
1.	 INTRODUCTION
Ranked Set Sampling (RSS), proposed by McIntyre 

(1952), is a well-known sampling scheme for estimation 
of population parameters which provides more precise 
estimator than Simple Random Sampling Without 
Replacement (SRSWOR) when actual measurements 
of target variables are either difficult or expensive 
in terms of time, money or labour, but ranking of 
sampling units on the basis of visual inspection or 
any other cheaper method, can be done easily. RSS 
has received increasing attention from statisticians 
due to its potential for observational economy. RSS 
has been found to be useful in many research areas 
like ecological and environmental studies (Dell and 
Clutter, 1972; Martin et al., 1980; Al-Saleh and Zheng, 
2002; Ozturk et al., 2005), agricultural studies (Cobby 
et al., 1985; Halls and Dell, 1985; Chen et al., 2004; 
Husby et  al., 2005; Bocci et  al., 2010), reliability 
theory (Kvam and Samaniego, 1994; Ghitany, 2005; 
Dong et  al., 2012) and medical studies (Samawi and 
Al-Sagheer, 2001; Nahhas et  al., 2002). In case of 
crop yield (production) estimation surveys of a region, 

RSS technique can be useful for ranking of fields with 
respect to crop yield through visual inspection or any 
other convenient ways, whereas, actual measurement of 
crop yield in each selected field can be obtained either 
by randomly selecting a small plots for harvesting 
by Crop Cutting Experiments technique or by whole 
field harvest method. Crop yield estimation in these 
actual measurement cases are quite costly and time 
consuming process. Patil et al. (1994) have discussed 
various aspects of RSS in detail. Takahasi and Futatsuya 
(1988, 1998), Patil et al. (1995), Krishna (2002), Sud 
and Mishra (2006, 2007), Kankure and Rai (2008), 
Rai and Krishna (2013) made attempts to extend the 
theory of RSS without replacement in the context of 
finite population. Deshpande et  al. (2006) classified 
without replacement sampling design of RSS under 
finite population under Level-0, Level-1 and Level-2. 
Several attempts were made to compute inclusion 
probabilities (Al-Saleh and Samawi, 2007; Özdemir 
and Gökpinar, 2007 and 2008; Gökpinar and Özdemir, 
2010, 2012, 2014; Jozani and Johnson, 2011, 2012; 
Frey, 2011; Ozturk and Jozani, 2013; Ozturk, 2014, 
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2016a, 2016b). Wolfe (2012) presents a comprehensive 
review on RSS.

In most of the agricultural and environmental 
surveys, often, the parameters of interest are spatial in 
nature. Neighbouring sampling units share similar kind 
of attribute values as compared to distant units. This 
phenomenon suggests spatial dependency in the study 
data. Classical statistical methods fail to capture such 
dependency present in the underlying data in case of 
spatial population (Zhang and Griffith, 2000). Several 
authors (Hedayat et al., 1988; Arbia, 1993; Sahoo et al., 
2006; Kankure and Rai, 2008) have considered these 
type of situations and proposed techniques to select 
samples through spatial sampling by assigning less 
probability of selection to contiguous units of already 
selected units in the sample. Biswas et  al. (2015) 
considered RSS randomization framework to select 
samples from a spatial finite population and a Spatial 
Estimator (SE) has been proposed for estimation of 
population mean using Inverse Distance Weighting 
(IDW) method (Donald, 1968) through prediction 
approach (Royall, 1970).

1.1	 Spatial Estimator (SE) in case of RSS
Let, there be a spatial finite population of size N 

consisting of units Ui, i∈Ω={1, 2, …, N}with mean 
N

ii=1

1Y = Y
N∑  and finite variance N2 2

Y ii=1

1= (Y - Y)
N

σ ∑ .  

Without loss of generality, let, respective population 
values of the character of interest Y are Y1 ≤ Y2 ≤ … ≤ YN. 
Let the parameter of interest be linear in nature 

i.e. population mean q
q

1Y = Y
N ∈Ω
∑ . Let Dqj denotes 

distance between the population units Uq and Uj, q, 
j‌∈Ω. In order to select a without replacement sample 
through RSS design, m2 units are randomly drawn by 
SRSWOR from the finite population. Then, this sample 
is randomly divided into m sets of size m. The units 
within each set are ranked on the basis of character of 
interest or some auxiliary information. Smallest ranked 
unit is accurately quantified from first set, 2nd smallest 
ranked unit is quantified from 2nd set and so forth, until 
the largest ranked unit is quantified from mth set. The 
entire cycle is replicated r times until in total n = mr 
observations for a ranked set sample are quantified. 
Let, s denotes the set of all sampled units. The unbiased 
estimator of the population mean i.e. sample mean 
(Patil et al., 1995) is given by

r m

RSS (i:m) k
k=1 i=1

1y = y
m r∑∑ , � (1.1)

where (i:m) ky  denotes the value of the (i:m)kth unit 
i.e. ith ranked unit in the ith set of size m in the kth cycle 
of the sample. 

Let d(i:m)k,  j denote the distance between the (i:m)kth 
sampled unit and any other non-sampled unit Uj, j s∈ ,  
where s  is the set of all non-sample units. Following 
the prediction approach of Royall (1970), Biswas et al. 
(2015) proposed following Spatial Estimator (SE) of 
population mean, Y , under RSS design

RSS p,RSSSE, RSSŶ = mr y + (N- mr) y N 
  .� (1.2)

where, 

p,RSS j,p
j s

1 ˆy = y
N- mr ∈

∑  and 

r m r m

j,p (i:m) k (i:m) k, j (i:m) k, j
k=1 i=1 k=1 i=1

ŷ = (y / d ) (1/ d ) ;

(i : m) k s and j s

   
   
   
∈ ∈

∑∑ ∑∑

is the predicted value of jth non-sampled unit, Yj, 
j s∈  by IDW technique. It is notable that value of 

d(i:m)k,  j is random as it depends on selection of (i:m)kth 
sampled unit. 

In case of large population size i.e. for large N, 
Biswas et al. (2015) provided the approximate sampling 
variance of the Spatial estimator, SE,RSSŶ , under RSS as

( )
2

2
SE, RSS Y Y

mr (N mr)D 1 N 1 mrˆV Y
N mr N 1

 + − − −  ≅ σ − γ   −  
, 

� (1.3)
where, 

j
j

1D D
N ∈Ω

′= ∑ ,  j
2 j . j

1D
R D

′ = ,  2 j
q q j
q j

1 1R
N 1 D∈Ω

≠

=
− ∑ ,  

. j q j
q
q j

1D D
N 1 ∈Ω

≠

=
− ∑ , Y Y

m! ( m 1)!
N(N 1)...(N 2m 1)

−
γ = γ

− − +
, 

Y ( Y Y ) ( Y Y )′γ = − Γ −


 and 
m

ii
i 1

N
B

m,m =

 
Γ =  

 
∑



 is a 

symmetric matrix with zeroes on the diagonal which is 
a function of N and m only, independent of population 
values Y .
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It was observed that since D 1≤ , the variance of 
the SE of population mean under RSS is always lesser 

than the usual RSS estimator i.e. ( ) ( )SE, RSS RSS
ˆV Y V y≤ .

It has been seen that obtaining an unbiased 
estimator for variance of usual RSS estimator is 
quite cumbersome. Bootstrap method is one of the 
resampling techniques which can be used for unbiased 
variance estimation. Chen et  al. (2004), Hui et  al. 
(2005), Modarres et al. (2006) etc. considered methods 
of bootstrapping under RSS design in the context of 
infinite population. Under finite population framework, 
it is always necessary to unbiasedly estimate variance 
of an estimator. Therefore, the usual applications of 
the Naive bootstrap procedures (Efron, 1979) may not 
estimate variance unbiasedly under finite population 
randomization framework (Wolter, 1985; Rao and 
Wu, 1988; Ahmad, 1997). Biswas et al. (2013, 2018) 
suggested rescaled Jackknife and bootstrap techniques 
for unbiased variance estimation of RSS estimator of 
population mean under finite population framework. 
It can be observed that the variance expression of the 
Spatial Estimator (SE) under RSS design is non-linear 
in nature and, thus, it becomes even more complicated to 
obtain unbiased estimator of variance of SE under RSS. 
Keeping this in view, in this present article attempt has 
been made to use resampling techniques, viz. bootstrap 
technique, for unbiased variance estimation of the SE 
under RSS (more precisely Level-2 as per Deshpande 
et al. (2006)) from finite populations. Therefore, two 
different Rescaled Spatial Bootstrap (RSB) procedures 
have been proposed in Section 2 for approximately 
unbiased estimation of variance of the proposed SE 
under RSS following the approach of Ahmad (1997) and 
Biswas et al. (2018). Finally, statistical properties of the 
SE and proposed rescaled spatial bootstrap methods for 
variance estimation were studied empirically through 
a simulation study and discussed in Section 3 and 4. 
Concluding remarks are given in Section 5.

2.	 PROPOSED RESCALED SPATIAL 
BOOTSTRAP METHODS FOR variance 
estimation of SPATIAL ESTIMATOR 
(SE) UNDER RSS
In order to find approximately unbiased estimator 

of variance for the proposed SE under RSS two 
different rescaled spatial bootstrap methods are 
proposed in the subsequent sections. Let, s*  denotes 
set of sampling units selected in bootstrap sample 

selected from original RSS samples, and let t *  be the 
set of remaining sampling units of the population not 
selected in the bootstrap sample. Proposed methods 
are based on prediction of values of remaining units 
in the population belonging to t *  using the resampled 
units selected from original RSS sample belonging to 
s*  considering RSS randomization framework. The 
expression for variance of RSS estimator given by Patil 
et al. (1995) for moderate to large N can be written as

( ) { }2 2
RSS Y Y Y Y

1 N 1 mr 1 N 1 mrV y
mr N 1 mr N 1

− − − − = σ − γ ≅ σ − γ 
− − 

.

� (2.1)
Using above approximation the variance of the 

proposed SE under RSS as shown in equation in (1.3) 
can be rewritten as

( ) ( ) ( )
2

2
SE, RSS Y Y

mr (N mr)D N 1 mrˆV Y
N mr N 1

 + − − − ≅ σ − γ
  − 

.

� (2.2)

2.1	 Rescaled Spatial Stratified Bootstrap (RSSB) 
Method
Rescaled Spatial Stratified Bootstrap (RSSB) 

method is based on different ranks, i.e. implicit 
population strata, of the RSS sample. It may be noted 
that in the population, rank based strata can be assumed 
and observations of each rank are considered as units 
within a stratum. The RSS sample of size n = mr is 
composed of r observations for each of the m ranks. 
Thus, population is assumed to be divided into m strata 
and sample from each stratum consisting of r units. 
The steps involved in RSSB Method for estimation of 
variance of the proposed SE under RSS are given as

a)	 Draw a sample { }z*
(i:m)k k 1

y
=

 of size z (< r) by 
SRSWOR from the observed sample values y(i:m)1, 
y(i:m)2, …, y(i:m)r of the ith stratum.

b)	 Independently implement step (a) for all ranks 
i = 1, …, m and obtain a bootstrap sample as 
{ }*

(i:m)ky s*,∈ ∀  i = 1, …, m and k = 1, …, z .

c)	 Then compute, 

	 ( )RSS RSS

1 2 *
(i:m)k 1 (i:m)ky y f y y ; k 1 z,...,= + − ∀ =  and

	
m z

s*,st (i:m)k
i 1 k 1

1 1y y
m z= =

= ∑ ∑

 , � (2.3)
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	 where

	

( ){ } ( )( ){ }

{ } { }
1

2

f z N 1 mr r z N 1

mr (N mr)D mz (N mz)D

 = − − − − 

 + − + −   .

d)	 Using these (i:m)ky  predict all the sampling units 
belongs to t *  as

	

z m z m
* *

j,p (i:m)k (i:m)k, j (i:m)k, j
k 1 i 1 k 1 i 1

y (y / d ) (1/ d ) ,

(i : m)k s* and j t *
= = = =

   =    
   

∈ ∈

∑∑ ∑∑ 

	 where *
(i:m)k, jd  denotes distances between specific 

bootstrap sample unit (i : m)k s*∈  and jth non-
bootstrap sampling unit which belongs to t * .

e)	 Then work out

	 *
t*,st j,p

j t

1y y
N mz ∈

=
− ∑



.
f)	 Finally obtain

	 st s*,st t*,stT mz y (N mz)y N = + − 
   .� (2.4)

g)	 Return the resample in the sample and independently 
replicate step (a) through (f) for a large number, 
say B, times and calculate the corresponding

1 2 B
st st stT ,T , . . . ,T   .

h)	 The bootstrap variance estimator of stT  is given by

	 ( ) ( )2

b,st * st * st * stV̂ V T E T E T= = −    � (2.5)

	 where, E* and V* denotes the expectation and 
variance respectively with respect to the bootstrap 
sampling from a given sample.

The Monte Carlo estimator b,stV̂ (a)  as an 

approximation to b,stV̂  is given by
B

b 2
b,st st st

b 1

1V̂ (a) (T T )
B 1 =

= −
− ∑  , 

where 
B

b
st st

b 1

1T T
B =

= ∑  .

Now, by taking expectation on b,stV̂  with respect to 
the randomization procedure adopted in original RSS 
sample selection we get

( ) ( ) ( )
( )

2 2 2
b,st * s*,st * t*,st2

* s*,st t*,st

1ˆE V m z E V (y ) (N mz) E V (y )
N

2mz(N mz)E Cov (y , y ) .

= + − +

− 

  

 

� (2.6)

Now, since the resamples are taken independently 
by SRSWOR from all the ranks, then using Equation 
(2.3) we get

( )( )
m

* 1 2
* s*,st 1 * (i) * 1 RSS2

i 1
2

1 st

1V (y ) f V y V 1 f y
m

f s
=

 = + − 

=

∑

where, 
m r

2 2 2
st (i:m)k (i)2

i 1 k 1

1 1 1 1s y r y
z r r 1m = =

  = − −   −   
∑ ∑ , 

z
* *
(i) (i:m)k

k 1

1y y
z =

= ∑  and 
r

(i) (i:m)k
k 1

1y y
r =

= ∑ .

Now, by taking expectation with respect to 
randomization of original RSS sample selection 
procedure on 2

sts  following approach of Patil et  al. 
(1995) we get

( ) ( ) ( )

{ }

m r
2 2 2
st (i:m)k (i)2

i 1 k 1

m r
2 2
(i:m) (i:m)2

i 1 k 1

2 2
(i:m) ii (i:m)

2
Y Y

1 1 1 1E s E y r.E y
z r r 1m

1 1 1 1
z r r 1m

1 r 1r C
r r

1 1 1
m z r

= =

= =

  = − −   −   
 = − σ +µ −  −  

−  σ + +µ  
   = − σ − γ    

∑ ∑

∑ ∑

Since, from Patil et al. (1995) following results can 
be seen

( ) ( ) ( )2
(i:m)k (i:m) (i:m)k (i:m) (i:m)k ( j:m)k ijE y , V y , Cov y , y C ,′= µ = σ =

( ) ( )
m m m m2 22 2

(i:m) Y (i:m) Y (i:m) ii
i 1 i 1 i 1 i 1

1m Y and Y C .
m= = = =

 
σ = σ − µ − γ = µ − + 

 
∑ ∑ ∑ ∑

Then, by taking expectation of * s*,stV (y )  using the 
results of above equation we get

( )
2

2
* s*,st Y Y

1 1

N 1 mr mr (N mr)DE V (y ) .
m r (N 1) mr (N mr )D

 − − + −   = σ − γ −  + − 



� (2.7)
For the second term of Equation 2.6, in case of large 

sample sizes, by considering only the contributing terms 
to the approximate form of ( )*

* t*,stV y  and ignoring the 
higher order terms, we get

( )
m

* * 2 2 2
* t*,st 1 * t*,st 1 * (i) 1 st

i 1

1V (y ) f V y f V y d f s d
m =

 
= ≅ = 

 
∑ , 
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where

*

z m z m
* * * *
t*,st (i:m)k (i:m)k, j (i:m)k, j

k 1 i 1 k 1 i 1j t

1y (y / d ) (1/ d ) ,
N mz = = = =∈

 =  −  
∑ ∑∑ ∑∑

r m

j j 2 j,RSS
j k 1 i 1 i(i:m)k, j2 j,RSS . j,RSS

r m

. j,RSS i(i:m)k, j
k 1 i 1

1 1 1 1d d , d , r
N mr dr d

1and d d .
mr

∈Ω = =

= =

= = =

=

∑ ∑∑

∑∑

Now, by taking expectation with respect to 
randomization of original sample selection procedure 
and ignoring higher order terms we get

( )2 2 2 2
st Y Y

1

1 1 1E s d D .
m r r

 
 ≅ − σ − γ    

 

Detailed derivation for significant terms can be 
seen in the Appendix. 

Now, using this result and taking expectation on 
* t*,stV (y )  we get

2

2 2
* t*,st Y Y

N 1 mr mr (N mr)DE V (y ) D .
m r (N 1) mz (N mz)D

 − − + −   ≅ σ − γ     − + −  


� (2.8)
Again, for the third term of Equation 2.6, in case of 

large sample sizes, by considering only the contributing 
terms to the approximate form of covariance term and 
ignoring the higher order terms, we can get

* * 2
* s*,st t*,st 1 * s*,st t*,st 1 stCov (y , y ) f Cov y , y f s d = ≅ 
  .

Now, by taking expectation and ignoring second 
and higher order terms we get

2

2
* s*,st t*,st Y Y

N 1 mr mr (N mr)DE Cov (y , y ) D.
m r (N 1) mz (N mz)D

 − − + −   ≅ σ − γ     − + −  
 

� (2.9)
Finally, replacing the results of expectations from 

Equation (2.7), (2.8) and (2.9) in the Equation (2.6) we 
get

( ) ( ) ( ) ( )
2

2
b,st Y Y SE, RSS

mr (N mr)D N 1 mrˆ ˆE V V Y .
N mr N 1

 + − − − ≅ σ − γ ≅
  − 



� (2.10)
Hence, it can be observed that proposed 

Rescaled Spatial Stratified Bootstrap (RSSB) Method 
approximately leads to unbiased variance estimation of 
proposed Spatial Estimator (SE) under RSS.

2.2	 Rescaled Spatial Clustered Bootstrap (RSCB) 
Method
Rescaled Spatial Clustered Bootstrap (RSCB) 

method based on observations of different cycles in the 
RSS sample. The RSS sample of size n = mr comprises 
r  cycles containing one observation from each of the 
m ranks. Let us consider, r cycles as r clusters consisting 
of m units, which are from each rank within a cycle. 
The steps involved in RSCB method for estimation of 
variance of the proposed SE in case of RSS are given 
below
a)	 Draw a sample of z (< r) clusters (cycles) by 

SRSWOR from the observed r clusters in the 
observed RSS sample and observe all the units of the 
selected clusters which creates a bootstrap sample 
as { }*

(i:m)ky s*,∈ ∀  i = 1, … , m and k = 1, … , z.

b)	 Then work out, 

	 ( )RSS RSS

1 2 *
(i:m)k 2 (i:m)ky y f y y= + −

	 and 
z z m

s*,cl k (i:m)k
k 1 k 1 i 1

1 1 1y y y
z z m= = =

= =∑ ∑ ∑ 

 , � (2.11)

	 where 

	

( ){ } ( )( ){ }

{ } { }
2

2

f z N 1 mr r z N 1

mr (N mr)D mz (N mz)D

 = − − − − 

 + − + −   .
c)	 Predict all the sampling units belongs to t *  using 

these (i:m)ky  and the corresponding distance, *
(i:m)k, jd ,  

with jth non-bootstrap sampling unit belonging to 
t *  as

	

z m z m
* *

j,p (i:m)k (i:m)k, j (i:m)k, j
k 1 i 1 k 1 i 1

y (y / d ) (1/ d ) ,

(i : m)k s* and j t *.
= = = =

   =    
   
∈ ∈

∑∑ ∑∑ 

d)	 Then work out

	
*

t*, cl j, p
j t

1y y .
N mz ∈

=
− ∑

 .

e)	 Finally calculate

	 cl s*,cl t*, clT mz y (N mz)y N. = + − 
 � (2.12)

f)	 Return the resample in the sample and independently 
replicate step (a) through (e) for a large number, 
say B, times and compute the corresponding

1 2 B
cl cl clT ,T , . . . ,T   .



142 Ankur Biswas et al. / Journal of the Indian Society of Agricultural Statistics 74(2) 2020  137–147

g)	 The bootstrap variance estimator of clT  is given by

	 ( ) ( )2

b,cl * cl * cl * clV̂ V T E T E T= = −    .� (2.13)

The Monte Carlo approximation estimator, b,clV̂ (a) ,  
as given by

B
b 2

b,cl cl cl
b 1

1V̂ (a) (T T )
B 1 =

= −
− ∑  , 

where 
B

b
cl cl

b 1

1T T
B =

= ∑  .

Now, by taking expectation on b,clV̂  with respect to 
original sample selection we can get

( ) ( ) ( )
( )

2 2 2
b,cl * s*,cl * t*, cl2

* s*,cl t*, cl

1ˆE V m z E V (y ) (N mz) E V (y )
N

2mz(N mz)E Cov (y , y ) .

= + −

+ − 

  

 

� (2.14)
Since, in this case resamples of z clusters (cycles) 

are drawn by SRSWOR from r clusters, then using 
Equation (2.11) we get

( ) ( )
z 2* 1 2 2

* s*,cl 2 * k 2 * RSS 2 cl
k 1

1V (y ) f V y 1 f V y f s
z =

 = + − = 
 
∑ , 

where ( )RSS

r 22
cl k

k 1

1 1 1s y y
z r r 1 =

 = − −  − 
∑  and 

m
* *
k (i:m)k k

i 1

1y y y
m =

= =∑ .

By taking expectation with respect to randomization 
of original RSS sample selection procedure on 2

cls
following Patil et al. (1995) we get

( ) ( ){ }
( ){ }RSS RSS

r
22

cl k k
k 1

2

2
Y Y

1 1 1E s V(y ) E(y )
z r r 1

r V(y ) E(y )

1 1 1 .
m z r

=

 = − +  −  
− + 

   = − σ − γ    

∑

Therefore, by taking expectation of * s*,clV (y )  using 
above equation we get

( )
2

2
* s*,cl Y Y

1 1

N 1 mr mr (N mr)DE V (y ) .
m r (N 1) mr (N mr )D

 − − + −   = σ − γ −  + − 



.� (2.15)
For the second term of Equation 2.14, in case of 

large sample sizes, by considering only the contributing 

terms to the approximate form of ( )*
* t*,clV y  and 

ignoring the higher order terms, we can get

( )
z

* * 2 2 2
* t*,cl 2 * t*,cl 2 * k 2 cl

k 1

1V (y ) f V y f V y d f s d
z =

 = ≅ = 
 
∑

where, 

*

z m z m
* * * *
t*,cl (i:m)k (i:m)k, j (i:m)k, j

k 1 i 1 k 1 i 1j t

1y (y / d ) (1/ d ) .
N mz = = = =∈

 
=  −  

∑ ∑∑ ∑∑

Now, by taking expectation with respect to the 
randomization at original sample selection stage and 
after ignoring higher order terms we get

2

2 2
* t*,cl Y Y

1 1

N 1 mr mr (N mr)DE V (y ) D
m r (N 1) mr (N mr )D

 − − + −    ≅ σ − γ   −  + − 



� (2.16)

Once again, for the third term of Equation 2.14, 
in case of large sample sizes, by considering only 
the contributing terms to the approximate form of 
covariance term and ignoring the higher order terms, 
we can write

* * 2
* s*,cl t*, cl 2 * s*,cl t*, cl 2 clCov (y , y ) f Cov y , y f s d . = ≅ 
 

.
Ignoring higher order terms while taking 

expectation we get
2

2
* s*,cl t*, cl Y Y

N 1 mr mr (N mr)DE Cov (y , y ) D.
m r (N 1) mz (N mz)D

 − − + −   ≅ σ − γ     − + −  
 

� (2.17)
Finally, by substituting the results of Equation 

(2.15), (2.16) and (2.17) in the Equation (2.14)

( ) ( ) ( )

( )

2

2
b,cl Y Y

SE, RSS

mr (N mr)D N 1 mrˆE V
N mr N 1

ˆV Y .

 + − − − ≅ σ − γ
  − 

≅



� (2.18)

Hence, it can be seen that the proposed Rescaled 
Spatial Clustered Bootstrap (RSCB) method is useful 
for approximately unbiased variance estimation of the 
proposed SE in case of RSS.

3.	 SIMULATION STUDY
A simulation study was carried out to study statistical 

properties of both the proposed Rescaled Spatial 
Bootstrap (RSB) methods for variance estimation 
of the Spatial Estimator of population mean (Biswas 
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et  al., 2015) under RSS were studied, considering 
underlying population as finite and spatial in nature. 
While considering spatially correlated populations, Rai 
et  al. (2007) fitted observed wheat yield distribution 
of 1997‑98 in different fields of Rohtak district of 
Haryana state and found exponential variogram model 
is the best-fitted model. Therefore in this study, first, a 
univariate population of 900 areal units was generated 
using exponential variogram model using ‘SIM2D’ 
procedure in SAS in the form of regular grid of size 
as 1x1 unit2 in the similar line of Biswas et al. (2015). 
In order to generate this spatial population, value of 
Moran’s spatial correlation coefficient (β) as around 0.7 
and value of per cent Coefficient of Variation (%CV) as 
20% have been considered. Keeping this in view, the 
parameters of the generated population were taken as

Parameter Mean Scale/Sill Range Nugget 
effect Angle

Value 30 36.2881 30.6239 0.88 135°

Further, another auxiliary variate (X) which is 
highly correlated with study variable Y, was generated 
for ranking purpose of the sampling units for selection 
of RSS samples with following parameter values 
of mean of X (µX), standard deviation of X (σX) and 
correlation coefficient between X and Y (ρXY) as

Parameter µX σX ρXY

Value 45 8 0.7

Next, in order to study distributional properties 
of the Spatial Estimator of population mean (Biswas 
et al., 2015) in case of RSS, 500 samples of different 
sample sizes, using different combination of number 
of ranks (m) and number of cycles (r), were selected 
from this generated population using RSS. After 
that, 200 bootstrap samples were drawn from each 
of the selected 500 RSS samples following both the 
proposed Rescaled Spatial Bootstrap (RSB) methods 
and estimates of variance of the Spatial Estimator of 
population mean under RSS were obtained. The Monte 
Carlo bootstrap estimates of population mean and 
estimate of variance of SE under RSS were calculated. 
In order to compare the performance of these proposed 
RSB methods for variance estimation of SE under RSS, 
percentage Relative Bias (%RB) and Relative Stability 
(RS) were calculated using following formulae

( ){ } ( )
( )

s SE, RSS SE, RSS
s

SE, RSS

1 ˆ ˆV̂ Y V Y
s%RB 100

ˆV Y

 − 
= × 
 
  

∑

and 
( ) ( ){ }

( )

1
2 2

s SE, RSS SE, RSS
s

SE, RSS

1 ˆ ˆV̂ Y V Y
s

RS
ˆV Y

 
− 

 =
∑

where, ( )s SE, RSS
ˆV̂ Y  is the estimates of variance of 

the proposed SE under RSS at sth sample.

4.	 RESULTS AND DISCUSSIONS
Biswas et al. (2015) shown that the Spatial Estimator 

(SE) of population mean under RSS scheme is superior 
with respect to the usual RSS. While comparing with 
usual SRSWOR estimator, the SE in case of RSS has 
always given significant amount of gain in efficiency. 
Results of the simulation study comprising the statistical 
performance of both the proposed Rescaled Spatial 
Bootstrap (RSB) methods for variance estimation of 
the Spatial Estimator of population mean under RSS are 
presented here. Table 1 and 2 show different statistical 
properties of the proposed variance estimation methods 
developed in case of the proposed SE in case of RSS 
viz. Rescaled Spatial Stratified Bootstrap (RSSB) 
and Rescaled Spatial Clustered Bootstrap (RSCB) 
methods respectively, such as Monte Carlo (MC) 
bootstrap estimate, estimates of variance, percentage 
Relative Bias (%RB) and Relative Stability (RS) of 
the estimates of variance for different sample sizes 
(n = mr) and corresponding bootstrap sample sizes (mz) 
combinations.

Following points can be noted from Table 1 and 2.
•	 MC mean in both the proposed bootstrap procedures 

are close to population mean i.e. 30. This indicates 
that both bootstrap estimators of population mean 
are almost unbiased.

•	 Both the RSSB and RSCB methods result in lower 
percentage relative bias for estimation of variance 
of the SE of population mean in case of RSS at 
different combination of sample and bootstrap 
sample sizes. It was observed that standard 
bootstrap procedures i.e. without using the proposed 
rescaling factors in case of both methods give high 
amount of percentage relative bias. Thus, proposed 
rescaling factors were quite effective in reducing 
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%RB considerably as compared to usual RSSB 
and RSCB methods for variance estimation of the 
Spatial Estimator of population mean under RSS. 
Therefore, both the proposed variance estimation 
methods are almost unbiased as established 
theoretically and by simulation results.

Table 1. Monte Carlo estimates, estimate of variances, percentage 
Relative Biases (%RB) and Relative Stabilities (RS) of the 

estimates of variance using Rescaled Spatial Stratified  
Bootstrap (RSSB) method for different sample size (mr)  

and bootstrap sample size (mz) combinations

m r z

Rescaled Spatial Stratified Bootstrap (RSSB) 
method

MC
Mean

Estimate of
Variance %RB RS

2 30 12 30.36 0.42 3.84 0.21

2 60 24 30.32 0.19 -8.10 0.16

2 90 36 30.38 0.12 7.89 0.18

3 20 8 30.33 0.37 7.21 0.22

3 40 15 30.36 0.16 6.99 0.21

3 60 25 30.37 0.11 2.56 0.15

4 15 6 30.34 0.34 2.98 0.27

4 30 12 30.34 0.16 4.01 0.15

4 45 20 30.34 0.10 5.94 0.19

5 12 5 30.39 0.37 6.63 0.24

5 24 10 30.40 0.14 9.48 0.24

5 36 15 30.38 0.08 8.48 0.21

Table 2. Monte Carlo estimates, estimate of variances, percentage 
Relative Biases (%RB) and Relative Stabilities (RS) of the 

estimates of variance using Rescaled Spatial Clustered Bootstrap 
(RSCB) method for different sample size (mr) and bootstrap 

sample size (mz) combinations

m r z Rescaled Spatial Clustered Bootstrap (RSCB) 
method

MC
Mean

Estimate of
Variance

%RB RS

2 30 12 30.36 0.42 3.92 0.27

2 60 24 30.32 0.19 -6.84 0.18

2 90 36 30.38 0.12 6.34 0.19

3 20 8 30.33 0.37 8.67 0.35

3 40 15 30.36 0.16 6.50 0.27

3 60 25 30.36 0.11 2.28 0.21

4 15 6 30.33 0.34 1.94 0.40

4 30 12 30.33 0.17 8.02 0.30

4 45 20 30.34 0.10 5.46 0.24

5 12 5 30.39 0.33 6.98 0.41

5 24 10 30.40 0.14 7.32 0.35

5 36 15 30.38 0.08 8.13 0.29

•	 Further, while comparing through Relative 
Stability (RS), it can be seen that RSSB method 
always provide less amount of RS as compared to 
RSCB with varying sample and bootstrap sample 
sizes. Therefore, RSSB method is more stable than 
RSCB method. 

•	 Therefore, RSSB method can be considered better 
than RSCB method for variance estimation of the 
proposed SE in case of RSS.

5.	 CONCLUSIONS
Due to complexities in estimation of variance of 

the SE under RSS, in this article, two different Rescaled 
Spatial Bootstrap (RSB) methods viz. Rescaled Spatial 
Stratified Bootstrap (RSSB) based on ranks and 
Rescaled Spatial Clustered Bootstrap (RSCB) methods 
based on cycles of RSS sample, were developed. Both 
the methods provide approximately unbiased estimation 
of the proposed estimator theoretically. Simulation 
study reveals that both the proposed methods give 
approximately unbiased estimation of variance of the 
SE under RSS for different combination of sample and 
bootstrap sample sizes, but while considering relative 
stability, RSSB method was found to be more stable. 
Therefore, RSSB method can be considered better 
than RSCB method for variance estimation of the SE 
under RSS in the context of spatially correlated finite 
populations. However, as far as simplicity of both the 
methods is concerned, RSCB method can be considered 
for unbiased variance estimation of the SE under RSS. 
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Appendix
In Section 2, it can be seen that at the time of 

predicting all the non-bootstrap sample units from the 
population using the bootstrap sample units, there will 
be d  in the approximate variance expression which is 
given by

1d d ,jN
j

=
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From Biswas et al. (2015), we get . j,RSSs . jE d D  =   
and ( ) 2 js 2 j,RSSE r R=  respectively, Es denotes expectation 
due randomization at sampling stage over all sample 
units belonging to set s.
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Then, by taking the expectation of sampling stage 
on d  and retaining first order terms we get
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Next, the variance is given by

( ) ( ) ( )j j kj 2
j j j k

1 1V d V d V d Cov d ,d .
N N∈Ω ∈Ω ≠ ∈Ω

   
= = +   

   
∑ ∑ ∑∑

Now, proceeding with the variance of jd  we get
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Now, first term can be expanded as
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Now using the results of Equation(B2) we get
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2 j . j2 j . j

E E 2E
V d E d D D ... .

R DR D

 ε ε ε ε
′ ′  = − ≅ + + +

  

� (A5)
Then

( )
1

r m 2 j . ji(i:m)k, j i(i:m)k, j2
s 1 s

. j . jk 1 i 1

1 R .d d D1E V 1
mr D D

−

= =

    − −    ε = +          
∑∑
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( )

( )

2 js . j,RSS2
. j

2
2 j

s . j,RSS2
. j

1 V 1 R d
D

R V d
D

≅ −

=

Proceeding in similar way we get

( ) ( )

( ) ( ) ( )

2
s 2 s . j,RSS

2 j
2 js 1 2 2 . j,RSS . j,RSS 2 . j,RSS

. j . j

E V d

1 RE cov 1 R d , d V d
D D

ε =

ε ε ≅ − = −

Finally putting these results in Equation (A5) we 
get

( ) ( ) ( ) ( )2
js j s . j,RSS s . j,RSS s . j,RSS2 2 2

. j . j . j

1 1 1V d D V d V d 2 V d 0.
D D D

 
′≅ + − = 
  

Accordingly from the Equation(A4) we get

( ) 2
j DV d = σ .� (A6)

The covariance term is given by

( ) ( ) ( )j k j k j ks s s sCov d ,d Cov E d ,d E Cov d ,d= + .�(A7)

Now 

( ) j kj ks s s

2N
D

j k
i 1

Cov E d ,d Cov D ,D

1 D D D D .
N N 1=

 ′ ′=  
 

σ  ′ ′= − − = −   −  
∑

Proceeding in similar way as in variance term for 
the second term in Equation (A7) we get 

( )j ks sE Cov d ,d 0= .

Then putting these results in Equation (A7) we get

( )
2
D

j kCov d ,d
N 1
σ

= −
−

.� (A8)

Therefore the variance of d  is given by

( ) ( ) ( )
N N

j j k2
j 1 j k

2
2 D
D2

1V d V d Cov d ,d
N

1 N N(N 1)
N 1N

0

= ≠

 
= + 

 
  σ

= σ + − −  −   
=

∑ ∑∑

� (A9)


