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PREFACE 
 

Response surface methodology is used (i) to determine and to quantify the relationship 

between the response and the levels of quantitative factors and (ii) to obtain optimum 

combinations of levels of various quantitative factors. To meet these objectives, the data 

from the experiments involving quantitative factors can be utilized for fitting the response 

surfaces over the region of interest. Response surfaces besides inferring on the twin 

purposes can also provide information on the rate of change of the response variable and 

can help in studying the interactions between quantitative factors. 

 

Response surface methodology has been extensively used in industrial experimentation 

but appear to be not so popular in experiments pertaining to agricultural, horticultural and 

allied sciences. This may be due to the fact that the experimental situations in agricultural 

sciences are different from those in industrial experiments. Broadly five distinctions viz. 

(i) time and factor range (ii) factor levels (iii) blocking (iv) accuracy of observations’ (v) 

shape of response surface are identified.  

 

Considering all these points, it may be desirable that the agricultural experiments should 

be more robust, less model dependent, should accommodate more flexible system of 

blocking and should have equispaced factor levels in more combinations in comparison 

to industrial experiments.  

 

Keeping in view the importance and relevance of response surface methodology in 

agricultural research this study entitled Designs for fitting Response Surfaces in 

Agricultural Experiments was undertaken to develop response surface designs both for 

response optimization and slope estimation when factors are with equispaced levels and 

to prepare their catalogue. It also aimed at obtaining response surface designs for 

qualititative-cum-quantitave factors, to study the robustness aspects of response surface 

designs against single missing observation and to develop a computer software for the 

analysis of designs obtained and catalogued. 

 

In this investigation, response surface designs for both symmetric and asymmetric 

factorial experiments when the factors are at equispaced doses have been obtained both 

for response optimization and slope estimation. A new criterion in terms of second order 

moments and mixed fourth order moments is also introduced. This criterion helps in 

minimizing the variance of the estimated response to a reasonable extent. The response 

surface designs developed for qualitative-cum-quantitative experiments can be used to 

take into account the effect that the various levels of qualitative factors have on the 

relationship of quantitative factors with response. The designs obtained for slope 

estimation may be useful for obtaining reliable yardsticks of various inputs. These 

designs can also be used to estimate the rate of change of biological populations, rate of 

change of chemical reactions, etc.  Catalogues of designs with number of factors (v) and 

number of design points (N) satisfying 103  v  and 500N  have been prepared for 

the benefit of the users. The catalogue of second order rotatable designs with orthogonal 

blocking is quite useful for the agricultural experiments that require control of variability 

in the experimental units. The computer software “Response” developed and codes 



written using Statistical Analysis System (SAS) and Statistical Package for Social 

Sciences (SPSS) will be quite useful for fitting of response surfaces in agricultural 

experiments. The results would also be useful to the practicing statisticians in various 

ICAR institutes and State Agricultural Universities who are engaged in advisory services 

in the form of suggesting appropriate designs to the experimenters.  

 

One of the significant features of the study is that some of the designs obtained during the 

present investigation have actually been used in the National Agricultural Research 

System. The experimental situations along with the designs used are also given for the 

benefit of the users. The results would also be immensely useful to the students and 

scientists engaged in carrying out research and teaching in the experimental designs.  
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CHAPTER I 
 

INTRODUCTION 
 

1.1.      Introduction 

The subject of Design of Experiments deals with the statistical methodology required for 

making inferences about the treatments effects on the basis of responses (univariate or 

multivariate) collected through the planned experiments.  To deal with the evolution and 

analysis of methods for probing into mechanism of a system of variables, the experiments 

involving several factors simultaneously are being conducted in agricultural, horticultural and 

allied sciences.  Data from experiments with levels or level combinations of one or more 

factors as treatments are normally investigated to compare level effects of the factors and also 

their interactions.  Though such investigations are useful to have objective assessment of the 

effects of the levels actually tried in the experiment, this seems to be inadequate, especially 

when the factors are quantitative in nature and cannot throw much light on the possible 

effect(s) of the intervening levels or their combinations.  In such situations, it is more realistic 

and informative to carry out investigations with twin purposes: 

 

a) To determine and to quantify the relationship between the response and the settings of 

experimental factors. 

b) To find the settings of the experimental factor(s) that produces the best value or the best 

set of values of the response(s). 

 

If all the factors are quantitative in nature, it is natural to think the response as a function of 

the factor levels and data from quantitative factorial experiments can be used to fit the 

response surface over the region of interest.  Response surfaces besides inferring about the 

twin purposes as mentioned above also provide information about the rate of change of a 

response variable.  They can also indicate the interactions between the quantitative treatment 

factors.  The special class of designed experiments for fitting response surfaces is called 

response surface designs.  A good response surface design should possess the properties viz. 

detectability of lack of fit, the ability to sequentially build up designs of increasing order and 

the use of a relatively modest, if not minimum, number of design points. 

 

Designed experiments for fitting response surfaces are used extensively in industrial 

experimentation but appear to be not so popular in research areas in agricultural and 

horticultural sciences.   Response surface methodology and associated design theory were 

developed in an industrial context and limitations and opportunities of industrial 

experimentation are so different from those in agricultural experimentation that the designs 

appropriate in one area appear to be inappropriate in the other.  The books by Box and Draper 

(1987), Myers and Montgomery (1995) and Khuri and Cornell (1996) discuss the aspects of 

experimental designs with emphasis on the industrial context. Two excellent reviews on the 

topic are by Hill and Hunter (1966) and Myers, Khuri and Carter (1989).  Several concepts 

viz.  rotatability, partial rotatability, slope rotatability, orthogonal blocking, etc. have been 

studied in detail.  In most of the literature, the orientation is generally based on industrial 

experiments and they lack in understanding the problems relating to agricultural 

experimentation.  Before stating the problems of agricultural experiments, it will not be out of 
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place to state some situations in agricultural research scenario, where response surface 

methodology can be usefully employed. 

 

Example 1.1: The over-use of nitrogen (N) relative to Phosphorus (P) and Potassium (K) 

concerns both the agronomic and environmental perspective.  Phosphatic and Potassic 

fertilizers have been in short supply and farmers have been more steadily adopting the use of 

nitrogenous fertilizers because of the impressive virtual response. There is evidence that soil P 

and K levels are declining. The technique of obtaining individual optimum doses for the N, P 

and K through separate response curves may also be responsible for unbalanced fertilizer use. 

Hence, determining the optimum and balanced dose of N, P and K for different crops has 

been an important issue. This optimum and balanced dose should be recommended to farmers 

in terms of doses from the different sources and not in terms of the values of N, P and K 

alone, as the optimum combination may vary from source to source.  However, in actual 

practice the values of N, P and K are given in terms of kg/ha rather than the combined doses 

alongwith the source of the fertilizers. 

 

Example 1.2: [Adhikary and Panda, 1983]. In agronomy or various other fields of 

experimentation where several factors influence the response(s), various type of natural 

grouping exists in practice where experimentation is not possible if the grouping is ignored.  

Table 1 shows the type of grouping of manures applied to various cereals in the Eastern 

region in India.   

Table 1 

Manure group Type of manure Crop Operability region (usual 

range of application/hectare) 

Inorganic i) N Rice 40 to 120 kg 

   Wheat 60 to 100 kg 

   Jute 40 to 80 kg 

   Potato 120 to 180 kg 

 ii) P Rice 40 to 60 kg 

   Wheat 40 to 60 kg 

   Jute 40 to 60 kg 

   Potato 120 to 180 kg 

 iii) K Rice 40 to 120 kg 

   Wheat 60 to 100 kg 

   Jute 40 to 80 kg 

   Potato 120 to 180 kg 

Organic i) FYM Rice  

 ii) Compost Wheat 4 to 10 tonnes 

   Potato  

Physical Factors 

(which can be controlled) 

affecting the yield 

i) 

 

Temperature 

 

 

For all 

cereals 

18
0
C to 36

0
C 

 

 ii) Water Content -do- 12 to 75 acre inches 

 iii) Salinity -do- 2-6 m.mhos/cm (E.C.) 

 iv) pH -do- 6 to 7.5 
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Again each of the inorganic fertilizers may be obtained from different sources with 

differential effects.  Thus the type of grouping shown in Table 2 is also important with respect 

to the availability of manures from various sources.  

 

Table 2 

Type  of manure  Source 

Nitrogen i) Ammonia 

 ii) Urea 

 iii) Cynamide 
   

Phosphorus i) Rock Phosphate 

 ii) Super Phosphate 

 iii) Basic Slog 
   

Potassium i) Murate of Potash 

 ii) Sulphate of Potash 

 iii) Potassium Nitrate 

 

The grouping exhibited in Table 2 is important because it is well known that all sources of 

nitrogen may not be equally responsive to all sources of phosphorus even if their nitrogen 

content remains the same.  Further, there are some restrictions in making choice of fertilizer 

sources e.g. ammonia cannot be used with rock phosphate, urea with sodium nitrate or 

potassium nitrate, ammonium sulphate/ammonium nitrite with super phosphate, super 

phosphate with lime, etc. 

 

Example 1.3: Yardsticks (a measure of the average increase in production per unit input of a 

given improvement measure) of many fertilizers, manures, pesticides for various crops are 

being obtained and used by planners and administrators in the formulation of policies relating 

to manufacture/ import/ subsidy of fertilizers, pesticides, development of irrigation projects, 

etc. 

 

The yardsticks have been obtained from the various factorial experiments.  However, these 

will be more reliable and have desirable statistical properties, if response surface designs for 

slope estimation are used. 

 

Example 1.4: In the usual fertilizer trials the response or yield of a crop not only depends on 

various doses of fertilizers but also on other factors like source of fertilizer, method of 

application of fertilizer, variety of crop, etc.  That is, there may be several qualitative factors 

in the experiments.  Such experiments involving qualitative and quantitative factors are called 

qualitative-cum-quantitative experiments. The response surface designs for quantitative-cum-

qualitative factors may be useful for these situations. 

 

Example 1.5: For value addition to the agriculture produce, food-processing experiments are 

being conducted.  In these experiments, the major objective of the experimenter is to obtain 

the optimum combination of levels of several factors that are required for the product.  To be 

specific, suppose that an experiment related to osmotic dehydration of the banana slices is to 

be conducted to obtain the optimum combination of levels of concentration of sugar solution, 
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solution to sample ratio and temperature of osmosis.  The levels of the various factors are the 

following 

 Factors Levels 

1. Concentration of sugar solution 40%, 50%, 60%, 70% and 80% 

2. Solution to sample ratio 1:1, 3:1, 5:1, 7:1and 9:1 

3. Temperature of osmosis 25
0
C, 35

0
C, 45

0
C, 55

0
C and 65

0
C  

 

In this situation, response surface designs for 3 factors each at five equispaced levels can be 

used. 

 

In the above situations, the response surface methodology can be very useful. Although a lot 

of literature on rotatable, group divisible, slope rotatable response surface designs is available 

for industrial experiments, yet their adoption in agricultural experiments has been very 

limited.  Hardly have these designs been adopted in agricultural experiments. Edmondson 

(1991) listed the differences between agricultural or horticultural experiments and the 

industrial experiments. The major distinctions are outlined as follows: 

 

i) Time and factor range: Industrial experiments may be completed in a few days or 

weeks, while an agricultural experiment may run for a year or more.  Industrial 

experiments may be sequential and there may be good prior information about a 

particular region of interest in the factor space.  Agricultural experiments often must 

be examined in a more general region of factor space and the results of a single 

experiment may have to be stand-alone.  

 

ii) Factor levels: The levels of individual quantitative factors usually can be controlled 

and manipulated in industrial experiments but treatment factor levels in agriculture 

may be difficult to control.  For this reason, unequally spaced factor levels and 

numerous levels of a factor are undesirable in agricultural experimentation. 

 

iii) Block designs: In some areas of agricultural and horticultural research, the use of 

elaborate blocking systems to control environmental variability may be essential.  It 

may also be necessary to incorporate one or more levels of splitting of experimental 

plots or units.  Industrial response surface designs usually provide only very simple 

block structure and are inflexible for more complex designs.  

 

iv) Accuracy of observations: Industrial experiments usually give reliable and accurate 

observations.  Agricultural experiments may give observations, which are much less 

trustworthy.  Entire plot observations may be "lost", the natural background variability 

may be high and because treatments may be complex and applied over a long period, 

mistakes and blunders, which may not be reported, are common. 

 

v) Shape of response surface: Agricultural and biological systems may be less 

understood than industrial systems.  A simple quadratic response function over the 

region of interest may not provide a good approximation and for this reason designs 

for fitting response surfaces in agricultural experiments must provide both estimate the 

coefficients and test the "goodness of fit" of an assumed quadratic response surface.  
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Taken together, these points mean that relative to the industrial experiments the agricultural 

experiments must be less model dependent and should accommodate a more flexible system 

of blocking. The level of factors may be equispaced as desired by the experimenter mainly 

due to the fact that there is a considerable practical ease in handling the doses.  The rotatable 

designs available in literature are such that the dose ranges for different factors in terms of 

coded doses are equal for all the factors in a design.  In practice, however, it often happens 

that the factors included in the experiment do not have the same dose range in terms of 

original units.  Thus a design, which is rotatable in terms of the coded doses, ceases to be 

rotatable when brought to actual doses, if the actual dose range happens to be different for 

different factors.  This is due to the fact that there are unequal changes in scales of different 

factors.   Except an attempt by Dey (1969) not much work has been done to obtain response 

surface designs for these experimental situations.  Analysis of data using response surface 

designs may be a stumbling block in the adoption of these designs in agricultural 

experimentation.  

 

The statistical software packages like Statistical Analysis System (SAS), Statistical Package 

for Social Sciences (SPSS), Design Expert, Statistica, etc. can be usefully employed for the 

analysis of data. However, these softwares may be cost prohibitive, therefore, development of 

a computer software that is capable of analyzing the data from response surface designs needs 

attention.  

 

Most of the literature on response surface designs is available for symmetrical factorial 

experiments but in agricultural and horticultural experiments, various factors have unequal 

number of levels.  Except some attempts by Ramachander (1963), Mehta and Das (1968) and 

Dey (1969) not much work has been done on response surface designs for asymmetrical 

factorials and no work seems to have been done for response surface designs for slope 

estimation for equispaced levels and unequal dose ranges for symmetrical factorials and 

asymmetrical factorials.   

 

The designs for fitting response surfaces generally require many experimental runs. 

Moreover, a rotatable design may lose efficiency or even become a singular design and 

therefore, fitting of a response surface may become impossible when some observations are 

lost. Therefore, the robustness aspects of these designs against loss of data is of importance. 

The problem of missing values in response surfaces was first investigated by Draper (1961) 

followed by McKee and Kshirsagar (1982). Srivastava, Gupta and Dey (1991) have studied 

the robustness aspects of second order rotatable response surface designs (SORD) obtained 

through central composite designs on the basis of loss of information pertaining to loss of 

single treatment combination.  However, to study the effect of a single missing observation of 

SORD in general remains an open problem. 

 

A survey of experiments stored under the project Agricultural Field Experiments Information 

System of IASRI, reveals that many qualitative-cum-quantitative experiments are being 

conducted with an aim to obtain optimum combination of levels of various quantitative 

factors and interaction of qualitative and quantitative factors.  A beginning has been made by 

Draper and John (1988) to obtain response surface designs for quantitative and qualitative 

variables.  They have considered the case when there are 2-quantitative factors and one or two 
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qualitative factors only. Some methods of construction of response surface designs for 

qualitative and quantitative factors have also been obtained by Wu and Ding (1998) and 

Aggrawal and Bansal (1998). The experiments with quantitative factors are usually conducted 

with only three levels mainly due to the large size of the experiment. However, if the response 

surface designs are used, then more levels for each of the factors can be accommodated and 

still the design can be conducted in fewer runs. The designs available in the literature for such 

situations are scattered in the form of Ph.D. theses and in journals. These are not easily 

accessible to research workers/practicing statisticians. Keeping in view the importance of 

response surface methodology in agricultural experimentation, the broad objectives of the 

present investigation are: 

 

1.2.  Objectives 

1. To obtain response surface designs for response optimization and slope estimation when 

various factors are with equispaced levels and/or have unequal dose ranges for both 

symmetrical as well as asymmetrical factorials. 
 

2. To obtain response surface designs for qualitative-cum-quantitative factors. 
 

3. To study the robustness aspects of response surface designs against non-availability of 

data on some point(s). 
 

4. To prepare a catalogue of response surface designs suitable for agricultural experiments. 
 

5. To develop computer software for the analysis of the designs obtained and catalogued.  

 

1.3 Practical / Scientific Utility 

The response surface designs developed for factorial experiments with equispaced doses with 

a flexibility in choosing the levels of each of the factors can be used by agricultural and 

horticultural research workers, food technologists, etc. where the existing response surface 

designs cannot be used. The response surface designs for qualitative-cum-quantitative 

experiments can be used to take into account the effect that the various levels of qualitative 

factors have on the relationship of quantitative factors with response. The designs obtained for 

slope estimation may be useful for obtaining reliable composite/ individual yardsticks of 

various inputs. These designs can also be used to estimate the rate of change of biological 

populations, rate of change of chemical reactions, etc. All the designs are readily available in 

the catalogues and hence, the users will have an easy access to the designs. The catalogue of 

second order rotatable designs with orthogonal blocking is quite useful for the agricultural 

experiments that require control of variability in the experimental units. The computer 

software developed and codes written using Statistical Analysis System (SAS) and Statistical 

Package for Social Sciences (SPSS) will be quite useful for fitting of response surfaces in 

agricultural experiments. The results would also be useful to the practicing statisticians in 

various ICAR institutes and State Agricultural Universities who are engaged in advisory 

services in the form of suggesting appropriate designs to the experimenters. Some designs 

obtained during the present investigation have actually been used in the National Agricultural 

Research System. The experimental situations along with the designs used are also given for 

the benefit of the users. The results would also be immensely useful to the students and 

scientists engaged in carrying out research and teaching in the experimental designs. The 

results obtained would form a basis for developing this subject further.  

 



CHAPTER II 
 

RESPONSE SURFACE METHODOLOGY 
 

2.1.  Introduction 

Response surface methodology is useful for factorial experiments with v quantitative factors that 

are under taken so as to determine the combination of levels of factors at which each of the 

quantitative factors must be set in order to optimize the response in some sense. Let there be v 

independent variables denoted by vxxx ,...,, 21  and the response variable be y  and there are N  

observations. To meet the objectives, we postulate that the response as a function of input 

factors, as 

  uvuuuu exxxy  ,...,, 21               (2.1.1) 

 

where Nu ,,2,1  represents the N observations and iux  is the level of the thi  factor in the 

thu  treatment combination, vi ,,2,1  ; Nu ,,2,1  . Let N points (treatment combinations) 

chosen from all possible treatment combinations be denoted by   

 

  

vNiNNN

vuiuuu

vi

vi

xxxx

xxxx

xxxx

xxxx













21

21

222212

112111

 

 

and uy denote the response obtained from thu  treatment combination. The function   describes 

the form in which the response and the input variables are related and ue  is the random error 

associated with the thu observation such that random errors ue  

(i) have zero mean {E ( ue ) = 0} and common variance 2  

(ii) are mutually independent and 

(iii) are normally distributed. 

 

The assumption (iii) is required for tests of significance and confidence interval estimation 

procedures. 

 

Knowledge of function  gives a complete summary of the results of the experiment and also 

enables us to predict the response for values of iux , that have not been included in the 

experiment. If the function  is known then using methods of calculus, one may obtain the 

values of vxxx ,...,, 21  which give the optimum (say, maximum or minimum) response. In 

practice, the mathematical form of  is not known; we, therefore, often approximate it, within 
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the experimental region, by a polynomial of suitable degree in variables, iux . The adequacy of 

the fitted polynomial is tested through the usual analysis of variance. Polynomials which 

adequately represent the true dose-response relationship are called Response Surfaces and the 

designs that allow the fitting of response surfaces and provide a measure for testing their 

adequacy are called response surface designs.  

 

If the function   in (2.1.1) is a polynomial of degree one in sxiu '  i.e. 

uvuvuuu exxxy   ...22110  ,     (2.1.2) 

 

we call it a first-order (linear) response surface in vxxx ,...,, 21 . If (2.1.1) takes the form 

uui

v

i

v

ii
iuii

v

i
iuii

v

i
iuiu exxxxy  



 




 
1

1 11

2

1
0  ,     (2.1.3) 

we call it a second-order (quadratic) response surface. In the sequel we discuss the quadratic 

response surface in detail. The fitting of first order response surfaces is a particular case of the 

fitting of quadratic response surface and will be discussed in Note 2.2.1. 

 

2.2 The Quadratic Response Surface 
The general form of a quadratic (second-degree) response surface is 

         exxxxxx

xxxxxxy

uvuuvvvuuuu

vuvvuuvuvuuu





 ,1,131132112

22
222

2
11122110

...

......




 (2.2.1) 

 

A general linear model can represent the quadratic response surface (2.2.1) and is given by 

 

   eXβy          (2.2.2) 

where y =  Nyyy 21  is an N 1 vector of observations, X is N  ]2/)2)(1[(  vv  

matrix of independent (explanatory) variables and their functions; N > ]2/)2)(1[(  vv and is 

given by 



























NvNvNvNvNNNNvNNvNN

vvvvvv

vvvvvv

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

,,1,1,23121
22

11

2,2,12,12,232122212
2
2

2
12212

1,1,11,11,231112111
2
1

2
11111

1

1

1









 

 =  v,-v2vvv            1131221110    is a 1]2/)2)(1[(  vv  vector of unknown 

parameters and e =  N2 e  e e 1 is a N   1 vector of random errors distributed as  N )( N
2, I0  .  

Using the procedure of ordinary least squares that minimizes the sum of squares due to random 

errors, the normal equations for estimating 's are  

  yXXβX           (2.2.3) 
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and the ordinary least squares estimates of ’s are 

        yXXXb   )(    1          (2.2.4)  

 

The variance-covariance matrix of estimates of parameters is  

  V 1)(σ)( XXb
2=           (2.2.5) 

 

where 2  is the error variance. The estimated response at thu point ux i.e., the thu row of X, is  

        xxbxxbxxb

xbxbxbxbxbxbby

vuuvvvuuuu

vuvvuuvuvuuu

....

......ˆ

,1,131132112

22
222

2
11122110




            (2.2.6) 

 

Variance of the predicted response is given by  

Var( uŷ ) = uu xXXx
12 )(           (2.2.7) 

 

The thu  residual (the difference between the thu observed response value and corresponding 

predicted value) uuu yyr ˆ , Nu ,,2,1  .  The error variance is estimated by  

  
11

1

2

2 )()(
ˆ

qNqN

r
N

u
u










 XbyXby

  

  2σ̂ = ,
11 qN

SSE

qN

 






 yXbyy
      (2.2.8) 

 

where SSE is the residual sum of squares and 2/)2)(1(1  vvq . Let y  be the mean of yu’s 

and uŷ  the estimated value of yu from the fitted model, then, Analysis of Variance (ANOVA) 

Table for fitting model (2.2.1) is given as follows: 

ANOVA  

Sources of 

Variation 

Degrees of 

freedom 

Sum of Squares Mean Squares F-

Ratio 

Regression         

(fitted 

Model) 

11 q  

N

)(
 -  = yy(  SSR

2N

u
u

y 1
y  X'b


 

1

2)


 MSR=
1-q

SSR

1

 
MSE

MSR
 

Error 1qN   
 - = )y - (ySSE

N

1u

  2
uu y X b yy  



'ˆ  MSE=
1q-N

SSE
 

 

Total 1N  

N

)(
- =)y - (y SST

2N

1u

  2
u

y 1
y y


 



 
  

 

The above ANOVA is useful for testing the null hypothesis :0H all values of 

iiiii  ,, (excluding 0 ) are zero against the alternative hypothesis :1H at least one of the 

iiiii  ,, (excluding 0 ) is not zero. The ratio of MSR to MSE follows an F-distribution with 
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11 q  and 1qN   degrees of freedom. If )(),1(, 11 qNqcal FF    then the null hypothesis is 

rejected at  % level of significance. The rejection of the null hypothesis in ANOVA leads to 

infer that at least one of the parameters in the null hypothesis is non-zero. 

 

Sometimes the experimenter may be interested in making some specified comparisons. In such 

cases, we may proceed as follows:  

 

For testing :0H A=L against :1H  AL, where A is a matrix of  rank Z and L is Z  1 vector, 

The following F-test can be used with Z and 1qN   degrees of freedom. 

MSE

Z
FH

/)()')'()(( 11

0

LAbAXXALAb 




.     (2.2.9) 

Lack of Fit Test 

Sometimes, the experimenter may be interested in testing whether the fitted model describes the 

behavior of the response over the experimental ranges of the factors. The adequacy of the fitted 

model can be tested using the test of lack of fit, if there are repeated observations for responses 

on the same values of independent variables. The F-statistic that can be used for this purpose is 

 

F =
)N'/(NSS

)q(N' /SS

PE

1LOF




                  (2.2.10)  

where N is the total number of observations, N   is the number of distinct treatments.  SSPE (sum 

of squares due to pure error) has been calculated in the following manner: denote the thl  

observation at the thu  design point by luy , where l =1,…, ru (  1), u=1,….. N   . Define uy  to 

be average of ur  observations at the thu design point. Then, the sum of squares for pure error is  

                  SSPE = 2

11

)ulu

r

l

N

u

y - (y   
u








                (2.2.11) 

The sum of squares due to lack of fit (SSLOF) = SSE - SSPE 

 

The model is said to be a good fit if the test of lack of fit is non-significant. The statistics viz. R-

Square (coefficient of determination) and adjusted R-square (adjusted coefficient of 

determination) can also be used as indicators for the adequacy of fit.   

  SSESSRR /2   

 

  )1(
freedomofdegreesError

freedomofdegreesTotal
1 22 RR

A
 . 

Note 2.2.1: In case of a first order response surface (2.1.2), X in (2.2.2) is N  )1( v  matrix of 

independent (explanatory) variables and is given by 
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

















vNNN

v

v

xxx

xxx

xxx









21

22212

12111

1

1

1

 

 =      v 10  is a 1)1( v  vector of unknown parameters and e =  N2 e  e e 1 is a N   

1 vector of random errors distributed as N )( N
2, I0  . The procedure of fitting the first order 

response surface (2.1.2) and testing of hypothesis remains the same as described for quadratic 

response surface except for change of X matrix and -vector. First order response surface is the 

first step in developing an empirical model through a sequential experimentation. Once the first 

order response surface is fitted, the contour lines are drawn by joining the points that produce the 

same value of predicted response. In such experiments, the starting conditions would often not be 

very close to maximum. Thus, the experimenter often first needs some preliminary procedure, to 

bring him to a suitable point where the second degree equation can most gainfully be employed.  

One such procedure is the 'steepest ascent' method. 

In the sequel, we describe the procedure of determining the optimum settings of inputs in a 

quadratic response surface. 

 

2.3.  Determining the Co-ordinates of the Stationary Point of a Quadratic Response Surface 

A near stationary region is defined as a region where the surface slopes along the v variable axes 

are small as compared to the estimate of experimental error. The stationary point of a near 

stationary region is the point at which the slope of the response surface is zero when taken in all 

the directions. The coordinates of the stationary point   vxxx 002010 ,...,,x  are obtained by 

differentiating the estimated response surface (2.3.1) with respect to each ix  and equating the 

derivatives to zero and solving the resulting equations 

 

   


 





1

1 11

2

1
0ˆ

v

i

v

ii
iiii

v

i
iii

v

i
ii xxbxbxbby x                                                   (2.3.1) 

 

In matrix notation (2.3.1) can be written as 

  Bxxbxx  Lby 0ˆ                      (2.3.2) 

 

where     


 vLv bbbxxx ,...,,,,...,, 2121 bx  

and  





















vvvv

v

v

bbb

bbb

bbb









2/2/

2/2/

2/2/

21

22212

11211

B  

 

From (2.3.2), we get  
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 
Bxb

x

x
2

ˆ





L

y
        (2.3.3) 

 

The stationary point 0x  is obtained by equating (2.3.3) to zero and solving for x , i.e. 

LbBx
1

0
2

1          (2.3.4) 

The elements of vector 0x  do not tell us anything about the nature of the response surface at the 

stationary point. The elements of 0x  might represent the point at which the fitted surface attains 

a maximum or a minimum or where the fitted surface comes together in the form of a minimax 

or saddle point. However, the predicted response value denoted by 0ŷ , is obtained by 

substituting 0x  for x  in (2.3.2). 

 
2

ˆ 0
00

Lby
bX

  

 

To find the nature of the surface at the stationary point we examine the second order derivative 

of  xŷ . From (2.3.3), we get 

 
 

B
x

x
2

ˆ

2

2




 y
  (since B is symmetric). 

 

The stationary point is a maximum, minimum or a saddle point according as the matrix B is 

negative definite, positive definite or indefinite. The nature of the response surface in the 

neighborhood of the stationary point, can be described in a greater detail if the response surface 

is expressed in canonical form. 

 

2.4. The Canonical Equation of a Second Order Response Surface 

Here we shift the origin to 0x  and define the intermediate variables 

),,( 1 vzz  ),,( 0011  vv xxxx  or 0xxz  . The second order response equation (2.3.2) 

in term of iz  is 

)()()()(ˆ 000 xzBxzbxzz  L0by      (2.4.1) 

        = Bzz0ŷ  

In the intermediate variables, the predicted response is a linear function of the estimate of the 

response at the stationary point, 0ŷ , plus a quadratic form in the values of  iz . 

 

To obtain the canonical form of the predicted response equation, we define a set of variables, 

),,, 21  vWWW(  W  as 

 

  zMW            (2.4.2) 

 



RESPONSE SURFACE METHODOLOGY 

 13 

where M is a vv  orthogonal matrix whose columns are the eigenvectors of the matrix B.  Thus 

 MM 1  and MM  1)( .  The matrix M has the property of diagonalysing B, i.e., BMM = 

),,,diag( 21 v  , where  v ,...,, 21  are the corresponding eigenvalues of B. The axes 

associated with the variables vWWW ,,, 21   are called the principal axes of the response system.  

The transformation in (2.4.2) is a rotation of iz  axes to form the iW axes.   

 BMWMWBzz  22
11 vvWW   .   

 

The eigenvalues of B are real (since the matrix B is a real symmetric matrix) and are the 

coefficients of the 2
iW terms in the canonical equation 

  



v

i
iiWyy

1

2
0ˆˆ          (2.4.3) 

If the eigenvalues of B are 

(i)  all negative, then at stationary point, the surface has a maximum 

(ii)  all positive, then at stationary point the surface has a minimum 

(iii) of mixed signs, i.e. some are positive and others are negative, then stationary point is a 

saddle point of the fitted surface. 

 

The above analysis can be achieved by using the Statistical Packages like SAS. PROC RSREG 

fits a second order response surface and locates the coordinates of the stationary point, predicted 

response at the stationary point and gives the eigenvalues v ,...,, 21  and the corresponding 

eigenvectors. It also helps in determining whether the stationary point is a point of maxima, 

minima or is a saddle point.  The lack of fit of a second order response surface can also be tested 

using LACKFIT option under model statement in PROC RSREG. The steps of PROC RSREG 

are as given below: 
 

PROC RSREG; 

MODEL RESPONSE = <List of input variables>/LACKFIT NOCODE; 

RUN; 
 

2.5 Exploration of the Response Surface in the Vicinity of Stationary Point 

The estimated response increases upon moving away from the stationary point along iW  if 

corresponding i  is positive and decreases upon moving away from stationary point along iW  if 

corresponding i  is negative. The estimated response does not change in value in the direction 

of the axis associated with iW  if the corresponding i  is zero (or very close to zero). The 

magnitude of i  indicates how quickly the response changes in the direction of axis associated 

with iW  variable. If the stationary point is minimax point and is inside the region of 

experimentation, then it is desirable to explore the response surface in the vicinity of stationary 

point and to determine the combinations of inputs for a given response. To achieve this, the iW ’s 

corresponding to negative si '  are set to zero. Now, the values of the iW ’s corresponding to 

positive si '  are generated.  
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To be clearer, let two of the si '  denoted by 1  and 2  be positive. Then, a restricted canonical 

equation can be written as 

2
22

2
110ˆ WWyYdes    

where desY denotes the desired response.  

 

If 0ŷYdes   is denoted by difference of the desired and predicted response, then  

Difference = 2
22

2
11 WW    

      1
2

2
2

2

2
1 

b

W

a

W
 

where  2a  = 1 /Difference,  2
2 b /Difference 

 

This equation represents an ellipse. The semi-length of its 1W -axis is a. Therefore, any chosen 

value for W1 must have an absolute value less than or equal to the semi-length of 1W -axis. 1W  

should be so generated that it falls inside the interval (-a, a). Once the 1W  is generated, 2W can 

be obtained as  

 

2
1

2

2
11

2

)e(Differenc













 




 W
W . 

Once the iW  ' s are known, we would like to express iW  in terms of ix ‘s . This can be achieved 

by  0xMWx  . The above relationship can easily be obtained by using (2.4.3). One can write 

a customized SAS code using PROC IML for carrying out such analysis. 

 

For illustration, let us assume that we get 321 ,,   and 4  as 0.009811, -0.000003805, 

0.000058, 0.000288. As 432 and,   are negative, therefore, take 0432  WWW . Let  

M = {0.8931648  0.046490     0.021043    0.446825, 

       0.3678540     0.364152     0.404116    0.7541662, 

         0.1801135     0.929149        0.1993512  0.253969, 

      0.1857390     0.043750      0.8924721    0.4087548 }; 

 

denote the matrix of eigenvectors. Let the estimated response at the stationary point be 

2784.797kg/ha. Let the desired response be desY =3000kg/ha. Therefore, let 1W , obtained from 

the equation is sqrt (difference/0.00981)=AX1, say. To obtain various different sets of many 

values of 1W , generate a random variable, u , which follows uniform distribution and multiply 

this value with 1u2   such that 1W  lies within the interval, (-AX1, AX1). Now to get a 

combination of s'xi  that produces the desired response obtain 0xMWx  . 
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PROC IML; 

W=J(4,1,0); 

Ydes=3000; 

W2=0; 

W3=0; 

W4=0; 

Dif=Ydes-2784.7972; 

Ax1=Sqrt(dif/.009811); 

u= uniform(0); 

W1= ax1*(2*u-1); print w1; 

w[1,] = W1; 

w[2,] = 0; 

w[3,] = 0; 

w[4,] = 0; 

m = {0.8931648  -0.04649     -0.021043    0.446825, 

      -0.367854     0.3641522 -0.404116    0.7541662, 

       0.1801135   0.929149    0.1993512  -0.253969, 

      -0.185739   -0.04375      0.8924721    0.4087548 }; 

 

xest = {1874.0833,5767.5836, 12638.21, 3163.2204}; 

x = m*w+xest; 

print x; 

run; 
 

The above analysis can also be performed using SPSS. To carry out the analysis in SPSS. 

Prepare the Data file. In the data file generate the squares of the variables and their cross 

products. From the Menus Choose Analyze  Regression Linear. Further, Call eigen (matrix 

whose eigenvalues and eigenvectors, matrix of eigenvectors, matrix of eigenvalues are required) 

can be used for performing canonical analysis, if one has used the regression analysis for 

response surface fitting using any of the statistical software packages commonly available.  The 

syntax for obtaining the eigenvectors and eigenvalues is  
matrix. 

compute A = {1,2,3;2,4,5;3,5,6}. 

CALL EIGEN (A,B,C). 

Print a. 

Print b. 

Print c. 

end matrix. 

 

Here B and C are respectively the matrices of eigenvectors and eigenvalues resectively.               

 

For exploration of the response surface in the vicinity of saddle point, the following code in 

SPSS has been developed: 
 

matrix. 

compute ydes = {3000}. 

compute dif = {ydes-2784.7972}. 

compute ax1 = sqrt(dif/.009811). 

compute u = uniform(1,1). 

compute w1 = ax1*(2*u-1). 
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compute w = {w1;0;0;0}. 

compute m = {0.8931,-0.0464,-0.0210,0.4468;-0.3678,0.3641,-0.4041,0.7541;0.1801,0.9291,0.1993,-

0.2539; 

-0.1857,-0.0437,0.8924,0.4087}. 

 

compute mprime = transpos(m). 

compute xest = {1874.0833;5767.5836;12638.21;3163.2204}. 

compute x = m*w+xest. 

print u. 

print w. 

print x. 

end matrix. 

2.6 Ridge Analysis 

During the analysis of a fitted response surface, if the stationary point is well within the 

experimental region, the canonical analysis performed is sufficient.  In some experimental 

situations, it is possible that the location of the stationary point is not inside the experimental 

region. In such cases, the ridge analysis may be helpful to search for the region of optimum 

response. The method of ridge analysis computes the estimated ridge of the optimum response 

for increasing radii from the center of the original design. This analysis is performed to answer 

the question that there is not a unique optimum of the response surface within the range of the 

experimentation, in which direction should further searching be done in order to locate the 

optimum.  The following statements of SAS may be used for performing the ridge analysis 

 

PROC  RSREG; 

model dependent (variablelist = independent variables) 

ridge max: 

run: 

 

For mathematical details on the ridge analysis, a reference may be made to Khuri and Cornell 

(1996).  

 

2.7 Response Surface Models without Intercept Term 

The above discussion relates to the situations, where the intercept 0 , the expected value of the 

response variable, when the input variables takes the value zero. Also in some situations, 

however, it is expected that there is no output when input vector is zero. To deal with such 

situations one has to use a no-intercept model. If in (2.1.2) and (2.1.3), 0  is excluded then we 

get response surfaces (first order and second order respectively) without intercept. In that case, 

the new vector of unknown parameters  is of the order 1v  for first order response surface and 

of the order 1]2/)3([  vv   for second order response surface.  X is v  N   matrix for first order 

and  2/)3(  vv  N  for the second order response surface and is obtained by excluding the 

column of ones from the X as defined in (2.1.1). General procedure of analysis of the model 

fitting remains the same for both with and without intercept models. Therefore, the response 

surface fitting without intercept terms can be done as per procedure of section 2.2.  The analysis 

of variance table for a response surface without intercept term is 
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ANOVA of a Response Surface (with no intercept) 

Sources of 

Variation 

Degrees of 

freedom 

Sum of Squares Mean 

Squares 

F-Ratio 

Regression         

(fitted Model) 
2q  

  =  y  
N

u

2
u y  X'b'ˆSSR

1




  MSR=
2q

SSR
 

MSE

MSR
 

Error 2qN   
 - = )y - y(

N

u

  2
uu y Xb yy 



'ˆSSE

1

 

MSE=
2q-N

SSE
 

 

Total N   
y y



 =  y
N

u

2
u

1

SST  
  

 

The test procedure is same as that of with intercept models except that there are 12 1 qq   

parameters in the with intercept models and no-intercept models have only 2q  parameters, 

therefore, degrees of freedom for Regression are same in both ANOVA tables with or without 

intercept terms. Specific comparisons can also be made as per (2.2.9).  

 

For a quadratic response surface without intercept term 12/)3( 12  qvvq . The estimated 

response at thu  point in case of a second order response surface is 

        xxbxxbxxb

xbxbxbxbxbxby

vuuvvvuuuu

vuvvuuvuvuuu

....

......ˆ

,1,131132112

22
222

2
1112211




                       (2.7.1) 

 

Note 2.7.1: For without intercept models, the 2R  statistic is based on the uncorrected regression 

and uncorrected total sum of squares. Therefore, the value of 2R  statistic will be much larger 

than those for the model with intercept term that are based on corrected regression and corrected 

total sum of squares. Therefore, one has to be careful in the choice of 2R  statistic while 

comparing the no-intercept models with models containing the intercept term. For such 

comparisons, it is desirable that the 2R  statistic based on the corrected regression and corrected 

total sum of squares is used.  Other statistic like mean square error or mean absolute error 

( Nyy /ˆ  may be used for such comparisons. The most commonly used softwares for 

performing the regression analysis are MS-EXCEL, SPSS or SAS, etc. However, one has to be 

very cautious in the use of these softwares for the fittng of response surfaces without intercept. In 

MS-EXCEL, the regression option under data analysis in the tools menu gives corrected sum of 

squares due to regression, corrected total sum of squares and 2R  based on these sum of squares 

but the degrees of freedom for regression is ‘ 1q ’ instead of ‘ 2q ’. Therefore, necessary 

corrections are required to be made in the adjusted 2R  etc.  If one uses SPSS or PROC REG of 

SAS version 6.12 with no-intercept using NOINT option or Restrict Intercept=0, one gets 

uncorrected total and regression sums of squares. Therefore, one has to adjust the regression 
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(total) sum of squares and their respective degrees of freedoms, 2R , adjusted 2R  etc., 

appropriately.  

The determination of co-ordinates of the stationary point and the canonical analysis for the no-

intercept quadratic response surface models can be performed on the similar steps of with 

intercept quadratic response surface by excluding 0  from the model. However, PROC RSREG 

of SAS fits a quadratic response surface with intercept only. To fit a second order response 

surface without intercept some extra efforts are required that are described in the sequel 

 

Stepwise Procedure of Fitting of Response Surface Designs Using PROC IML of SAS  

To fit a second order response surface without intercept PROC REG of SAS for polynomial 

fitting can be used. For this first we have to generate the square and cross product terms from the 

input variables. The steps of PROC REG are given as below: 

 

PROC REG; 

MODEL Response = < List of input variables, List of Square of the input variables, list of the 

product of input variables taken two at a time>/NOINT; 

RUN: 
 

Further customized SAS code using PROC IML can be written for determining the co-ordinates 

of the stationary point, predicted response at stationary point and canonical equation of second 

order response surface.  

 

One can also write a customized SAS Code for fitting a complete quadratic response surface 

with intercept = 0, determining the stationary point and for performing the canonical analysis. 

The procedure is described in the sequel. 
 

Let there be four input variables denoted by x1,x2,x3 and x4 and response is yield, then the 

following SAS code is to be used for the analysis. 

 

/* SAS Code for fitting of a no-intercept second order response surface */ 

 
data abc; 

input x1 x2 x3 x4 yield; 

/*Generation of the square and cross product terms */ 

x5=x1*x1; 

x6=x2*x2; 

x7=x3*x3; 

x8=x4*x4; 

x9=x1*x2; 

x10=x1*x3; 

x11=x1*x4; 

x12=x2*x3; 

x13=x2*x4; 

x14=x3*x4; 

/* enter the data to be analyzed */ 

cards; 

…………. 
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………… 

………… 

; 

proc print; 

run; 

/* Invoke PROC IML and create the X and Y matrices */ 

/* Use variables X1, X2, … ,X14 */; 

proc iml; 

use chkdat8; 

read all var{'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11', 

 'x12', 'x13', 'x14'} into X; 

read all var{'yield'} into Y; 

/* Define the number of observations (N) as number of rows of X */; 

N=nrow(X); 

/* Define the Number of variables (g) as the number of columns of X */ 

g=ncol(X); 

/* Compute C, the inverse of X’X */ 

C=inv(X`*X); 

/* Obtain the vector of estimated coefficients as BHAT */ 

BHAT = C*X`*Y; 

/* Comput Estimated response, YEST */ 

YEST = X*BHAT; 

/* Obtain the residuals, e , error sum of squares, SSE and error mean square, MSE */ 

e=Y-Yest; 

SSE=e`*e; 

DFE=N-g; 

MSE=SSE/DFE; 

/*  Compute the dispersion matrix of the estimates, DISPMAT */ 

DISPMAT=MSE@C; 

/* Compute Regression Sum of Squares, SSR, Mean Squares due to regression, MSR */ 

SSR=bhat`*X`*Y; 

DFR=g; 

MSR=SSR/DFR; 

/*  Compute total sum of squares, SST*/ 

SST=Y`*Y; 

TDF=N; 

/*  Compute corresponding F-ratio, 
2
A

2 R,R  and standard error of the estimated response, SE*/ 

F=MSR/MSE; 

RSQ=ssr/sst; 

RSQA=1-(TDF*SSE)/(DFE*SST); 

SE=SQRT(MSE); 

/* Obtain the vector of estimated coefficients of linear terms, b1 */ 

b1=bhat[1,1]//bhat[2,1]//bhat[3,1]//bhat[4,1]; 

b2=bhat[5,1]//0.5*bhat[9,1]//0.5*bhat[10,1]//0.5*bhat[11,1]; 

b3=0.5*bhat[9,1]//bhat[6,1]//0.5*bhat[12,1]//0.5*bhat[13,1]; 

b4=0.5*bhat[10,1]//0.5*bhat[12,1]//bhat[7,1]//0.5*bhat[14,1]; 

b5=0.5*bhat[11,1]//0.5*bhat[13,1]//0.5*bhat[14,1]//bhat[8,1]; 

/* Obtain the matrix coefficients corresponding to squares and cross product terms, b */ 

B=b2||b3||b4||b5; 

/*  Compute B
-1

, binv */ 
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Binv=inv(B); 

/* Obtain eigenvalues and eigenvectors of B beig, eigvec */ 

beig=eigval(B); 

beigvec=eigvec(B); 

/* Compute the stationary point, B
-1

b/2*/ 

xest=(-0.5)@(Binv*b1); 

/* Compute the estimated response at the stationary point */ 

Yxest=(0.5)@(xest`*b1); 

/* Print the Various Statistic obtained */ 

print bhat, dispmat, rsq, rsqa, se, dfr, ssr, msr, f, dfe, sse, mse, tdf,sst B, beig, 

beigvec, xest,yxest; 

run; 

 

If one wants to use the above for the fitting of second order response surface with intercept, then 

one more additional statement as 

 

U = j(n,1,1)||x; /*add column of ones to X*/ after the statement n=nrow(x) and change the TDF 

as N-1. 

 

2.8. Development of Computer Software 

The statistical software packages like Statistical Analysis System (SAS), Statistical Package for 

Social Sciences (SPSS), Design Expert, Statistica, etc. can be usefully employed for the analysis 

of data. However, these software may be cost prohibitive, therefore, development of a computer 

software that is capable of analyzing the data from response surface designs needs attention. A 

menu driven, user friendly computer software for the response surface fitting has been 

developed. The software is capable of fitting linear and quadratic response surfaces both with 

and without intercept. It also determines the co-ordinates of the stationary point and performs 

canonical analysis for the quadratic response surfaces. Exploration of the response surface in the 

vicinity of the stationary point is also possible from the software. Further, it can generate 3-

dimensional surface plots and contour plots. The software is also capable of obtaining the 

estimated responses, residuals, standardized and studentized residuals and Cook’s statistic. 

studentized residuals and Cook’s statistic can be used for detection of outlier(s), if any, in the 

data. The software has been developed using JAVA. The software requires a data file in ASCII. 

The different values may be separated by one or more blank spaces, tab or commas. One can also 

take the data from MS-EXCEL worksheet. After installing, when we run the software following 

screen appears: 
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One can open the ASCII data file or may paste the data from an EXCEL Worksheet. The view of 

data is as given below:  

 

 

Once the data is entered, Press OK button, for performing the analysis. Click on OK button gives 

the following screen: 
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This screen requires that the dependent variable and independent variables may be entered. Once 

the variables are entered then one may select one of the options (i) Linear with intercept, (ii) 

Linear without intercept, (iii) Quadratic with Intercept and (iv) Quadratic Without intercept.  On 

clicking on Results one gets: 
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To get the residuals, standardized residuals, Cook's Statistics, one has to check the appropriate 

boxes. 

 

If one clicks on the 3-D graph, one gets 

 

If one clicks at the options and the contour plot, following screen appears: 
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The software is also capable of exploration of the response surface, when the stationary point is a 

saddle point and lies within the experimental region. 

 

2.9.    Empirical Illustrations 

Example 2.9.1: Consider an experiment that was conducted to investigate the effects of three 

fertilizer ingredients on the yield of a crop under fields conditions using a second order rotatable 

design. The fertilizer ingredients and actual amount applied were nitrogen (N), from 0.89 to 2.83 

kg/plot; phosphoric acid (P2O5) from 0.265 to 1.336 kg/plot; and potash (K2O), from 0.27 to 1.89 

kg/plot. The response of interest is the average yield in kg per plot. The levels of nitrogen, 

phosphoric acid and potash are coded, and the coded variables are defined as 

 

X1=(N-1.629)/0.716, X2=(P2O5-0.796)/0.311, X3=(K2O -1.089)/0.482 

 

The values 1.629, 0.796 and 1.089 kg/plot represent the centres of the values for nitrogen, 

phosphoric acid and potash, respectively. Five levels of each variable are used in the 

experimental design. The coded and measured levels for the variables are listed as 

 Levels of xI 

 -1.682 -1.000 0.000 +1.000 +1.682 

N 0.425 0.913 1.629 2.345 2.833 

P2O5 0.266 0.481 0.796 1.111 1.326 

K2O 0.278 0.607 1.089 1.571 1.899 

Six center point replications were run in order to obtain an estimate of the experimental error 

variance. The complete second order model to be fitted to yield values is 

  
 





2

1

3

2

3

1

2
3

1
0

i i
iiii

i
iii

i
ii xxxxY  +e 

The following table list the design settings of 1x , 2x  and 3x  and the observed values at 15 

design points N, P2O5, K2O and yield are in kg. 
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Table 2.9.1: Central Composite Rotatable Design Settings in the Coded Variables 1x , 2x  

and 3x , the original variables N, P2O5, K2O and the Average Yield of a Crop at Each 

Setting 

 

1x  2x  3x  N P2O5 K2O Yield 

-1 -1 -1 0.913 0.481 0.607 5.076 

1 -1 -1 2.345 0.481 0.607 3.798 

-1 1 -1 0.913 1.111 0.607 3.798 

1 1 -1 2.345 1.111 0.607 3.469 

-1 -1 1 0.913 0.481 1.571 4.023 

1 -1 1 2.345 0.481 1.571 4.905 

-1 1 1 0.913 1.111 1.571 5.287 

1 1 1 2.345 1.111 1.571 4.963 

-1.682 0 0 0.425 0.796 1.089 3.541 

1.682 0 0 2.833 0.796 1.089 3.541 

0 -1.682 0 1.629 0.266 1.089 5.436 

0 1.682 0 1.629 1.326 1.089 4.977 

0 0 -1.682 1.629 0.796 0.278 3.591 

0 0 1.682 1.629 0.796 1.899 4.693 

0 0 0 1.629 0.796 1.089 4.563 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.275 

0 0 0 1.629 0.796 1.089 5.188 

0 0 0 1.629 0.796 1.089 4.959 

 

OPTIONS LINESIZE = 72; 

DATA RP; 

INPUT N P K YIELD; 

CARDS; 

…. 

…. 

…. 

; 
 

PROC RSREG; 

MODEL YIELD = N P K /LACKFIT NOCODE; 

RUN; 
                 

      Response Surface for Variable YIELD 

                   Response Mean             4.464050 

                   Root MSE                  0.356424 

                   R-Square                    0.8440 

                   Coef. of Variation          7.9843 
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Regression     d.f.   Sum of Squares   R-Square     F-Ratio     Prob > F 

 Linear                3        1.914067       0.2350      5.022     0.0223 

 Quadratic              3        3.293541       0.4044      8.642     0.0040 

 Crossproduct           3        1.666539       0.2046      4.373     0.0327 

 Total Regression        9        6.874147       0.8440      6.012     0.0049 

 

Regression     d.f.    Sum of Squares   R-Square     F-Ratio     Prob > F 

Lack of Fit             5       0.745407        0.149081     1.420    0.3549 

Pure Error             5       0.524973        0.104995 

Total Error          10       1.270380        0.127038 

 

Parameter           D.F.     Estimate        Std Error         T-ratio Prob > |T| 

INTERCEPT               1          6.084180        1.543975        3.941  0.0028 

N                       1          1.558870        0.854546         1.824  0.0981 

P                       1         -6.009301        2.001253      -3.003  0.0133 

K                       1         -0.897830        1.266909       -0.709  0.4947 

N*N                     1         -0.738716        0.183184       -4.033  0.0024 

P*N                     1         -0.142436        0.558725       -0.255  0.8039 

P*P                     1           2.116594        0.945550       2.238  0.0491 

K*N                     1           0.784166        0.365142       2.148  0.0573 

K*P                     1           2.411414        0.829973       2.905  0.0157 

K*K                    1         -0.714584        0.404233      -1.768  0.1075 

 

Factor      D.F.           Sum of Squares       Mean Squares    F-Ratio    Prob > F 

 N                4          2.740664         0.685166       5.393     0.0141 

 P                4          1.799019         0.449755       3.540    0.0477 

 K                4          3.807069         0.951767       7.492     0.0047 

 d.f. denotes degree of freedom  

Canonical Analysis of Response Surface 

                       

       Factor            Critical Value 

                       N                 1.758160 

                       P                 0.656278 

                       K                 1.443790 

 

           Predicted value at stationary point       4.834526 

                                     

 Eigenvectors 

       Eigenvalues           N           P                K 

          2.561918         0.021051         0.937448         0.347487 

         -0.504592         0.857206       -0.195800          0.476298 

         -1.394032        -0.514543      -0.287842          0.807708 

 

                  Stationary point is a saddle point. 
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The eigenvalues obtained are 321 and,   as 2.561918, -0.504592, -1.394032. As 32 and    

are negative, therefore, take 032 WW . Let  

M = {0.021051     0.857206     -0.514543, 

          0.937448   -0.195800     -0.287842, 

          0.34787       0.476298      0.807708}; 

denotes the matrix of eigenvectors. The estimated response at the stationary points be 4.834526 

kg/plot. Let the desired response be desY =5.0 kg/plot. Therefore, let 1W , obtained from the 

equation is sqrt (difference/2.561918)=AX1, say. To obtain various different sets of many values 

of 1W , generate a random variable, u , which follows uniform distribution and multiply this 

value with 1u2   such that 1W  lies within the interval, (-AX1, AX1). Now to get a combination 

of s'xi  that produces the desired response obtain 0xW*Mx  . 

 

PROC IML; 

W=J(3,1,0); 

Ydes=5.0; 

W2=0; 

W3=0; 

Dif=Ydes - 4.834526; 

Ax1=Sqrt(dif/2.561918); 

u= uniform(0); 

W1= ax1*(2*u-1); print w1; 

w[1,] = w1; 

w[2,] = 0; 

w[3,] = 0; 

m = {0.021051  0.857206     -0.514543, 

        0.937448   -0.195800    -0.287842, 

        0.34787       0.476298    0.807708}; 

xest = {1.758160, 0.656278, 1.443790}; 

x = m*W+xest; 

print x; 

run; 

 

Combinations of N, P, K estimated to produce 5.0 kg/plot of Beans. 

Y N P K 

5.0 1.760 0.730 1.471 

 1.762 0.815 1.503 

 1.754 0.460 1.371 

 

One can select a practically feasible combination of N, P and K. 

Example 2.9.2: This example is a real life example and is a consequence of the advisory services 

provided to All India Co-ordinated Research Project on Energy Requirement in Agricultural 

Sector. The SAS code developed for fitting of second order response surfaces without intercept 

and exploration of the response surface in the vicinity of stationary point developed in this 

investigation, has been used. The data on energy usage in agricultural production system is being 
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collected from the farmers of the selected villages in different agro-climatic zones under the All 

India Co-ordinated Research Project on Energy Requirement in Agricultural Sector. The 

information is collected on uses of Human Labour (human), Animal labour (animal), Diesel, 

Electricity (elect), Seed Rate (seed), Farmyard Manure (FYM), Fertilizer (fert), Chemicals 

(chem), Machinery (mach), etc. These are then converted into Mega Joule / hectare (MJ/ha) 

using internationally accepted conversion factors. The energy usages are also available on 

agricultural operations like tillage (till), sowing, bund making (bm), fertilizer application (fa), 

harvesting (ht), threshing (th), transplanting (trans), transportation (tport), etc. Adding the energy 

levels from different sources generates the total energy used for crop production that forms 

another factor in the study. The data available on yields are converted into kg per hectare basis. 

As of now, the data is available on yield (kg/ha or MJ/ha), energy used (MJ/ha) from various 

sources and total energy used (MJ/ha). For illustration purposes, we use the data on wheat 

collected from Sihoda (M.P.) is as given below: 

 

NO HUMAN ANIMAL DIESEL ELECT SEED FYM FERT CHEM MACH Yield 

1 754 0 2207 2011 1513 0 3199 22 309 2353 

2 754 0 1598 2199 1544 0 6337 0 239 2595 

3 900 0 1572 2660 1384 0 4371 12 246 2883 

4 596 0 1534 2023 1362 0 2688 0 271 2409 

5 809 0 1534 1794 1526 0 4982 10 235 2965 

6 836 0 1534 1486 1251 0 4172 0 359 3459 

7 879 0 2148 2865 1038 0 6143 14 342 4236 

8 956 0 1745 2872 1068 0 3162 7 273 2689 

9 843 0 1653 2052 1550 0 5857 4 265 2817 

10 706 0 1567 2185 1640 0 4568 0 238 2551 

11 767 0 1560 2551 1744 0 5449 0 287 3089 

12 692 0 1598 2199 1589 0 6105 0 269 2548 

13 922 0 1446 2436 1397 0 4790 10 294 2566 

14 667 0 1480 1782 1529 0 2829 0 231 2081 

15 765 0 1534 1847 1725 0 5375 12 240 2712 

16 773 0 1520 2092 1669 0 5280 7 259 2337 

17 842 0 1972 2388 1494 0 5169 0 285 2330 

18 654 0 1395 1447 1453 0 4884 0 195 2224 

19 974 0 1861 2870 1434 0 5141 7 272 2991 

20 894 0 2096 2375 1453 0 4523 65 321 3058 

21 753 0 1632 1684 1546 0 4575 0 250 2734 

22 932 0 1490 1810 1557 0 4628 0 257 3177 

23 823 0 1673 2015 1981 0 5864 13 291 3055 

24 788 0 1678 2474 1476 0 3974 15 270 2934 

25 806 0 1697 2272 1695 0 4839 0 249 2636 

26 293 0 1278 1034 1453 0 2150 0 167 1853 

27 670 0 1104 1639 1321 0 6399 6 204 2134 

28 833 0 1832 2228 1513 0 5375 12 275 2759 

29 705 0 1583 1990 1297 0 5931 6 239 2647 
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30 961 0 1809 2746 1651 0 6515 15 290 2770 

31 703 0 1476 1892 1302 0 4057 12 235 2331 

32 684 0 1628 1883 1583 0 2756 13 236 2534 

 

The data according to agricultural operation wise is 

Yield Total TILL sow BM IRRIGN WEED FA SPRY HARV THRSH TPort 

2824 9782 1270 486 11 1918 0 7 0 362 421 55 

3231 14352 1069 436 15 2749 0 15 0 368 470 112 

3020 10270 1081 472 16 2524 0 3 0 460 611 94 

2718 10502 1111 567 54 2097 0 5 0 390 489 31 

2404 10309 1051 459 459 2159 0 3 0 294 456 52 

2471 13596 1111 567 5 2316 0 2 0 292 364 44 

2965 11919 1353 516 15 3081 0 10 0 339 524 102 

2965 10556 1389 567 141 2097 0 10 0 336 611 102 

3000 13315 993 405 14 2553 0 14 0 331 436 104 

3198 10713 1144 500 17 2672 0 3 0 487 647 100 

2976 10782 1010 625 54 1862 0 11 0 412 542 53 

2762 11002 1047 500 77 2562 0 6 0 377 499 68 

2589 13490 1072 540 5 2175 0 9 0 329 322 51 

2677 11145 1407 574 16 2718 0 8 0 313 479 91 

3089 11481 1259 567 294 2207 0 10 0 308 530 36 

3343 10414 1144 500 17 2316 0 6 0 487 575 103 

2696 10896 1010 625 54 1796 0 11 0 395 531 35 

2353 10015 1240 590 590 1884 0 12 0 317 578 69 

2595 12671 1185 567 9 2207 0 6 0 291 468 58 

2883 11145 1173 540 23 2739 0 12 0 306 475 111 

2409 8474 1111 567 30 1713 0 10 0 321 616 58 

2965 10890 1114 567 31 1817 0 6 0 385 407 46 

3459 9638 1112 567 5 1784 0 6 0 428 201 252 

4236 13429 1270 566 22 2699 0 11 0 446 653 567 

2689 10083 1229 416 12 3232 0 7 0 255 391 303 

2817 12224 1207 606 20 2024 0 13 0 375 489 81 

2551 10904 1255 456 19 2262 0 6 0 275 359 62 

3089 12358 691 567 10 2458 0 15 0 336 611 477 

2548 12452 1222 533 37 2014 0 18 0 354 562 18 

2566 11295 1143 436 26 2228 0 9 0 406 752 97 

2081 8518 1097 523 0 1766 0 6 0 286 419 64 

2712 11498 1116 571 34 1842 0 15 0 301 445 63 

2337 11600 1126 536 16 2051 0 5 0 314 528 68 

2330 12150 1191 405 567 2374 0 8 0 343 520 80 

2224 10028 1232 286 5 1485 0 12 0 222 392 58 

2991 12559 1297 724 21 2980 0 13 0 343 498 102 

3058 11727 1176 571 558 2316 0 12 0 321 635 97 

2734 10440 1182 603 8 1606 0 6 0 378 487 49 
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3177 10674 633 487 6 2157 0 6 0 480 311 591 

3055 12660 1212 618 29 1830 0 7 0 377 631 99 

2934 10675 1302 531 18 2565 0 9 0 271 458 54 

2636 11558 1389 459 20 2383 0 10 0 279 409 77 

1853 6375 832 567 7 952 0 5 0 158 222 29 

2134 11343 692 515 54 1579 0 9 0 258 444 66 

2759 12068 1363 402 230 2170 0 6 0 342 606 50 

2647 11751 1191 540 9 2045 0 6 0 301 384 42 

2770 13987 1335 625 18 2808 0 7 0 350 563 100 

2331 9677 1080 535 17 1864 0 5 0 317 439 50 

2534 8783 1264 509 30 1912 0 9 0 268 402 37 

 

The one of the objectives of AICRP on Energy Requirement in Agricultural Sector is to obtain 

the optimum values of the various sources for maximum productivity.  

 

To obtain the optimum energy levels for different sources like human energy, animal energy, 

diesel energy, electrical energy, FYM energy, fertilizer energy, machinery, irrigation, etc. to 

maximize the yield, a first thing that comes to mind is to use the response surface methodology. 

Further, one can easily see that the seed rate is one of the variables and if seed rate is zero then 

the yield will be zero. Therefore, the fitting of response surfaces without intercept is 

recommended. In this situation, the number of the energy sources is generally 9. Therefore, the 

number of observations required for a second order response surface without intercept is >45, to 

have at least one degree of freedom for error.  However, if in some situations, one or two of these 

energy sources may not exist, still we require a large number of points. It is pertinent to carry out 

the response surface fitting separately for the different categories. The choice of categorization of 

farmers would normally depend upon the purpose of analysis. The simplest categorization can be 

made on the basis of land holding. Categorization of the farmers on the basis of irrigated or 

rainfed, electricity use or non-use, bullock or tractor use, based on productivity levels like low 

(  2000 Kg/ha), medium (2000 - 3250 Kg/ha), high (  3250 Kg/ha), etc. or based on the ratio 

of total energy to yield (energy-yield ratio) like good (< 3.50), average (3.50 - 4.00), poor (4.00 - 

5.00), very poor   5.00 was also suggested. As the recommendations have to be made separately 

for different categories of farmers, therefore, the response surface fitting has to be done 

separately for each categories of farmers. In most of the cases, it is not possible to fit a complete 

second order response surface in most of the situations.  

Therefore, we thought to utilize the data on energy usage at the time of different agricultural 

operations. These energy levels can be grouped into three or four variables, based on the 

agricultural operations, viz. x1 =seed+ sowing +transportation; x2 = irrigation +  weeding + 

tillage; x3 =fertilizer application (fa) +fertilizer (fert)+chemical (chem)+ farm yard manure 

(fym) + spray  and x4 = harvesting (ht) + threshing (th). As no output is expected when no 

energy is supplied to the system, we fit a second order response surface using x1, x2, x3 and x4 

with no intercept. We obtain the co-ordinates of the secondary point, estimated response at the 

stationary point, canonical equation of the second order response surface, etc.  If the stationary 

point is a saddle point, obtain the combination of levels of x1, x2, x3 and x4 that give a desired 

yield. 
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The above analysis can be performed using the SAS code given in Section 2.8. 

 

Results of Second order Response surface fitting for small farmers are: 

 

Analysis of Variance 

Source d.f. Sum of Squares Mean Squares F-Ratio Pr > F 

Model 14 236554231.25 16896730.80 94.022 0.0001 

Error 18 3234795.75 179710.875   

UnCorrected 

Total 

32 239789027.00    

 

 

Root MSE Yield Mean CV R
2
 Adj-R

2
 

423.92319 2701.78125 15.69051 0.9865 0.9760 

Parameter Estimates 

Variable d.f. Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

X1 1 2.089288 3.12722135 0.668 0.5125 

X2 1 1.566736 2.16844994 0.723 0.4793 

X3 1 0.681377 1.24496477 0.547 0.5909 

X4 1 -12.130016 11.3907506 -1.065 0.3010 

X1*x1 1 -0.000723 0.00144548 -0.500 0.6231 

X2*x2 1 -0.000159 0.00030916 -0.513 0.6144 

X3*x3 1 -0.000078043 0.00006903 -1.131 0.2731 

X4*x4 1 0.001419 0.00422387 0.336 .7409 

X1*x2 1 -0.000288 0.00081362 -0.354 0.7271 

X1*x3 1 -0.000049902 0.00072818 -0.069 0.9461 

X1*x4 1 0.003320 0.00486338 0.683 0.5036 

X2*x3 1 -0.000024840 0.00019162 -0.130 0.8983 

X2*x4 1 0.000555 0.00217111 0.256 0.8012 

X3*x4 1 0.000336 0.00090729 0.371 0.7153 

The co-ordinates of the stationary point are: 

 

X1 

 

X2 

 

X3 

 

X4 

1993.717 3905.9324 4497.6676 645.86875 

 

Predicted yield at the Stationary Point is: 2757.611 Kg/ha. 

 



























0014186.00001681.00002774.00016598.0

0001681.0000078.0000012.0000025.0

0002774.0000012.0000159.0000144.0

0016598.0000025.0000144.0000723.0

B  

 

The vector of coefficients of linear terms is given by 
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





















130016.12

681377.0

566736.1

089288.2

b  

Stationary Point 

  

X1 1993.717 

X2 3905.9324 

X3 4497.6676 

X4 645.86875 
 

   

  

Estimated Response At Stationary Point :  2757.611 kg/ha 

 

 

Eigenvalue X1 X2 X3 X4 

0.0023429 0.4712988 0.06986 0.0557161 0.8774353 

-0.000078 -0.065601 -0.103409 0.9922808 -0.019539 

-0.000127 -0.189451 0.9776132 0.0897149 0.0182272 

-0.001679 0.8588844 0.1694065 0.0650058 -0.47895 

Nature of the Stationary Point: Saddle Point. The stationary point lies within the range. 
 

Exploration of the Response surface in the vicinity of the Stationary Point 
 

In the above example the 4321 and,,   are  0.0023429, 0.000078, 0.000127 and 

0.001679. As 432 ,  and  are negative, therefore, take 0432  WWW . The estimated 

response at the stationary points is 2757.611 kg/ha. Let the desired response desY =3000kg/ha. 

Therefore, let 1W , obtained from the equation is sqrt(difference/0.00981)=AX1, say. To obtain 

various different sets of many values of 1W , generate a random variable, u , which follows 

uniform distribution and multiply this value with 1u2   such that 1W  lies within the interval, (-

AX1, AX1). Now to get a combination of s'xi  that produces the desired response obtain  

 

0xW*Mx  . 

proc iml; 

W=J(4,1,0); 

Ydes=3000; 

W2=0; 

W3=0; 

W4=0; 

Dif=Ydes-2757.611; 

Ax1=Sqrt(dif/.0023429); 

u=uniform(0); 
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W1=ax1*(2*u-1); print w1; 

w[1,]=w1; 

w[2,]=0; 

w[3,]=0; 

w[4,]=0; 

m={0.4712988 -0.065601 -0.189451 0.8588844, 

   0.06986 -0.103409 0.9776132 0.1694065, 

   0.0557161 0.9922808 0.0897149 0.0650058, 

   0.8774353 -0.019539 0.0182272  -0.47895}; 

xest={1993.717,3905.9324, 4497.6676, 645.86875}; 

x=m*W+xest; 

print x; 

run; 

 

Combinations of X1, X2, X3 and X4 estimated to produce 3000 kg/hectare of yield 

X1 X2 X3 X4 

1869.538 3887.526 4482.987 414.6801 

1890.511 3890.634 4485.467 453.7267 

1855.407 3885.431 4481.317 388.3714 

1942.944 3898.406 4491.665 551.3433 

2130.328 3926.182 4513.818 900.203 

1870.913 3887.729 4483.15 417.24 

1846.295 3884.08 4480.24 371.408 

1851.315 3884.824 4480.833 380.7532 

 

Depending upon the practical importance and availability of resources, one may choose one of 

these combinations. 
 
 

 

 

 

 

 

 

 

 



CHAPTER III 
 

RESPONSE SURFACE DESIGNS 
 

3.1 Introduction 

As discussed in Chapter II, the response surface methodology is a collection of statistical 

techniques for modelling and analysis of problems in which response(s) are influenced by 

several variables. This helps in finding the relationship between response(s) and variables, and 

determining the optimal conditions of variables that optimize the response(s). Fitting of response 

surfaces to unorganized data although now feasible with the availability of high-speed computers 

yet involves complex computations and control of precision of estimates of response at desired 

points is not possible. An alternative is to use the preplanned combinations of input variables and 

generate the data through appropriate designs. Several series of such designs are available in the 

literature. Data from factorial experiments with quantitative and equispaced factor levels can be 

used for fitting such relations conveniently. Box and Wilson (1951) and Box and Hunter (1957) 

introduced a series of response surface designs with the property that the variances of estimates 

of response at points equidistant from the centre of the design are all equal. They called these 

designs as rotatable designs. Considerable research activities followed the introduction of these 

designs though mainly for construction of designs. For an excellent review on this subject a 

reference may be made to the text books by Box and Draper (1987), Khuri and Cornell (1996) 

and Myers and Montgomery (1995) besides two excellent reviews by Hill and Hunter (1966) and 

Myers, Khuri and Carter (1989).  Very little work exists in literature to obtain further series of 

response surface designs particularly when the levels are equidistant.  Another area that has 

received little attention is the investigation of the more flexible asymmetrical response surface 

designs.  Some useful references on this aspect are Ramchander (1963), Mehta and Das (1968), 

Draper and Stoneman (1968) and Dey (1969). All the methods of construction obtained in the 

above investigations, are for situations with unequispaced factor levels.  Dey (1969) gave 

methods of construction of  both rotatable and non-rotatable designs when levels of factors are 

equispaced or have unequidose ranges.  The non-rotatable type of designs have a special feature 

that a part of the design retains the property of rotatability and as such these designs have been 

called as partially rotatable designs. A direct and straight forward method of construction of 

asymmetrical rotatable designs is also given.  But the method yields response surface designs 

when some factors are at three levels and others are at five levels.     

 

In this Chapter we introduce some series of response surface designs for both symmetrical and 

asymmetrical factorial experiments when the various factors are at equispaced levels that provide 

estimates of response at specific points with a reasonably high precision.  A new criterion in 

terms of second order moments and mixed fourth order moments is also introduced. This 

criterion helps in minimizing the variance of the estimated response to a reasonable extent. In 

section 3.2 we discuss about the first order response surface designs. Section 3.3 is devoted to 

second order response surface designs for response optimization. Catalogues of the designs with 

number of factor (v) and number of design points (N) satisfying 103  v  and 500N . 

 

The above discussion relates to the experiments, where the experimenter is interested in 

determining the optimum combination of inputs for response optimization. In some situations, 

however, the experimenter is more interested in rate of change of response rather than the 
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absolute response.  If the difference in responses at points close together in the factor space are 

involved, that is the estimation of the local slope of the response surface is of interest.  

Researchers have taken up the problem of designs for estimating the slope of a response surface 

with different approaches following the pioneering work of Atkinson (1970).  Atkinson (1970) 

used the least squares estimates of the coefficients in a first order polynomial model to estimate 

the slope of a response surface.  A criterion was developed for designing experiments to estimate 

the slope with minimum mean squared error when the true response is quadratic. However, the 

problem is related only to single factor, i.e., it is the problem of fitting curves.  Ott and 

Mendenhall (1972) showed that the problem of estimation of the slope of the second order model 

bears some similarity to the problem of estimating expected response for the first order linear 

model.  The estimated response ŷ  possesses a variance that varies with the independent variable.  

However, works related to estimating the estimated response were confined to two point designs, 

i.e., designs for which all observations are taken at only two settings of the independent variable.  

In contrast, estimation of the slope of a second order model requires a minimum of three settings 

of the independent variables in order to estimate the three parameters of the model. 

 

Murty and Studden (1972) discussed the problem of estimating the slope of a polynomial 

regression at a fixed point of experimental region such that 

a) The variance of the least square estimate of the slope at the fixed point is minimum and 

b) The average variance of the least square estimate of the slope is minimum 

 

Slope rotatability and minimax criterion have been studied at length for obtaining designs for 

estimating the slope of a response surface.  Hader and Park (1978) were the first to introduce the 

criterion of slope rotatability analogues to the criterion of rotatability.  For a slope rotatable 

response surface design the variance of the partial derivative of the estimated response is 

constant at a constant distance from the origin of the design.  Hader and Park (1978) examined 

the slope rotatability aspects of response surface designs obtainable through central composite 

designs.  Gupta (1989) examined the slope rotatability aspects of designs obtained through BIB 

designs. Anjaneyulu, Dattatreya Rao and Narsimham (1995) introduced third order slope 

rotatable designs and obtained them through doubly balanced incomplete block designs.  Park 

(1987) has extended the work of slope rotatability over axial directions to the class of slope 

rotatable designs over all directions. Further, Park and Kim (1992) introduced measures that 

quantify the amount of slope rotatability over axial directions in a given response surface design, 

Jang and Park (1993) gave a measure for evaluating slope rotatability over all directions in a 

response surface design.   This measure is used to form slope variance dispersion graph 

evaluating the overall slope estimation capability of an experimental design throughout the 

region of interest. 

 

Huda and Mukerjee (1984) and Mukerjee and Huda (1985) made the study of optimal designs 

for obtaining response surface designs for slope estimation. Huda and Mukerjee (1984) obtained 

design by minimising  the variance of the difference maximized over all pairs of the points.  For 

estimating the slope of a response surface, Mukerjee and Huda (1985) obtained 'minimax' second 

and third order designs.  These designs are obtained by minimizing the variance of the estimated 

slope maximized overall points in the factor space.  However, as is well known, a theoretically 

optimal design, may not be often implementable, because the mass distribution may have 

irrational weights.  It, therefore, becomes important to study the performance of the discrete 
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(exact) designs as compared to the possibly hypothetical theoretically optimal designs.  A study 

of this kind was made by Huda (1987) with respect to minimax central composite designs for 

estimating the slope of a second order response surface design.  However, the most of these 

studies are biased towards industrial experimentation and none of these give designs for slope 

estimation when the levels are equispaced, which is a common feature of agricultural 

experiments. An effort has been made to obtain slope rotatable designs for the situations in 

which various factors have equispaced doses and are presented in Section 3.4.  

 
Further, in agricultural experiments, the use of elaborate blocking systems is essential to control 

environmental variability. Orthogonal blocking aspects of second order response surface designs 

have been discussed in Section 3.5. 

 

Before proceeding further, we discuss some preliminaries regarding coding of levels of factors in 

response surface designs.  

 

A design for fitting response surface consists of a number of suitable combinations of levels of 

several input factors.  We shall use v for number of factors and N for number of combinations in 

the design each factor having a constant number of levels. 

 

Users of such designs, usually provide range of real physical level for each factor under 

investigation with the origin of levels at zero for most factors.  Designs, on the other hand, are 

usually constructed using coded levels and not the physical levels. The level codes are obtained 

as below.  

 

First shift the origin of the levels of each factor at or near the middle of the range of the factor. 

This level generally corresponds to the approximate optimum level of the factor. The code for 

the changed origin is taken as zero.  

 

Further level codes of a factor are taken in pairs like km  and km  one on each side of the 

changed origin where k  is a positive constant and m  is a scaling constant for the factor. The 

values of k  have been so taken that the physical doses corresponding to the maximum value of 

k  remain within the range. Such pairs of codes have been called equidistant (from the origin) 

codes.  

 

The physical levels can be obtained from the above level codes as discussed below. Let minM  

and maxM  denote the minimum and maximum physical levels of a factor. The level codes 

corresponding to these physical levels are denoted by km  and km . Treating the values of a 

physical level and the corresponding coded level as the co-ordinates of a point, the different 

points from possible physical levels within the range lie on a straight line. Taking the equation of 

the line as  

   Y=A+BX 

    

and with the points ( minM , -km) and ( maxM , km) on the line it is found that 

 

 A= ( minM + maxM )/2 and    B = ( maxM - minM )/km. 
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Thus, the equation of the line is known. Now, given any level code, the corresponding physical 

level is obtained from Y  by substituting the code value for X  in the equation of the line. 

 

A combination of level codes is called a design point. The combination with 0 code for each 

factor is called a center point. We initiate the discussion with first order response surface designs 

in the sequel 

 

3.2 First Order Response Surface Designs 

Let there be v factors each at s levels. The N-design points are chosen out of vs total treatment 

combinations. If iux denotes the level of the i
th

 factor in the u
th

 treatment combination, then the 

matrix X  for a first order response surface is given by  
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The first order response surface to be fitted is as given in (2.1.2) 

uvuvuuu exxxy   ...22110 .      (3.2.1) 










 

uu

uu
eeCoveE uuu

if0

if
),(;0)(

2
 

 

The model in (3.2.1) can be written as 

eXβy          (3.2.2) 

where y =  Nyyy 21  is an N 1 vector of observations, X is N  )1( v  matrix of 

independent (explanatory) variables and their functions;  =      v 10  = ),( 0 θ  is a 

1)1( v  vector of unknown parameters and e =  Ne  e e 21 is a N   1 vector of random 

errors distributed as  N )( N
2, I0  .  

 

Using the procedure of ordinary least squares that minimizes the sum of squares due to random 

errors, the normal equations for estimating 's are  

   yXXβX          (3.2.3)  

 

and the ordinary least squares estimates of ’s are 

        yXXXb   )(    1          (3.2.4) 
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Now to ensure that the terms in the fitted model are uncorrelated with one another i.e. to ensure 

the orthogonality of the parameter estimates, the off-diagonal elements of XX  should be zero. 

Therefore, we have to choose iux  such that XX  is diagonal. Hence, iux ’s must satisfy the 

conditions 

(i) vix
N

u

iu ...,,2,1;0

1
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

 and      (3.2.5i) 

(ii) viiiixx ui

N

u

iu ...,,2,1,,;0

1
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                (3.2.5ii) 

 

The normal equations (3.2.3) under the conditions (3.2.5) are 
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The best linear unbiased estimate of the parameter vector ),( 0  θβ   is 
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where )/1/1/1/1(diag
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Now to ensure the constancy of the variances of the parameter estimates in (3.2.5), we take 

another condition  
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Thus we see that the variance of the estimated response is a function of .
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 is same the estimated response will have the same variance. The designs 

satisfying this property are called first order rotatable designs. The conditions in (3.2.5i) to 

(3.2.5iii) can be ensured by coding the real physical level for each factor under investigation.  

 

For construction of the designs, one has to choose N points from vs  in such a way that the 

conditions in (3.2.5i) to (3.2.5iii) are satisfied. For this we first convert s levels into coded levels. 

For 2s , the coded levels are -1 and +1; for 3s , the coded levels are -1, 0, +1; for 4s , the 

coded levels are -3, -1, +1, +3 and so on. The codes can be obtained either through the discussion 

made in Section 3.2.1 or by taking 
S

M


valueOriginal
valueCoded , where M is the average of 

the actual physical values for the levels of the factors in the design and S is the half of their 

difference. It sometimes gives coded levels in fractions, this may be converted into integers by 

multiplying each by the least common multiple of denominators. From the conditions, it is clear 
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that we have to choose a suitable fraction of vs  in such a way that the main effects are 

orthogonally estimable. In other words, we choose those fractions of vs  factorial experiment in 

which no main effect and two-factor interaction is present in the identity group or defining 

contrasts. Orthogonal main effect plans or orthogonal resolution III plans for vs  factorial 

experiment also serve as designs for fitting response surfaces. Therefore, all resolution III plans 

can be used as designs for fitting first order response surfaces. For an exhaustive catalogue of 

resolution III plans, a reference may be made to Gupta, Dey and Nigam (1984) and Dey (1985). 

First order response surface designs are more useful for two level factorials. The procedure for 

obtaining first order response designs for two level factorials that satisfy the conditions (i) to (iii) 

of (3.2.5) is described in the sequel. 

 

For factors at two levels, Hadamard matrices are useful designs for fitting first order response 

surfaces. A Hadamard matrix vH  is a square matrix with entries as +1 and -1 such that 

vvvvv vIHHHH  . A Hadamard matrix of order v exists if 0v (mod 4), v = 1, 2 being 

trivial cases. These matrices were first considered as Hadamard determinants. They were so 

named because the determinant of a Hadamard matrix satisfies equality in Hadamard’s 

determinant theorem, which states that if  ))(( ijhH  is a matrix of order v where 1ijh  for all 

i and j, then 2/1det vvH . A Hadamard matrix of order v serves as a design for 12 v  factorial 

experiment. Plackett and Burman (1946) constructed Hadamard matrices for all permissible 

values of 100v  with the exception of v=92. The Hadamard matrix of order 92 was discovered 

by Baumert, Golomb and Hall (1962). The smallest order undecided in Hedayat and Wallis 

(1978) was 268 and Sewade (1985) obtained the Hadamard matrix of this order. The smallest 

order for which the existence of a Hadamard matrix is in doubt is currently 428 

(www.research.att.com/~njas/hadamard/). For those 3v , which are not multiple of 4, we can 

obtain the designs for fitting of first order response surfaces as regular fraction of v2 -factorials. 

 

3.3 Second Order Response Surface Designs for Response Optimization 

Let there be v factors such that is denotes the level of factor i; .,,2,1 vi   The N-design points 

are chosen out of  


v

i
is

1

total treatment combinations. Let iux denotes the level of the i
th

 factor in 

the u
th

 treatment combination and X , the matrix for a second order response surface. The X  

matrix for v = 2 and model (2.2.1) given in Section 2.2 of Chapter II is given by  
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For this, 
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To ensure the orthogonal estimation of parameters, the matrix XX  should be diagonal. For a 

second order response surface design, a complete diagonal XX  is not feasible due to the 

occurrence of  sum of squares terms like 


N

u
iux

1

2  and sum of cross products of squares like 

2

1

2
ui

N

u
iu xx




  in the off-diagonal positions. We attempt to diagonalyze the XX  to the possible 

extent. Let us assume that s'xiu  satisfy the following conditions on the moments: 

 

(i) 0

1 1
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
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

, if any i  is odd, for 32,1,0 ori   and   .4i  

(ii) 


N

u
iux

1

2 constant (for all i ) RN  2  (say) 

(iii)   


N

u
iux

1

4  constant (for all i ) = CLCN 4  (say)    

(iv) 





2

1

2
ui

N

u
iu xx constant LN  4  (say), for all ii      (3.3.1) 

 

These conditions are also known as conditions of symmetry. Using the conditions (i), (ii), (iii) 

and (iv) given in (3.3.1) and using model (2.2.1) given in Section 2.2 of Chapter II, we get  
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The inverse of the above matrix can be obtained with the help of the following lemmas. 

 

Lemma 3.3.1: If A and D are symmetric matrices then 
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where BABHE
1  and BAF

1 . 

 

Lemma 3.3.2:  Let   11IM  bba  be a nn  matrix  then  

  11IM  yyx1         
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Lemma 3.3.3: If ,











HB

BA
P  det ( )P = )(det.)(det 1

BABHP
 . Here det(.) denotes the 

determinant of a given matrix. 

 

 

The matrix XX  in (3.3.2) can be seen as 





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, where  
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 






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. 

 

For finding the inverse of the matrix E we have to find the inverse of  

  G11I 






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


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
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1 (say) using Lemma 3.3.2. 
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where   21 vRNLvCD   

 

Therefore, 
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Hence,  

  
  




























00

01
FE

2
1

1

1
RNLvD

NLCD

R

 

 

Simplifying  2RNLvD  , we get 
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where 
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Now D is appearing in the denominator and also a factor of det( XX )= 

,])1[( 12/)1( DLCLR vvvv    therefore D>0, we get one more condition on s'xiu  other than 

those given in (3.2.1) for choosing N design points  

 

12 


Cv
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R

NL
          (3.3.5) 

 

Here, det (.) denotes the determinant of a given matrix. Now, if we write 2/)2)(1(  vv -

component vector β  of unknown parameters in (2.2.2) as )( 0 φγθβ    with 

),,,( 21 v θ ;  vv ,,,( 2211 γ ) and ),,,( ,11312 vv  φ . Then using the 

method of ordinary least squares, the normal equations yXXβX  as given in (2.2.3) can be 

written as 
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   (3.3.6) 

 

where y1 


N

u
uyG

1

; uy is the observation pertaining to thu  design point; Nu ,,2,1  ; 
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),,,( 21 vTTT T  and 



N

u
uiui yxT

1

; vi ,,2,1  ; 

),,,( 21 vPPP P  and 
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u
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 
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u
uuiiuii yxxB

1

; vii ,,2,1  . 

 

β̂  and variance-covariance matrix of β̂ can easily be obtained by using (2.2.4), (2.2.5) and 

(3.3.4). As a consequence, we have 
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Using these solutions variances and co- variances of these estimates are obtained as below: 
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Other covariances are zero. The estimated response at a point ),,,( 020100 vxxx x  is  
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Let 2
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 

 ),(Covar2)Var(2)(

)Var(),(Covar2)Var()Var()ˆ(Var

1

1 1

2
0

2
0

4
0

2
00

iiiiiiii

v

i

v

ii
ii

iiiii

bbbbVarxx

bdbbbdby





 






 
  (3.3.10) 

 

Using  (3.3.8), we get 
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Consider the coefficient of  


 


1
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2
0
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v
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ii

xx in (3.3.11) given by LCC )1/()3( 2   . If  3C , 

then this term vanishes and the expression in (3.3.11) becomes 

 

             22422
0 1121ˆVar  CLDNLRdRDRDdDvCLy  (3.3.12) 

 

This expression of variance of the estimated response is a function of 2

1

2
0

dx
v

i
i




. It, therefore, 

follows that for all such points x  for which 


v

i
ix

1

2  is same constant, the variance of the 

estimated response at all these points x  will be same. Such property of the designs is known as 

rotatability and the designs satisfying this property are known as rotatable designs. The designs 

for fitting second order response surfaces satisfying this property alongwith conditions of 

symmetry (i) to (iv) in (3.3.1) and (3.3.5) are called Second Order Rotatable Response Surface 

Designs (SORD). If (3.3.5) is not satisfied, then it is known as Second Order Rotatable 

Arrangement (SORA).  

 

Thus, the rotatability property of second order response surface designs requires that 
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4 3
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u
iu
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u
iu xxx




   i.e., 3C  in the conditions of symmetry (3.3.1) and (3.3.5). This condition 

actually gives a relationship between fourth order moments (pure and joint). Some other 

restrictions are also possible, like the relationship between square of the second order moments 

and fourth order moments, though it seems that these have not been exploited yet. Therefore, in 

the present investigation, we put another condition  
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 i.e., NLR 2     (3.3.13)  

 

to get another series of symmetrical response surface designs which provide more precise 

estimates of response at specific points of interest than what is available from the corresponding 

existing designs. A design for fitting second order response surfaces satisfying conditions in 

(3.3.1), (3.3.5) and (3.3.13) will be called a modified second order response surface design. If 

the designs satisfies these conditions along with 3C , then it is called as modified second 

order rotatable response surface design. It is seen that if NLR 2 , then   0,varCo jjii bb . 

Further,  iibVar  becomes   12 CL  and D  becomes )1( CNL . 

 

Remark 3.3.1: Besides rotatability, D-optimality criterion has been widely advocated in the 

literature for selection of a response surface design. D-optimal design is one which maximizes 

determinant of XX  in a specified experimental region, where X  is the design matrix for the 

response surface design. Another criterion for selection of a design is the minimization of 

variance of predicted response at a given point. It may be seen easily that NLR 2  maximizes 

the determinant and minimizes the variance of the predicted response to a reasonable extent, if 

not the absolute maximization and minimization. For a rotatable design, i.e., 3C  and also if 

NLR 2  is satisfied, then NLD 2  and  
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Therefore, the application of the condition NLR 2  in obtaining D-optimal designs needs 

further attention. 

 

3.3.1 Methods of Construction of Modified and /or rotatable designs for Symmetrical 

Factorial Experiments 
 

In this section, we give the methods of construction of designs for fitting second order response 

surfaces for response optimization when various factors are with equispaced levels and/or have 

unequal dose ranges for both symmetrical as well as asymmetrical factorials. In general, a second 

order response surface design is at least resolution V plan. Several methods of construction of 

designs for fitting response surfaces are available in literature. Our main emphasis is on designs 

obtainable from Central Composite designs of Box and Wilson (1951) and Symmetrical Block 

Designs with Unequal Block Sizes (SUBA arrangement) of Kishen (1940), balanced incomplete 

block designs and cyclic designs. The catalogues of the designs obtainable from these methods 

of construction with 103  v  and 500N  are also prepared and included here for a ready 

reference. 

 

Method 3.3.1: The method is similar to that of Central Composite Designs given by Box and 

Wilson (1951) on slightly different symbolism. Some modifications have been made for 
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obtaining designs with equispaced doses as well.  A central composite design for v-factors is 

obtained as follows: 
 

1. Take a v2 factorial arrangement with factorial levels coded as +1or –1 or a p2  factorial 

combinations out of v2  factorial combinations such that no interaction with less than 5 

factors is confounded . (In the absence of this condition, the symmetry condition (3.3.1i) are 

not satisfied).   Associate these points to   ,...,, .  Association is carried out by 

multiplying the factorial combinations with the set   ,...,, .  These points are the vertices 

of a cube and are called as factorial points. 
 

2. 2- axial points on the axis of each design variable at a distance of   from the design centre.  

As there are v-axis, therefore, this process yield 2v-axial points  0,...,0, , 

 0,...,0,,0  ,…,  ,0,...0,0 . These points are also known as star points and help in the 

estimation of curvature of the surface.  The values of   and   depends on certain properties 

desired for the design and on the number of factors involved. 
 

3. Add  10 n  center points. The number of center points to be added also depends upon the 

design properties. 

 

The designs obtained from this method are for 5-level factorial experiments. The level codes are 

represented by  ,,0,, .  To make the presentation covering a broad class, we take 

s copies, that is, repetition of the factorial points, and t  copies of axial points such that the total 

number of design points is 022. ntvsN v   or 022. ntvsN p  . Here v2 or p2  denote 

the number of factorial combination and let these be denoted by w .  

 

For these designs, 22
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44 2  tsw  .  

To make the design rotatable, we take 3C  and get the following equation, 

  444 32  swtsw   

  w
s

t


4

4




        (3.3.15)  

For obtaining a modified design, we take NLR 2  and get the following equation 

 

   4
0

222 )2(2  swntvswtsw   

 4
0

42242 244  swnstvwstwt   

 
4

42242

0
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



sw

stvwstwt
n


      (3.3.16) 
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For obtaining modified second order response surface designs alone, we have to fix 0n  and 

obtain the values for  ,  , s and t satisfying  (3.3.16). Since, there is only one equation, we can 

estimate only one parameter. Hence, we fix three of them, s, and t (say) and obtain the value 

of  . For 1s , 1t  and 1 , the value of   is generally different from that of rotatable 

designs. Also the values of   and   change with the change in the value of 0n  and hence, N  in 

modified design whereas the values of   and   remains unchanged with the change in the value 

of 0n  and hence, N  in a rotatable design. This is explained with the help of following example. 

 

Let a design with 3v  and 14N  is obtained by using the sets 00)3(00)2(,)1(  and 

00)4( , where   and   are unknowns. Associating the factorial 32  with these sets the distinct 

combinations give the design. Some more points of the type  000  can be added to the design, 

which are known as center points. This in general is the design obtained using central composite 

designs. The design points (without center points) are the following 

 

   

  - 

 -  

 - - 

-   

-  - 

- -  

- - - 

 0 0 

- 0 0 

0  0 

0 - 0 

0 0  
0 0 - 

44422 288,28   CLLR  

For obtaining a modified design, we use the relation NLR 2  and get 

     4222 81428    

or 222 645751311.2428    

or 22 291503.1    

 

Now fixing  , conveniently,   is known. Thus the design as combination of level codes is 

obtained along with LR,  and CL . For 136443.1,1   . It may be seen easily that as N  

changes for a modified response surface design, the ratio  /  also changes, e.g., with the 

addition of one central point in the above design. Taking 10 n  and N = 15 in the relation 

NLR 2  we get 22 1.477226  . For 215412.1,1   .  
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For a rotatable design i.e., for 44 8,3  C . For 682.1,1   . For a rotatable design this 

ratio remains the same if the change in N  is due to addition of center points only. Taking 1  

the variances of estimated responses at the center, axial and factorial points of interest for 

modified and rotatable designs are presented in the following table. 

 

Number of 

Design Points 

Nature of the 

Point 

Variance of the estimated response 

  2
0ˆvar y  

Modified Rotatable 

14 Center 

Axial 

Factorial 

0.58531 

0.62203 

0.78347 

*85.65518 

0.70716 

0.71996 

15 Center 

Axial 

Factorial 

0.43327 

0.50113 

0.76553 

0.98846 

0.60831 

0.67021 
* This variance is exceptionally high due to the fact that in case of a rotatable design for 3 factors with 14 runs, the 

XX  matrix is almost singular. 

 

It can easily be seen that for this design both the conditions viz. 3C  and NLR 2  cannot be 

satisfied simultaneously for fixed 14N  or 014 nN  , where 0n  is the number of center 

points. However, we can see that both these conditions 3C  and NLR 2  can be satisfied 

simultaneously, if we obtain 0n  through (3.16) by substituting the ratio of  / obtained for a 

rotatable design. This is given in the sequel. 

If we want to get a modified and rotatable design, then substituting 
t

sw


4

4




 in (3.3.16), gives 

  







 v

t

sw
tn 2220       (3.3.17) 

The number of center points is a whole number only when )/( tsw  is a perfect square. As a 

consequence, construction of a modified and rotatable design is possible only when )/( tsw  is a 

perfect square.  

 

For obtaining most commonly used central composite designs {Box and Wilson, 1951}, 

1,1  ts . Therefore, we substitute 1,1  ts  in (3.3.15) and get 4/1w



. Now taking 

,1    can be obtained as fourth root of the number of factorial runs. Some typical values of 

  for a second order response surface design with 102  v  and 500N are given in Table 

3.3.1. In this table 0n  denotes the number of center points, it can be chosen as per requirement 

and availability of the resources.  For 1,1  ts , the number of central points in modified and 

rotatable design using (3.3.17) are 
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    vwn  2220       (3.3.18) 

As a consequence, the construction of a modified and rotatable design from the above method 

with 1,1  ts  is possible only for those situations, in which w, the number of factorial runs is a 

perfect square. For a design to be modified and rotatable 0n  for the feasible cases are also given 

in Table 3.3.1. 

 

Table 3.3.1: The value of   and N for a second order response surface design with 

102  v . 

v p   N (for a rotatable design) N (for a modified  rotatable design) 

2 2 1.4142 8+ 0n  8+8=16 

3 3 1.6818 14+ 0n   

4 4 2.0000 24+ 0n  24+12=36 

5 4 2.0000 26+ 0n  26+10=36 

5 5 2.3784 42+ 0n   

6 5 2.3784 44+ 0n   

6 6 2.8284 76+ 0n  76+24=100 

7 6 2.8284 78+ 0n  78+22=100 

7 7 3.3636 142+ 0n   

8 6 2.8284 80+ 0n  80+20=100 

8 7 3.3636 144+ 0n   

8 8 4.0000 272+ 0n  272+52=324 

9 7 3.3636 146+ 0n   

9 8 4.0000 274+ 0n  274+50=324 

10 8 4.0000 276+ 0n  276+48=324 

 

Designs for Response Optimization when the Factors have Equispaced Levels 

In agricultural experiments, the factors considered may have equispaced doses (levels) as 

discussed above. The response surface designs with v factors each having equispaced doses may 

be obtained through a central composite design by using the following procedure of Method 

3.3.1. Let the dose codes be 2,1,0,1,2  , then the design can be obtained by taking .2,1    

For this situation 

.322.,2.,82. tsCLsLtsR ppp   

To make the design rotatable, we take 3C  and get the following equation, 

swt

wstsw





16

..332
 

  wts 16         (3.3.19) 
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Therefore, a central composite type rotatable design with equispaced doses can now be obtained 

by taking s  and t  in the ratio w:16 . Some center points can also be added when required. We 

know that for a modified and rotatable design NLR 2  and  3C . These two conditions are 

satisfied simultaneously by adding 0n  central points where  vtn  1020 . This is so because of 

the following 

 

 swntvswtswtws .21664 0
222       (3.3.20) 

 

If 3C , then .16 tsw  Substituting for sw above, we get  

 

  tntvtttt 1621625664256 0
222   

 .1020 vtn           (3.3.21) 

 

Thus choosing ts,  and 0n  as above, we get modified and rotatable designs when each of the 

factors is at 5 equispaced levels. The values of 0,, nts  and N  for modified and rotatable designs 

for factorials with equispaced doses with 103  v  and 500N  are given in Table 3.3.2 . The 

design for 2v  is not included in this table as the number of design points required are more 

than the total factorial combinations. Table 3.3.2                                       also does not contain 

any design with 10v , as 500N . 

 

Table 3.3.2: The values of v, p, s, t, 0n  and N  for modified and rotatable second order 

response surface designs for equispaced doses with 103  v  and 500N . 

v p s t 0n  N 

3 3 2 1 14 36 

4 4 1 1 12 36 

5 4 1 1 10 36 

5 5 1 2 20 72 

6 5 1 2 16 72 

6 6 1 4 32 144 

7 6 1 4 24 144 

7 7 1 8 48 288 

8 6 1 4 16 144 

8 7 1 8 32 288 

9 7 1 8 16 288 

 

It may be noted here that with the same number of copies of s  and t  the design remains 

rotatable with some copies of 0n , so as to make .0D   Here 0n  may be smaller or greater than 

the value indicated in the above table. 

 

To obtain a modified design only, the condition to be satisfied is NLR 2 , i.e.,  
 

 swntvswtswtws .21664 0
222   
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By fixing 1s  and 1t  we get 
 

 
w

wv
n

21664
0


         (3.3.22) 

The value of 0n  in (3.3.22) may be a fraction or negative integers. We present only those 

designs with 103  v  and 500N  for which 0n  is a positive integer in Table 3.3.3. The 

design for 2v  is not included in this table as the number of design points required are more 

than the total factorial combinations. 

 

Table 3.3.3: The values of v, p, 0n  and N for modified second order response surface 

designs for equispaced doses with 103  v  and 500N . 

v p 0n  N 

3 3 18 32 

4 4 12 36 

5 4 10 36 

5 5 8 50 

6 5 6 50 

6 6 5 81 

7 6 3 81 

8 6 1 81 

 

Method 3.3.2: This method is based on BIB designs and uses the methods of construction given 

by Box and Behnken (1960) and Das and Narsimham (1962) with slight modifications so as to 

get modified and/or rotatable designs with equispaced doses.  

 

A balanced incomplete block design is an arrangement of v treatments in b blocks each of size k 

(v<k) such that a treatment is applied atmost once in a block, each treatment occurs exactly in r 

blocks and each pair of treatment occur together in  blocks. 

 

Let )( jimM  be the incidence matrix of a BIB design with parameters v, b, r, k,  where M is 

defined as follows: 

 

),...,1;,...,1(
eotherwis,0

blocktheinoccurstreatmenttheif,1
bjvi    

ji
m

thth

ji 





  

 

The element 1 in the incidence matrix is replaced by an unknown .. From the rows of this 

matrix involving 0 and the unknown , we shall get b combinations. Each of these combinations 

is then associated with a k2  factorial or a suitable Resolution V fraction, say p2 , of it, the levels 

being coded as 1 . Let these k2  or p2  be denoted by w. For these bw  points, we have 

 



RESPONSE SURFACE DESIGNS 

 54 

2

1

2 rwxR
N

u
iu  



; 4

1

4 rwxCL
N

u
iu  



    and  4

1

22 wxxL
N

u
uiiu  




 

For obtaining a rotatable design, we take ,3C  i.e., 
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4 3  and get the following 

equation 

   44 3  wrw          3r .   (3.3.23) 

 

If a BIB design with 3r  exists for given v, then no further combinations need to be taken 

excepting center points. By taking 1 , we can get designs with v  factors each at three levels 

coded as -1, 0, +1. The number of design points is 0nbwN  .  

 

For getting a rotatable design, we take NLR 2 and get the following equation 

4
0

422 )(  wnbwwr   

wnwbwr  0
222   



)( 2

0
brw

n


       (3.3.24) 

For obtaining the number of center points for a modified and rotatable design, we substitute 

(3.3.23) in (3.3.24) and get 

   )9(0 bwn         (3.3.25) 

   

The values of Nnpv ,,, 0  for modified and rotatable designs obtainable from BIB designs with 

3r  for 103  v  and 500N  are given in Table 3.3.4. For a rotatable design alone 0n  may 

be smaller or greater than the value indicated in the above table. For this value of 0n , the non-

singularity condition is satisfied. 

                                                                                                                             

Table 3.3.4: The values of v, p, 0n  and N  for modified and rotatable second order response 

surface designs  for three equispaced doses with 103  v  and 500N  obtainable from 

Method 3.3.2.                          

 

v p 0n  N Source BIB design 

4 2 12 36 (4,6,3,2,1) 

7 3 16 72 (7,7,3,3,1) 

10 4 48 288 (10,15,6,4,2) 

 

From (3.3.24), it is clear that the condition 3r  is not required for obtaining a modified 

second order response surface design alone. The values of Nnpv ,,, 0  for modified designs 

obtainable from BIB designs with 3r  for 103  v  and 500N  are given in Table 3.3.5. In 

this Table the design for 3 factors with 16 design points is same as studied by De Baun (1959). 

De Baun (1959) reported that for 33  factorial with less than 20 design points, this design 
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provides orthogonality, 3 degrees of freedom for pure error and provides almost rotatable 

information surface. 

 

Table 3.3.5: The values of v, p, 0n  and N  for modified second order response surface 

designs  for three equispaced doses with 103  v  and  500N  obtainable from Method 

3.3.2. 

v p 0n  N Source BIB design 

3 2 4 16 (3,3,2,2,1) 

5 2 24 64 (5,10,4,2,1) 

6 2 40 100 (6,15,5,2,1) 

6 3 20 100 (6,10,5,3,2) 

6 4 4 100 (6,6,5,5,4) 

6 5 8 200 (6,6,5,5,4) 

7 2 60 144 (7,21,6,2,1) 

8 2 84 196 (8,28,7,2,1) 

9 2 112 256 (9,36,8,2,1) 

9 3 32 128 (9,12,4,3,1) 

9 4 32 320 (9,18,10,5,5) 

10 2 144 324 (10,45,9,2,1) 

10 3 84 324 (10,30,9,3,2) 

10 4 36 324 (10,18,9,5,4) 

 

 

If however, the relation 3r  does not hold in a BIB design, we have to take further 

combinations of another unknown   as indicated below. 

 

If 3r , we take the combinations ),0,...,0,(  ),...0,...,0,,0(  ),0,...,0(  .  The values of the 

unknowns have to be fixed in this case by using the relation 
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If again, 3r  , the combinations ),...,,(   have to be taken along with the combinations 

obtained from the incidence matrix of the BIB design.  Here, again the restriction 
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2 has to be used for determining one of the 

unknown levels. 

 

For obtaining modified and/or  rotatable designs when each of the factors at 5 equispaced levels 

(-2,-1,0,1,2)  using BIB designs, we take s copies of the points obtained from the incidence 

matrix and t copies of the added points (other than the center points). We get the following.  

 

When 3r   
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For a second order rotatable design, ,3C  i.e., 
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32
             (3.3.26) 

 

We know that for a modified and rotatable second order response surface design both the 

conditions NLR 2 and C = 3 are satisfied simultaneously. Therefore, to obtain a modified and 

rotatable second order response surface design, we have to choose 0n  center points so that the 

condition NLR 2 is satisfied, i.e.. 

    wsnvtbswtwrs 0
2

28   
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
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swbr
tn







 642162

0           (3.3.27) 

Now substituting (3.3.26) in (3.3.27), we get the number of center points to be added as: 

 
 
 

 













 





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





 37

3

16
2

2

0
vr

r

br
tn            (3.3.28) 

 

In some cases, the above formula, may give the value of 0n  in fraction.  Therefore, we have to 

be careful and construct the designs only for those situations, where  0n  is a positive integer.  

 

The values of Nntspv ,,,,, 0  for modified and rotatable designs obtainable from BIB designs 

with 3r  for 103  v  and 500N  are given in Table 3.3.6. For a rotatable design alone 0n  

may be smaller or greater than the value indicated in the above table. For this value of 0n , 

0D . 
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Table 3.3.6: The values of v, p, s, t, 0n  and N for modified and rotatable second order 

response surface designs  for five equispaced doses with 103  v  and  500N  obtainable 

from BIB designs with 3r  . 

 

v p s t 0n  N BIBD 

4 3 4 3 136 288 (4, 4, 3, 3, 2) 

*5 3 4 3 304 654 (5,10,6,3,3) 

6 3 4 1 144 476 (6, 10, 5, 3, 2) 

6 4 2 7 456 732 (6, 6, 5, 5, 4) 

*6 5 1 7 456 732 (6, 6, 5, 5, 4) 

7 4 1 1 64 190 (7, 7, 4, 4, 2) 
*These designs have been included here because the rotatable design can be obtained in number of design points 

500N  by taking smaller number of center points. 

 

To obtain a modified design only, the condition to be satisfied is (3.3.27).  By fixing 1s   and 

1t  , we get 

     0
22 64216

1
nwvrwbr

w
 


    (3.3.29) 

 

Using the above, one can construct a modified second order response surface design with the 

parameters .748,128,15,2,4,10 0  Nntspv  This design can be obtained by using a 

BIB design (10,10,9,9,8). 

 

For 3r  , we have 

21
1

2 4twwrsRx
N

u
iu 



 where 1
p w2   and  2itoffractionaor2 wv    

  21
1

22 16twwsLxx
N

u
uiiu 




   and 21
1

4 16twrwsCLx
N

u
iu 



;   021 ntwbswN   

 

For rotatability, we have 3C  , i.e. 

 
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          2121 16316 twwstwsrw    
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32

w

w

rt

s


         (3.3.30) 

We know that for a modified and rotatable second order response surface design both the 

conditions NLR 2 and C = 3 are satisfied simultaneously. Therefore, to obtain a modified and 

rotatable second order response surface design, we have to choose 0n  central points so that the 

condition NLR2  is satisfied, i.e.. 
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    21021
2

21 164 twwsntwbswtwwrs    
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    (3.3.31) 

 

Now substituting (3.3.30) in (3.3.31), we can get the number of center points to be added as 

 

 
   





4716

1683232 2
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1
0





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brwbrsw
n     (3.3.32) 

In some cases, the above formula may give the value of 0n  in fraction.  Therefore, we have to 

careful and construct the designs only for those situations, where 0n  is a positive integer. Using 

conditions (3.3.30) and (3.3.32), modified and rotatable second order response surface designs 

obtainable from BIB desings with 3r   can easily be obtained. 

 

To obtain a modified design only, the condition to be satisfied is (3.3.31).  By fixing 1s  and 

1t , we get 

   

21

21
22

1
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16

168

ww

brwwbrw
n









     (3.3.33) 

 

Remark 3.3.2: A generalization of Method 3.3.2 was given by Raghavarao (1963) by using 

symmetrical unequal block arrangement with two distinct block sizes (SUBA) instead of BIB 

designs. SUBA was introduced by Kishen (1940) and is defined as: An arrangement of v 

treatments in b blocks, where 1b  blocks are of size 1k  and 2b  blocks are of size 2k  such that 

bbb  21 is said to be a SUBA if  

 

(i) every treatment occurs in   iii rvkb /  blocks of size ik ; )2,1( i  and  

(ii) every pair of first block associates occur together in u blocks of size 1k  and in 

u blocks of size 2k  and every pair of second block associates occur together in   

blocks of size 2k . 

These arrangements can easily be obtained by 21 DD  , where 1D  and 2D  are two associate 

partially balanced incomplete block (PBIB) designs based on same association scheme and with 

parameters  

 

0,,,,,,,: 21211111   unnkrbvD  and   21212222 ,,,,,,,: unnkrbvD . 

 

The method of construction is as follows: Let 212121 ,,,,,, bbkkrrrbv   and   be the 

parameters of a SUBA. Obtain the incidence matrix M as in Method 3.3.2. Let 21 kk   and 

122

1

kk 
th replicate of 22

k
 factorial exists without including any interaction of less than five 

factors in the identity relation, then by multiplying the unknown combinations of   arising from 
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the blocks of size 1k  with 12
k  factorial with levels being coded as 1  and the unknown 

combinations arising from blocks of size 2k  with a 
122

1

kk 
th replicate of 22

k  combinations.  

 

For this design 2

1

2 rwxR
N

u
iu  



; 4

1

4 rwxCL
N

u
iu  



; 4

1

22 wxxL
N

u
uiiu  




 and 

0nbwN  ; where 21 rrr   and 12
k

w  . We get a second order rotatable design, if 3r . 

If 3r  then the modifications as given in Method 3.3.2 gives second order rotatable designs 

with 5 equispaced factors. Further, proceeding on the similar lines of Method 3.3.2, the modified 

and/or rotatable designs with 5 equispaced doses can be obtained. 

 

Remark 3.3.3: Following the method of construction given in Remark 3.3.2, we can get a 

modified and/or rotatable design by using any equireplicated pairwise balanced block design 

with two distinct block sizes if the design is equireplicated separately for the two sets of blocks 

of different sizes. 

 

Designs with Four Levels 

The Method 3.3.1 gives the modified and/or rotatable designs for the situation where  each of the 

factor has five levels and Method 3.3.2 yield designs for 3 and 5 level factorial experiments. In 

agricultural and allied sciences, many experiments are conducted with 4 level factors. Here, we 

present a method for obtaining designs with 4 level factorial experiments. The method was 

originally given by Das (1961) and modified by Nigam and Dey (1970).  A further refinement is 

suggested in the present investigation. 

 

Method 3.3.3: Let there be v-factors at 4 levels each. Let the level codes be denoted by 

 ,,, . Now consider a set of v-combinations obtained by cyclic permutations of  

)(   . Call these combinations as Type I. Consider another set of combinations as the 

design points of a v2  factorial (or a suitable fraction of v2 , at least of Resolution V) and call 

these combinations as Type II. Now associate each of the combinations of Type I with each of 

the combinations of Type II. This can be achieved by multiplying Type I combinations with 

Type II combinations. This process yields an arrangement of  v. pv2 points in v factors, where 
pv2 denotes the smallest Resolution V fraction of v2 . Denote v2  or pv2  by w.  

 

From the above vw  design points, it can easily be verified that these points satisfy the conditions 

of symmetry given in (3.3.1) and  

 

))1(( 22

1

2   


vwxR
N

u
iu ; ))1(( 44

1

4   


vwxCL
N

u
iu ;  

))2(2( 422

1

22   



vwxxL

N

u
uiiu  and vwN  . 

For a rotatable design, 3C , therefore, we obtain the values of  and  satisfying 
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  })2(36{})1({ 42244   vwvw  

  2/1

2

2

)24(3 v



     (3.3.34) 

Now taking 1 , we get 2/12/1 })24(3{ v   

 

Both Das (1961) and Nigam and Dey (1970) have given these values for  and . However, for 

square root to be real number, all these values must be positive, i.e.  

2/1)24(3 v  0;   2/5v  

In other words, it holds only for .2v Hence, for 3v  and 1 , this value of  will not give 

any result. Therefore, only 2/1)}24(3{ v  should be taken. 

 

Further, it can easily be verified that NLvvR )2(2  . As a consequence, the condition (3.3.5) is 

not satisfied and above procedure results into a second order rotatable arrangement rather than a 

second order rotatable design. This was also pointed out by Nigam and Dey (1970). They  

modified this second order rotatable arrangement in v factors and N design points by deleting any 

1x  columns from vN   arrangement.  Now the xvN  matrix is a SORD with xv factors. 

For 1x , the values of   when 1  are given in Table 3.3.7 for .103  v   

Table 3.3.7: The values of  , p and 500N  for a SORA in v factors and SORD in 

xv factors  obtainable from Method 3.3.3. 

v xv  p alpha N 

3 2 3 2.482394 24 

4 3 4 2.54246 64 

5 4 4 2.59647 80 

5 4 5 2.59647 160 

6 5 5 2.645751 192 

6 5 6 2.645751 384 

7 6 6 2.691215 448 

This result can further be improved upon and is stated in the following result: 

 

Result 3.3.1: {Nigam and Dey (1970)}. Let There exist a SORD in v factors, then the design 

obtained by omitting any x columns of the design is also a  SORD in  (v – x) factors. 

 

Remark 3.3.4: In this particular case, the designs developed are with factors at 4 levels each. 

Therefore, we cannot add center points to get a modified and rotatable second order response 

surface design. Therefore, we make an attempt to obtain modified second order response surface 

design alone. For a modified design NLR 2  which implies that    in this case. Therefore, 

it is not possible to obtain a modified second order response surface design using Method 3.3.3.  

 

Remark 3.3.5: We can see that the SORD for xv  factors at 4 levels each obtained from the 

Method 3.3.3 are not for the situations with equispaced doses. If we take, 3,1   , the levels 

will be -3, -1, 1, 3 and are equispaced. If we take these values of  and  in the above method, 
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then the construction of a SORD is not possible. Then )8( vwR  ; )80( vwCL  ; 

).16( vwL   For this case 
v

v
C






16

80
. Now if we take 1,3   , then )89(  vwR ; 

)8081(
1

4  


vwxCL
N

u
iu ; )14481(  vwL . For this case .

14481

8081






v

v
C  

 

Remark 3.3.5 provides only one solution for obtaining the designs for fitting second order 

response surface designs. To obtain the methods of construction of modified second order 

rotatable response surface designs needs further attention. 

 

3.3.2 Asymmetric Response Surface Designs 

In Section 3.3.1, we have discussed the methods of construction of modified and/ or rotatable 

second order response surface designs for symmetric factorial experiments i.e. when all the 

factors have same number of levels. In practice, however, there do occur experimental situations 

in which it is not possible to maintain same number of levels for all the factors. Ramchander 

(1963) initiated the work on obtaining response surface designs for asymmetrical factorials and 

gave two series of response surface designs for asymmetrical factorials of the type m53 , but no 

systematic method of construction was developed.  Mehta and Das (1968) gave a general method 

of construction of rotatable response surface designs for asymmetrical factorials by applying 

orthogonal transformations on the design points of a suitably chosen symmetric rotatable design. 

The method is described in the sequel.  

 

Method 3.3.4: Consider a symmetric rotatable design in v-factors each at s levels. Let 

)( 21 vuiuuuu xxxx x  denote the thu  design point of the symmetric rotatable design, B is 

an vv  orthonormal transformation matrix, then the new design point 

)( 21 vuiuuuu zzzz z  can be obtained through the relationship 

 

  Bxz uu       Nu ,,2,1    (3.3.35) 

 

A proper choice of B , helps in obtaining an Asymmetric Rotatable Design from a second order 

rotatable design. To illustrate, we consider the following example.  

 

Let us consider a second order rotatable central composite design in 4 factors 

   ,,, ,  0,0,0,2 ,  0,0,2,0  ,  0,2,0,0  ,  2,0,0,0  , (0, 

0, 0, 0), where   is a non-zero constant. The notation    ,,,  is used to denote the 

16 points generated by all possible combinations of signs.  0,0,0,2  will also the similar 

meaning. If we choose the matrix B as follows 
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


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efcd

fedc

cdef

dcfe

B        (3.3.36) 
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where 12222  fedc , and transform the design points of the central composite design 

using (3.3.36), then the transformed design has the levels  fedc  ,,, , c , d , 

e  and f , for all the factors. The maximum number of levels for each factor is obviously 

24. 

 

Next, the elements of B  are chosen in such a manner that desired asymmetry is induced in the 

transformed design. For example, if B  is chosen as 

  




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




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




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cd
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fe

00

00

00

00

B        (3.3.37) 

then the first two factors of the transformed design will have the levels as  fe  , , e , 

f , and 0 and the last two factors will have the levels  dc  , , cb , db , and 0. 

Through a proper choice of fedc ,,,  one can make the number of levels of the two pairs of two 

factors unequal. Therefore, 21 fe  and 51c , 52d  will give a transformed 

design which is an incomplete factorial 22 73   having three levels a2,0   for the first two 

factors and the seven levels 52,5,0 aa   and 53a  for the remaining two factors.  

 

This transformation permits the factors to have different numbers of levels while preserving 

rotatability. The numbers of levels of the factors depend upon the orthogonal transformation 

matrix. As a consequence, it is not always possible to achieve the specified number of levels of 

each factor.  

 

Draper and Stoneman (1968) have also studied the response surface designs for asymmetric 

factorials when some factors are at two levels and other factors are at 3 or 4 levels each.  For 

these designs, the response surface cannot include quadratic terms in factors that are at two levels 

each but all second order terms for variables to be examined at 3 or 4 levels can be permitted.  

Dey (1969) gave methods of construction of both rotatable and non-rotatable asymmetric 

response surface designs.  The non-rotatable type of designs have a special feature that a part of 

the design retains the property of rotatability and as such these designs have been called as 

partially rotatable designs. A direct and straightforward method of construction of asymmetric 

rotatable designs is also given.  This method yields response surface designs for the 22 35 v  

factorial experiments i.e. when two factors are at three levels and others are at five levels. The 

method of construction with some modifications is described in the sequel. 

 

Method 3.3.5: Let the levels of factors that are at five levels each are denoted by   ,0,  

and for those, which are at three levels by   and 0.  ,  and   can be obtained satisfying 

the conditions of rotatability and will be described  later. A set   ,...,,  is considered for 

2v  factors which are 5 levels. This set is associated with 22 v  factorial (or a fraction thereof 
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without confounding any interaction with less than five factors for obtaining the fraction), the 

levels of the factorial being 1  and 1 . Let the number of points thus obtained be denoted by w. 

A further half fraction of these points are taken. Against one of the fractions containing 
2

w
 

points, write  0 and then again  0  for the two factors at three levels each. Thus, we get 

in all w
ww


22
 design points. Against the remaining half fraction of 

2

w
 points, write 

 0 and then again  0 . In this way we get another w points. 

 

Further consider the following set of combinations 

 

00.........00

:

:

:

000.........0

000.........0

12.........21







vvv 

 

 

and associate each of them with 1  and 1  in all possible ways. This process yields )2(2 v  

points. Further, take 1s copies of w2 points obtained earlier and t  copies of )2(2 v points 

obtained above so as to make  2  under the condition of rotatability. This ensures that the 

doses of the factors at 5 levels each are equispaced. 

 

Finally the set   ,...;...,0,0  is taken and associated with the combinations of a 22  

factorial with levels 1  and 1 . Repeat these points 2s . Thus we have 

21 4)2(22 svtwsN   and  
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2 22  twsx
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       (3.3.38i) 
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For satisfying the rotatability condition, 
2
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If  2 , we get   

44
1 324  tws   

wt

s 81           (3.3.38v) 

Next, for the two factors (which are at three levels each) 
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u
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Applying the condition of rotatability, we get 

 
81

2 w

s

s
         (3.3.38ix) 

 

Also vviviiiwsxx
N

u
uiiu ,1;2,...,1,22

1
1

22 



  (3.3.38x) 

From (3.3.38i), (3.3.38ii), (3.3.38vi), (3.3.38vii) and (3.3.38x) we get 22 2  . Hence the 

unknown levels are completely determined. For 1 , the level codes of the factors at 5 levels 

each are -2, -1, 0, 1, 2 and for factors at 3 levels each are 2,0,2 .  Therefore, we may 

consider that levels are equispaced. Further, for these values of  ,  and  , 

1
1

22 2wsxxL
N

u
uiiu  


  and twsxR

N

u
iu 82 1

1

2  


 and using (3.3.38v) and (3.3.38ix), tws 81   

and ts 2 . Using these it can easily be seen that the condition (3.3.5) i.e. 
12 


Cv

v

R

NL
 

 0)4( 2 v . As a consequence, for 4v , there is no need of adding any center points as far 

as estimation of parameters are concerned. However, for estimating the pure error for testing the 

lack of fit, a few center points may be added. For 4v , the number of center points 50 n  so as 

to satisfy (3.3.5). The procedure is explained with the help of following example: 

 

For obtaining a asymmetric rotatable design for 23 35  . In this case, following method 3.3.5, we 

get 8w  and for 1  and 2 , using (3.3.8v) we get 11  ts  and further using (3.3.8ix) 

we get 12 s . The design obtained is  
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-1 -1 -1 2  0 

1 1 -1 2  0 

1 -1 1 2  0 

-1 1 1 2  0 

1 -1 -1 - 2  0 

-1 1 -1 - 2  0 

-1 -1 1 - 2  0 

1 1 1 - 2  0 

-1 -1 -1 0 2  

1 1 -1 0 2  

1 -1 1 0 2  

-1 1 1 0 2  

1 -1 -1 0 - 2  

-1 1 -1 0 - 2  

-1 -1 1 0 - 2  

1 1 1 0 - 2  

2 0 0 0 0 

-2 0 0 0 0 

0 2 0 0 0 

0 -2 0 0 0 

0 0 2 0 0 

0 0 -2 0 0 

0 0 0 - 2  - 2  

0 0 0 - 2  2  

0 0 0 2  - 2  

0 0 0 2  2  

 

Here N = 26, 16;24  LR  and 48CL . One can see that the condition (3.3.5)  i.e. 

12 


Cv

v

R

NL
 is satisfied. The values of 2v , p, tss ,, 21  and N for asymmetric rotatable 

designs with 2v  factors at 5 levels each and 2 factors at 3 levels with 102  v  and 500N  

are given in Table 3.3.8. 
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Table 3.3.8: The values of 2v , p, tss ,, 21  and N for asymmetric rotatable designs with 

2v  factors at 5 levels each and 2 factors at 3 levels each with 102  v  and 500N  

obtainable from Method 3.3.5. 

 

v-2 p 1s  t 2s  N 

2 2 2 1 1 24+ 0n ;  

50 n  

3 3 1 1 1 26 

4 4 1 2 2 56 

5 4 1 2 2 60 

5 5 1 4 4 120 

6 5 1 4 4 128 

6 6 1 8 8 256 

7 6 1 8 8 272 

8 6 1 8 8 288 

 

As pointed out by Das, Parsad and Manocha (1999), the main problem in obtaining asymmetric 

rotatable designs is how best to place the unknowns among the level codes of each factor and 

how many of them. This problem is discussed in Method 3.3.6  and then the problems of forming 

the equations and their solutions are taken. 

 

Method 3.3.6: {Das, Parsad and Manocha, 1999}. The technique used for construction of 

asymmetrical response surface designs is first to take v  factors with number of levels, 

vsss ,...,, 21  where all ssi '  are not equal. For each factor equidistant level codes like k  and 

k  are taken in pairs where some of the sk '  may be unknown. Using such codes the complete 

factorial with 



v

i
isN

1

 level combinations is written. Some of the level codes in these 

combinations are unknown. Denoting the level codes in the design by iux  for the level codes of 

the thi  factor in the thu  combination of the design as used for the symmetrical designs and 

taking the same quadratic polynomial, the expression for 4,222 , SSS  are obtained for each 

factor. 

 

In such designs the condition (3.3.1i) , 0)(
1







t
ui

r
ui

N

u

q
ui

p
iu xxxxpqrtS , when at least one of 

the trqp ,,,  is odd holds and the dose codes for each factor are equidistant and the factorial is 

complete. The condition  


N

u
iuxRS

1

2
2  constant for different factors and similar others do 

not hold as such in these designs. We shall denote for these expressions like 


N

u
iux

1

2
 by iR , 
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




N

u
uiiu xx

1

22  by iiL   and 


N

u
iux

1

4  by iCL . The unknowns in the level codes will be obtained by 

solving equations like iR = iR  , iiL = iiL   and iCL = iCL   for different values of iii ,,  etc. 

 

Choice of level codes: Scheme A 

For factors with 3  levels the codes are taken as  0  where   is an unknown constant and 

same for all factors with 3  levels. For factors with 4  levels the codes are 

 2112 kkkk   where 1k  and 2k  are unknowns. For factors with 5  levels the codes 

are similar as for 4  levels and one code is taken as 0 . The unknown constants are, however, 

different from those for 4  levels. For factors with 6  levels there are likewise 3  unknowns. 

Actually, the scaling constant is the same for all factors in this scheme and for factors with same 

number of levels the codes are the same. 

 

The response surface design is now obtained from the complete factorial obtained by using such 

level codes. For example, let there be 3  factors BA, and C  with number of levels as 3 , 4  and 

5  respectively. The following level codes are used. 







2222

2222

0Factor

Factor

0Factor

kkkkC

kkkkB

A







 

 

Number of combinations in the design is 60N . 

 

Using this design and method of obtaining sum of squares and products as discussed in section 

3.3, the following are obtained: 

3/2 2
1 NR  , 4/)(2 2

2
2
1

2
2 kkNR   , 5/)(2 2

2
2
1

2
3 ppNR   , 

 

12L 12/)(4)43/()(22 2
2

2
1

422
2

2
1

2 kkNkkN   , 15/)(4 2
2

2
1

4
13 ppNL   , 

 

20/)()( 2
2

2
1

2
2

2
1

4
23 ppkkNL   , 

 

3/2 4
1 NCL  , 4/)(2 4

2
4
1

4
2 kkNCL   , 5/)(2 4

2
4
1

4
3 ppNCL   . 

Restriction 21 RR   gives the equation  

     4/)(23/2 2
2

2
1

22 kkNN    

or  3/42
2

2
1

 kk          (3.3.39) 

 

Restriction 31 RR   gives the equation 

    5/)(23/2 2
2

2
1

22 ppNN    

or  3/52
2

2
1

 pp          (3.3.40) 
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It will be noticed that 1R , that is, the expression for the factor A  without any unknown constant 

in its codes beside the scaling constant has been necessarily used in each such restriction. 

 

Restriction 1312 LL   gives the equation  

 
5/4)()(

15/)(412/)(4

2
2

2
1

2
2

2
1

2
2

2
1

42
2

2
1

4





ppkkor

ppNkkN 
  (3.3.41) 

 

Restriction 2312 LL   gives the equation  

3/5

20/)()(12/)(4

2
2

2
1

2
2

2
1

2
2

2
1

42
2

2
1

4





ppor

ppkkNkkN 
  (3.3.42) 

 

It will be seen that when conditions (3.3.39) and (3.3.40) hold then conditions (3.3.41) and 

(3.3.42) automatically hold. This fact is true in general for all designs constructed as discussed 

above. 

 

Restriction 21 CLCL   gives the equation 

3/4

4/)(23/2

4
2

4
1

4
2

4
1

44





kkor

kkaNaN
  (3.3.43) 

 

Restriction 31 CLCL   gives the equation 

3/5

5/)(23/2

4
2

4
1

4
2

4
1

44





ppor

ppaNaN
  (3.3.44) 

 

Solving the biquadratic equations (3.3.39) and (3.3.43) 1k  and 2k  are obtained. Again solving 

similar equations (3.3.40) and (3.3.44) 1p  and 2p  are obtained. Putting 2
1

kx   and 2
2

kx   the 

equations (3.3.39) and (3.3.43) become 

3/4;3/4 22  yxyx  

The equations (3.3.40) and (3.3.44) become 

3/5;3/5 22  yxyx  

where 
2
1

px   and 
2
2

px   

 

The solutions are given below. 

.0982.1;6787.0;0668.1;4419.0 2121  ppkk  

 

These solutions for each of factors at 4  and 5  levels remain the same whatever may be the 

design. 
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For factors with 6  levels, 3  unknowns are involved in the codes. But there will be only two 

equations to solve them out viz. 

3/6;3/6 222  zyxzyx  

 

To get unique solutions one of yx,  or z  has to be fixed conveniently. 

 

Now in the level codes only the scaling constant   remains and this has to be fixed 

conveniently. At this stage the design is asymmetrical response surface design but without any 

added property like the modified designs or rotatable designs although conditions of symmetry 

are satisfied. But these designs can be converted to them by taking some more initial sets of level 

combinations and the unknowns in them appear in the equations to satisfy 3C   or  NLR 2  

or both. We shall discuss an example in this regard subsequently. 

 

It will be seen that the level codes of one of the factors in the above design viz. factor A  do not 

involve any unknown beside the scaling constant and the expression R  for this factor has been 

used in each restriction for forming equation. 

 

It is necessary to have a factor with known constant like the factor A  in the above example and 

in all the restrictions R  and CL  corresponding expressions of this factor have to be used. 

 

Choice of level codes: Scheme B 

In this scheme also a factor with conveniently chosen known codes have to be taken along with a 

scaling constant. If there is a factor with 3  levels then this is the factor with known constant viz. 

1 along with a scaling constant. 

 

For other factors only one pair of equidistant codes need involve an unknown along with its own 

scaling constant and the rest can be fixed suitably in equidistant pairs. The codes for some 

number of levels of factors are shown below: 

 

3333233133133233

22222222

11111111

0

0









kssbsskD

ksskC

ksskB

A









 

 

In all these factors except A  the scheme codes involve one unknown for each factor and the rest 

codes are known except the scaling constants, that is, all sk '  are unknowns and ss'  are known. 

For these factors  

     
        .26;25

;24;23

2
3

2
31

2
32

2
34

2
2

2
2

2
23

2
1

2
1

2
12

2
1





sskNRskNR

skNRNR




 

 

Different restrictions involving sR'  give the following equations 
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    22
1

2
1

2
1

34  sk        (3.3.45) 

    22
2

2
2

2
2

35  sk         (3.3.46) 

    22
3

2
32

2
31

2
3

35  ssk        (3.3.47) 

 

The equations to make L  expressions equal come out to be the same as above. The equations to 

make CL  expressions equal come out to be the above equations except that wherever there is 

power 2  it should be made 4 , i.e., 

 

    44
1

4
1

4
1

34  sk         (3.3.48) 

    44
2

4
2

4
2

35  sk         (3.3.49) 

    44
3

4
32

4
31

4
3

35  ssk        (3.3.50) 

 

These equations are biquadratic equations in pairs (3.3.45 and 3.3.48) form one pair. (3.3.46 and 

3.3.49) another and the remaining two the third pair. The unknowns in each pair are 2
ik  and the 

ratio )3,2,1(22 ii  . All ss'  are constants as given while writing the codes. After the codes 

are known through positive solutions of the equations these can be used in any design provided 

one of the factors has 3  levels. One of the scaling constants can be fixed conveniently and the 

other is worked from the solution of their ratio. 

 

The design is now an asymmetrical response surface design where LR,  and CL  are constants 

and as such can be treated just like symmetrical response surface designs regarding parameter 

estimates, variances and co-variances. Taking further sets of combinations with fresh unknowns 

these designs can be converted into rotatable or modified designs. 

 

Fractional asymmetrical response surface designs 

The designs obtained previously in Choice A and Choice B are based on complete factorial. 

When there are more than 4  factors, suitable fractions of the complete asymmetrical factorial 

where no interaction with less than 5 factors is confounded can be used without any change in 

procedure and solutions except for change of N . 

 

Another procedure of getting fractional designs is first to take some initial sets with unknowns 

and generate design points as is done for obtaining symmetrical designs with s  as number of 

levels of each factor. Let this design be denoted by D . Next each unknown level code of an 

additional factor X  with m  levels, m  not equal to s  is associated (pre-fixed) with each 

combination of the symmetrical design D . The resulting design will have mN  combinations 

where N  is the number of combinations in the symmetrical design D . If factor X  which we 

shall call 1, has 3  levels with unknown scaling constant there will be only two unknowns. The 

constancy restrictions are three viz. 231221 , LLRR   and 21 CLCL   and each one gives a 

separate equation unlike what happened in design based on complete factorial. Thus a 3 -level 

factor cannot be used as the additional factor X . As there are 3  equations there should be at 
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least three unknowns in the sets of D  and in the additional factor together. The following 

illustration clarifies different issues. The design D  is obtained as below: 

 

We take the factor X  at 4  levels involving two unknowns. Design D  is obtained from the sets 

 (1) ,  000(2) ,  000(3)  ,  000(4)   and 

 000(5) . The factor X  has the 4  levels viz. pqqp  . The codes are each 

associated with the 16  points from set (1) only. Against the points generated from sets (2) to (5) 

the factor X  will have levels 1  and 1  as shown below. The design will thus have 72  points in 

5  factors with X  at 6  levels including 1  and 1  and rest at 5  levels each. The design is 

shown below: 

 

Design Points 

Factors  Factors  Points 

X A B C D  X A B C D  X A B C D 

-p - - - -  -q - - - -  1   0 0 0 

-p - - -   -q - - -   1 -   0 0 0 

-p - -  -  -q - -  -  -1 0   0 0 

-p -  - -  -q -  - -  -1 0 -   0 0 

-p  - - -  -q  - - -  1 0 0   0 

-p - -    -q - -    1 0 0 -   0 

-p -  -   -q -  -   -1 0 0 0   

-p -   -  -q -   -  -1 0 0 0 -   

-p  - -   -q  - -        

-p  -  -  -q  -  -       

-p   - -  -q   - -       

-p    -  -q    -       

-p   -   -q   -        

-p  -    -q  -         

-p -     -q -          

-p      -q           

 

There are 4  sets of 16  points each set having a different level of X . Two of the sets with levels 

-qp and  are shown along with the 8  points from the initial sets from (2) to (5). There are two 

more groups of 16  points which are identical to the above two groups except that p  has to be 

replaced by p  and q  by q . This way all the 72  points in the design are obtained. 

 

Different LR,  etc. expressions are shown below: 

 

  832 22
1  qpR ; 3

22
2 264 RR    

  2222
12 232   qpL ; 4

23 64L  

  832 44
1  qpCL ; 44

2 264  CL  
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The following 3  equations follow from the constancy restrictions: 

  2222 264832   qp        (3.3.51) 

  42222 64232   qp        (3.3.52) 

  4444 264832   qp        (3.3.53) 

 

Dividing the second by 2  and then subtracting from the first equation 

 

8/22 222    

 

Taking 1  we get 22  . With these values of   and   the first two equations are satisfied. 

Substituting these values in equations (3.3.51) and (3.3.53) above 

8/1522  qp ;  244  qp  

 

Solving these equations 

 

   
76.0and13.1

5895.016568.515;285.116568.515 22





qp

qp
 

 

All the unknowns are now known and the design is complete except for its conversion to actual 

levels, which can be obtained by following the method given earlier after the level ranges for the 

factors are known. 

 

Conversion to rotatable or modified designs 

By taking the initial set  ddddd  we obtain 16  design points from it using half fraction 

of 52 . The sets  0000d  that give 10  additional points can also be taken. Taking these 

points along with 72  points of the design obtained above each value of expressions LR,  and 

CL  will increase by a constant separately for each category of expressions. Thus the 

asymmetrical design obtained earlier is not disturbed due to addition of these points except for 

change of number of levels by increase of 2  or 3  for each factor. Now by using restrictions 

either 3C  or NLR 2 , d can be obtained and the design will be rotatable or modified. 

 

Another method for converting the design to rotatable or modified response surface design is to 

generate another equation in addition to the three at (3.3.51), (3.3.52), (3.3.53) by using the 

restriction 3C  or NLR 2 . This is possible as there are 4  unknowns in the equations. When 

3C  no positive solution of 2p  is possible. 

 

Using NLR 2  we get the equation 
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  
  ,48828.88832

6472832

222

4222









qpor

qp
     (3.3.54) 

 

Solving these 4 equations, we get .7975.0;1679.1;05888.2;0607.1 22  qp  With 

these values of the unknowns the design becomes modified response surface design with 72  

points and with 82  points the design becomes both modified and rotatable as discussed earlier. 

 

3.3.3 Group Divisible Rotatable Designs 

The above discussion relates to the situations where it is possible to obtain designs that ensure 

that the variance of the predicted response remains constant at all points that are equidistant from 

the design center. However, it may not always be achievable for all the factors or if achievable 

may require a large number of runs. To take care of this problem Herzberg (1966) introduced 

another class of designs called cylindrically rotatable designs. These designs are rotatable with 

respect to all factors except one.  To be specific, a v dimensional design is cylindrically 

rotatable if the variance of the predicted response is constant at points on the same )1( v - 

dimensional hypersphere that is centered on a specified axis. Das and Dey (1967) attempted a 

modification of rotatable designs. They divided the v-dimensional space corresponding to v 

factors into two mutually orthogonal spaces, one of 1v -dimension and the other of 2v  1vv  -

dimension. The projection of any treatment combination in the v -dimensional space can be 

thought upon on each of the above two spaces. Without loss of generality the 1v -dimensional 

space can be defined by the first 1v  factors and the other space by the remaining factors. 

Therefore the projection of the point  020100 ...,,, vxxxx  on the first space gives 

 0...,,0,...,,, 02010 1v
xxx  and on the second space gives  0,0,1 ...,,,0...,,0

1 vv xx  . If the 

distances of these projections from a suitable origin are 2
1

d  and 2
2

d  respectively, then. 

 2
1

1

2
0

1

dx
v

i
i




,  2
2

1

2
0

1

dx
v

vq
j




. 

 

Knowing that in rotatable designs the variance of the estimated response at a point is a function 

of the distance of that point from the origin, Das and Dey (1967) introduced a new class of 

response surface designs, such that the variance of a response estimated through such designs at 

the point  02010 ,...,, vxxx  is a function of the distances 
2
1

d  and 
2
2

d . These designs will not be 

rotatable in the v-dimensional space, but they will be certainly rotatable in 1v -dimensional space 

for all those points whose projection in the 2v -dimensional space are at a constant distance from 

the origin and vice-versa. These designs have been termed as group divisible rotatable designs 

as the factors get divided into groups such that for the factors within each group the design is 

rotatable. We may now formally define a group divisible second order response surface designs 

(GDSORD).  

 

Let there be v -factors each at s  levels. The v-factors in the experiment are divided into two 

groups of factors, one group consisting of 1v -factors and the other, the rest 2v  1vv   factors. 
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Without loss of generality, the factors in the first group may be denoted as 1,,2,1 v  and the 

factors in the second group are denoted by )(,,2,1 2111 vvvvv   . Then the set of points 

  Nuvixiu ...,,2,1,...,,2,1,  will be a GDSORD if and only if 

(i)        0

1 1














 
 

N

u

k

u
iu

ix


, if any i  is odd, for 32,1,0 ori   and   .4i  

(v) 


N

u
iux

1

2 constant 1R  (say)  for all 1,,2,1 vi   

(vi)  


N

u
iux

1

4  constant = 13L  (say) for all 1,,2,1 vi    

(vii) 





2

1

2
ui

N

u
iu xx constant = 1L  (say),  for all ii  , 1,,2,1, vii    

(viii) 


N

u
qux

1

2 constant 2R  (say)  for all vvvq ,,2,1 11   

(ix) 


N

u
qux

1

4  constant = 23L  (say) for all vvvq ,,2,1 11    

(x) 





2

1

2
uq

N

u
qu xx constant = 2L  (say),  for all qq  , vvvqq ,,2,1, 11   

(xi) 


2

1

2
qu

N

u
iu xx constant =  (say),  for all 1,,2,1 vi  ; vvvq ,,2,1 11   

(3.3.55) 

Das and Dey (1967) also gave some methods of construction of GDSORD using central 

composite type designs, BIB designs and Group divisible designs. All their methods of 

construction give designs for experiments where each of the factors is at 5 levels. The level 

codes for the factors in the first group are denoted by  ,,0,,  and for the factors within 

second group are denoted by  ,,0,, . The designs obtained are not suitable for the 

situations where doses are equispaced. Dey (1969) has obtained some designs where the factors 

in one group are at 3 levels each and factors in the second group are at 5 levels each. Dey (1969) 

has also given a very simple method of construction of GDSORD. 

 

Method 3.3.7: {Dey (1969)}. Let there exist a SORD in tv  factors and tN  design points; 

2,1t . Let the set of points }{ tiux  be denoted by tA . Then a GDSORD can always be obtained 

in 21 vvv   factors with 21 NNN   points by considering the rows of the design matrix as 

  









2

1

A0

0A
X        (3.3.56) 

 

This method in general enables us to get GDSORD for symmetrical as well as asymmetrical 

factorials with smaller number of points. Using this method, the GDSORD’s with equispaced 

doses can be obtained using the SORD’s obtained through the methods of construction given in 
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Section 3.3.1. However, since 


2

1

2
qu

N

u
iu xx  =0, therefore, the parameters iqb ; 1,,2,1 vi  ; 

vvvq ,,2,1 11   are non-estimable in the second order response surface.  

 

In the present investigation, a simplification in the GDSORD has been introduced. For these 

designs 21 RR   and 21 LL   and 0 . A method of construction based on a group divisible 

designs. A group divisible design is defined as follows: 

 

Let mnv   treatments that can be arranged in m groups of size n each. The two treatments are 

first associates if they occur in the same group and second associates otherwise. Then a group 

divisible design is an arrangement of mnv  treatments in b blocks each of size vk   such that a 

treatment is applied at most once in a block, each treatment occurs exactly in r blocks and each 

pair of first associates occur together in 1  blocks and each pair of second associates occur 

together in 2  blocks. The method is described in the sequel. 

 

Method 3.3.8: Consider a group divisible (GD) design with parameters 

nmkrbnv ,2,0,,,,,2 21   . Then following the procedure of Method 3.3.2, Let 

)( jimM be  the incidence matrix  of the group divisible design where: 

 

),...,1;,...,1(
eotherwis,0

blocktheinoccurstreatmenttheif,1
bivj    

ji
m

thth

ji 





  

 

The element 1 in the incidence matrix is replaced by an unknown .. From the rows of this 

matrix involving 0 and the unknown , we shall get b combinations. Each of these combinations 

is then associated with a k2  factorial or a suitable Resolution V fraction, say p2 , of it, the levels 

being coded as 1 . Let the number of k2  or p2  points be denoted by w. For these bw  points, 

we have 
2

21 rwRR  ; 4
21 rwCLCL   ; 4

121  wLL   and 4
2  w  

 

For obtaining a rotatable design within groups, we take 3C  i.e.  

   4
1

4 3  wrw          13r .   (3.3.57) 

 

If a GD design with 13r  exists for given nv 2 , then no further combinations need to be 

taken excepting center points. By taking 1 , we can get designs with v  factors each at three 

levels coded as -1, 0, +1. The number of design points is 0nbwN  .  

 

The values of Npv ,,  for group divisible rotatable designs obtainable from GD designs with 

13r  for 103  v  and 500N  are given in Table 3.3.9. In this Table X# denotes the design 

of Type X given at serial number # in Clatworthy (1973). The parameters of the GD design are 

given in the order nmkrbv ,,,,,,, 21  .  
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Table 3.3.9: The values of v, p, and N  for group divisible second order response surface 

designs  for three equispaced doses with 103  v  and  500N  obtainable from Method 

3.3.8. 

v p N Source GD design 

6 2 108+ 0n  R25:(6,27,9,2,3,1,2,3) 

6 3 144+ 0n  R52: (6,18,9,3,3,4,2,3) 

8 4 192+ 0n  SR38: (8,12,6,4,2,3,2,4) 

 

If however, the relation 13r  does not hold in a GD design, we have to take further 

combinations of another unknown   as indicated below. 

 

If 13r ,  then we take the combinations ),0,...,0,(  ),...0,...,0,,0(  ),0,...,0(  . If again, 

13r , the combinations ),...,,(   have to be taken along with the combinations 

obtained from the incidence matrix of the GD design.  The values of the unknowns have to be 

fixed in this case by using the relations .,.,3 eiC  






N

u
uiiu

N

u
iu xxx

1

22

1

4 3  and 








N

u
uqqu

N

u
qu xxx

1

22

1

4 3 . 

 

For obtaining group divisible rotatable designs when each of the factors at 5 equispaced levels 

(-2,-1,0,1,2)  using GD designs, we take s copies of the points obtained from the incidence matrix 

and t copies of the added points (other than the central points). We get the following.  

 

When 13r    

twrsRR 821  ;  wsLL 121   ;  and ws 2  ;   

N 02 nvtbsw  . 

 

For a group divisible rotatable design, 3C  , i.e., 

 wstsrw 1332   

       
 wrt

s




13

32


           (3.3.58) 

 

The values of Ntspv ,,,,  for group divisible rotatable designs obtainable from GD designs with 

13r  for 103  v  and 500N  are given in Table 3.3.10.  
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Table 3.3.10: The values of v, p,s,t and N  for group divisible second order response surface 

designs  for five equispaced doses with 103  v  and  500N  obtainable from Method 

3.3.8. 

v p s t N Source GD design 

4 2 4 1 136+ 0n  R1: (4,8,4,2,2,1,2,2) 

4 2 2 1 88+ 0n  R2: (4,10,5,2,3,1,2,2) 

4 2 4 3 216+ 0n  R4: (4,12,6,2,4,1,2,2) 

4 2 1 1 64+ 0n  R5: (4,14,7,2,5,1,2,2) 

4 2 4 1 232+ 0n  R6: (4,14,7,2,3,2,2,2) 

4 2 4 5 296+ 0n  R8: (4,16,8,2,6,1,2,2) 

4 2 2 1 136+ 0n  R9: (4,16,8,2,4,2,2,2) 

4 2 2 3 168+ 0n  R11: (4,18,9,2,7,1,2,2) 

4 2 4 3 312+ 0n  R12: (4,18,9,2,5,2,2,2) 

4 2 4 7 376+ 0n  R14: (4,20,10,2,8,1,2,2) 

4 2 1 1 88+ 0n  R15: (4,20,10,2,6,2,2,2) 

4 2 4 1 328+ 0n  R16: (4,20,10,2,4,3,2,2) 

6 4 2 3 324+ 0n  SR35: (6,9,6,4,3,4,2,3) 

6 3 4 3 420+ 0n  R43: (6,12,6,3,3,2,2,3) 

6 4 2 5 252+ 0n  R94: (6,6,4,4,3,2,2,3) 

8 4 1 2 288+ 0n  R98: (8,16,8,4,4,3,2,4) 

8 4 1 3 336+ 0n  R100: (8,18,9,4,5,3,2,4) 

8 4 1 4 384+ 0n  R102: (8,20,10,4,6,3,2,4) 

8 4 2 7 368+ 0n  R133: (8,8,5,5,4,2,2,4) 

8 4 1 7 368+ 0n  R135: (8,16,10,5,8,4,2,4) 

X# denotes the design of Type X given at serial number # in Clatworthy (1973).  
 

For 13r , we have 2121 4twwrsRR   where 1
p w2   and  2itoffractionaor2 wv    

 21121 16twwsLL     and 2121 16twrwsCLCL  ; 22 16twws   ;  

021 ntwbswN  . For group divisible rotatability, we have 3C  , i.e. 

   21121 16316 twwstwsrw    

       
1

2

13

32

w

w

rt

s


         (3.3.59) 

Using conditions (3.3.59), group divisible second order response surface designs obtainable from 

GD designs with 13r  can easily be obtained.  

 

Adhikary and Panda (1983) extended the concept of group divisible second order rotatable 

response surface designs when the factor space is divisible into 2m groups. These designs can 

be obtained using Method 3.3.8 by taking the GD design with 2m . 
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3.4 Designs for Slope Estimation 
The response surface designs given in Section 3.3 are suitable for the experimental situations 

where the experimenter is interested in determining the level combination of the factors that 

optimize the response. In many practical situations, however, the experimenter is interested in 

estimation of the rate of change of response for given value of independent variable(s) rather 

than optimization of response. This problem is frequently encountered e.g., in estimating rates of 

reaction in chemical experiments; rates of growth of biological populations; rates of changes in 

response of a human being or an animal to a drug dosage, rate of change of yield per unit of 

fertilizer dose, etc. The work on the problem of obtaining designs for slope estimation was 

initiated by Ott and Mendenhall (1972) and Murty and Studden (1972). Since, then  lot of efforts 

have been made in the literature for obtaining efficient designs for the estimation of differences 

in responses i.e., for estimating the slope of a response surface. Hader and Park (1978) 

introduced the concept of slope rotatability over axial directions. According to them, the designs 

possessing the property that the estimate of derivative is equal for all points equidistant from the 

origin are known as slope rotatable designs.  For a second order response surface as defined in 

(2.1.3) and (2.2.6) of Chapter II, the rate of change of response due to thi  independent variable is 

given by  

 
 







 v

ii
iiiiiii

i

xbxbb
x

y

1

2
ˆ x

      (3.4.1) 

 

For second order response design obtained in Section 3.3satisfying the conditions of symmetry 

given in (3.3.1) and condition of non-singularity given in (3.3.5), we have 

  

0),Cov(),Cov(),Cov(   iiiiiiiiii bbbbbb  

Using (3.3.8) and (3.3.60), the variance of 
 

ix

y



 xˆ
 at point ( ),,,,, 21 vuiuuu xxxx   is given by 
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It can easily be seen that the above expression will be a function of 2d  only if 

   iiii bb  VarVar4        (3.4.2) 

 

The designs possessing the property (3.4.2) provide the estimate of derivative (slope) with same 

variance at all points equidistant from the origin and are known as slope rotatable designs over 

axial directions.    

 

Further, it can easily be seen that no rotatable design can be a slope rotatable. This can be proved 

by using the fact that for a rotatable design 
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Now, (3.3.61) implies that 
v

v

R

NL 2

2


  and for rotatability 

22 


v

v

R

NL
.   

 

Now if we take NLR 2  design, then condition (3.4.2) and (3.3.8), we get 5C . We call such 

designs as modified slope rotatable designs.  In nutshell for a modified second order slope 

rotatable design following conditions have to be satisfied 

 

 Conditions of symmetry (3.3.1) 

 NLR 2  (3.3.13) and 5C .       (3.4.3) 

  

Hader and Park (1978) and Gupta (1989) obtained slope rotatable designs over axial directions 

through Central Composite designs and BIB designs respectively. The designs obtained by these 

authors are not with equispaced levels. Hence, in this section, we obtain modified second order 

slope rotatable designs over axial directions for equispaced doses.  

  

Using the method of construction of designs for fitting response surfaces with factor levels as 

equispaced doses given in Section 3.3.1, one can get a modified second order slope rotatable 

design with equispaced doses.  

 

For the modified slope rotatable designs obtainable from central composite designs following the 

procedure of Method 3.3.1, 5C   implies that  
 

wt

s

swt

swtsw

8

432

532







        (3.4.4) 

and  NLR 2  

 swntvswtswtws 0
222 21664   

 

If  5C  , then .8tsw  Substituting for sw in above, we get 

  tntvtttt 8281286464 0
222   

 vtn  1220          (3.4.5) 

 

Now choosing the values of 0,, nts using equations (3.4.4) and (3.4.5), we get a modified second 

order slope rotatable design with each of the factors at 5 equispaced levels. The values of 

0,,, ntsp  and N for modified slope rotatable designs for factorial experiments with 5 equispaced 

doses with 103  v  and 500N  are given in Table 3.4.1.  
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Table 3.4.1: The values of v, p, s, t, 0n  for modified slope rotatable designs for 5 equispaced 

doses with 103  v  and 500N  obtainable from Central Composite Designs. 

v p s t 0n  N 

3 3 1 1 18 32 

4 4 1 2 32 64 

5 4 1 2 28 64 

5 5 1 4 56 128 

6 5 1 4 48 128 

6 6 1 8 96 256 

7 6 1 8 80 256 

8 6 1 8 64 256 

 

Now, using Method 3.3.2 and the conditions in (3.4.3), a modified slope rotatable design with v 

factors each with three levels can be obtained using the above method, provided there exists a 

BIB design with 5r  . There is only one BIB design for 10v  that satisfies the condition 

5r  . The parameters of this design are 1,2,5,15,6  krbv . Following Method 

3.3.2, for the design obtainable from this BIB design, we have 422 w  and get 

20,20  CLR and 4L . The number of design points is 060 nN  . The condition 5C  is 

satisfied. To obtain a modified slope rotatable design, the condition NLR 2
 must also be 

satisfied. To meet this requirement, we get 400 n . Therefore, we get a modified slope rotatable 

design with 100 design points for a 63 -factorial experiment.  

 

For the case of  5r ,  we can proceed on the steps of Method 3.3.2. The condition 5C  

requires that  



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Following Method 3.3.2 with equispaced doses, the above condition implies that 

 wrt

s


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32
        (3.4.6) 

 

Using NLR 2 , we have 
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      (3.4.7) 

Table 3.4.2 gives the list of the modified slope rotatable second order response surface designs 

obtainable from BIB dressings with 5r  . 
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Table 3.4.2: The values of v, p, s, t, 0n  for modified slope rotatable designs for 5 equispaced 

doses with 103  v  and 500N  obtainable from BIB designs with 5r  . 

v k p s t n0 N Source BIB Design 

4 2 2 4 1 92 196 (4,6,3,2,1) 

4 3 3 4 7 177 361 (4, 4, 3,3,2) 

5 2 2 8 1 248 578 (5,10,4,2,1) 

5 3 3 4 9 316 726 (5,10,6,3,3) 

5 4 4 2 11 216 486 (5,5,4,4,3) 

6 3 3 4 5 245 625 (6,10,5,3,2) 

6 4 4 1 10 240 600 (6,15,10,4,6) 

7 3 3 2 1 70 196 (7,7,3,3,1) 

7 4 4 1 3 88 242 (7,7,4,4,2) 

8 4 4 1 4 144 432 (8,14,7,4,3) 

8 7 4 2 23 243 867 (8,8,7,7,6) 

8 7 5 1 23 243 867 (8,8,7,7,6) 

9 3 3 4 1 176 578 (9,12,4,3,1) 

 

In case of  5r , for a modified slope rotatable response surface design, we get 

1

2

5

64

w

w

rt

s


                (3.4.8) 

 

Substituting (3.4.8) in (3.3.31) we will get a modified slope rotatable design when 5C  . The 

number of design points obtainable from this are quite large and are not presented here. 

 

One may observe that the number of center points added in the designs obtained in this section is 

quite large. For obtaining slope rotatable designs for equispaced doses, this is difficult to avoid. 

Further, efforts need to be made to obtain slope rotatable designs over axial directions with 

equispaced doses. 

 

The concept of slope rotatability over axial directions requires that the variance of the estimated 

slope in every axial direction be constant at points equidistant from the design origin. Park 

(1987) and Jang and Park (1993) extended the concept of slope rotatability over axial directions 

to the class of slope rotatable designs over all directions. This requires that average variance 

slope is constant for all the points equidistant from the origin. To be clearer, consider the 

following: 

 

Let the estimated slope vector be 
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where  *),,,(2 21 DI0D vv xxxdiag   is the matrix arising from the differentiation of  

(2.2.6) in Chapter II with respect to each of the v variables and b is the vector of estimated 

parameters of a second order response surface and given in (2.2.4) of Chapter II. Here the matrix 

*D  is 
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The estimated derivative at any point x  in the direction specified by the 1v  vector of direction 

cosines,  v ...,,, 21ν , is  xv ĝ , where 1

1

2 


v

i
i .  The variance of this slope is 

     xνx gv ˆvarVar      

   νDβDν  ˆvar  

   νDXXDν 
12 .       (3.4.10) 

 

If we are interested in all possible directions of ν , we want to consider the average of  xVar  

over all possible directions, which is referred to as the average slope variance. Park (1987) 

showed that the average slope variance is  

      DXXDx 
1

2

trace
v

V


     (3.4.11) 

Note that  xV  is a function of x , the point at which the derivative is being estimated, and also a 

function of the design.  By choice of design it is possible to make this variance  xV  constant for 

all points equidistant from the design origin.  This is the property of slope rotatability over all 

directions.  In other words, we can say that the property of slope rotatability over all directions 

requires that the sum of the variances of the estimates of slopes in all directions at any point is a 

function of the distance of the point from the origin. This covers a very wide class of designs. If 

we call a second order response surface design satisfying the conditions of symmetry in (3.3.1) 

as symmetric second order response design, then we have the following result: 

 

Result 3.4.1: {Park (1987) and Anjaneyulu, Varma and Narasimham (1997)}. Any symmetric 

second order response surface design is a second order slope rotatable design over all directions. 

 

Proof: For any general v-factor symmetric second order response surface design, we have 
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 (from (3.4.1) 

 

Now the sum of the variances of the estimates of slopes in all directions at any point is 

 

 
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Now using (3.3.8) and taking 



v

i
ixd

1

22 , we get 

 
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)Var()1()Var(4)Var(
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
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
x

 (3.4.11) 

Hence proved. 

 

As a consequence of the Result 3.4.1, we have the following designs that are Second Order Slope 

Rotatable designs over all directions: 

 All the second order rotatable designs for response optimization obtained in Section (3.3.1) 

and modified second order slope rotatable designs over axial directions obtained in this 

Section.  

 All second order rotatable designs for response optimization and modified second order 

slope rotatable designs over axial directions obtained in Sections 3.3.1 and Section 3.4.1 

even when 1 ts  and 0n , the number of center points may be different from those given in 

the catalogues. 

 The designs obtained in Method 3.3.3 with factors at 4 equispaced doses {although do not 

satisfy the property of rotatability for response optimization}.  

 All asymmetric rotatable designs obtainable from Method 3.3.4 and Method 3.3.5.  

 All designs for factors at three equispaced levels obtainable from incidence matrix of a BIB 

design either with 3r  or 3r . 

 

Park and Kwon (1998) introduced yet another concept viz. Slope-rotatable design with equal 

maximum directional variance in obtaining designs for slope estimation. Such designs are 

defined as 

  

Let  

 

   

  νDXXDν

xx











1

1':

1':
max

xma

VarxmaVar

vvv

v
vvv
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If  xmaxVar  is constant on the circles ( 2v ), spheres ( 3v ) or hyperspheres ( 4v ) centered 

at the design origin, the estimates of the slope would be equally reliable for all points equidistant 

from the design origin. 

 

The design, which gives this property, is called slope-rotatable design with equal maximum 

directional variance. Park and Kwon (1998) have shown that a rotatable designs for response 

optimization is a slope-rotatable design with equal maximum directional variance. As a 

consequence, all rotatable designs obtained in Section 3.3.1 are also slope-rotatable designs with 

equal maximum directional variance. 

 

Minimax Designs for Estimating the Slope of a Response Surface  

The study of optimal designs for estimating the slope of a response surface was initiated by  

Mukerjee and Huda (1985) using the criterion of minimizing the variance of the estimated slope 

maximized over all points in the factor space. They have termed such designs as Minimax 

designs. The concept of Minimax is described in the sequel: 

 

Consider v quantitative factors vxxx ...,,, 21  taking values in a v - ball having unit radius and 

suppose that the response at a point x is given by the second order polynomial given in (2.1.3) 

and (2.2.2). The N-observations in this model have been assumed to be uncorrelated w ith a 

common variance 2 . Without loss of generality, let 12  . A second order design ¶ is a 

probability measure on  











 



1;...,,,

1

2
21

v

i
iuv xxxxX  which allows the estimation of all 

parameters in (2.2.2) and let         xxx  d ¶ff ¶M     be the information matrix of ¶. Then  

 

     ¶DN 1Mb  

 

where b is the least squares estimator of β given in (2.2.2) and  .D  stands for the dispersion 

matrix. 

 

It can be shown that for polynomial regression in spherical regions, optimal designs under the 

present type of criterion are symmetric (Kiefer (1960)). Hence, restricting to symmetric designs, 

we observe that for a second order design ¶ the conditions for symmetry are  

 

 

 

 

 

22

22

4

2

)1(,0,1,0

)(/
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,/

vRLNvCLCR

iiNL d ¶xx
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NR d ¶x

ii
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i
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
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






x

x

x

    (3.4.12) 

and all other moments upto order four are zero. 
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The vector of estimated slopes along the factor axes at a point x  is )(ˆ xg as given in (3.4.9). One 

can obtain the covariance matrix of )(ˆ xg  and consider the variance of the estimated slope 

averaged over all directions as in (3.4.11). Following Atkinson (1970), this is equivalent to 

considering the trace of the covariance matrix and the minimax design will be that which 

minimizes this trace maximized over all points in X . 

 

After substituting the variance of the estimated parameters from (3.3.8) in (3.4.11), the trace of 

the covariance matrix can be shown to be 

 

      21221
1

11 1)(1})1{(4 dvNLLNRDLCNvNR     (3.4.13) 

 

where  



v

i
ixd

1

22   and   22
1 )1( vRLNvCD        

Note that (3.4.13) is a function of 2d  even though the design has been assumed to be only 

symmetric and not necessarily rotatable.  This has also been shown in Result 3.4.1.  

     

Since the radius of the spherical design region is taken as unity, then noting that the coefficient 

of 2d  in (3.4.13) is non-negative, it follows that (3.4.13) is maximum over the factor space when 
2d =1 and this maximum, after some rearrangement of terms, can be expressed as  

 

 1
1

11111 4)}1(){1(4)1(V   DvCLvNvNLvvNR      (3.4.14) 

 

where  RLNvCvRLCvR   221 )1(,0,1,0  

 

For fixed R  and L , clearly (3.4.14) is decreasing in CL  and is a minimum when 

 LvRCL 1  in which case (3.4.14) becomes 

 

)(4))(1(4)1(V 2211111 vRRNvvLRvNvNLvvNR      (3.4.15) 

 

with   111 2/0,/0
  vRNNLvNR  

 

Differentiation with respect to L  shows that for fixed R  expression (3.4.15) is a minimum when 

  RvL
1

2


  and if this is substituted in (3.4.15), the resulting expression, as a function of R , 

is a minimum when    20

121
42 


vvR , say. Thus for the minimax design 20R , 

as stated above and  

 

     20
11

20
11 23,2    vCLNvLN     (3.4.16) 
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Since 3C , the minimax design is rotatable (Box and Hunter (1957)).  Since in practice, we are 

only concerned with discrete (exact) designs for which the weights are integer multiples of 1N , 

the optimal design moments specified in (3.4.16) may not be achieved by implementable 

designs. Thus, it is important to study the performance of an implementable design in 

comparison with the optimal design. A measure of efficiency may be taken as the ratio of the 

value of (3.4.15) for the optimal design (denoted by V ) to that for the design under 

consideration (denoted by Var). Mukerjee and Huda (1985) studied the efficiencies of rotatable 

designs obtainable from central composite designs. Gupta (1989) studied the minimax property 

of the response surface designs obtained through BIB designs. In the presented investigation, the 

minimax property of second order rotatable designs for various factors with equispaced doses are 

investigated. All the rotatable designs obtained in Section 3.3.1 are found to have reasonably 

high efficiencies. 

 

As discussed above second order rotatable designs for various factors with equispaced doses also 

possess the property of slope rotatability over all directions, slope-rotatability with equal 

maximum directional variance and have reasonably good efficiencies as per minimax criterion. 

Therefore, the second order rotatable designs for response optimization obtained in Sections 

3.3.1 and 3.3.2 can usefully be employed in agricultural experiments for both response 

optimization and slope estimation. 

 

3.5 Blocking in Second Order Response Surface Designs 

In many experimental situations, it may not be possible to have as many homogeneous 

experimental units as are the design points of a second order response surface design i.e. the 

conditions under which a trial for fitting second order response surface cannot be run under 

homogenous conditions.  To deal with such situations,  it is required that the design points be 

grouped into blocks such that experimental conditions for design points within a block are 

homogeneous.  For a thorough discussion on orthogonal blocking of second order response 

surface designs one may refer to Box and Hunter (1957), Dey (1968), Dey and Das (1970), Gill 

and Das (1974) and Khuri and Cornell (1996), Chapter 8.   For completeness, we give a brief 

description of the designs with orthogonal blocking.  Let the N design points of a v-factor 

response surface design be divided into b blocks.  The second order response surface with block 

effect can be represented as  

Nuezxxxy u

b

j
juj

v
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v

ij
iuij
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i
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v

i
iuiu ,...,1;

1

1

1 11
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1
0   





 

           (3.5.1) 

 

where j is the effect of thj  block and  juz  is a dummy variable which takes the value '1' if the 

thu  observation pertains to thj block and '0' otherwise.  The other symbols have the same 

meaning as in Chapter II.         

 

In general the linear and quadratic effects (polynomial effects) in (3.5.1) are not independent of 

the block effects.  However, the experimenter would generally be interested in assessing the 

polynomial effects independent of block effects. Therefore, the design points of the second order 

response surface design should be so chosen that the least square estimators of the values of 

polynomial effects β  are independent of block effects.  A design, which allows the estimation of 
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polynomial effects independent of block effects, is known as orthogonally blocked second order 

response surface design.  Further blocks are assumed to have no impact on the nature and shape 

of the response surface.   To obtain the conditions, we rewrite the model (3.5.1) by adding and 

subtracting 


b

j
jj z

1

  as  

  u

b

j
jjuj

v

i

v

ii
uiiuii

v

i
iuii
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i
iuiu ezzxxxxy   
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 

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1

1 11
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1
0   (3.5.2) 

 

where 



N

u
juj z

N
z

1

1
 and 




b

s

jj z

1

00  .       

 

The model (3.5.2) can be re-written in matrix notations as 

 

 eZαXβy          (3.5.3) 

 

where eβX and,  are same as defined in (2.2.2) and ))(( juzZ  and ),,( 1  b  . 

  

One can easily see that for the orthogonal estimation of β and α , 0ZX  , i.e. the conditions for 

orthogonal blocking are   

(i)   bjvizzx
N

u
jjuiu ,...,1;,...,10
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

 

(ii)   bjviiiizzxx
N

u
jjuuiiu ,...,1;,...,1,,0

1
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(iii)   bjvizzx
N

u
jjuiu ,...,1;,...,10

1

2 
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    (3.5.4) 

 

Since it is desirable for an orthogonally blocked design to be rotatable also, therefore, the 

symmetry conditions of the second order response surface designs given in section (3.3) should 

also be satisfied. Here let us take that 

(iv) vix
N

u
iu ,...,10

1




       

(v) viiiixx
N

u
uiiu ,...,1,,0

1




      (3.5.5) 

 

As suz  is a 0-1 variable, therefore, using (3.5.4) and (3.5.5), the following conditions are 

obtained for orthogonal blocking [(see e.g. Box and Hunter (1957)] 

(a) bjvix
ju

iu ,...,1;,...,10
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  



RESPONSE SURFACE DESIGNS 

 88 

(b) bjviiiixx
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     (3.5.6) 

where 
)( ju

denotes the summation extended only over those values of  u in the thj  block and 

jn  is the  number of design points in the thj block.  To be specific, conditions (3.5.6a) and 

(3.5.6b) imply that the sum of sxiu '  within each block should be zero. It implies that the each 

block is a first order orthogonal design. According to the condition (3.5.6c), the fraction of the 

total of sum of squares of ),...,1(' visxiu   in each block must be equal to the fraction of the 

total number of design points allotted in that block.  We now discuss the methods of construction 

of second order response surface designs with orthogonal blocking. 

 

The methods of blocking in response surface designs obtainable from central composite designs 

and BIB designs have been studied in literature. Dey (1968) has studied the blocking in response 

surface designs with equispaced doses. These methods of blocking with some modifications are 

given as below: 
 

3.5.1 Blocking in Central Composite Designs 

1. Take a central composite design for v factors having 5 equispaced levels each denoted by –2, 

-1, 0, 1,2. Now divide vpw p  ,2  in blocks of size m32 , where m  is a positive  integer 

such that interaction of third order or less is not confounded with blocks. This results into 
mp 32  blocks. 

2. Now take the v2 axial points m2  times in one block. We get a block of size 12. mv . 

3. If mmv   31 22. , then add mmv   31 22.  center points in each of the blocks of size m32 . 

If, however, mmv   31 22. , then add 13 2.2   mm v  center points in the block of size 
12. mv . 

4. To satisfy the desired property of rotatability or slope rotatability over axial directions copies 

of these blocks may be adjusted so that the design without blocks satisfy the conditions of the 

desired property. 

 

3.5.2 Blocking in Designs obtainable from BIB designs 

The blocking procedure for the designs obtainable from BIB designs can be classified intro two 

categories viz. (i) resolvable BIB designs (ii) non-resolvable BIB designs. These are described in 

the sequel. 
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Designs obtainable from resolvable BIB designs 

Consider a  resolvable BIB design with parameters  ,,,, khrhbv  . In this design, the 

blocks can be grouped into h  sets such that each set contains  -blocks and in every set every 

treatment is replicated  times. Obtain bw , kpw p  ,2  points as per procedure of Method 

3.3.2. Call these points as points obtained from incidence matrix.  

 

Now take the w points obtained from one set of blocks of  resolvable BIB design into one 

block. This gives h  blocks each of size w . Add bn0  center points to each of the blocks. If 

3r , then this procedure yields a second order rotatable design with orthogonal blocking for 

v  factors each at 3 levels. If the number of center points 0n for a modified and rotatable design 

are a multiple of h , then taking hnn b /00  gives a modified and rotatable design with 

orthogonal blocking. The w points can further be divided into blocks of size r2.  each, such 

that no three factor or less interaction is confounded with the block effects. This will give 
rhw 2/  blocks each of size r2. .  

 

If, however, 3r , then the v2 -axial points of the type ( )0,,0,2  ; 2,,0,0(,  ), m2  

times in one block. This requires that mr  322. . The center points are added as per procedure 

of Step 3 of blocking in Central composite designs. Now the copies of the blocks can be taken as 

per procedure of Method 3.3.2 so as to satisfy the condition of rotatability for response 

optimization or slope rotatability over axial directions.  

 

Designs obtainable from non-resolvable BIB designs 

Consider a BIB design with parameters v, b, r, k, . Now take its complementary which is also a 

BIB design with parameters v, b, b - r, v - k, b - 2r + .  Form the groups of 2b blocks so 

obtained such that each group consists of two blocks, one block from the original BIB design and 

other is its corresponding block from the complementary design.  This process always yields a 1-

resolvable variance balanced block design. It can easily be seen that this design is essentially a 

symmetrical unequal block arrangement with two distinct block sizes as introduced by Kishen 

(1940) with parameters  22*,,,,,, 2121  rbkvkkkbrbbbbv . Following the 

procedure described in Remark 3.3.2, one can get a second order rotatable design by associating 

the rows of the incidence matrix with 22
k

 factorial or p2  fraction of 22
k

 factorial, 21 kpk  . 

In this case, it may be noted that the fraction of 22
k

 factorial need no necessarily be a Resolution 

5 plan as the design is second order response surface design with non-singularity condition with 

original BIB design itself. Now for blocking, follow the same procedure as described for 

resolvable block designs.  

 

The procedures of blocking described above are quite general in nature. In the sequel we give the 

block contents of second order rotatable designs with orthogonal blocking for 83  v  factors 

each at 3  or 5 equispaced doses. In some cases, if the number of center points in blocks are more 

than one, then they can be used for estimation for pure error and hence appropriately identified 
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blocks can be used for fitting of first order response surface and testing the lack of fit and rest of 

the blocks can be used for sequential build up of second order response surface design. 

 

 3-factors each at 3 levels; Block Size: 9 (obtained 

using BIB design 3,3,2,2,1 and its complementary 3,3,1,1,0) 

Block-I  Block-II  Block-III 

A B C  A B C  A B C 

-1 -1 0  -1 0 -1  0 -1 -1 

-1 1 0  -1 0 1  0 -1 1 

1 -1 0  1 0 -1  0 1 -1 

1 1 0  1 0 1  0 1 1 

0 0 1  0 1 0  1 0 0 

0 0 1  0 1 0  1 0 0 

0 0 -1  0 -1 0  -1 0 0 

0 0 -1  0 -1 0  -1 0 0 

0 0 0  0 0 0  0 0 0 
*to make it modified and rotatable add three more points to each of the blocks. 

 

4-factors each at 3 levels; Block Size: 9 (Obtained using BIB design 4,6,3,2,1) 

Block-I  Block-II  Block-III 

A B C D  A B C D  A B C D 

-1 -1 0 0  -1 0 -1 0  0 -1 -1 0 

-1 1 0 0  -1 0 1 0  0 -1 1 0 

1 -1 0 0  1 0 -1 0  0 1 -1 0 

1 1 0 0  1 0 1 0  0 1 1 0 

0 0 -1 -1  0 -1 0 -1  -1 0 0 -1 

0 0 -1 1  0 -1 0 1  -1 0 0 1 

0 0 1 -1  0 1 0 -1  1 0 0 -1 

0 0 1 1  0 1 0 1  1 0 0 1 

0 0 0 0  0 0 0 0  0 0 0 0 

*to make it modified and rotatable add three more points to each of the blocks. 

 

4-factors each at 5 equispaced levels; Block Size 9 (Obtained through Central Composite 

Designs) 

Block-I  Block-II  Block-III 

A B C D  A B C D  A B C D 

-1 -1 -1 -1  -1 -1 -1 1  2 0 0 0 

-1 -1 1 1  -1 -1 1 -1  -2 0 0 0 

-1 1 -1 1  -1 1 -1 -1  0 2 0 0 

1 -1 -1 1  1 -1 -1 -1  0 -2 0 0 

1 -1 1 -1  -1 1 1 1  0 0 2 0 

1 1 -1 -1  1 -1 1 1  0 0 -2 0 

-1 1 1 -1  1 1 -1 1  0 0 0 2 

1 1 1 1  1 1 1 -1  0 0 0 -2 

0 0 0 0  0 0 0 0  0 0 0 0 

*if we take 3 more center points in each block then it is a modified second order rotatable design.  
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5-factors each at 5 equispaced levels (ABC, CDE, ABDE are confounded); Block Size: 10 

(Obtained through Central Composite Designs) 

Block-I  Block-II  Block-III 

A B C D E  A B C D E  A B C D E 

-1 -1 -1 -1 -1  -1 -1 -1 -1 1  2 0 0 0 0 

-1 -1 -1 1 1  -1 -1 -1 1 -1  -2 0 0 0 0 

-1 1 1 -1 1  -1 1 1 -1 -1  0 2 0 0 0 

-1 1 1 1 -1  -1 1 1 1 1  0 -2 0 0 0 

1 -1 1 -1 1  1 -1 1 -1 -1  0 0 2 0 0 

1 -1 1 1 -1  1 -1 1 1 1  0 0 -2 0 0 

1 1 -1 -1 -1  1 1 -1 -1 1  0 0 0 2 0 

1 1 -1 1 1  1 1 -1 1 -1  0 0 0 -2 0 

0 0 0 0 0  0 0 0 0 0  0 0 0 0 2 

0 0 0 0 0  0 0 0 0 0  0 0 0 0 -2 

 

Block-IV  Block-V  Block-VI 

A B C D E  A B C D E  A B C D E 

-1 -1 1 -1 1  -1 -1 1 -1 -1  2 0 0 0 0 

-1 -1 1 1 -1  -1 -1 1 1 1  -2 0 0 0 0 

-1 1 -1 -1 -1  -1 1 -1 -1 1  0 2 0 0 0 

-1 1 -1 1 1  -1 1 -1 1 -1  0 -2 0 0 0 

1 -1 -1 -1 -1  1 -1 -1 -1 1  0 0 2 0 0 

1 -1 -1 1 1  1 -1 -1 1 -1  0 0 -2 0 0 

1 1 1 -1 1  1 1 1 -1 -1  0 0 0 2 0 

1 1 1 1 -1  1 1 1 1 1  0 0 0 -2 0 

0 0 0 0 0  0 0 0 0 0  0 0 0 0 2 

0 0 0 0 0  0 0 0 0 0  0 0 0 0 -2 
*to make this design modified and rotatable add two more center points to each of the blocks. 
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5-factors each at 5 equispaced levels (ABCDE is confounded): Block size 20 (Obtained 

through Central Composite Designs) 

Block-I  Block-II  Block-III 

A B C D E  A B C D E  A B C D E 

-1 -1 -1 -1 -1  1 -1 -1 -1 -1  2 0 0 0 0 

1 1 -1 -1 -1  -1 1 -1 -1 -1  -2 0 0 0 0 

1 -1 1 -1 -1  -1 -1 1 -1 -1  0 2 0 0 0 

1 -1 -1 1 -1  -1 -1 -1 1 -1  0 -2 0 0 0 

1 -1 -1 -1 1  -1 -1 -1 -1 1  0 0 2 0 0 

-1 1 1 -1 -1  1 1 1 -1 -1  0 0 -2 0 0 

-1 1 -1 1 -1  1 1 -1 1 -1  0 0 0 2 0 

-1 1 -1 -1 1  1 1 -1 -1 1  0 0 0 -2 0 

-1 -1 1 1 -1  1 -1 1 1 -1  0 0 0 0 2 

-1 -1 1 -1 1  1 -1 1 -1 1  0 0 0 0 -2 

-1 -1 -1 1 1  1 -1 -1 1 1  2 0 0 0 0 

1 1 1 1 -1  -1 1 1 1 -1  -2 0 0 0 0 

1 1 1 -1 1  -1 1 1 -1 1  0 2 0 0 0 

1 1 -1 1 1  -1 1 -1 1 1  0 -2 0 0 0 

1 -1 1 1 1  -1 -1 1 1 1  0 0 2 0 0 

-1 1 1 1 1  1 1 1 1 1  0 0 -2 0 0 

0 0 0 0 0  0 0 0 0 0  0 0 0 2 0 

0 0 0 0 0  0 0 0 0 0  0 0 0 -2 0 

0 0 0 0 0  0 0 0 0 0  0 0 0 0 2 

0 0 0 0 0  0 0 0 0 0  0 0 0 0 -2 
*to make the design modified and rotatable add four more points to each of the blocks. 

 

5-factors each at 5 equispaced levels (ABCDE is confounded): Block size 16 (Obtained 

through BIB design 5,10,4,2,1 and its complementary 5,10,6,3,3) 

Block-I  Block-II  Block-III 

A B C D E  A B C D E  A B C D E 

-1 -1 -1 0 0  0 -1 -1 -1 0  0 0 -1 -1 -1 

-1 -1 1 0 0  0 -1 -1 1 0  0 0 -1 -1 1 

-1 1 -1 0 0  0 -1 1 -1 0  0 0 -1 1 -1 

1 -1 -1 0 0  0 1 -1 -1 0  0 0 1 -1 -1 

-1 1 1 0 0  0 -1 1 1 0  0 0 -1 1 1 

1 -1 1 0 0  0 1 -1 1 0  0 0 1 -1 1 

1 1 -1 0 0  0 1 1 -1 0  0 0 1 1 -1 

1 1 1 0 0  0 1 1 1 0  0 0 1 1 1 

0 0 0 -1 -1  -1 0 0 0 -1  -1 -1 0 0 0 

0 0 0 -1 1  1 0 0 0 -1  -1 1 0 0 0 

0 0 0 1 -1  -1 0 0 0 1  1 -1 0 0 0 

0 0 0 1 1  1 0 0 0 1  1 1 0 0 0 

0 0 0 -1 -1  -1 0 0 0 -1  -1 -1 0 0 0 

0 0 0 -1 1  1 0 0 0 -1  -1 1 0 0 0 

0 0 0 1 -1  -1 0 0 0 1  1 -1 0 0 0 

0 0 0 1 1  1 0 0 0 1  1 1 0 0 0 
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Block-IV  Block-V  Block-VI 

A B C D E  A B C D E  A B C D E 

-1 0 0 -1 -1  -1 -1 0 0 -1  -1 -1 0 -1 0 

1 0 0 -1 -1  -1 1 0 0 -1  -1 -1 0 1 0 

-1 0 0 -1 1  1 -1 0 0 -1  -1 1 0 -1 0 

-1 0 0 1 -1  -1 -1 0 0 1  1 -1 0 -1 0 

1 0 0 -1 1  1 1 0 0 -1  -1 1 0 1 0 

1 0 0 1 -1  -1 1 0 0 1  1 -1 0 1 0 

-1 0 0 1 1  1 -1 0 0 1  1 1 0 -1 0 

1 0 0 1 1  1 1 0 0 1  1 1 0 1 0 

0 -1 -1 0 0  0 0 -1 -1 0  0 0 -1 0 -1 

0 -1 1 0 0  0 0 -1 1 0  0 0 -1 0 1 

0 1 -1 0 0  0 0 1 -1 0  0 0 1 0 -1 

0 1 1 0 0  0 0 1 1 0  0 0 1 0 1 

0 -1 -1 0 0  0 0 -1 -1 0  0 0 -1 0 -1 

0 -1 1 0 0  0 0 -1 1 0  0 0 -1 0 1 

0 1 -1 0 0  0 0 1 -1 0  0 0 1 0 -1 

0 1 1 0 0  0 0 1 1 0  0 0 1 0 1 

 

Block-VII  Block-VIII  Block-IX 

A B C D E  A B C D E  A B C D E 

0 -1 -1 0 -1  -1 0 -1 -1 0  0 -1 0 -1 -1 

0 -1 -1 0 1  1 0 -1 -1 0  0 1 0 -1 -1 

0 -1 1 0 -1  -1 0 -1 1 0  0 -1 0 -1 1 

0 1 -1 0 -1  -1 0 1 -1 0  0 -1 0 1 -1 

0 -1 1 0 1  1 0 -1 1 0  0 1 0 -1 1 

0 1 -1 0 1  1 0 1 -1 0  0 1 0 1 -1 

0 1 1 0 -1  -1 0 1 1 0  0 -1 0 1 1 

0 1 1 0 1  1 0 1 1 0  0 1 0 1 1 

-1 0 0 -1 0  0 -1 0 0 -1  -1 0 -1 0 0 

-1 0 0 1 0  0 -1 0 0 1  1 0 -1 0 0 

1 0 0 -1 0  0 1 0 0 -1  -1 0 1 0 0 

1 0 0 1 0  0 1 0 0 1  1 0 1 0 0 

-1 0 0 -1 0  0 -1 0 0 -1  -1 0 -1 0 0 

-1 0 0 1 0  0 -1 0 0 1  1 0 -1 0 0 

1 0 0 -1 0  0 1 0 0 -1  -1 0 1 0 0 

1 0 0 1 0  0 1 0 0 1  1 0 1 0 0 
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Block-X   

 

 

10 more blocks are 

obtained by repeating 

Blocks I to X once 

 Block-XXI 

A B C D E   A B C D E 

-1 0 -1 0 -1   2 0 0 0 0 

-1 0 1 0 1   -2 0 0 0 0 

1 0 -1 0 -1   0 2 0 0 0 

-1 0 -1 0 -1   0 -2 0 0 0 

1 0 1 0 1   0 0 2 0 0 

-1 0 1 0 1   0 0 -2 0 0 

1 0 -1 0 -1   0 0 0 2 0 

1 0 1 0 1   0 0 0 -2 0 

0 -1 0 -1 0   0 0 0 0 2 

0 -1 0 1 0   0 0 0 0 -2 

0 1 0 -1 0   0 0 0 0 0 

0 1 0 1 0   0 0 0 0 0 

0 -1 0 -1 0   0 0 0 0 0 

0 -1 0 1 0   0 0 0 0 0 

0 1 0 -1 0   0 0 0 0 0 

0 1 0 1 0   0 0 0 0 0 
 

6 factors each at 5 equispaced levels; (Defining Contrast : ABCDEF and ABC and DEF are 

confounded); Block Size :24 (Obtained through Central Composite Designs) 

Block-I  Block-II  Block-III 

A B C D E F  A B C D E F  A B C D E F 

-1 -1 -1 -1 -1 -1  -1 -1 1 -1 -1 1  2 0 0 0 0 0 

-1 -1 -1 -1 1 1  -1 -1 1 -1 1 -1  -2 0 0 0 0 0 

-1 -1 -1 1 -1 1  -1 -1 1 1 -1 -1  0 2 0 0 0 0 

-1 -1 -1 1 1 -1  -1 -1 1 1 1 1  0 -2 0 0 0 0 

-1 1 1 -1 -1 -1  -1 1 -1 -1 -1 1  0 0 2 0 0 0 

-1 1 1 -1 1 1  -1 1 -1 -1 1 -1  0 0 -2 0 0 0 

-1 1 1 1 -1 1  -1 1 -1 1 -1 -1  0 0 0 2 0 0 

-1 1 1 1 1 -1  -1 1 -1 1 1 1  0 0 0 -2 0 0 

1 -1 1 -1 -1 -1  1 -1 -1 -1 -1 1  0 0 0 0 2 0 

1 -1 1 -1 1 1  1 -1 -1 -1 1 -1  0 0 0 0 -2 0 

1 -1 1 1 -1 1  1 -1 -1 1 -1 -1  0 0 0 0 0 2 

1 -1 1 1 1 -1  1 -1 -1 1 1 1  0 0 0 0 0 -2 

1 1 -1 -1 -1 -1  1 1 1 -1 -1 1  2 0 0 0 0 0 

1 1 -1 -1 1 1  1 1 1 -1 1 -1  -2 0 0 0 0 0 

1 1 -1 1 -1 1  1 1 1 1 -1 -1  0 2 0 0 0 0 

1 1 -1 1 1 -1  1 1 1 1 1 1  0 -2 0 0 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 2 0 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 -2 0 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 2 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 -2 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 -2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 2 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 -2 
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6 factors each at 5 equispaced levels; (ABC, CDE, ADF, ABDE, ACEF, BCDF, BDEF 

confounded); Block Size :12 (Obtained through Central Composite Designs) 

Block-I  Block-II  Block-III 

A B C D E F  A B C D E F  A B C D E F 

-1 -1 -1 -1 -1 -1  -1 -1 -1 -1 -1 1  2 0 0 0 0 0 

-1 -1 -1 1 1 1  -1 -1 -1 1 1 -1  -2 0 0 0 0 0 

-1 1 1 -1 1 -1  -1 1 1 -1 1 1  0 2 0 0 0 0 

-1 1 1 1 -1 1  -1 1 1 1 -1 -1  0 -2 0 0 0 0 

1 -1 1 -1 1 1  1 -1 1 -1 1 -1  0 0 2 0 0 0 

1 -1 1 1 -1 -1  1 -1 1 1 -1 1  0 0 -2 0 0 0 

1 1 -1 -1 -1 1  1 1 -1 -1 -1 -1  0 0 0 2 0 0 

1 1 -1 1 1 -1  1 1 -1 1 1 1  0 0 0 -2 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 -2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 2 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 -2 

 

Block-IV  Block-V  Block-VI 

A B C D E F  A B C D E F  A B C D E F 

-1 -1 -1 -1 1 -1  -1 -1 -1 -1 1 1  2 0 0 0 0 0 

-1 -1 -1 1 -1 1  -1 -1 -1 1 -1 -1  -2 0 0 0 0 0 

-1 1 1 -1 -1 -1  -1 1 1 -1 -1 1  0 2 0 0 0 0 

-1 1 1 1 1 1  -1 1 1 1 1 -1  0 -2 0 0 0 0 

1 -1 1 -1 -1 1  1 -1 1 -1 -1 -1  0 0 2 0 0 0 

1 -1 1 1 1 -1  1 -1 1 1 1 1  0 0 -2 0 0 0 

1 1 -1 -1 1 1  1 1 -1 -1 1 -1  0 0 0 2 0 0 

1 1 -1 1 -1 -1  1 1 -1 1 -1 1  0 0 0 -2 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 -2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 2 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 -2 

 

Block-VII  Block-VIII  Block-IX 

A B C D E F  A B C D E F  A B C D E F 

-1 -1 1 -1 1 -1  -1 -1 1 -1 1 1  2 0 0 0 0 0 

-1 -1 1 1 -1 1  -1 -1 1 1 -1 -1  -2 0 0 0 0 0 

-1 1 -1 -1 -1 -1  -1 1 -1 -1 -1 1  0 2 0 0 0 0 

-1 1 -1 1 1 1  -1 1 -1 1 1 -1  0 -2 0 0 0 0 

1 -1 -1 -1 -1 1  1 -1 -1 -1 -1 -1  0 0 2 0 0 0 

1 -1 -1 1 1 -1  1 -1 -1 1 1 1  0 0 -2 0 0 0 

1 1 1 -1 1 1  1 1 1 -1 1 -1  0 0 0 2 0 0 

1 1 1 1 -1 -1  1 1 1 1 -1 1  0 0 0 -2 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 -2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 2 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 -2 
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Block-X  Block-XI  Block-XII 

A B C D E F  A B C D E F  A B C D E F 

-1 -1 1 -1 -1 -1  -1 -1 1 -1 -1 1  2 0 0 0 0 0 

-1 -1 1 1 1 1  -1 -1 1 1 1 -1  -2 0 0 0 0 0 

-1 1 -1 -1 1 -1  -1 1 -1 -1 1 1  0 2 0 0 0 0 

-1 1 -1 1 -1 1  -1 1 -1 1 -1 -1  0 -2 0 0 0 0 

1 -1 -1 -1 1 1  1 -1 -1 -1 1 -1  0 0 2 0 0 0 

1 -1 -1 1 -1 -1  1 -1 -1 1 -1 1  0 0 -2 0 0 0 

1 1 1 -1 -1 1  1 1 1 -1 -1 -1  0 0 0 2 0 0 

1 1 1 1 1 -1  1 1 1 1 1 1  0 0 0 -2 0 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 -2 0 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 2 

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 -2 
 

 

7 factors each at 5 equispaced levels; (Block Size :16 (Obtained through BIB design 

7,7,3,3,1 and its complementary 7,7,4,4,2) 
Block - I  Block-II 

A B C D E F G   A B C D E F G  

-1 -1 0 -1 0 0 0   -1 -1 0 -1 0 0 0  

-1 -1 0 1 0 0 0   -1 -1 0 1 0 0 0  

-1 1 0 -1 0 0 0   -1 1 0 -1 0 0 0  

1 -1 0 -1 0 0 0   1 -1 0 -1 0 0 0  

-1 1 0 1 0 0 0   -1 1 0 1 0 0 0  

1 -1 0 1 0 0 0   1 -1 0 1 0 0 0  

1 1 0 -1 0 0 0   1 1 0 -1 0 0 0  

1 1 0 1 0 0 0   1 1 0 1 0 0 0  

0 0 -1 0 -1 -1 -1   0 0 -1 0 -1 -1 1  

0 0 -1 0 -1 1 1   0 0 -1 0 -1 1 -1  

0 0 -1 0 1 -1 1   0 0 -1 0 1 -1 -1  

0 0 -1 0 1 1 -1   0 0 -1 0 1 1 1  

0 0 1 0 -1 -1 1   0 0 1 0 -1 -1 -1  

0 0 1 0 -1 1 -1   0 0 1 0 -1 1 1  

0 0 1 0 1 -1 -1   0 0 1 0 1 -1 1  

0 0 1 0 1 1 1   0 0 1 0 1 1 -1  
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Block - III  Block-IV 

A B C D E F G   A B C D E F G  

0 -1 -1 0 -1 0 0   0 -1 -1 0 -1 0 0  

0 -1 -1 0 1 0 0   0 -1 -1 0 1 0 0  

0 -1 1 0 -1 0 0   0 -1 1 0 -1 0 0  

0 1 -1 0 -1 0 0   0 1 -1 0 -1 0 0  

0 -1 1 0 1 0 0   0 -1 1 0 1 0 0  

0 1 -1 0 1 0 0   0 1 -1 0 1 0 0  

0 1 1 0 -1 0 0   0 1 1 0 -1 0 0  

0 1 1 0 1 0 0   0 1 1 0 1 0 0  

-1 0 0 -1 0 -1 -1   1 0 0 -1 0 -1 -1  

1 0 0 -1 0 -1 1   -1 0 0 -1 0 -1 1  

1 0 0 -1 0 1 -1   -1 0 0 -1 0 1 -1  

-1 0 0 -1 0 1 1   1 0 0 -1 0 1 1  

1 0 0 1 0 -1 -1   -1 0 0 1 0 -1 -1  

-1 0 0 1 0 -1 1   1 0 0 1 0 -1 1  

-1 0 0 1 0 1 -1   1 0 0 1 0 1 -1  

1 0 0 1 0 1 1   -1 0 0 1 0 1 1  

 

Block - V  Block-VI 

A B C D E F G   A B C D E F G  

0 0 -1 -1 0 -1 0   0 0 -1 -1 0 -1 0  

0 0 -1 -1 0 1 0   0 0 -1 -1 0 1 0  

0 0 -1 1 0 -1 0   0 0 -1 1 0 -1 0  

0 0 1 -1 0 -1 0   0 0 1 -1 0 -1 0  

0 0 -1 1 0 1 0   0 0 -1 1 0 1 0  

0 0 1 -1 0 1 0   0 0 1 -1 0 1 0  

0 0 1 1 0 -1 0   0 0 1 1 0 -1 0  

0 0 1 1 0 1 0   0 0 1 1 0 1 0  

-1 -1 0 0 -1 0 -1   -1 1 0 0 -1 0 -1  

1 1 0 0 -1 0 -1   1 -1 0 0 -1 0 -1  

-1 1 0 0 -1 0 1   -1 -1 0 0 -1 0 1  

1 -1 0 0 -1 0 1   1 1 0 0 -1 0 1  

-1 1 0 0 1 0 -1   -1 -1 0 0 1 0 -1  

1 -1 0 0 1 0 -1   1 1 0 0 1 0 -1  

-1 -1 0 0 1 0 1   -1 1 0 0 1 0 1  

1 1 0 0 1 0 1   1 -1 0 0 1 0 1  
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Block - VII  Block-VIII 

A B C D E F G   A B C D E F G  

0 0 0 -1 -1 0 -1   0 0 0 -1 -1 0 -1  

0 0 0 -1 -1 0 1   0 0 0 -1 -1 0 1  

0 0 0 -1 1 0 -1   0 0 0 -1 1 0 -1  

0 0 0 1 -1 0 -1   0 0 0 1 -1 0 -1  

0 0 0 -1 1 0 1   0 0 0 -1 1 0 1  

0 0 0 1 -1 0 1   0 0 0 1 -1 0 1  

0 0 0 1 1 0 -1   0 0 0 1 1 0 -1  

0 0 0 1 1 0 1   0 0 0 1 1 0 1  

-1 -1 -1 0 0 -1 0   -1 -1 1 0 0 -1 0  

-1 1 1 0 0 -1 0   -1 1 -1 0 0 -1 0  

1 -1 1 0 0 -1 0   1 -1 -1 0 0 -1 0  

1 1 -1 0 0 -1 0   1 1 1 0 0 -1 0  

-1 -1 1 0 0 1 0   -1 -1 -1 0 0 1 0  

-1 1 -1 0 0 1 0   -1 1 1 0 0 1 0  

1 -1 -1 0 0 1 0   1 -1 1 0 0 1 0  

1 1 1 0 0 1 0   1 1 -1 0 0 1 0  
 

Block - IX  Block-X 

A B C D E F G   A B C D E F G  

-1 0 0 0 -1 -1 0   -1 0 0 0 -1 -1 0  

1 0 0 0 -1 -1 0   1 0 0 0 -1 -1 0  

-1 0 0 0 -1 1 0   -1 0 0 0 -1 1 0  

-1 0 0 0 1 -1 0   -1 0 0 0 1 -1 0  

1 0 0 0 -1 1 0   1 0 0 0 -1 1 0  

1 0 0 0 1 -1 0   1 0 0 0 1 -1 0  

-1 0 0 0 1 1 0   -1 0 0 0 1 1 0  

1 0 0 0 1 1 0   1 0 0 0 1 1 0  

0 -1 -1 -1 0 0 -1   0 -1 -1 1 0 0 -1  

0 -1 1 1 0 0 -1   0 -1 1 -1 0 0 -1  

0 1 -1 1 0 0 -1   0 1 -1 -1 0 0 -1  

0 1 1 -1 0 0 -1   0 1 1 1 0 0 -1  

0 -1 -1 1 0 0 1   0 -1 -1 -1 0 0 1  

0 -1 1 -1 0 0 1   0 -1 1 1 0 0 1  

0 1 -1 -1 0 0 1   0 1 -1 1 0 0 1  

0 1 1 1 0 0 1   0 1 1 -1 0 0 1  
 



RESPONSE SURFACE DESIGNS 

 99 

 

Block - XI  Block-XII 

A B C D E F G   A B C D E F G  

0 -1 0 0 0 -1 -1   0 -1 0 0 0 -1 -1  

0 1 0 0 0 -1 -1   0 1 0 0 0 -1 -1  

0 -1 0 0 0 -1 1   0 -1 0 0 0 -1 1  

0 -1 0 0 0 1 -1   0 -1 0 0 0 1 -1  

0 1 0 0 0 -1 1   0 1 0 0 0 -1 1  

0 1 0 0 0 1 -1   0 1 0 0 0 1 -1  

0 -1 0 0 0 1 1   0 -1 0 0 0 1 1  

0 1 0 0 0 1 1   0 1 0 0 0 1 1  

-1 0 -1 -1 -1 0 0   -1 0 -1 -1 1 0 0  

-1 0 -1 1 1 0 0   -1 0 -1 1 -1 0 0  

-1 0 1 -1 1 0 0   -1 0 1 -1 -1 0 0  

-1 0 1 1 -1 0 0   -1 0 1 1 1 0 0  

1 0 -1 -1 1 0 0   1 0 -1 -1 -1 0 0  

1 0 -1 1 -1 0 0   1 0 -1 1 1 0 0  

1 0 1 -1 -1 0 0   1 0 1 -1 1 0 0  

1 0 1 1 1 0 0   1 0 1 1 -1 0 0  
 

Block - XIII  Block-XIV 

A B C D E F G   A B C D E F G  

-1 0 -1 0 0 0 -1   -1 0 -1 0 0 0 -1  

-1 0 1 0 0 0 -1   -1 0 1 0 0 0 -1  

1 0 -1 0 0 0 -1   1 0 -1 0 0 0 -1  

-1 0 -1 0 0 0 1   -1 0 -1 0 0 0 1  

1 0 1 0 0 0 -1   1 0 1 0 0 0 -1  

-1 0 1 0 0 0 1   -1 0 1 0 0 0 1  

1 0 -1 0 0 0 1   1 0 -1 0 0 0 1  

1 0 1 0 0 0 1   1 0 1 0 0 0 1  

0 -1 0 -1 -1 -1 0   0 -1 0 -1 -1 1 0  

0 -1 0 -1 1 1 0   0 -1 0 -1 1 -1 0  

0 -1 0 1 -1 1 0   0 -1 0 1 -1 -1 0  

0 -1 0 1 1 -1 0   0 -1 0 1 1 1 0  

0 1 0 -1 -1 1 0   0 1 0 -1 -1 -1 0  

0 1 0 -1 1 -1 0   0 1 0 -1 1 1 0  

0 1 0 1 -1 -1 0   0 1 0 1 -1 1 0  

0 1 0 1 1 1 0   0 1 0 1 1 -1 0  
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Block - XV 

A B C D E F G  

2 0 0 0 0 0 0  

-2 0 0 0 0 0 0  

0 2 0 0 0 0 0  

0 -2 0 0 0 0 0  

0 0 2 0 0 0 0  

0 0 -2 0 0 0 0  

0 0 0 2 0 0 0  

0 0 0 -2 0 0 0  

0 0 0 0 2 0 0  

0 0 0 0 -2 0 0  

0 0 0 0 0 2 0  

0 0 0 0 0 -2 0  

0 0 0 0 0 0 2  

0 0 0 0 0 0 -2  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
 

8 factors each at 5 equispaced levels; (Block Size :17 (Obtained through BIB design 

8,14,7,4,3) 
Block - I  Block-II 

A B C D E F G H  A B C D E F G H 

-1 -1 0 -1 0 0 0 -1  -1 -1 0 -1 0 0 0 1 

-1 -1 0 1 0 0 0 1  -1 -1 0 1 0 0 0 -1 

-1 1 0 -1 0 0 0 1  -1 1 0 -1 0 0 0 -1 

-1 1 0 1 0 0 0 -1  -1 1 0 1 0 0 0 1 

1 -1 0 -1 0 0 0 1  1 -1 0 -1 0 0 0 -1 

1 -1 0 1 0 0 0 -1  1 -1 0 1 0 0 0 1 

1 1 0 -1 0 0 0 -1  1 1 0 -1 0 0 0 1 

1 1 0 1 0 0 0 1  1 1 0 1 0 0 0 -1 

0 0 -1 0 -1 -1 -1 0  0 0 -1 0 -1 -1 1 0 

0 0 -1 0 -1 1 1 0  0 0 -1 0 -1 1 -1 0 

0 0 -1 0 1 -1 1 0  0 0 -1 0 1 -1 -1 0 

0 0 -1 0 1 1 -1 0  0 0 -1 0 1 1 1 0 

0 0 1 0 -1 -1 1 0  0 0 1 0 -1 -1 -1 0 

0 0 1 0 -1 1 -1 0  0 0 1 0 -1 1 1 0 

0 0 1 0 1 -1 -1 0  0 0 1 0 1 -1 1 0 

0 0 1 0 1 1 1 0  0 0 1 0 1 1 -1 0 

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 
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Block - III  Block-IV 

A B C D E F G H  A B C D E F G H 

0 -1 -1 0 -1 0 0 -1  0 -1 -1 0 -1 0 0 1 

0 -1 -1 0 1 0 0 1  0 -1 -1 0 1 0 0 -1 

0 -1 1 0 -1 0 0 1  0 -1 1 0 -1 0 0 -1 

0 -1 1 0 1 0 0 -1  0 -1 1 0 1 0 0 1 

0 1 -1 0 -1 0 0 1  0 1 -1 0 -1 0 0 -1 

0 1 -1 0 1 0 0 -1  0 1 -1 0 1 0 0 1 

0 1 1 0 -1 0 0 -1  0 1 1 0 -1 0 0 1 

0 1 1 0 1 0 0 1  0 1 1 0 1 0 0 -1 

-1 0 0 -1 0 -1 -1 0  1 0 0 -1 0 -1 -1 0 

1 0 0 -1 0 -1 1 0  -1 0 0 -1 0 -1 1 0 

1 0 0 -1 0 1 -1 0  -1 0 0 -1 0 1 -1 0 

-1 0 0 -1 0 1 1 0  1 0 0 -1 0 1 1 0 

1 0 0 1 0 -1 -1 0  -1 0 0 1 0 -1 -1 0 

-1 0 0 1 0 -1 1 0  1 0 0 1 0 -1 1 0 

-1 0 0 1 0 1 -1 0  1 0 0 1 0 1 -1 0 

1 0 0 1 0 1 1 0  -1 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 

 

Block - V  Block-VI 

A B C D E F G H  A B C D E F G H 

0 0 -1 -1 0 -1 0 -1  0 0 -1 -1 0 -1 0 1 

0 0 -1 -1 0 1 0 1  0 0 -1 -1 0 1 0 -1 

0 0 -1 1 0 -1 0 1  0 0 -1 1 0 -1 0 -1 

0 0 -1 1 0 1 0 -1  0 0 -1 1 0 1 0 1 

0 0 1 -1 0 -1 0 1  0 0 1 -1 0 -1 0 -1 

0 0 1 -1 0 1 0 -1  0 0 1 -1 0 1 0 1 

0 0 1 1 0 -1 0 -1  0 0 1 1 0 -1 0 1 

0 0 1 1 0 1 0 1  0 0 1 1 0 1 0 -1 

-1 -1 0 0 -1 0 -1 0  -1 1 0 0 -1 0 -1 0 

1 1 0 0 -1 0 -1 0  1 -1 0 0 -1 0 -1 0 

-1 1 0 0 -1 0 1 0  -1 -1 0 0 -1 0 1 0 

1 -1 0 0 -1 0 1 0  1 1 0 0 -1 0 1 0 

-1 1 0 0 1 0 -1 0  -1 -1 0 0 1 0 -1 0 

1 -1 0 0 1 0 -1 0  1 1 0 0 1 0 -1 0 

-1 -1 0 0 1 0 1 0  -1 1 0 0 1 0 1 0 

1 1 0 0 1 0 1 0  1 -1 0 0 1 0 1 0 

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 
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Block - VII  Block-VIII 

A B C D E F G H  A B C D E F G H 

0 0 0 -1 -1 0 -1 -1  0 0 0 -1 -1 0 -1 1 

0 0 0 -1 -1 0 1 1  0 0 0 -1 -1 0 1 -1 

0 0 0 -1 1 0 -1 1  0 0 0 -1 1 0 -1 -1 

0 0 0 -1 1 0 1 -1  0 0 0 -1 1 0 1 1 

0 0 0 1 -1 0 -1 1  0 0 0 1 -1 0 -1 -1 

0 0 0 1 -1 0 1 -1  0 0 0 1 -1 0 1 1 

0 0 0 1 1 0 -1 -1  0 0 0 1 1 0 -1 1 

0 0 0 1 1 0 1 1  0 0 0 1 1 0 1 -1 

-1 -1 -1 0 0 -1 0 0  -1 -1 1 0 0 -1 0 0 

-1 1 1 0 0 -1 0 0  -1 1 -1 0 0 -1 0 0 

1 -1 1 0 0 -1 0 0  1 -1 -1 0 0 -1 0 0 

1 1 -1 0 0 -1 0 0  1 1 1 0 0 -1 0 0 

-1 -1 1 0 0 1 0 0  -1 -1 -1 0 0 1 0 0 

-1 1 -1 0 0 1 0 0  -1 1 1 0 0 1 0 0 

1 -1 -1 0 0 1 0 0  1 -1 1 0 0 1 0 0 

1 1 1 0 0 1 0 0  1 1 -1 0 0 1 0 0 

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 
 

Block - IX  Block-X 

A B C D E F G H  A B C D E F G H 

-1 0 0 0 -1 -1 0 -1  -1 0 0 0 -1 -1 0 1 

1 0 0 0 -1 -1 0 1  1 0 0 0 -1 -1 0 -1 

-1 0 0 0 -1 1 0 1  -1 0 0 0 -1 1 0 -1 

1 0 0 0 -1 1 0 -1  1 0 0 0 -1 1 0 1 

-1 0 0 0 1 -1 0 1  -1 0 0 0 1 -1 0 -1 

1 0 0 0 1 -1 0 -1  1 0 0 0 1 -1 0 1 

-1 0 0 0 1 1 0 -1  -1 0 0 0 1 1 0 1 

1 0 0 0 1 1 0 1  1 0 0 0 1 1 0 -1 

0 -1 -1 -1 0 0 -1 0  0 -1 -1 1 0 0 -1 0 

0 -1 1 1 0 0 -1 0  0 -1 1 -1 0 0 -1 0 

0 1 -1 1 0 0 -1 0  0 1 -1 -1 0 0 -1 0 

0 1 1 -1 0 0 -1 0  0 1 1 1 0 0 -1 0 

0 -1 -1 1 0 0 1 0  0 -1 -1 -1 0 0 1 0 

0 -1 1 -1 0 0 1 0  0 -1 1 1 0 0 1 0 

0 1 -1 -1 0 0 1 0  0 1 -1 1 0 0 1 0 

0 1 1 1 0 0 1 0  0 1 1 -1 0 0 1 0 

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 
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Block - XI  Block-XII 

A B C D E F G H  A B C D E F G H 

0 -1 0 0 0 -1 -1 -1  0 -1 0 0 0 -1 -1 1 

0 1 0 0 0 -1 -1 1  0 1 0 0 0 -1 -1 -1 

0 -1 0 0 0 -1 1 1  0 -1 0 0 0 -1 1 -1 

0 1 0 0 0 -1 1 -1  0 1 0 0 0 -1 1 1 

0 -1 0 0 0 1 -1 1  0 -1 0 0 0 1 -1 -1 

0 1 0 0 0 1 -1 -1  0 1 0 0 0 1 -1 1 

0 -1 0 0 0 1 1 -1  0 -1 0 0 0 1 1 1 

0 1 0 0 0 1 1 1  0 1 0 0 0 1 1 -1 

-1 0 -1 -1 -1 0 0 0  -1 0 -1 -1 1 0 0 0 

-1 0 -1 1 1 0 0 0  -1 0 -1 1 -1 0 0 0 

-1 0 1 -1 1 0 0 0  -1 0 1 -1 -1 0 0 0 

-1 0 1 1 -1 0 0 0  -1 0 1 1 1 0 0 0 

1 0 -1 -1 1 0 0 0  1 0 -1 -1 -1 0 0 0 

1 0 -1 1 -1 0 0 0  1 0 -1 1 1 0 0 0 

1 0 1 -1 -1 0 0 0  1 0 1 -1 1 0 0 0 

1 0 1 1 1 0 0 0  1 0 1 1 -1 0 0 0 

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 
 

Block - XIII  Block-XIV 

A B C D E F G H  A B C D E F G H 

-1 0 -1 0 0 0 -1 -1  -1 0 -1 0 0 0 -1 1 

-1 0 1 0 0 0 -1 1  -1 0 1 0 0 0 -1 -1 

1 0 -1 0 0 0 -1 1  1 0 -1 0 0 0 -1 -1 

1 0 1 0 0 0 -1 -1  1 0 1 0 0 0 -1 1 

-1 0 -1 0 0 0 1 1  -1 0 -1 0 0 0 1 -1 

-1 0 1 0 0 0 1 -1  -1 0 1 0 0 0 1 1 

1 0 -1 0 0 0 1 -1  1 0 -1 0 0 0 1 1 

1 0 1 0 0 0 1 1  1 0 1 0 0 0 1 -1 

0 -1 0 -1 -1 -1 0 0  0 -1 0 -1 -1 1 0 0 

0 -1 0 -1 1 1 0 0  0 -1 0 -1 1 -1 0 0 

0 -1 0 1 -1 1 0 0  0 -1 0 1 -1 -1 0 0 

0 -1 0 1 1 -1 0 0  0 -1 0 1 1 1 0 0 

0 1 0 -1 -1 1 0 0  0 1 0 -1 -1 -1 0 0 

0 1 0 -1 1 -1 0 0  0 1 0 -1 1 1 0 0 

0 1 0 1 -1 -1 0 0  0 1 0 1 -1 1 0 0 

0 1 0 1 1 1 0 0  0 1 0 1 1 -1 0 0 

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 
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Block - XV 

A B C D E F G H 

2 0 0 0 0 0 0 0 

-2 0 0 0 0 0 0 0 

0 2 0 0 0 0 0 0 

0 -2 0 0 0 0 0 0 

0 0 2 0 0 0 0 0 

0 0 -2 0 0 0 0 0 

0 0 0 2 0 0 0 0 

0 0 0 -2 0 0 0 0 

0 0 0 0 2 0 0 0 

0 0 0 0 -2 0 0 0 

0 0 0 0 0 2 0 0 

0 0 0 0 0 -2 0 0 

0 0 0 0 0 0 2 0 

0 0 0 0 0 0 -2 0 

0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 -2 

0 0 0 0 0 0 0 0 
 

 
 



CHAPTER IV 

 

ROBUSTNESS AGAINST ONE MISSING OBSERVATION 

 
 4.1 Introduction 

Classical designs were developed keeping in view the symmetry of designs and ease in 

calculations. With the advent of high-speed computers the emphasis was shifted to 

optimal/efficient designs relevant to purpose of experimentation. Mere ease in 

calculations is no longer a criterion for developing/selecting a design. Optimal design 

theory has been developed under very strict restrictions and ideal conditions.  The ideal 

conditions may sometimes be disturbed on account of aberrations like outliers, missing 

data presence of systematic trend in the blocks of a block design, etc. Such  

disturbance(s) may render even an optimal design poor. In such situations, it is logical to 

look for designs that are insensitive or robust to such kind of disturbance(s). Box and 

Draper (1975) introduced the concept of robust designs in the presence of single outlier in 

response surface designs. This led to construction of designs that minimizes the effect of 

single outlier. Gopalan and Dey (1976) extended this study to designs where the design 

matrix is not of full rank. 

 

Literature search on missing value estimation shows that missing observation can occur 

even in well-planned experiments. Lot of work has been done in the area of robust 

designs against missing observation(s). Herzberg and Andrews (1976) introduced two 

measures of the robustness of designs, namely, the probability of breakdown and the 

expected precision. Andrews and Herzberg (1979) showed that the expected precision 

might be easily calculated.  

 

Ghosh (1979) introduced criterion of connectedness of designs, i.e., a design is robust 

against missing observations if all the parameters are still estimable under an assumed 

model when a given number of observations are missing. Ghosh (1982) further observed 

that even in robust designs in the above sense, some observations are more informative 

than others and, consequently, if a more informative observation is lost accidentally, the 

overall loss in efficiency is larger than that in the case when a less informative 

observation is lost. 

 

Srivastava, Gupta and Dey (1991) extended the above study to several types of designs.  

They studied the robustness of orthogonal resolution III designs and second-order 

rotatable designs obtained through central composite designs when single observation is 

missing.   

 

Akhtar and Prescot (1986) investigated the ‘loss’ due to single missing observation in 

five factor central composite designs (CCD) with different configurations of half and 

complete replicate of factorial part, one or two replicate of axial part and some center 

points. The variances of parameter estimates were also studied. Minimax criterion was 

used to develop designs that are robust to a single missing observation. These designs 
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were then compared with existing CCD of same configuration. In order to illustrate the 

damage missing observation(s) cause to the experiment, we take the following example: 

  

Example 5.1: Consider the following design comprising of 4 factors (A, B, C, D) each at 

5 levels (-2, -1, 0, 1, 2) in 25 design points 

 

A B C D 

1 1 1 1 

1 1 1 -1 

1 1 -1 1 

1 1 -1 -1 

1 -1 1 1 

1 -1 1 -1 

1 -1 -1 1 

1 -1 -1 -1 

-1 1 1 1 

-1 1 1 -1 

-1 1 -1 1 

-1 1 -1 -1 

-1 -1 1 1 

-1 -1 1 -1 

-1 -1 -1 1 

-1 -1 -1 -1 

2 0 0 0 

-2 0 0 0 

0 2 0 0 

0 -2 0 0 

0 0 2 0 

0 0 -2 0 

0 0 0 2 

0 0 0 -2 

0 0 0 0 

 

Here, )det( XX = 1.751E+19 

 

There is only one central point and if by chance this is lost during experimentation then 

the observation from first 24 design points are available. 

 

Now )det( XX =0. This leads to the situation where Rank (X) is less than the number of 

columns leading to situation when some of the parameters cannot be estimated. 

 

John (1979) has discussed the consequences of one or two missing points in v2  factorial 

experiments and also some fractions of it. He showed that the increase in the variances of 

the estimates of some factorial effects due to missing plots can be as high as 50%. 

Response surface designs use factorial experiments as part of their design and are being 

increasingly used. A design that is found very useful, due to its versatility, is CCD in 
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which one part consists of a factorial portion and the other parts correspond to some 

center points and axial points. It is, therefore, important to investigate the effect of one or 

two missing values in such a design. These days, missing values are not a problem to 

worry about due to the availability of electronic computers. If we have numerical data, 

the computer will be able to handle the analysis even if there are missing values, and will 

be able to give best estimates and their variances for response surface coefficients. On the 

other hand, the computer will not be able to provide general information about the extent 

of damage due to one or two missing values like increase in the variance of the predicted 

response, percentage loss in information, etc. Only algebraic treatment will be able to 

yield this information while computers will require extensive Monte Carlo trials to 

provide this information. 

 

These considerations led McKee and Kshirsagar (1982) to investigate the consequences 

of missing plots in a central composite designs algebraically. Draper (1961) has done 

some such work for designs not arranged in blocks and when the linear model is of full 

rank. But results of McKee and Kshirsagar (1982) are more general. They are for designs 

arranged in blocks and for models not of full rank. Also the results are extended to 

equiradial designs.  

 

In this study the above, robustness aspects of modified and/or rotatable second order 

response surface designs obtainable through central composite designs and BIB designs 

have been investigated with special emphasis on the designs when various factors are 

with equispaced doses. A new criterion of robustness viz. percent loss in information is 

introduced. Other criteria used in this investigation are information contained in an 

observation, D-efficiency and A-efficiency.  

 

4.2  Robustness of Response Surface Designs against Single Missing Observation 

 

Consider a general linear model for a response surface design, d (of any order) 

 eXβy  d          (4.2.1) 

 

where y is the 1N  observation vector, X is the pN  design matrix, dβ  is the p-

component vector of parameters, e is the 1N vector of random errors assumed to be 

independently and identically distributed normally with mean 0 and variance 2 .  In the 

present context X  has a full column rank p of design d.  When all the observations y  are 

available, the usual least square estimates of the normal equations are 

yXXXβ  1
d )(ˆ       (4.2.2) 

 

and the variance covariance matrix of  dβ̂  is 

 

   D( 1
d

 )()ˆ 2
XXβ          (4.2.3) 
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Now consider that the observation pertaining to one of the design points is lost. Let the 

resulting design be denoted by 1d . Clearly, there will be N  possible designs { 1d }.  

Without loss of generality, let us assume that g   represent the row in X  corresponding to 

the missing observation.  Then writing 

   













g

X
X

1
  . 

We have  ggXXXX 11'      (4.2.4) 

           













Ig

gXX
XX detdet 11  

 

                              )det(})(1{)det( 1
1 XXgXXgXX  ''1              (4.2.5) 

 

We know that determinant of 1
A  is reciprocal of the determinant of A . Therefore,  

)]ˆ(det[})(1{)]ˆ(det[ 11
1 dd D'D βgXXgβ

     (4.2.6) 

 

If ]ˆ[ˆ
1dd ββ  denotes the best linear unbiased estimator of β  using ][ 1dd , then 

 -1
11

2 ()ˆ(
1

)D d XXβ   

 1-
112

()ˆ(
1

1
)D d XXβ 


 

where        
gXXg

XXggXX
XXXX

1

11
1-1-

11
)'(1

)'()'(
)()(








 . 

 

This has been obtained by making use of the following Lemma: 

 

Lemma 4.2.1: Let A  be a non-singular matrix and U and V be two column vectors then  

  
  

UAV

AVUA
AUVA

1

11
11

1 







     (4.2.7) 

Now using (4.2.7) and taking Ug  and Vg   we get the expression for -1
11( )XX . 

 

The increase in the variance of BLUE of an estimable function of dβx ˆ  (predicted 

response at point x ) due to the single missing observation pertaining to the point g  is  

   
gXXg

xXXggXXx

1

11

)(1

)()(









'

''
 

 

The ratio of increase in variance of the predicted response at the point x  when the 

missing point is g  to that of the original variance at point x  can be obtained and used as 

an indicator of robustness. 
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The amount of information contained in the unavailable observation in d is, therefore, 

  gXXgg
1)(  ()I       (4.2.8) 

 

It is easy to see that 

  pI

g

  ])(trace[)( 1
XXXXg     (4.2.9) 

It should be noted that for a robust design d , 1)(0  gI .  Clearly a good design should 

have a small )(gI for all g  so that the loss of an observation does not result in a large loss 

in efficiency of the resulting design. This result is due to Ghosh (1982).  The value 

contained in an observation is small or large is a subjective decision. Therefore, we 

introduce another criterion viz. percent loss in information due to one missing observation 

given by 

  Loss (%)= 100 
p

)(


gI
     (4.2.10) 

 

Using the expression of -1
11( )XX , we can obtain the trace of -1

11( )XX  as 

 

 
gXXg

XXggXX
XXXX

1

11
1-1-

11
)'(1

)'()'(trace
)trace()trace(








          

 

       
 

gXXg

gXXXXg
XX

1

11
1-

)'(1

)'()'(trace
)trace(








     

     [    BAAB tracetrace  ] 

 

gXXg

gXXg

XXXX
1

21

1-1-
11

)(1

)(trace

trace(trace(

















'

'

))   (4.2.11) 

 

Knowing the above, A- and D- efficiencies of the resulting design with respect to the 

original design are given by 

  A-efficiency
 

  1
11

1

trace

trace










XX

XX
    (4.2.12) 

 

  D-efficiency
  

   p

p

/1

/1
11

det

det

XX

XX




     (4.2.13) 
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4.3     Robustness of Modified and/ or Rotatable Second Order Response Surface 

Designs 
 

Using the results given in Section 3.2 of Chapter III, we know that for a second order 

response surface designs satisfying the conditions of symmetry (3.3.1) 

 

DLCLR vvvv 12/)1( ])1[()det(  XX      (4.3.1) 

 

(say)

2

)1()(
1

)1(

)1(
])trace[(

2
1

XT

L

vv

D

NLR

LC

v

R

v

D

LvC


















 






 

XX
 (4.3.2) 

2

)2)(1(
])(trace[)( 1 

  vv
pI

g

XXXXg    (4.3.3) 

where 2)2( vRvNLD  . 

       

Now using (4.2.5) and (4.2.11), det ( )11XX  and 1
11 )(trace XX  can be obtained. Using 

(4.2.9), (4.2.12) and (4.2.13), the percentage loss in information, A-efficiency and D-

efficiency can be obtained. In the context of response surface designs the percentage loss 

in information and D-efficiency should be preferred over A-efficiency. In the present 

investigation, we have made an attempt to obtain expressions for the percentage loss in 

information, A-efficiency and D-efficiency for the designs obtained from central 

composite designs and BIB designs. 

 

4.3.1 Central Composite Designs 

For Central Composite designs g  can be of the following types 

Factorial Point: 













 

2

)1(
22

1 1 vvvv 111g   

Axial Point:  0...00...00...01 2
2 g  

Center Point: 















2

1)-v(vvv 000g 13  
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For Factorial Point: 1g  

 


























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
















 



1

1

1

111gXXg

L

B

R

A
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2

1

1

2

)1(
22

1
1

1 1





  

          4
1

2
2

1
2

)1(




L

vv
Bv

R

v
A


  

 
11

1
1 cgT


gXXg (say)      (4.3.4) 

 

where 
D

RvLvC
A

2

1
)1( 

  and 












 








D

RNL
v

LCD

R
B

)(
1

)1(

22

1


. 
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Using (4.2.11), we have,  
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Now det ( )11XX =(1- )det()
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Using (4.2.11) we have,  
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For center point: 3g  
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Using (4.2.11), we have  
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The expressions for the information contained in observation given in (4.3.4), (4.3.7) and 

(4.3.10) can further be simplified as 
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For a second order rotatable design, by substituting 3C  in (4.3.13), (4.3.14) and 

(4.3.15), we get 
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For a modified and rotatable second order response surface design, substitute NLR 2  

in (4.3.16), (4.3.17) and (4.3.18). 
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For a modified second order response surface design alone, substituting NLR 2  in 

(4.3.13), (4.3.14) and (4.3.15), we get 
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Now substituting 1  and 2 , in the expressions (4.3.13) to (4.3.24), we can get the 

corresponding expressions for central composite designs for symmetrical factorials when 

the factors are with equispaced doses. The corresponding expressions are given as 

 

For any central composite design 
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For a second order rotatable response surface design obtained from CCD 
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For a modified and rotatable second order response surface design 
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 For a modified second order response surface design 
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Using these expressions, the corresponding expressions of )det( 11XX  can directly be 

obtained from (4.3.5), (4.3.8) and (4.3.11). The 1
11 )trace( XX  can also easily be 

obtained by making the appropriate substitutions in (4.3.6), (4.3.9) and (4.3.12). 

 

The information contained in an observation, percent loss in information and D-

efficiencies of the modified and rotatable second order response surface designs 

obtainable from central composite designs and catalogued in Table 3.3.2 are computed 

and are presented in Table 4.3.1. Similar computations can easily be made for modified 

or rotatable designs obtainable from central composite designs. 

 

Table 4.3.1: The information contained in an observation, percent loss in 

information and D-efficiencies of the modified and rotatable second order response 

surface designs given in Table 3.3.2. 

 

v p s t 
0n

 

N 
Factorial Point Axial Point Center Point 

)(gI  Loss % D-eff )(gI  Loss % D-eff )(gI  Loss % D-eff 

3 3 2 1 14 36 0.351 3.507 0.958 0.569 5.694 0.919 0.069 0.694 0.993 

4 4 1 1 12 36 0.583 3.889 0.943 0.583 3.889 0.943 0.083 0.556 0.994 

5 4 1 1 10 36 0.878 4.183 0.905 0.597 2.844 0.958 0.097 0.463 0.995 

5 5 1 2 20 72 0.439 2.092 0.973 0.299 1.422 0.983 0.049 0.231 0.998 

6 5 1 2 16 72 0.618 2.207 0.966 0.306 1.091 0.987 0.056 0.198 0.998 

6 6 1 4 32 144 0.309 1.104 0.987 0.153 0.546 0.994 0.028 0.099 0.999 

7 6 1 4 24 144 0.414 1.150 0.985 0.156 0.434 0.995 0.031 0.087 0.999 

7 7 1 8 48 288 0.207 0.575 0.994 0.078 0.217 0.998 0.016 0.043 1.000* 

8 6 1 4 16 144 0.535 1.188 0.983 0.160 0.355 0.996 0.035 0.077 0.999 

8 7 1 8 32 288 0.267 0.594 0.993 0.080 0.177 0.998 0.017 0.039 1.000* 

9 7 1 8 16 288 0.336 0.610 0.993 0.082 0.148 0.998 0.019 0.035 1.000* 

*denotes that the D-efficiency is greater than 0.9995. 

 

From the Table 4.3.1, it is observed that the percent loss in information is marginal and 

D-efficiencies are reasonably high. Therefore, we can say that these designs are robust 

against unavailability of a single observation.  

 

4.3.2 Designs Obtainable from BIB Designs 

For the second order response surface designs obtainable from BIB design, the design 

points g  can be of the following type 

 

Incidence Matrix point: 

)0000000001( 222222
1  g   

Axial Point: )00000001( 2
2  g  

Factorial Point: ).........1( 2222
3 g  

Center Point: )0000001(4 g . 
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If 3r , then points will be of the type 1g  and 4g . When 3r , the points will be of 

the type 1g , 2g  and 4g . When 3r , the points will be of the type 1g , 3g  and 4g .  

 

Now for the point generated from incidence matrix  
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Here 
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Using (4.2.5), )det()1()det(
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Using (4.2.11), we have,  
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For factorial point: ).........1( 2222
3 g . 3g  can further be rewritten 

as  2/)1(
22

3 1  vvvv 111g  . 

 

Now taking 2
3

2

3 )(, 


vfe
D

R
V

D

vR
AU 


 , we have 

 

 
3

4
3

2
2

33
1

3
2

)1(
bgT

L

vv
Vv

R

v
U 


  


gXXg (say) (4.3.44) 

 

Using (4.2.5), )det()1()det(
311 XXXX  gbT     (4.3.45)  
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Using (4.2.5), )det()1()det(
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Using (4.2.11),  we have,  
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The expressions for the information contained in an observation given in (4.3.37), 

(4.3.41), (4.3.44) and (4.3.47) can further be simplified as 
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We can see that )( 2gI  and )( 4gI  are same as that of )( 2gI  (4.3.14) and )( 3gI (4.3.15) 

of Central composite designs, respectively. )( 3gI  is same as that of )( 1gI (4.3.13) of 

Central composite designs with   replaced by  . )( 1gI  is same as that of )( 1gI (4.3.13) 

of Central composite designs with v replaced by k. For a second order rotatable design 

obtained through BIB designs, substituting 3C  in (4.3.50), (4.3.51), (4.3.52) and 

(4.3.53), we get 
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For a modified and rotatable second order response surface design, substitute NLR 2  

in (4.3.54), (4.3.55), (4.3.56) and (4.3.57).  
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For a modified second order response surface design alone, substituting NLR 2  in 

(4.3.50), (4.3.51), (4.3.52) and (4.3.53), we get 

L

kk

LC

k

R

k

NLC

RkLvC
I

2

)1(

)1()1(

2)1(
)(

4422

1
 








g    (4.3.62) 

LCRNLC

RLvC
I

)1()1(

2)1(
)(

422

2









g              (4.3.63) 

L

vv

LC

v

R

v

NLC

vRLvC
I

2

)1(

)1()1(

2)1(
)(

4422

3
 








g    (4.3.64) 



ROBUSTNESS AGAINST SINGLE MISSING OBSERVATION 

 126 

NC

vC
I

)1(

)1(
)( 4




g         (4.3.65). 

                

Now substituting 1  and 2 , in the expressions (4.3.50) to (4.3.65), we can get the 

corresponding expressions for second order response surface designs obtainable through 

BIB designs when the various factors are with equispaced doses. The corresponding 

expressions for modified and rotatable second order response surface designs are given 

below. The other expressions can be obtained on the similar lines. 
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Using these expressions, the corresponding expressions of 11det( XX ) can directly be 

obtained from (4.3.38), (4.3.42), (4.3.45) and (4.3.48). The 1
11 )trace( XX  can also 

easily be obtained using (4.3.40), (4.3.43), (4.3.46) and (4.3.49) respectively. 

 

The information contained in an observation, percent loss in information and D-

efficiencies of the modified and rotatable designs obtainable from BIB designs with 

3r  and 3r  catalogued in Tables 3.3.4 and (3.3.6) respectively and are presented 

in Tables 4.3.2 and 4.3.3.  

 

Table 4.3.2: The information contained in an observation, percent loss in 

information and D-efficiencies of the modified and rotatable second order response 

surface designs given in Table 3.3.4. 

v p 
0n  N 

Factorial Point Center Point 

)(gI  Loss % D-eff )(gI  Loss % D-eff 

4 2 12 36 0.583 3.889 0.943 0.083 0.556 0.994 

7 3 16 72 0.625 1.736 0.973 0.063 0.174 0.998 

10 4 48 288 0.271 0.410 0.995 0.021 0.032 1.000* 

*denotes that the D-efficiency is greater than 0.9995. 
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Table 4.3.3a: The information contained in an observation, percent loss in 

information and D-efficiencies of the modified and rotatable second order response 

surface designs given in Table 3.3.6. 

 

v p s t 
0n  N 

Factorial Point Axial Point Center Point 

)(gI  Loss % D-eff )(gI  Loss % D-eff )(gI  Loss % D-eff 

4 3 4 3 136 288 0.086 0.575 0.994 0.143 0.951 0.990 0.010 0.069 0.999 

5 3 4 3 304 654 0.056 0.266 0.997 0.093 0.445 0.995 0.005 0.025 1.000* 

6 3 4 1 144 476 0.080 0.286 0.997 0.135 0.483 0.995 0.008 0.030 1.000* 

6 4 2 7 456 732 0.115 0.410 0.996 0.077 0.276 0.997 0.005 0.020 1.000* 

6 5 1 7 456 732 0.115 0.410 0.996 0.077 0.276 0.997 0.005 0.020 1.000* 

7 4 1 1 64 190 0.282 0.783 0.991 0.282 0.783 0.991 0.024 0.066 0.999 

*denotes that the D-efficiency is greater than 0.9995. 

 

From Table 4.3.3.a, it is observed that the percent loss in information is marginal and D-

efficiencies are reasonably high. Therefore, we can say that modified and rotatable 

designs obtained through BIB designs with 3r  are robust against the unavailability of 

one observation. However, to satisfy the property of NLR 2 , 0n  is very high. 

Therefore, we have also computed the percent loss in information and D-efficiencies for 

rotatable designs obtained through BIB designs by taking 20 n  in the above table and 

presented in Table 4.3.3b. 

 

Table 4.3.3b: The information contained in an observation, percent loss in 

information and D-efficiencies of the modified and rotatable second order response 

surface designs given in Table 3.3.6 with 0n =2. 

v p s t 
0n  N 

Factorial Point Axial Point Center Point 

)(gI  Loss % D-eff )(gI  Loss % D-eff )(gI  Loss % D-eff 

4 3 4 3 2 154 0.085 0.564 0.994 0.153 1.021 0.989 0.250 1.667 0.981 

5 3 4 3 2 352 0.054 0.259 0.997 0.107 0.508 0.995 0.206 0.980 0.989 

6 3 4 1 2 334 0.079 0.284 0.997 0.163 0.583 0.994 0.308 1.099 0.987 

6 4 2 7 2 278 0.109 0.390 0.996 0.078 0.280 0.997 0.216 0.772 0.991 

6 5 1 7 2 278 0.109 0.390 0.996 0.078 0.280 0.997 0.216 0.772 0.991 

7 4 1 1 2 128 0.278 0.772 0.991 0.278 0.772 0.991 0.500 1.389 0.981 

 

Similar computations can easily be made for modified designs obtainable from BIB 

design. 



CHAPTER V 

 

RESPONSE SURFACE DESIGNS FOR QUALITATIVE  

CUM QUANTITATIVE FACTORS 
 

5.1 Introduction 

Response Surface studies often involve quantitative factors only and as such much of work in the 

response surface studies has been undertaken for quantitative factors only. A brief account of the 

results available in the literature and obtained in the present investigation on response surface 

designs for quantitative factors is given in Chapters II, III and IV. There are, however, many 

situations in agricultural experimentation where both the qualitative and quantitative variables 

are involved. For example, in fertilizer trials, the response or yield of a crop not only depends on 

various doses of fertilizers but also on the method of its application viz. foliar application, behind 

the plough, broadcasting, etc. Here the method of application is a qualitative variable while the 

amount of fertilizer applied is a quantitative variable. Another example could be the differences 

in response (s) to fertilizer application due to its various sources. Here the source of fertilizer is a 

qualitative variable while the amount of fertilizer applied is quantitative variable. To improve the 

agricultural productivity there is continuous research activity for the development of new 

varieties of crop and often the agronomy for the crop vary from variety to variety in some of the 

aspects of crop production and management. Thus it is essential to conduct the experiment to 

find out the influence of various agronomic practices to the newly developed varieties and 

consequently evolve optimum combinations of nitrogen, phosphorus and potassium doses for 

maximizing the varieties productivity. All those experiments where variety of the crop is a factor 

along with other factors like fertilizer, etc. constitute a qualitative-cum-quantitative experiment. 

A close scrutiny of the experiments available in the Agricultural Field Experiments Information 

System (AFEIS) maintained at Indian Agricultural Statistics Research Institute, New Delhi 

revealed that more than 10% of the experiments conducted in the country have variety as one of 

the factors. Most of these experiments have been conducted either in randomized complete block 

design or Split plot design. It is, therefore, required to undertake response surface studies 

involving these trials. 

 

The qualitative-cum-quantitative experiments differ from experiments involving only 

quantitative factors in the sense that we may often have dummy treatments. Here the 

experimenter is mainly interested in the types or forms that are more responsive as well as in the 

interaction of different qualities with quantities. The important feature of these experiments 

which make them different from ordinary factorials is that some of the level combinations, 

namely those where the quantitative factor is at zero level, are indistinguishable. To be clearer, 

consider the following example. 

 

Consider that we have three forms of nitrogenous fertilizers say, ammonium sulphate (AS), 

calcium ammonium nitrate (CAN) and urea. Each of these forms are being tested at 3 levels viz. 

0,1 and 2. Further, suppose that the other factor being tested is phosphorus with levels 0, 1 and 2. 

Here we get the following three sets of identical treatments combinations. 
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where #n  denotes the level of nitrogen, #q  source of nitrogen and #p  as level of phosphorus. 

Thus in this we get three sets of identical treatments which are called dummy treatments. This is 

so because there is no meaning of any quality being applied at zero level of nitrogen. Thus any 

differences between these combinations are due to uncontrolled factors and hence, they form a 

part of error component. Thus the construction of the confounded designs and their analysis for 

qualitative-cum-quantitative becomes different from that of quantitative type of designs.  

 

Fisher (1935) described a few such experiments in the context of agricultural experiments where 

zero, single and double doses of certain fertilizers were applied and yield was studied. 

Subsequently Sardana (1961) and Narayana and Sardana (1967) investigated the designs for such 

experimental situations. Lal and Das (1973) proposed a method of construction of confounded 

designs for qualitative-cum-quantitative experiments. Bose and Mukerjee (1987) pointed out that 

substantial modifications are required in the standard calculus for factorial arrangements (see e.g. 

Kurkjian and Zelen (1963)) and obtained necessary and sufficient conditions for inter and intra 

effect orthogonality for qualitative-cum-quantitative experiments. They also gave some methods 

of construction of such designs. In the above literature, the designs for qualitative cum 

quantitative experiments were developed keeping in view the standard factorial experiments 

analysis, i.e., evaluating of main effects and interaction of various factors involved in the 

experiment. It was Cox (1984) who pointed out the need for the development of response surface 

designs for qualitative-cum-quantitative experiments. Such experiments are quite common in 

food processing experiments as well. 

 

For example, consider an experimental situation where it is desired to prepare a best recipe for a 

cakemix to be sold in a box at the supermarket. In this example, experiment is to be run with four 

design factors, flour (x1), shortening (x2), eggpowder (x3), shape of the baked cake (w). First 

three factors are quantitative while the fourth can take only two shapes: round and square, so it is 

a qualitative factor. 

 

In response surface studies goal of the experiments for inclusion of qualitative variable(s) is 

same as that of quantitative variables, i.e.,  

(i) they must be included in the model, 

(ii) they must be involved in response prediction or optimization using model, 

(iii) the nature of interaction between quantitative and qualitative variables determines the 

complexities of both the design and analysis. 

 

The designs that are optimal for fitting first or second order response surfaces when all factors 

are quantitative in nature may not be so when some of the factors are qualitative and effect the 

response.  This may be due to the constraints in the level of qualitative factors or due to the terms 

involving the interactions of terms.  The most common optimal design for fitting second order 

response surface is Central Composite Design (CCD) and involves five levels of each of the 

factor being investigated. An experimenter, say, is interested in studying the effects of nitrogen 

from two sources (urea and calcium ammonium nitrate), he./she cannot be told that there must be 
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five sources of nitrogen. Even if there are five sources of nitrogen, it is very difficult to associate 

them with the five levels of a central composite design viz.  ,,0,,  as for 1 ,   is 

generally not an integer. Thus it may not be suitable and when one or more factors are qualitative 

in nature e.g. in a trial involving sources of nitrogen fertilizer as a qualitative factor, it is not 

desirable to insist on five sources of nitrogen for adopting CCD for experimentation. Further, one 

may think of using a second order response surface design such as the central composite design, 

the design obtainable from BIB designs for cyclic permutations of factors for each level of the 

qualitative factor. This, however, will require a large number of runs. Thus there is a need to 

develop designs for experiments involving both quantitative and qualitative factors.  

 

Draper and John  (1988) were the first to tackle the problem of obtaining response surface 

designs for qualitative-cum quantitative factors. They discussed the relations between designs 

and models and gave designs for some specific situations.    Wu and Ding (1998) have cited the 

following example requiring response surface designs for given some designs for qualitative-

cum quantitative factors. 

 

Consider a machining process for slab caster rolls in a steel plant. The experiment was conducted 

to improve the machining time keeping a low rating of surface roughness. Four factors viz. (i) 

feed (the distance the tool advances in one revolution), (ii) speed at which the surface moves past 

the cutting tool, (iii) lead angle at which the tool meets the work piece, and (iv) insert (a 

replaceable part of the cutting tool), are identified as potentially important. The first three factors 

are quantitative, while the fourth can take only two shapes: round and square. 

 

Wu and Ding (1998) have given a systematic method of construction of such designs of 

economical size and discuss the underlying objectives and models. Aggarwal and Bansal (1998) 

further extended this method of construction for the situations where some of the quantitative 

factors are uncontrollable or noise factors.  

 

The special care is required for defining the levels of qualitative factors in the model. A brief 

account of this is given in Section 5.2. For more details on this, one may refer to Draper and John 

(1988). The first and second order response surface designs for qualitative-cum-quantitative 

experiments are given in Sections 5.3 and 5.4 respectively. 

 

5.2 Inclusion of Terms Involving Qualitative Factor in the Model 
Qualitative factors are included in response surfaces using Indicator or Dummy variables. For 

example, suppose that one of the factors in fertilizer response studies is a source of nitrogen. 

Assuming that only two sources are involved, we wish to assign different levels to the two 

sources to account for the possibility that each source may have different effect on the response. 

Thus to introduce the effect of two different sources into a model, we define a dummy variable z 

as follows 

 1z ,   if the observation is from source I 

            1z , if the observation is from source II 

 

In fact any two levels, (0,1); (-1,1) or (-3,7) would work perfectly well and, in general, there are 

infinite number of ways for allocating the levels of the dummy variables. 
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In general, a qualitative factor with t levels is represented by 1t  dummy variables that are 

assigned the values either –1 or 1. Thus, if there were three sources of nitrogen, the different 

level would be accounted for by two dummy variables defined as follows: 

1z  2z   

-1 -1 if the observation is from source I 

1 -1 if the observation is from source II 

-1 1 if the observation is from source III 

 

5.3 Design Considerations in First Order Response Surfaces  

Design choice is dependent upon the model postulated by experimenter and following situations 

are of interest. Here we shall consider a system that is affected by v quantitative variables 

 vixi ,...,1;   and single qualitative variable  z each at two levels. 

 

Situation I: It is postulated that only change in the intercept is required at the level of qualitative 

factor changes, i.e., the model is 

   zxxxy vv 122110 ...      (5.3.1) 

 

Situation II: In addition to whatever is postulated is situation I, whether or not linear coefficient 

of vxxx ,...,, 21  vary from one level to anther of qualitative variable, thus the model to fit is 

   


v

i
ii

v

i
ii zxzxy

1
1

1
0      (5.3.2) 

 

Clearly v2  factorials would allow for estimation of model in equations (5.3.1) and (5.3.2).  In 

addition to v2  factorial combinations some extra runs (may be of center points) allow for testing 

to determine if quadratic terms are needed.  Since the number of runs in v2  is quite large as 

compare to terms in model to be estimated (particularly for large value of v), therefore, the 

experimenter is interested in designs that are smaller than full v2  factorial that can be used to fit 

a model (5.3.1) or (5.3.2).  For 2 quantitative factors, Draper and John (1988) have shown that 

the design consisting of five points  1,1,1  ;  1,1,1  ;  1,1,1 ;  1,1,1 ;  1,0,0   

can be used to fit the model (5.3.1) along with an extra term, only one of 21xx , zx1  or zx2 . For 

this five point design replication would be necessary to obtain a test for lack of fit. 

 

For more than two quantitative variables and qualitative variables that are at two levels fractional 

factorials that all two factor interactions involving the qualitative and quantitative factors are 

estimable. In other words, one may also think of using designs of mixed resolution that allow a 

smaller resolution that applies in the case of quantitative variables then that which applies in 

dealing with interaction involving quantitative and qualitative variables. This is explained 

through the following example. 

Example 5.3.1: Consider 62  experiments involving 5 quantitative variables and one qualitative 

variable and model (5.3.2) is of interest. Rewriting model (5.3.2) for 5v  

   


5

1
1

5

1
0

i
ii

i
ii zxzxy      (5.3.3) 
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we can fit model (5.3.3) with 262   factorial with defining contrast 

 zxxxzxxxxxxxI 5425431321  . 

 

It will allow fitting of (5.3.3) leaving 4 degrees of freedom for lack of fit. 

 

Further, Hedayat and Pesotan (1992, 1997) gave two factor fractional factorial designs for main 

effects and selected two factor of interaction when all other interactions are assumed to be 

negligible. It is conjectured that these designs can be used for response surface studies involving 

the qualitative cum quantitative variables by designating the interaction between qualitative and 

quantitative factors as interaction of interest and interactions between qualitative cum 

quantitative factor as zero. 

 

5.4  Designs for Fitting of Second Order Response Surfaces   

In this section, we discuss the procedure of obtaining designs for fitting response surfaces in 

qualitative-cum-quantitative experiments. We begin with a brief review of the work done by 

Draper and John (1988) and Wu and Ding (1998). It will be followed by some remarks on the 

use of response surface designs when various factors are with equispaced doses, second order 

response surface designs with orthogonal blocking and asymmetric rotatable designs. 

 

Draper and John (1988) considered that if a second-order response surface is under consideration 

with coded quantitative variables vxxx ,...,, 21  and qualitative variables rz zz ,...,, 21 , whose 

effects also have to be incorporated in the model and we wish to choose a design, which will 

allow to: 

 

1. Fit a linear model in the v quantitative variables vxxx ,...,, 21  of first or second order 

response surface, as selected, to the response variables. 

2. Take account of the effects that changes in the qualitative variables rz zz ,...,, 21  have on the 

form of the linear model. 

3. To test whether or not a simpler model might adequately explain the data, given a model. 

 

Restricting to second order models only, the most general formulation is  

  



m

z
zzz fwyE

1

β)( x,                   (5.4.1) 

where  f  is a polynomial of second order. 

   
 





v

i

v

i
iizii

v

i
iizzzz xxxf

1 11
0β x,      

and the z subscript indicates a different set of  's for each choice of z levels. The 

zw  mz ,...,1  represent the selected levels of m dummy variables, chosen in such a way as to 

distinguish between all possible combinations of qualitative variables.  For example, if there is 

one qualitative variable with two levels, we can set 1zw  for first level and 1zw  for second 

level.  If we had two qualitative variables, say )1,1(1 z  and )1,1(2 z , then the zw  

representation can be as shown below: 
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Category 1w  12 zw   23 zw   214 zzw   

1 1 -1 -1 1 

2 1 1 -1 -1 

3 1 -1 1 -1 

4 1 1 1 1 

 

This representation not only separates the four categories but also has the advantage that it can be 

immediately related to the specific z - levels. 

 

In designing an experiment to fit a particular model of the form (5.4.1), it is necessary to choose 

a design that will allow testing of lack of fit. It other words, it should allow the examination of 

the goodness of fit of this model relative to a model given by the addition of further higher order 

terms in the quantitative variables or of interactions between the quantitative and qualitative 

variables.  

 

Wu and Ding (1998) gave a systematic method for constructing designs of economical size. The 

main idea is to start with an efficient design for the quantitative factors and then partition its 

points into groups. Each group corresponds to level combinations of the qualitative factors. From 

these designs, designs are selected with high overall efficiencies as measured by the determinant 

criterion. 

 

They use the determinant criterion (D-criterion) for efficiency comparison 

 D-efficiency N
p1

XX  

The other criterion that can be used for efficiency comparison are 

 A-efficiency  1)(*  XXtraceNp  

 G-efficiency ))(max( xVp  

where  ))x(Vmax(  is the maximum scaled prediction variance of the design. 

 

Wu and Ding (1998) constructed the designs to meet the following objectives.  

 

A. The overall design is efficient for a model that is second order in vxxx ,...,, 21  and has the 

main effects of rzzz ,...,, 21  and the interactions between ix  and jz . 

B. At each combination of the quantitative factor or each level of a qualitative factor jz , it 

is an efficient first order design in vxxx ,...,, 21 . 

C. The design in A consists of two parts: the first part is a first-order design for both 

vxxx ,...,, 21  and rzzz ,...,, 21 , and the second part can be viewed as a sequential addition 

to the first part so that the expanded design is second-order. 

D. When collapsed over the levels of rzzz ,...,, 21 , it is an efficient second-order design for 

vxxx ,...,, 21 . 
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Objective A is the most important. It ensures that the first and second order effects of ix , the 

main effects of jz  and the interactions between ix  and jz  can all be estimated with high overall 

efficiency. 

 

The effects of ix  may vary with the levels of jz . It is desirable to have the design at each 

combination of rzzz ,...,, 21  (or at each level of jz ) that allows separate estimation of the first-

order effects of ix . The goal is met by implementing Objective B. 

 

Objective C enables the experiment to be conducted in two stages. The initial experiment allows 

the estimation of the main effects of ix , jz  and some of their interactions. 

 

Objective D ensures that, when there is no significant difference among the jz 's the combined 

design is a second-order design with good overall properties. 

 

If the objectives cannot be met simultaneously priority should be given to A and B. Objective D 

is emphasized only if the effects of the qualitative factors are believed to be small. 

 

Now stating these objectives with the aid of regression models, for 1r , the case of one 

qualitative factor, a second-order model for ix  and z  is given by 

    






 

















v

ii
iiii

v

i

m

z

v

i
iizzz xxxWyE

1

1

11 1
0           (5.4.2) 

 

where   m  =  number of levels of qualitative factor 

            zW  1, when y is taken at level 1 of the variable z 

       =  0, otherwise. 

           z0 = constant term, dependent on the choice of z 

           iz = slope of ix , dependent on the choice of z. 

 

If the run size is small, the following sub models of equation (5.4.2) may be  fitted 

    iixxxxWyE iiii

v

i
iii
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z
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 

 
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0       (5.4.3) 

      iixxxWxxWyE iiiiiizz

v
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zz  



  andofsome
1

2

1
0       (5.4.4) 

 

Model (5.4.3) excludes some interaction terms iixx iiii  ,  in the model (5.4.2). Model 

(5.4.4) further excludes some iiz x  terms. 

 

Objective A stipulates that the overall design allows one of these models to be fitted with high 

efficiency. 
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Objective B requires that the coefficients in the model  

   iixxxyE iiii

v

i
ii  



  ofsome

1

0           (5.4.5) 

be estimated with high efficiency from the design at each level of the qualitative factor. By 

excluding the 2
ix  terms in (5.3.3) and (5.3.4) one gets the following submodels 

         iixxxWyE iiii
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         iixxxWxWyE iiiiiizz
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zz  


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Objective C requires that the coefficients in (5.4.6) and (5.4.7) be estimated with high efficiency 

from the first-order equation. 

 

The method of construction given by Wu and Ding (1998) is based on central composite designs. 

To be clearer, consider the experimental situation when there is one qualitative variable with two 

levels, i.e., for 1r .  The design for the above experimental situation can be constructed as 

follows 

 

Run 1x  2x   vx  z  

1  

1  according to a pv2  design 

1or1z    by 

(i) equating column z to an 

interaction column among the 

ix 's, or 

(ii) search over different 

combinations of 1  

according to some criteria. 

2 

  

 pvt  2  

1t     0    0     0  1 or             -1 

2t     0    0     0 -1 or              1 

3t          0     0  

Search over different combinations 

of 1  according to some criteria. 
4t       0     0 

5t     0          0 

6t     0       0 

              

12  vt     0    0       

22  vt     0    0    

 

For vxx ,...,1 , the first  pvt  2  runs are chosen according to a pv2  fractional factorial design 

with high resolution and ix = 1 . 
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The ( 1t )
th

 and ( 2t )
th

  runs are at the center point. The last v2  runs are the axial points 

whose distance from the origin is  . The value of   be chosen so that the design for v1 x,...,x  

are rotatable. 

 

They have used the determinant criteria (D-criteria) for efficiency comparison, 
p/1

' XX  where 

the model is described by Xβy )(E , y is the vector of observations, β is the vector of 

parameters, of dimension  p, i.e., the number of parameters in the model, and X  is the model 

matrix consisting of all the important effects stipulated in the objectives and the intercept term. 

 

According to A, the overall design with 22  vt  runs should allow the parameters in model 

(5.4.2) and (5.4.33) to be estimated with high efficiency in terms of D-efficiency. 

 

According to B, the runs at each level of z should allow the parameters in model (5.4.5) to be 

estimated with high D-efficiency. 

 

According to C, the first ( 1t ) runs, including one center point, should allow the parameters in 

model (5.4.6) or (5.4.7) to be estimated with high D-efficiency.  

 

When there are two or more qualitative factors, construction of designs becomes more 

complicated because Objective B can take several forms. Wu and Ding (1998) gave an example 

for the case of 2r  and 2v . 

 

In defining a model involving both qualitative and quantitative there is also uncertainty in 

including various terms involving the interaction of qualitative and quantitative factors in the 

model based only on quantitative factors.  Thus, the structure of interaction of qualitative factors 

and the response surface model in the terms such as zxi  is essential. (Here ix  and z denote the 

quantitative and qualitative factors respectively.   

 

It can easily be seen that the above method provides design when the levels of various factors are 

unequispaced. The above method can easily be extended for obtaining designs when the 

quantitative factors have equispaced levels by choosing 2  in the above method. In the 

sequel, we establish a relationship between some of the existing designs and designs for 

qualitative-cum-quantitative factors.  

 

Remark 5.4.1: If we recall, in Section 5.1, we have argued that the standard designs for fitting 

linear or quadratic response surfaces when all factors are quantitative in nature may not be 

suitable when some of the factors are qualitative and influence the response.  As it was difficult 

to associate the levels of qualitative factor with the levels that are non-integers. However, this 

problem can be taken care of by using the designs for various factors with equispaced doses 

obtained from central composite designs and BIB designs in Section 3.3 of Chapter III. 

Remark 5.4.2: In Section 5.1, we have discussed that the standard designs for fitting second 

order response surfaces when all factors are quantitative are not suitable for qualitative-cum-

quantitative experiments as the number of levels of the qualitative factor may not be same as that 

of the quantitative factors. This problem to some extent can be taken care of through the use of 
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asymmetric rotatable designs when various factors are with equispaced doses obtained in Section 

3.3 of Chapter III. 

 

Remark 5.4.3: Draper and Stoneman (1968) gave response surface designs which are subsets of 

points of the qp32  or the qp42  factorial design according to the levels specified. In these 

designs, the response surface cannot include quadratic terms in the factors that are at 2 levels 

each but all second order terms for the factors to be examined at 3 or 4 levels can be permitted. 

Now if we associate the qualitative factors with the factors at 2 level each and quantitative 

factors at 3 or 4 levels each, we can get designs for qualitative-cum-quantitative factors.  

 

Remark 5.4.4: Herzberg (1966) introduced cylindirically rotatable designs that are rotatable 

with respect to all factors except one. If we consider, the factor with respect to which the design 

is not rotatable as qualitative factor, then we may get the designs for qualitative-cum-quantitative 

factors. 

 

Remark 5.4.5: In Chapter III, Section 3.5, we have obtained and catalogued several second 

order response surface designs with orthogonal blocking.  If we consider qualitative factor as 

blocking factor, then the design that allows orthogonal blocking can be used for fitting model 

(5.4.1) by superimposing level of qualitative variable with blocks. For catalogues of these 

designs, please refer to Section 3.5 of Chapter III. The procedure of obtaining response surface 

designs for qualitative-cum-quantitative factors from second order rotatable designs with 

equispaced doses is explained through the following example. 

 

Example 5.4.1: Consider an agricultural experiment where it is desired to obtain an optimum 

combination of 4 quantitative factors A, B, C and D. Each of these factors were tried at 5 levels. 

There is one qualitative factor, Z with three levels in the experiments. The layout of design 

obtained using a second order rotatable design with orthogonal blocking with block contents as   

 

Block-I  Block-II  Block-III 

A B C D  A B C D  A B C D 

-1 -1 -1 -1  -1 -1 -1 1  2 0 0 0 

-1 -1 1 1  -1 -1 1 -1  -2 0 0 0 

-1 1 -1 1  -1 1 -1 -1  0 2 0 0 

1 -1 -1 1  1 -1 -1 -1  0 -2 0 0 

1 -1 1 -1  -1 1 1 1  0 0 2 0 

1 1 -1 -1  1 -1 1 1  0 0 -2 0 

-1 1 1 -1  1 1 -1 1  0 0 0 2 

1 1 1 1  1 1 1 -1  0 0 0 -2 

0 0 0 0  0 0 0 0  0 0 0 0 

By associating, the blocks with the levels of qualitative factor, we get 

 

 

z A B C D 

-1 -1 -1 -1 -1 

-1 -1 -1 1 1 

-1 -1 1 -1 1 
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-1 1 -1 -1 1 

-1 1 -1 1 -1 

-1 1 1 -1 -1 

-1 -1 1 1 -1 

-1 1 1 1 1 

-1 0 0 0 0 

0 -1 -1 -1 1 

0 -1 -1 1 -1 

0 -1 1 -1 -1 

0 1 -1 -1 -1 

0 -1 1 1 1 

0 1 -1 1 1 

0 1 1 -1 1 

0 1 1 1 -1 

0 0 0 0 0 

1 2 0 0 0 

1 -2 0 0 0 

1 0 2 0 0 

1 0 -2 0 0 

1 0 0 2 0 

1 0 0 -2 0 

1 0 0 0 2 

1 0 0 0 -2 

1 0 0 0 0 

 

This design can now be used to fit the model 
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and is useful when the experimenter feels that only the change in intercept is required as the level 

of qualitative variable changes. However, this particular design is also useful for fitting the 

complete model with interaction of qualitative and quantitative factors. 

 

Some hit and trial solutions can also be obtained. One such design is given in the following 

example: 

 

Example 5.4.2: Consider an agricultural experiment involving three quantitative factor N, P and 

K each at 3 levels and one qualitative factor named as sources of N  (S) at two levels, i.e., 

2333   design. The layout of design obtained using a second order rotatable design with 

orthogonal blocking with block contents as  
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Block-I  Block-II  Block-III 

N P K  N P K  N P K 

-1 -1 0  -1 0 -1  0 -1 -1 

-1 1 0  -1 0 1  0 -1 1 

1 -1 0  1 0 -1  0 1 -1 

1 1 0  1 0 1  0 1 1 

0 0 1  0 1 0  1 0 0 

0 0 1  0 1 0  1 0 0 

0 0 -1  0 -1 0  -1 0 0 

0 0 -1  0 -1 0  -1 0 0 

0 0 0  0 0 0  0 0 0 

0 0 0  0 0 0  0 0 0 

 

Now if we associate the levels of two sources within blocks in such a fashion that the sum of the 

entries in the column of qualitative factor and its cross products with quantitative factors is zero, 

we get the following design: 

 

S N P K 

1 -1 -1 0 

-1 -1 1 0 

-1 1 -1 0 

1 1 1 0 

1 0 0 1 

-1 0 0 1 

1 0 0 -1 

-1 0 0 -1 

1 0 0 0 

-1 0 0 0 

1 -1 0 -1 

-1 -1 0 1 

-1 1 0 -1 

1 1 0 1 

1 0 1 0 

-1 0 1 0 

1 0 -1 0 

-1 0 -1 0 

1 0 0 0 

-1 0 0 0 

1 0 -1 -1 

-1 0 -1 1 

-1 0 1 -1 

1 0 1 1 

1 1 0 0 

-1 1 0 0 

1 -1 0 0 
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-1 -1 0 0 

1 0 0 0 

-1 0 0 0 
 

If we consider the fitting of the model with 14 parameters as  
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then the matrix XX , is given by 
 

30 0 0 0 0 12 12 12 0 0 0 0 0 0 

0 30 0 0 0 0 0 0 4 4 4 0 0 0 

0 0 12 0 0 0 0 0 0 0 0 0 4 4 

0 0 0 12 0 0 0 0 0 0 0 4 0 4 

0 0 0 0 12 0 0 0 0 0 0 4 4 0 

12 0 0 0 0 12 4 4 0 0 0 0 0 0 

12 0 0 0 0 4 12 4 0 0 0 0 0 0 

12 0 0 0 0 4 4 12 0 0 0 0 0 0 

0 4 0 0 0 0 0 0 4 0 0 0 0 0 

0 4 0 0 0 0 0 0 0 4 0 0 0 0 

0 4 0 0 0 0 0 0 0 0 4 0 0 0 

0 0 0 4 4 0 0 0 0 0 0 12 0 0 

0 0 4 0 4 0 0 0 0 0 0 0 12 0 

0 0 4 4 0 0 0 0 0 0 0 0 0 12 

  

The matrix 
1)( XX  is  

0  1  1  2  3  11  22  33  12  13  23  1  2  3  

0.119 0.000 0.000 0.000 0.000 -0.071 -0.071 -0.071 0.000 0.000 0.000 0.000 0.000 0.000 

0.000 0.056 0.000 0.000 0.000 0.000 0.000 0.000 -0.056 -0.056 -0.056 0.000 0.000 0.000 

0.000 0.000 0.113 0.019 0.019 0.000 0.000 0.000 0.000 0.000 0.000 -0.013 -0.044 -0.044 

0.000 0.000 0.019 0.113 0.019 0.000 0.000 0.000 0.000 0.000 0.000 -0.044 -0.013 -0.044 

0.000 0.000 0.019 0.019 0.113 0.000 0.000 0.000 0.000 0.000 0.000 -0.044 -0.044 -0.013 

-0.071 0.000 0.000 0.000 0.000 0.143 0.018 0.018 0.000 0.000 0.000 0.000 0.000 0.000 

-0.071 0.000 0.000 0.000 0.000 0.018 0.143 0.018 0.000 0.000 0.000 0.000 0.000 0.000 

-0.071 0.000 0.000 0.000 0.000 0.018 0.018 0.143 0.000 0.000 0.000 0.000 0.000 0.000 

0.000 -0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.306 0.056 0.056 0.000 0.000 0.000 

0.000 -0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.306 0.056 0.000 0.000 0.000 

0.000 -0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.056 0.306 0.000 0.000 0.000 

0.000 0.000 -0.013 -0.044 -0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.113 0.019 0.019 

0.000 0.000 -0.044 -0.013 -0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.113 0.019 

0.000 0.000 -0.044 -0.044 -0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.019 0.113 

 

It can easily be observed that most of the parameters are estimated without correlation. Hence, 

this may be a good design for qualitative-cum-quantitative experiments. 
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Meyers and Montgomery (1995) have used SAS-QC for construction of response surface designs 

involving both qualitative and quantitative variables. These designs may allow two or more than 

two qualitative variables. One of the designs obtained by them using G, A and D-optimality 

criterion is given in the following example. 

 

Example 5.4.3: Consider a situation in which there are four quantitative variables and one 

qualitative variable at two levels. It is assumed that second order model in quantitative variables 

and terms of the type z  and )4,...,1( izxi  to account for possible changes in structure of 

response surface due to change in quantitative variables shall be appropriate. As such the model 

to be fitted shall contain 20 terms 

   


4

1

4

1

2
4

1

0

i

ii

kj

kjjk

i

iii

i

ii zxzxxxxy  

 

The possible candidate for the design points in a grid involving full central composite design 

with levels –2, -1, 0, 1, 2 and x's crossed with –1 and +1, the two levels of the qualitative 

variables. The experiments can afford only 24 total runs. The SAS system gave the following 

design using G-efficiency, A-efficiency & D-efficiency criterion. 

 

Design I: G-efficiency Criterion 

observation 1x  2x  3x  4x  z 

1 -2 0 0 0 -1 

2 -1 -1 -1 -1 -1 

3 -1 -1 -1 -1 1 

4 -1 -1 1 -1 1 

5 -1 -1 1 1 1 

6 -1 1 -1 -1 -1 

7 -1 1 -1 1 1 

8 -1 1 1 -1 1 

9 -1 1 1 1 -1 

10 0 -2 0 0 1 

11 0 0 -2 0 -1 

12 0 0 0 0 1 

13 0 0 0 2 -1 

14 0 0 2 0 1 

15 0 2 0 0 1 

16 1 -1 -1 -1 -1 

17 1 -1 1 -1 -1 

18 1 -1 1 1 -1 

19 1 -1 1 1 1 

20 1 1 -1 -1 1 

21 1 1 -1 1 1 

22 1 1 1 -1 -1 

23 1 1 1 -1 1 

24 2 0 0 0 -1 
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Design II: A-efficiency Criterion 

observation 1x  2x  3x  4x  z 

1 -1 -1 -1 -1 -1 

2 -1 -1 -1 1 1 

3 -1 -1 1 -1 1 

4 -1 -1 1 1 -1 

5 -1 1 -1 -1 1 

6 -1 1 -1 1 -1 

7 -1 1 1 -1 -1 

8 -1 1 1 1 1 

9 0 -2 0 0 -1 

10 0 -2 -2 0 -1 

11 0 0 0 -2 -1 

12 0 0 0 0 -1 

13 0 0 0 0 1 

14 0 0 0 2 -1 

15 0 0 2 0 -1 

16 0 2 0 0 -1 

17 1 -1 -1 -1 1 

18 1 -1 1 -1 -1 

19 1 -1 1 1 1 

20 1 1 -1 -1 -1 

21 1 1 -1 1 1 

22 1 1 1 -1 1 

23 1 1 1 1 -1 

24 2 0 0 0 -1 
 

Design III: D-efficiency Criterion 

observation 1x  2x  3x  4x  z 

1 -2 0 0 0 -1 

2 -1 -1 -1 -1 1 

3 -1 -1 -1 1 1 

4 -1 -1 1 -1 1 

5 -1 -1 1 1 1 

6 -1 1 -1 -1 1 

7 -1 1 -1 1 1 

8 -1 1 1 -1 1 

9 -1 1 1 1 1 

10 0 -2 0 0 -1 

11 0 0 -2 0 -1 

12 0 0 0 -2 -1 

13 0 0 0 0 1 

14 0 0 0 2 -1 

15 0 0 2 0 -1 

16 0 2 0 0 -1 

17 1 -1 -1 -1 1 
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18 1 -1 1 -1 1 

19 1 -1 1 1 1 

20 1 1 -1 -1 1 

21 1 1 -1 1 1 

22 1 1 1 -1 1 

23 1 1 1 1 1 

24 2 0 0 0 -1 

 

The most of the designs for qualitative-cum-quantitative experiments obtained in this 

investigation are obtained through heuristic approach and are restricted to one qualitative factor 

only. Therefore, the problem of obtaining a general method of construction of response surface 

designs for qualitative-cum-quantitative experiments when the quantitative factors are with 

equispaced doses is still an open problem. 

 



CHAPTER VI 

 

EXTENSION OF RESEARCH FINDINGS 
 

One of the significant features of the study is that three designs reported in the project 

were actually used by the experimenters in National Agricultural Research System. The 

applications are mainly in food processing experiments conducted for value addition to 

the agriculture produce. In these experiments, the major objective of the experimenter is 

to obtain the optimum combination of levels of several factors that are required for the 

product.  The details of the experimental situations and the designs used are given in the 

sequel: 
 

Experimental Situation 6.1: An experiment related to osmotic dehydration of the 

banana slices was planned to obtain the optimum combination of levels of concentration 

of sugar solution, solution to sample ratio and temperature of osmosis at Division of 

Agricultural Engineering, Indian Agricultural Research Institute, New Delhi. The factors 

and levels are as given below: 
 

 Factors Levels 

1. Concentration of sugar solution 40%, 50%, 60%, 70% and 80% 

2. Solution to sample ratio 1:1, 3:1, 5:1, 7:1 and 9:1 

3. Temperature of osmosis 25
0
C, 35

0
C, 45

0
C, 55

0
C and 65

0
C  

 

A modified second order rotatable response surface design for 3 factors each at 5 

equispaced levels in 36 design points have been suggested. Layout of the design with 

levels coded as -2a, -a, 0, a ,2a and factors coded as A,B,C is as given below: 

 

Design Point Number A B C  Design Point Number A B C 

1 -a -a -a  19 0 -2a 0 

2 -a -a a  20 0 2a 0 

3 -a a -a  21 0 0 -2a 

4 a -a -a  22 0 0 2a 

5 -a a a  23 0 0 0 

6 a -a a  24 0 0 0 

7 a a -a  25 0 0 0 

8 a a a  26 0 0 0 

9 -a -a -a  27 0 0 0 

10 -a -a a  28 0 0 0 

11 -a a -a  29 0 0 0 

12 a -a -a  30 0 0 0 

13 -a a a  31 0 0 0 

14 a -a a  32 0 0 0 

15 a a -a  33 0 0 0 

16 a a a  34 0 0 0 

17 -2a 0 0  35 0 0 0 

18 2a 0 0  36 0 0 0 



EXTENSION OF RESEARCH INDINGS 

 145 

The experiment was conducted using this design. The data obtained from this experiment 

was analyzed as per procedure of response surface methodology. Based on this 

experiment, following paper has been published: 

 Abhijit Kar, Pitam Chandra and Rajender Parsad (2001). Osmotic dehydration 

of banana (Dwarf Cavendish) slices. Journal of Agricultural Engineering, 38(3), 
12-21.  

 

Experimental Situation 6.2: This experiment is related to production of low fat meat 

products using fat replacers planned at Division of Bio-Technology, Indian Veterinary 

Research Institute, Izzatnagar.  The experimenter was interested in obtaining the 

optimum combination of fat replacers. The details of fat replacers (factors) and levels are 

given below: 

S.No. Factor Levels 

1. Whey protein 2%, 3%, 4%, 5% and 6% 

2. Guar Gum 0.50%, 0.75%, 1.00%, 1.25% and 1.50%. 

3. Starch 2.0%, 2.5%, 3.0%, 3.5% and 4.0%. 

 

A second order rotatable response surface design for 3 factors each at 5 equi-spaced 

levels in 28 design points was recommended.  The 28 design points were essentially the 

same as that of design points 1-28 in Experimental Situation 6.1. 

 

Experimental Situation 6.3: A modified second order response surface design (Box-

Behnken with 4 center points, the number of center points have been decided on the basis 

of the modified second order response surface designs introduced in the present 

investigation) for three factors each at three levels in 16 points was recommended for the 

experiment related to finding the optimum storability conditions of Instant Pigeon Pea 

Dal conducted at Division of Agricultural Engineering,  Indian Agricultural Research 

Institute, New Delhi.  The details of the factors and their levels are given as under. 
 

S.No. Factors Levels 

1. Soaking Solution Concentration 0.5, 1.0, 1.5% 

2. Cooking Time 8, 10, 12 minutes 

3. Flaking Thickness 0.5, 0.75, 1.0 mm 

 

The design points with coded levels as –1, 0, 1 are given as under: 

X1 X2 X3  X1 X2 X3 

1 1 0  0 1 1 

1 -1 0  0 1 -1 

-1 1 0  0 -1 1 

-1 -1 0  0 -1 -1 

1 0 1  0 0 0 

1 0 -1  0 0 0 

-1 0 1  0 0 0 

-1 0 -1  0 0 0 



SUMMARY 
 

To deal with the evolution and methods of analysis for probing onto mechanism of system of 

variables, the experiments involving several factors simultaneously are being conducted in 

agricultural, horticultural and allied sciences. Data from experiments with levels or level 

combinations of one or more factors are generally investigated to compare level effects of 

factors along-with their interactions. Even though such investigations are useful to have 

objective assessment of the effects of the levels actually tried in the experiment, they fail to 

throw any light on the possible effects of the intervening levels especially when the factors are 

quantitative in nature. In such cases, therefore, it is realistic to carry out the investigations 

with the twin purposes viz. (i) to determine and quantify the relationship between the response 

and the settings of experimental factors and (ii) to find the settings of the experimental 

factor(s) that produce the best value or best set of values of the response (s). For the factors 

that are quantitative in nature, it is natural to think the response as a function of the factor 

levels. The data from the experiment involving quantitative factors can be utilized for fitting 

the response surfaces over the region of interest. Response surfaces besides inferring on these 

twin purposes can provide information on the rate of change of the response variable and can 

throw light on interactions between quantitative factors. 

 

Response surface methodology has been extensively used in industrial experimentation but 

appear to be not so popular in research areas in agricultural and allied sciences.  This is due to 

the fact that experimental situations in agricultural sciences are different from those in 

industry. Broadly, there are mainly five distinctions that are identified namely: (i) time and 

factor range (ii) factor levels (iii) blocking (iv) accuracy of observations’ (v) shape of 

response surface. 

 

Keeping in view the importance and relevance of response surface methodology in agriculture 

this study was undertaken. In this investigation, we have presented a comprehensive account 

of response surface methodology in Chapter II. The methodology includes fitting of both first 

and second order response surfaces with and without intercept, the procedure of performing 

canonical analysis of the second order response surface and the method of exploration of the 

response surface in the vicinity of the stationary point. The codes have been written using 

Statistical Analysis System (SAS) and Statistical Package for Social Sciences (SPSS) for 

fitting second order response surfaces both with and without intercept, perform canonical 

analysis and exploration of the response surface in the vicinity of stationary point.  These 

codes are presented in Chapter II for the benefit of the users.  A computer software 

"Response" has also been developed for fitting first and second order response surfaces both 

with and without intercept, performing the canonical analysis of the second order response 

surface and the exploration of the response surface in the vicinity of the stationary point. The 

response surface methodology is also illustrated with the help of examples.  
 

Some series of response surface designs for both symmetric and asymmetric factorial 

experiments when the various factors are at equispaced levels that provide estimates of 

response at specific points with a reasonably high precision have been obtained in Chapter III.  

A new criterion in terms of second order moments and mixed fourth order moments is also 

introduced. This criterion helps in minimizing the variance of the estimated response to a 
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reasonable extent. The designs satisfying this property have been termed as modified second 

order response surface designs. Catalogues of the modified and/or rotatable second order 

response surface designs with number of factor (v) and number of design points (N) satisfying 

103  v  and 500N  have been developed and presented in Chapter III. The rotatable 

designs ensure that the variance of the predicted response remains constant at all points that 

are equidistant from the design center. However, it may not always be achievable for all the 

factors or if achievable may require a large number of runs. For such situations, a new series 

of group divisible rotatable designs has been introduced. The method of construction is based 

on group divisible designs. A catalogue of group divisible rotatable designs obtainable for 3 

level factors and 5 level factors obtainable from group divisible designs has been prepared for 

103  v  and 500N .  

 

Several experiments are being conducted where the experimenter is interested in the rate of 

change of response rather than the absolute response.  If the difference in responses at points 

close together in the factor space is involved, then the estimation of local slope of the 

response surface is of interest. An attempt has also been made to obtain efficient designs for 

slope estimation for the situations in which various factors have equispaced doses. Further, in 

agricultural experiments, the use of elaborate blocking systems is essential to control 

environmental variability. Orthogonal blocking aspects of second order response surface 

designs have been investigated. A catalogue along with block contents of second order 

rotatable designs with orthogonal blocking for 83  v  factors each at 3  or 5 equispaced 

doses has been prepared and presented in Chapter III. In some cases, the number of center 

points in a block are more than one, they can be used for estimation for pure error. Hence, 

appropriately identified blocks can be used for fitting of first order response surface and 

testing the lack of fit and rest of the blocks can be used for sequential build up of second order 

response surface design. 

 

The above results have been obtained under very strict restrictions and ideal conditions.  The 

ideal conditions may sometimes be disturbed due to missing observations. The robustness 

aspects of modified and/or rotatable second order response surface designs for response 

optimization obtainable through central composite designs and BIB designs have been 

investigated in Chapter IV with special emphasis on the designs when various factors are with 

equispaced doses.  A new criterion of robustness viz. percent loss in information is 

introduced. Other criteria used in this investigation are information contained in an 

observation, D-efficiency and A-efficiency of the resulting design. 

 

A large number of agricultural and food processing experiments are conducted that involve 

some qualitative factors along with the quantitative factors. The designs that are optimal for 

fitting first or second order response surfaces when all factors are quantitative in nature may 

not be so when some of the factors are qualitative and influence the response.  The designing 

aspects of such experiments for response optimization have been discussed in Chapter V. 

Several procedures of obtaining designs for qualitative-cum-quantitative factors have been 

discussed. These procedures are essentially based on the designs for various factors with 

equispaced doses, asymmetric rotatable designs, cylindrically rotatable designs and second 

order response surface designs with orthogonal blocking. The procedures have been 

illustrated through examples. 
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One of the significant features of the study is that two designs obtained during the present 

investigation were used at the Division of Agricultural engineering, Indian Agricultural 

Research Institute, New Delhi. In one experiment modified and rotatable response surface 

design with 3 factor having 5 levels each in 36 design points was used.  Another design used 

was modified second order response surface design with 3 factor each at 3 levels in 16 design 

points. At the Division of Bio-Technology, Indian Veterinary Research Institute, Izatnagar, 

second order rotatable design with 3 factors at 5 levels each in 28 design points was used. 

This clearly indicates that response surface methodology can be gainfully employed in 

agricultural and food processing experiments. We hope that the findings of this study will be 

of great help to both researcher and practicing statisticians. 
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