.118 0.978  

VDABH -0.777 0.437 -2.730 0.505  

CHHAT -2.870 0.004 -13.011 0.003  

COAPR 1.736 0.083 6.820 0.082  

TELNG 1.991 0.046 7.134 0.056  

RLSMA 1.538 0.124 4.657 0.134  

TLNAD 0.277 0.781 1.422 0.639  

COKNT 2.606 0.009 25.023 0.020  

NIKNT 0.323 0.747 0.395 0.893  

SIKNT 0.766 0.443 1.851 0.529  

KERLA -0.499 0.618 -5.370 0.512  

The bold values indicate significance at 10% level of significance. 

 

 

5.3 Modeling by Wavelet Approach  

        Decomposition of rainfall series was carried out by means of MODWT. Here, maximum 

level of decomposition is taken as 7. Haar wavelet filter which is the simplest and oldest, was 

used for analyzing the data on a dyadic scale in order to capture the inherent characteristic as 

expressed by MODWT coefficients. The MODWT for all the 30 sub-divisional rainfall was 
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carried out but to save space plots of ASMEG and NMAMT sub-divisions are reported here in 

figure 2 and 3 respectively. In figure 2 and 3, lower most plot denotes original time-series, W1 to 

W7 denote the wavelet details components, and V7 denotes the smoothed component of 

MODWT. A perusal of figure 2 and 3 indicates that at lower scale, localized variation in the 

dataset is detected; whereas, at higher scale, global variation in the dataset is detected. Further, 

the wavelet coefficients are related to differences (of various order) of (weighted) average values 

of portions of Xt concentrated in time. Coefficients at the top provide “high frequency” 

information and the coefficients at below provide “low frequency” information. Neither the 

wavelet coefficients (details) nor the scale coefficients (smooth) remain constant over time rather 

they help in detecting changes in the data at various time-epochs. The hypothesis tested in the 

present investigation was that whether modeling wavelet decomposed series improved the 

prediction accuracy or not. 
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Fig. 2. MODWT of annual rainfall time-series data for ASMEG sub-division 
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Fig. 3. MODWT of annual rainfall time-series data for NMAMT sub-division 

5.4 Validation of models 

The dataset during the year 1871 to 2001 was used for model development and remaining data 

i.e. data during 2002 to 2016 was used for validation purpose. In case of Wavelet-ANN model 

development, optimum value of input node and hidden layer were obtained based on minimum 

mean square error. Similarly, in Wavelet-ARIMA model, the optimum value of order of 

autoregression, differencing and moving average were obtained based on minimum information 

criterion.  For the present investigation, optimum value of the inputs in wavelet-ANN and 

Wavelet-ARIMA model are presented in table 2.   
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Table 2: Optimum values of different input parameters for ANN and ARIMA model for wavelet decomposed series 1 

Series ANN ARIMA Series ANN ARIMA Series ANN ARIMA 

ASMEG input hidden p d q PUNJB input hidden p d q VDABH input hidden p d q 

W1 4 2 0 0 1 W1 8 4 0 0 1 W1 4 2 4 0 0 

W2 14 8 0 0 1 W2 14 8 2 0 0 W2 10 6 5 0 0 

W3 13 7 1 0 0 W3 21 11 5 0 0 W3 18 10 1 0 0 

W4 9 5 2 0 2 W4 17 9 2 0 2 W4 17 9 1 0 2 

W5 18 10 1 0 1 W5 17 9 0 1 1 W5 21 11 1 0 2 

W6 4 2 1 1 0 W6 4 2 3 2 1 W6 6 4 1 1 2 

W7 1 1 1 2 2 W7 1 1 2 2 2 W7 6 4 1 1 0 

V7 19 10 1 1 3 V7 19 10 1 1 0 V7 4 2 1 1 0 

NMAMT 

     

WRJST 

     

CHHAT 

     W1 11 6 0 0 1 W1 16 8 2 0 0 W1 9 5 0 0 1 

W2 11 6 5 0 0 W2 20 10 5 0 0 W2 17 9 4 0 0 

W3 13 7 5 0 1 W3 17 9 5 0 0 W3 13 7 5 0 0 

W4 21 11 1 1 0 W4 17 9 2 0 2 W4 17 9 1 0 0 

W5 17 9 1 1 1 W5 17 9 1 0 0 W5 17 9 1 1 0 

W6 12 6 1 1 1 W6 5 3 0 1 0 W6 4 2 1 1 1 

W7 1 1 0 2 1 W7 1 1 0 2 1 W7 1 1 0 2 1 

V7 3 2 1 1 2 V7 19 10 0 1 1 V7 19 10 0 1 3 

SHWBL 

     

ERJST 

     

COAPR 

     W1 11 6 4 0 0 W1 6 4 3 0 0 W1 7 4 4 0 1 

W2 10 6 4 0 0 W2 14 8 4 0 0 W2 12 6 2 0 0 

W3 20 10 1 0 0 W3 17 9 5 0 0 W3 8 4 5 0 0 

W4 20 10 1 0 0 W4 12 6 2 0 2 W4 17 9 2 0 1 

W5 17 9 1 0 0 W5 17 9 1 0 0 W5 19 10 1 1 0 

W6 13 7 1 0 0 W6 1 1 1 1 0 W6 1 1 1 1 0 

W7 1 1 0 2 1 W7 1 1 0 1 1 W7 1 1 0 2 1 

V7 19 10 1 1 0 V7 19 10 1 1 0 V7 19 10 1 1 0 
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GNWBL 

     

WMPRA 

     

TELNG 

     W1 6 4 0 0 2 W1 6 4 0 0 1 W1 7 4 0 0 1 

W2 10 6 1 0 0 W2 12 6 5 0 0 W2 8 4 2 0 0 

W3 17 9 5 0 0 W3 18 10 5 0 0 W3 18 10 5 0 0 

W4 17 9 1 0 0 W4 12 6 1 0 0 W4 17 9 2 0 1 

W5 21 11 0 1 1 W5 17 9 2 0 2 W5 17 9 1 0 2 

W6 1 1 2 2 1 W6 3 2 2 0 2 W6 6 4 1 1 0 

W7 1 1 1 1 0 W7 1 1 2 1 2 W7 1 1 0 2 1 

V7 19 10 2 1 2 V7 19 10 2 1 2 V7 5 3 1 1 0 

ORISS 

     

EMPRA 

     

RLSMA 

     W1 3 2 0 0 1 W1 7 4 0 0 1 W1 8 4 2 0 1 

W2 6 4 1 0 0 W2 6 4 4 0 0 W2 16 8 2 0 0 

W3 16 8 1 0 0 W3 16 8 5 0 0 W3 15 8 1 0 0 

W4 18 10 2 0 2 W4 11 6 1 0 0 W4 19 10 2 0 2 

W5 17 9 2 0 0 W5 17 9 0 1 1 W5 17 9 1 1 0 

W6 1 1 0 1 1 W6 1 1 2 1 2 W6 1 1 0 1 1 

W7 1 1 0 2 1 W7 1 1 0 2 1 W7 1 1 2 2 1 

V7 21 11 1 1 0 V7 19 10 2 1 2 V7 1 1 1 1 0 

JHKND 

     

GUJRT 

     

TLNAD 

     W1 20 10 0 0 1 W1 4 2 4 0 0 W1 6 4 4 0 0 

W2 10 6 5 0 0 W2 14 8 5 0 0 W2 8 4 5 0 0 

W3 17 9 5 0 0 W3 13 7 5 0 0 W3 15 8 5 0 0 

W4 19 10 1 0 0 W4 17 9 2 0 2 W4 10 6 2 0 0 

W5 19 10 1 0 0 W5 17 9 1 0 0 W5 17 9 2 0 0 

W6 1 1 0 1 1 W6 1 1 0 1 1 W6 1 1 2 0 1 

W7 1 1 2 2 1 W7 1 1 1 0 0 W7 1 1 1 1 0 

V7 19 10 2 1 2 V7 19 10 1 0 0 V7 19 10 2 0 1 

BIHAR 

     

SAUKU 

     

COKNT 

     W1 11 6 5 0 0 W1 8 4 3 0 0 W1 6 4 1 0 2 

W2 10 6 4 0 0 W2 17 9 2 0 2 W2 12 6 5 0 0 
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W3 13 7 5 0 0 W3 12 6 5 0 0 W3 10 6 5 0 0 

W4 17 9 1 0 0 W4 20 10 0 1 1 W4 17 9 2 0 1 

W5 17 9 1 0 1 W5 17 9 1 0 0 W5 17 9 1 1 1 

W6 2 2 2 0 0 W6 5 3 1 1 0 W6 1 1 1 1 0 

W7 1 1 1 1 0 W7 1 1 0 2 2 W7 1 1 0 2 1 

V7 19 10 2 1 2 V7 5 3 1 1 0 V7 19 10 1 1 0 

EUPRA 

     

KNGOA 

     

NIKNT 

     W1 6 4 0 0 1 W1 5 3 5 0 1 W1 4 2 1 0 2 

W2 12 6 4 0 0 W2 12 6 2 0 0 W2 10 6 5 0 0 

W3 18 10 5 0 0 W3 12 6 5 0 0 W3 21 11 5 0 0 

W4 17 9 1 0 2 W4 18 10 2 0 1 W4 19 10 2 0 2 

W5 17 9 1 1 0 W5 17 9 0 1 1 W5 17 9 3 0 0 

W6 1 1 0 1 1 W6 7 4 1 1 1 W6 2 2 1 2 2 

W7 1 1 0 2 1 W7 1 1 0 2 2 W7 1 1 0 2 1 

V7 19 10 1 1 0 V7 19 10 0 1 1 V7 2 2 1 1 0 

WUPPL 

     

MADMH 

     

SIKNT 

     W1 6 4 0 0 1 W1 7 4 4 0 0 W1 4 2 5 0 0 

W2 10 6 2 0 0 W2 14 8 5 0 0 W2 12 6 5 0 0 

W3 9 5 5 0 0 W3 14 8 5 0 0 W3 21 11 1 0 0 

W4 17 9 1 0 0 W4 19 10 2 0 1 W4 19 10 2 0 2 

W5 21 11 1 0 2 W5 18 10 2 0 1 W5 17 9 1 0 0 

W6 1 1 1 0 0 W6 2 2 1 0 1 W6 1 1 1 0 0 

W7 1 1 0 1 1 W7 1 1 1 1 0 W7 1 1 1 1 0 

V7 19 10 1 1 0 V7 2 2 1 0 1 V7 19 10 1 0 0 

HARYA 

     

MARAT 

     

KERLA 

     W1 6 4 0 0 1 W1 8 4 2 0 0 W1 6 4 0 0 3 

W2 14 8 2 0 0 W2 6 4 2 0 0 W2 11 6 5 0 0 

W3 12 6 5 0 0 W3 17 9 5 0 1 W3 21 11 5 0 0 

W4 19 10 2 0 2 W4 18 10 1 0 2 W4 17 9 1 0 1 

W5 20 10 1 0 2 W5 18 10 2 0 0 W5 18 10 2 1 0 
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W6 5 3 1 1 0 W6 7 4 1 1 0 W6 1 1 1 1 1 

W7 1 1 0 2 1 W7 1 1 1 1 0 W7 2 2 0 2 1 

V7 19 10 1 1 0 V7 2 2 2 0 0 V7 19 10 1 1 0 

Input: no of input lags; Hidden: Number of nodes in the hidden layer; p: order of Autoregression; d: order of differencing; q: order of Moving average 1 



 

 
 

One-step ahead forecasts of annual rainfall for hold-out data i.e. the rainfall data for the years 

2002 to 2016 by using the three approaches i.e. Wavelet-ARIMA, Wavelet-ANN and 

ARIMA were computed. For comparison of predictive accuracy of two approaches, MAPE 

and RMSE was used as described in equation 2 and 3. Both the statistics value for all the sub-

divisions are reported in table 3. It is clear from table 3 that for all the sub-divisions, 

Wavelet-ANN and Wavelet-ARIMA approach perform better than the ARIMA model. This 

is because of denoising the series using wavelet and modeling decomposed series 

independently. Between Wavelet-ANN and Wavelet-ARIMA model, Wavelet-ANN is little 

better than Wavelet-ARIMA for the dataset under consideration.  

 

 

Table 3. One- step ahead prediction performance of Wavelet-ANN, Wavelet-ARIMA and 

ARIMA model. 

 Wavelet-ANN Wavelet-ARIMA ARIMA 

Sub-division MAPE RMSE MAPE RMSE MAPE RMSE 

ASMEG 13.46 3216.79 14.07 3475.72 15.12 3514.01 

NMAMT 17.62 3657.784 20.93 3789.62 21.64 3861.79 

SHWBL 11.45 3072.763 11.41 3035.37 11.43 2759.75 

GNWBL 12.65 2273.959 13.43 2468.98 14.01 2472.62 

ORISS 11.46 1934.119 11.20 1922.05 13.32 2192.99 

JHKND 13.18 1996.482 14.51 2055.50 15.64 2162.56 

BIHAR 16.60 2039.144 17.88 2144.05 18.76 2154.21 

EUPRA 22.36 2013.251 23.24 2059.59 25.80 2261.78 

WUPPL 25.83 1996.638 25.61 1977.52 26.02 2006.33 

HARYA 19.90 1117.654 21.10 1243.07 25.61 1291.25 

PUNJB 26.89 1481.363 27.60 1539.40 33.07 1701.38 

WRJST 25.75 764.8907 26.39 867.36 35.22 1053.34 

ERJST 13.86 1107.872 14.17 1146.67 19.86 1461.28 

WMPRA 13.82 1663.771 14.51 1681.81 14.90 1737.52 

EMPRA 16.83 2274.272 17.62 2338.78 22.20 2623.64 

GUJRT 20.08 2265.432 20.05 2397.86 21.81 2483.07 

SAUKU 23.91 2325.803 25.87 2535.86 27.31 2683.84 
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KNGOA 13.12 5310.639 13.76 5392.85 14.02 5341.57 

MADMH 16.15 1703.062 17.72 1719.36 18.62 1671.41 

MARAT 18.43 1385.009 20.21 1588.56 22.72 1766.66 

VDABH 17.20 2075.468 17.31 2078.53 17.78 2082.81 

CHHAT 11.21 1722.553 10.50 1631.91 11.55 1799.76 

COAPR 16.77 1656.19 16.64 1789.28 17.74 2442.65 

TELNG 18.33 1722.471 21.58 1913.72 22.61 1966.40 

RLSMA 14.34 1218.503 16.28 1341.41 16.52 1620.77 

TLNAD 18.48 2050.329 18.33 2084.31 20.86 2218.15 

COKNT 12.73 5011.439 12.70 5087.11 13.35 5354.23 

NIKNT 19.14 1565.29 18.58 1536.23 19.22 1567.93 

SIKNT 19.43 2049.332 20.15 2063.94 20.22 2003.27 

KERLA 13.59 3808.633 13.70 3814.90 15.63 4402.48 

 

 

Conclusions  
 

The overconfidence and lack of reliability for regional rainfall forecasts is a common 

problem amongst the researchers. Wavelet decomposition approach is one of the most 

important approach to smooth the series as well as to extract the actual signal from the noisy 

and utilize the strengths of a range of independent models to increase the reliability and 

accuracy of climate predictions. Modeling of rainfall series assume prime importance both in 

the local as well as in global level. In the present investigation, the advantage of powerful 

nonparametric Wavelet methodology in frequency domain for modeling and forecasting of 

sub-divisional rainfall in India employing Haar wavelet filter is highlighted. Moreover, the 

feature of rainfall in a location may not be always linear so that it can be modelled through 

the classical ARIMA model. To accommodate the pattern of nonlinearity and complexity, 

decomposition of the series under consideration is required. When the original series has 

much nonlinearity as its property, the MODWT has simplified it by breaking it into its sub-

frequencies. Therefore, the ANN can now model the details and approximate components 

sufficiently so that the accuracy of the forecasting process is improved up to a marked extent. 

Therefore, the combination of wavelet approach along with classical time series model i.e. 

ARIMA model and promising machine learning technique i.e. ANN is applied for forecasting 

annual rainfall in 30 subdivisions of India. Superiority of Wavelet-ARIMA and Wavelet-
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ANN approach over traditional ARIMA model is demonstrated in terms of RMSE and 

MAPE. In Wavelet-ANN and Wavelet-ARIMA approach the minimum and maximum 

MAPE has been found in CHHAT and PUNJB sub-division respectively. The study has 

revealed that the Wavelet-ARIMA model and Wavelet-ANN approach could be used 

successfully for modeling as well as forecasting of annual rainfall in different sub-divisions 

of India.  
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Chapter VI  

 

Out-Of-Sample Forecasting Of ARFIMA-GARCH Model 

And Periodicity In Rainfall 

 

Out-of-sample forecasting by ARFIMA-GARCH model 

Formulae for multi-step ahead out-of-sample forecast and forecast error variance for ARFIMA-

GARCH model has been developed by recursive use of conditional expectation in the same line 

of Ghosh et al. (2011) and Paul et al. (2014). 

Let, {𝑦𝑡} follows an ARFIMA (1, d, 1) process with error, {𝑒𝑡}  follows GARCH (1,1) model, 

can be expressed as,  

                                (1 − 𝜌1𝐿)𝑦𝑡 = (1 − 𝜃1𝐿)(1 − 𝐿)−𝑑𝑒𝑡       (1) 

𝑒𝑡 = ℎ𝑡
1/2

𝜁𝑡 where  ℎ𝑡 = 𝛼0 + 𝛼1𝑒𝑡−1
2 + 𝛽1ℎ𝑡−1 

𝜁𝑡 is a i.i.d. random variable with zero mean and constant variance 𝜎2. After expanding the term 

(1 − 𝐿)−𝑑 with Taylor series expansion and by ignoring the higher order terms, equation (1) can 

be written as, 

⟹ 𝑦𝑡 − 𝜌1𝑦𝑡−1 = (𝑒𝑡 − 𝜃1𝑒𝑡−1)(1 + 𝑑𝐿 +
𝑑(𝑑 − 1)

2
𝐿2) 

⟹ 𝑦𝑡 = 𝜌1𝑦𝑡−1 + 𝑒𝑡 + (𝑑 − 𝜃1)𝑒𝑡−1 + [
𝑑(𝑑 − 1)

2
− 𝜃1] 𝑒𝑡−2 −

𝑑(𝑑 − 1)

2
𝑒𝑡−3 

Let, t data points are utilized for modelling and the parameter estimation purpose and k data 

points are conserved for model validation purpose. The 𝑖-step ahead out-of-sample forecast and 

forecast conditional error variance are denoted by 𝑦̂𝑡+𝑖|1,2,..,𝑡 and ℎ̂𝑡+𝑖|1,2,…,𝑡, 𝑖 = 1,2,3 

respectively.  

So, One-step ahead prediction, i.e. 𝑦̂𝑡+1|1,2,…,𝑡 is computed as, 

𝑦̂𝑡+1|1,2,…,𝑡 = 𝜌̂1𝑦𝑡 + (𝑑̂ − 𝜃1)𝑒̂𝑡 + [
𝑑̂(𝑑̂ − 1)

2
− 𝜃] 𝑒̂𝑡−1 −

𝑑̂(𝑑̂ − 1)

2
𝑒̂𝑡−2 
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where 𝑒̂𝑡 is the residual in the fitted ARFIMA (1, d, 1)- GARCH (1,1) model at time 𝑡. 

And the corresponding one-step ahead prediction of error variance is calculated as, 

ℎ̂𝑡+1 = 𝐸[{𝑒𝑡+1 − 𝑒̂𝑡+1|1,2,…,𝑡}
2

|𝑒1, … , 𝑒𝑡] 

= 𝛼̂0 + 𝛼̂1𝑒̂𝑡
2 + 𝛽̂1ℎ̂𝑡 

Second-step ahead prediction, i.e. 𝑦̂𝑡+2|1,2,…,𝑡 is computed as, 

𝑦̂𝑡+2|1,2,…,𝑡 = 𝜌̂1𝑦̂𝑡+1 + [
𝑑̂(𝑑̂ − 1)

2
− 𝜃] 𝑒̂𝑡 −

𝑑̂(𝑑̂ − 1)

2
𝑒̂𝑡−1 

where 𝐸(𝑒̂𝑡+𝑗|𝑦1, 𝑦2, … , 𝑦2) = {
0, 𝑗 > 0

𝑒̂𝑡+𝑗 ,   𝑗 ≤ 0
 

Corresponding second-step ahead forecast error variance is calculated as, 

ℎ̂𝑡+2|1,2,…,𝑡 = 𝐸[{𝑒𝑡+2 − 𝑒̂𝑡+2|1,2,…,𝑡+1}
2

|𝑒1, … , 𝑒𝑡+1]   

               = 𝐸 [𝐸{𝑒𝑡+2 − 𝑒̂𝑡+2|1,2,…,𝑡+1}
2

|𝑒1, … , 𝑒𝑡+1] + 𝑉[{𝑒̂𝑡+2|1,….,𝑡+1}|𝑒1, … , 𝑒𝑡+1] 

ℎ̂𝑡+2|1,2,…,𝑡 = 𝛼̂0 + 𝛼̂1𝑒̂𝑡+1
2 + 𝛽̂1ℎ̂𝑡+1 

we know that,   E(𝑒𝑡+1
2 |𝑒1, … , 𝑒𝑡) = ℎ𝑡+1   so, 𝑒̂𝑡+1

2 = ℎ𝑡+1 

 

 

Periodicity in Rainfall 

 

The periodogram was first introduced by Schuster (1898) and was used to search for hidden 

periodicities and, naturally, it became a tool for testing the presence of periodic components. 

Consider a stationary process Zt which we assume has zero mean and absolutely continuous 

spectral density function (SDF) given by S(f) with autocovariance sequence (acvs), the following 

relationship between the spectral density and autocovariance sequence holds 

   2/1,2/1,2  




 fforeSfS fi






 
 

This relation holds if the auto-covariance sequence (acvs) is square summable, i.e., if 





S

 

For LM processes the acvs is not necessarily a square summable sequence, so that the relation does 

not always hold. A naïve estimator of the spectrum is given by the periodogram, in which the 

autocovariance is replaced by a biased estimator 
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The periodogram is hence given by 
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The periodogram is often evaluated at the Fourier frequencies k, where       is the greatest integer 

less than or equal to x. 

  
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Fisher (1929) proposed a test for the periodicity when d = 0, based on the quotient of the maximum 

ordinate of the periodogram and the sum over all periodogram ordinates at the Fourier frequencies. 

Let us have a sample size N where N = 2m + 1 if N odd and N = 2m + 2 if N even. The Fisher’s 

test is based on the statistic 

 

 



m

q

kmk

NqS

S
g

1

1

/ˆ

ˆmax 

 
The distribution of g under the null hypothesis H0: A1= 0 (i.e., that there is no periodicity) is given 

by 
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where M is the largest integer satisfying both M < 1/g0 and M ≤ m; see Fisher (1929). Fisher’s test 

has often been used to detect periodic components. However, as observed by Siegel (1980), 

Fisher’s test is quite conservative in detecting “compound” periodicities. Another extension of 

Fisher’s test which may be used to detect “compound” periodicities was proposed by Siegel 

(1980). Siegel’s test is based on all large periodogram ordinates exceeding a certain threshold 

value. He suggested the following rescaled periodogram 

 
 
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
m

q

k
k

NjS

S
S

1
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For a given value    (    ≤ 1) Siegel’s statistic   consists of the positive excess of g above  

  
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~
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where a+ = max (a 0) is the positive-part function. Note that, when   = 1 we have Fisher’s test. 

Siegel (1980) obtained the distribution function for T as 
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Algorithm by Araghi et al (2014) 
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 Each dataset was decomposed through DWT using the Daubechies (db) wavelet family as 

the mother wavelet. This split each series into A and D components. 

 The Mann-Kendall test was applied to the original time series, to the decomposed 

components (i.e. A and D components), and also to combinations of A plus one or two D 

components. 

 The MK test was performed on the original time series, the decomposed components, and 

the combinations of A and D components. 

 The dominant component(s) that had the greatest impact on the rainfall time series were 

determined by matching the MK Z-values for the original series as well as with the 

combination of the decomposed series. 
 

The above algorithm has been used for computation of periodicities in rainfall in different sub 

divisions. The dataset considered was annual rainfall during the period 1887 to 2014 for all 30 

subdivisions of India  

It is observed that the periodicities of 2-4 years are significant in most of the subdivisions. 

Combinations of wavelet coefficients and smooth coefficient 

1 D1   19 D1 D5 A 

2 D2   20 D1 D6 A 

3 D3   21 D1 D7 A 

4 D4   22 D2 D3 A 

5 D5   23 D2 D4 A 

6 D6   24 D2 D5 A 

7 D7   25 D2 D6 A 

8 A   26 D2 D7 A 

9 D1 A  27 D3 D4 A 

10 D2 A  28 D3 D5 A 

11 D3 A  29 D3 D6 A 

12 D4 A  30 D3 D7 A 

13 D5 A  31 D4 D5 A 

14 D6 A  32 D4 D6 A 
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15 D7 A  33 D4 D7 A 

16 D1 D2 A 34 D5 D6 A 

17 D1 D3 A 35 D5 D7 A 

18 D1 D4 A 36 D6 D7 A 

 

Periodicity 

Sub-

Division 

Periodicity 

range 

Peak 

periodicity 

Sub-

Division 

Periodicity 

range 

Peak 

periodicity 

ASMEG 2 2.4 GUJRT 2-4 2.4 

NMAMT 2-4 2.5 SAUKU 2-4 2.5 

SHWBL 4 2.5 KNGOA 2-6 2.6 

GNWBL 2-6 3.5 MADMH 2-8 3.2 

ORISS 2-4 2.5 MARAT 2-8 2.5 

JHKND 2-8 3.6 VDABH 2-8 4.8 

BIHAR 2-6 2.5 CHHAT 2-8 2.8, 7.8 

EUPRA 2-8 3.5 COAPR 2-6 2.5 

WUPPL 2-4 3.8 TELNG 2-4 2.6 

HARYA 2-8 2.5 RLSMA 2-8 2.6 

PUNJB 2-4 2.8 TLNAD 2-12 2.8 

WRJST 2-4 2.7 COKNT 2-6 3.0 

ERJST 2-4 2.6 NIKNT 2-6 2.8 

WMPRA 2-6 2.6 SIKNT 2-6 2.6 

EMPRA 2-4 2.4 KERLA 2-6 3.0 
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Periodicities in rainfall plot for all the sub-division 
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SUMMARY  

 

Presence of long memory in climatic variables is frequently observed. The trend 

assessment becomes difficult in the presence of long-memory as the usual methods are not 

capable to take care of this property during trend estimation. In order to estimate the trend in 

presence of long memory, the non-parametric wavelet method has become popular in the 

recent time. The discrete wavelet transformation (DWT) re-expresses a time-series in terms 

of coefficients that are associated with a particular time and a particular scale. In the present 

study, DWT has been applied to estimate the monthly rainfall trend for the monsoon months: 

June-September in ten selected sub-divisions of India using “Haar” wavelet filter. The results 

from DWT were cross checked with the non-parametric Mann-Kendall (M-K) test. The 

investigation reveals that the monthly rainfall trend for the monsoon months of different sub-

divisions in India are significantly decreasing over the years. However, in some of the sub-

divisions, rainfall trend is increasing. DWT reveals significant trend in most of the sub-

divisions whereas M-K test reveals that most of the trends are not significant at 5% level. The 

variation in monthly rainfall for June-September for the studied zones were also investigated 

by wavelet using Haar filter. The local as well as global variation in rainfall is observed by 

DWT plot of the respective months in the respective locations. The variability in rainfall is 

evident in the recent decades in all the locations.  

The surface temperatures over a given region vary seasonally and annually depending upon 

latitude, altitude and location with respect to geographical features such as a water body 

(river, lake or sea), mountains, etc. Probably one of the most widely quoted aspects of 

climatic change is the significant increase in global mean air temperature during the past 

century. The modeling issue of maximum temperature series in India which possesses 

characteristic of long-term memory is addressed and TSF has proven to be a robust approach 

of capturing such long memory even in the presence of detected structural break. Time series 

modeling of temperature series assume prime importance both in the local and global levels. 

Wavelet transformation was applied to decompose the temperature series into time–frequency 

domain in order to study the local as well as global variation over different scale and time 

epochs. It is found that there is significant increase in maximum temperature over the years in 

India. The shift in maximum temperature in India occurred during mid of 1963 as detected by 

the statistical test. Temperature data series exhibiting long-range dependence property 

combined with structural break required to be modeled with a concrete and valid technique 



Summary  

86 

 

which can overcome the issue of loss of information, biased estimates and inaccurate 

forecast. In this regard, TSF approach has been found to serve the better results. For long 

memory processes with a change in mean level, the present study on maximum temperature 

data has established the outperformance of TSF methodology in terms of SSE, MSE and 

RMAPE criterions over the AR-Truncation approach. 

Time series analysis of weather data can be a very valuable tool to investigate its variability 

pattern and, maybe, even to predict short- and long-term changes in the time series. In this 

study, the long memory behaviour of monthly minimum and maximum temperature of India 

for the period 1901 to 2007 by means of fractional integration techniques has been 

investigated. The results show that the time series can be specified in terms of autoregressive 

fractionally integrated moving average (ARFIMA) process. Both the series were found to be 

integrated with orders of integration smaller than 0.5 ensuring the long memory stationarity. 

Wavelet methodology in frequency domain with Haar wavelet filter was applied in order to 

see the oscillation at different scale and at different time epochs of the series. Multiresolution 

analysis (MRA) was carried out to explore the local as well as global variations in both the 

temperature series over the years. The variability in minimum temperature is found to be 

more than maximum temperature. Though there is no clear significance trend in the 

temperature series in the long run, but there are pockets of change in the temperature pattern. 

The predictive ability of ARFIMA model was investigated in terms of relative mean absolute 

percentage error.  

Long memory time series have been analysed by using ARFIMA models. Model parameter d 

reflects the long memory in the maximum and minimum temperature series. It is found that in 

the both the series long memory parameter is significant. The study has revealed that the 

ARFIMA model could be used successfully for modelling the temperature series. The 

predictive ability of ARFIMA model was investigated in terms of relative mean absolute 

percentage error. The variability in minimum temperature is found to be more than maximum 

temperature. The study reveals that there are pockets of change in the temperature pattern 

(both in maximum as well as in minimum temperature) which may be clearly visible by 

vertical clustering of coefficients in MRA.  

It may happen that long memory and structural changes are easily confused and the 

time series is mistakenly detected as long memory process. However, most researchers 

choose to ignore the problem of structural break in testing for long memory. It is a known 

fact that short memory with structural break may exhibit the properties of long memory. To 

avoid the confusion test has to be performed to differentiate true long memory from spurious 



Summary  

87 

 

long memory. The main contribution of the paper is to detect if the DGP of monthly seasonal 

rainfall series of some zones across India is generated by a true long memory process. In this 

paper, we have employed exact local Whittle (ELW) estimator to estimate the long memory 

parameter. The results indicate that some of the series exhibit long memory pattern. Next, an 

empirical fluctuation process using the ordinary least square (OLS)-based Chow test is 

applied to detect the break date. Break dates are detected in two series of North-East and 

Central-North data sets in the year 1957 and 1965, respectively.  

The overconfidence and lack of reliability for regional rainfall forecasts is a common 

problem amongst the researchers. Moreover, the feature of rainfall in a location may not be 

always linear so that it can be modelled through the classical ARIMA model. To 

accommodate the pattern of nonlinearity and complexity, decomposition of the series under 

consideration is required. When the original series has much nonlinearity as its property, the 

MODWT has simplified it by breaking it into its sub-frequencies. Therefore, the ANN can 

now model the details and approximate components sufficiently so that the accuracy of the 

forecasting process is improved up to a marked extent. Therefore, the combination of wavelet 

approach along with classical time series model i.e. ARIMA model and promising machine 

learning technique i.e. ANN is applied for forecasting annual rainfall in 30 subdivisions of 

India. Superiority of Wavelet-ARIMA and Wavelet-ANN approach over traditional ARIMA 

model is demonstrated in terms of RMSE and MAPE. In Wavelet-ANN and Wavelet-

ARIMA approach the minimum and maximum MAPE has been found in CHHAT and 

PUNJB sub-division respectively.  
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