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Abstract : Ranked Set Sampling (RSS) is preferred over Simple Random Sampling (SRS), when measuring an observation is
expensive or time consuming, but can be easily ranked at a negligible cost. While working with spatial population, classical
statistical methods fail to capture the dependency present in the underlying data. In this article, an attempt was made to
develop efficient estimation procedure through RSS sampling design incorporating spatial dependency among sampling
units of a spatial finite population. Distance between spatial units was taken as measure of spatial dependency. The properties
of the proposed Spatial Estimator (SE) were further studied empirically through a simulation study. The proposed Spatial
Estimator (SE) under RSS of population mean from spatial data was found to be better than usual RSS estimator.
Key words : Ranked set sampling, Prediction approach, Inverse distance weighting, Spatial estimator.

1. Introduction
In agricultural and environmental surveys often the

parameters of interest are spatial in nature, in which
neighbouring sampling units are likely to have similar
attribute values as compared to distant units. This implies
spatial dependency in the underlying data. Classical
statistical methods when applied to spatial population
structure fail to capture the dependency present in the
underlying data [Zhang and Griffith (2000)]. Several
authors [Hedayat et al. (1988), Arbia (1993), Sahoo et
al. (2006), Kankure and Rai (2008)] have considered
these types of situations and proposed techniques to
select samples through spatial sampling by assigning
less probability of selection to contiguous units of already
selected units in the sample. Spatial estimator based on
the spatial dependency of the sampling units is likely to
improve upon the usual estimator of target parameter
by traditional aerial sampling schemes. Prediction
approach [Royall (1970)] is one of useful techniques in
which spatial dependency of the finite population can
be incorporated to predict unobserved population units
based on their distances with observed sampling units.
One way to predict the unobserved unknown population
units is through Inverse Distance Weighting (IDW)
method as given by Donald (1968).

Ranked Set Sampling (RSS), a well-known sampling
scheme for estimation of population parameter of
interest, first introduced by McIntyre (1952) and used
to estimate mean pasture yield. It provides more precise
estimator than Simple Random Sampling Without
Replacement (SRSWOR), when actual measurements
of target variables are either difficult or expensive in
terms of time, money or labour, but ranking of sampling
units on the basis of visual inspection or any other
cheaper method can be done easily. Patil et al. (1995),
Sud and Mishra (2006, 2007), Kankure and Rai (2008),
Rai and Krishna (2013) tried to extend the theory of
RSS without replacement in the context of finite
population. In order to select a sample through RSS
design, m2 units are randomly drawn by SRSWOR from
a finite population of size N with mean Y  and finite
variance Y

2  and randomly divided into m sets of size
m. Then, the units within each set are ranked on the
basis of some ancillary information. Smallest ranked
unit is accurately quantified from first set, 2nd smallest
ranked unit is quantified from 2nd set and so forth, until
the largest ranked unit is quantified from mth set. The
entire cycle is replicated r times until in total n = mr
observations are quantified. These n quantified units
constitute a ranked set sample. Patil et al. (1995)
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y(i:m)k denotes the value of the ith ranked unit in the ith
set of size m in the kth cycle of the sample. Let d(i:m)k,j
is the distance between the (i:m)kth sampled unit and
any other non-sampled unit Uj, j  s, where s  is the set
of all non-sample units. It may be noted that values of
d(i:m)k,j’s are random as it depends on selection of
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Combining these predicted values of (N - mr) non-

sampled units of the population, we can get the mean
of non-sampled population units as
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Following the prediction approach of Royall (1970),
the proposed Spatial Estimator (SE) in case of RSS for
estimation of population mean, Y, is given as
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Where, Es is the expectation over all sampled units
(i:m)k  s, whereas Es  is the expectation over all non-
sampled units j  s.

Now, from Equation (3), it can be observed that
the expression of yj,p is a ratio. Let,

y z zj p j j,  1 2 (6)
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showed that ranked set estimator of the population mean
Y  given by following expression
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is an unbiased estimator of the population mean Y  and
the variance of the RSS estimator yRSS is given by
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symmetric matrix with zeroes on the diagonal and a
function of N and m only and it does not depend on
population values Y.

In this study, we have considered RSS
randomization framework to select samples from a
spatial finite population and a corresponding Spatial
Estimator (SE) has been proposed for estimation of
population mean using IDW method through prediction
approach. This estimator accounts for spatial
relationship among the sampling units of the population.
Details are discussed in Section 2. Variance expression
and corresponding expression for relative precision
were developed for the proposed SE in case of RSS.
Finally, statistical properties of the proposed SE were
studied empirically through a simulation study and
discussed in Section 3.
2. Proposed Spatial Estimator (SE) in case of

RSS
Let, there be a spatial finite population of size N

consisting of units Ui, i   = {1, 2, ...., N}. Suppose,
Y be the character of interest and without loss of
generality, the respective population values are
Y1  Y2  Y2 ...  YN. Let the parameter of interest be

linear in nature i.e. population mean Y
N

Yq
q



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 Let

Dqj denotes distance between the population units Uq
and Uj, q, j  Let, a RSS sample of size n = mr units
are drawn from N population units as described in earlier
section. Let, s denotes the set of all sampled units. Let,
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since, Dqj = 0, if q = j.
Now, in order to take expectation on yj,p, let us

consider the following two terms by proceeding in
similar fashion of Equation (7).
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Then, by rearranging the terms of yj,p and expanding
through Taylor series expansion, we get
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Where, R R Rj j j 1 2 .

Then, taking expectation over sampled units (Es)
and retaining first order terms, we get

E y Rs j p j, .e j  (10)

Now, using this result in Equation (4) and
proceeding in similar fashion as Equation (28) in
Appendix A, we get
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as
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Here, it can be noted that, Y  and R  are simple
average and inverse distance weighted average of all
population y-values.

The variance of the estimator,  ,,YSE RSS  is given by
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The second term in (13) can be written as
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From Equation (9) the variance of yj,p over sampled
units (Vs) upto the second order of approximation can
be obtained as
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Where, Vs and Covs are variance and covariance
based on sample units.

Now, expanding z Rj j1 1e j  and z Rj j2 2e j
through Taylor series expansion and taking variance
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and covariance for sampled units, we get
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Substituting the results of Equation (16) in Equation
(15), we get
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Proceeding in the same way, following expression
of the covariance (Covs) upto the second order of
approximation can be obtained as
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By using Equations (29) and (30) in Appendix A

E
N mr

D
N

D Ds j
j s

j
j

1 1


F
HG

I
KJ  

 
 ' '



 and

V
N mr

D mr
N mr

N mr
Ns j

j s
D D

1 1
12

2



F
HG

I
KJ  

 


F
H

I
K


 '

a f   (20)

Where, D j
jN

D D2
21

 

 'e j


 and  D  is defined in

analogue to forms of  Y in Equation (2).

Now, by taking expectation over non-sampled units

of the population E sc h  on the result of Equation (19)
utilizing the results of Equation (20), we get

E V y
mr

N mr
Ns s p RSS Y Y,e j   


L
NM

O
QP

1 1
1

2 

   


 


RST
UVW

L
NM

O
QP

D mr
N mr

N mr
N D D

2
2

21
1a f   . (21)

Through, Equation (29) in Appendix A in the second
part of Equation (14), we get
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Following the similar approach, for the third term
in Equation (12), we get
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Finally, by using the Equations (2), (23) and (24) in
Equation (13), we get
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In case of large population size i.e. for large N, we
can approximate the variance of proposed Spatial
Estimator (SE) under RSS as
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Since, D  1, therefore, RP  1.
Further, statistical properties of the proposed SE in

case of RSS are evaluated empirically through a
simulation study in the next section.
3. Simulation Study

A simulation study was carried out to study
statistical behaviour of the proposed Spatial Estimator
(SE) in case of RSS with respect to usual RSS estimator
empirically. Also, properties of proposed Rescaled
Spatial Bootstrap (RSB) methods for variance
estimation of the proposed SE were studied, considering
underlying population as finite and spatial in nature.
While considering spatially correlated populations, Rai
et al. (2007) fitted observed wheat yield distribution of
1997-98 in different fields of Rohtak district of Haryana
State and found that exponential variogram model is
the best-fitted model. Therefore, in this study, first, a
univariate population of 900 areal units was generated
using exponential variogram model using ‘SIM2D’
procedure in SAS in the form of regular grid of size as
1 × 1 unit2.

In order to generate this spatial population, value

of Moran’s spatial correlation coefficient () as around
0.7 and value of per cent Coefficient of Variation
(% CV) as 20% have been considered. Keeping this in
view, the parameters of the generated population were
taken as

Parameter Mean Scale/ Range Nugget Angle
Sill effect

Value 30 36.2881 30.6239 0.88 135°

Further, another auxiliary variate (X), which is highly
correlated with study variable Y, was generated for
ranking purpose of the sampling units for selection of
RSS sample with following parameter values of mean
of X variate (µX), standard deviation of X (X) and
correlation coefficient between X and study variate Y
(XY) as

Parameter µX X XY

Value 45 8 0.7

Next, in order to study distributional properties of
the proposed SE in case of RSS, 500 samples of different
sample sizes, using different combination of number of
ranks (m) and number of cycles (r), were selected from
this generated population using RSS. Estimates of the
proposed SE in case of RSS as well as usual RSS
estimator of population mean were obtained from each
of the sample. Percentage relative bias of the SE was
calculated using following formula as
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Where, Y  and  ,YSE RSS  are the population mean
and the estimate of population mean based on proposed
SE in case of RSS, respectively. Further, variance, %
CV, skewness and kurtosis of the proposed SE under
RSS were also calculated using the estimates from
different samples. Then, percentage gain in efficiency
of the proposed SE with respect to usual RSS as well
as SRSWOR estimator of population mean for same
sample size were obtained using following formulae:
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Where, a = RSS or SRS; V YSE RSS
 ,,

FH IK  V yRSSc h
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and V ySRSc h  are the approximated variance of the
proposed SE, usual RSS and SRSWOR estimator
respectively obtained using 500 samples.

SAS codes were written for selection of ranked
set samples and empirical evaluation of the proposed
SE in case of RSS.
4. Results and Discussion

Different statistical properties of the proposed
Spatial Estimator (SE) under RSS for estimation of
population mean, namely, variance, %Bias, %CV,
skewness, kurtosis and percentage gain in efficiency
(GE) of the proposed SE with respect to usual RSS
and SRSWOR estimator of population mean for different
sample sizes (n) i.e. 60, 120 and 180, with different
combination of number of ranks (m) and cycles (r) were
calculated and presented in Table 1.

Following points can be observed from Table 1.
l It can be seen that, although RSS results in unbiased

estimator of population mean, the proposed SE
under RSS gives negligible negative bias. This bias
shows decreasing trend with the increase in sample
size (n).

l Expected value of % CV decreases with the
increase in sample size (n). Thus, the proposed SE
under RSS is more stable with the increase in
sample size. Furthermore, with the increase in set
size (m) with a fixed sample size (n) also increases
the stability of the SE.

l As in case of usual RSS estimator of population
mean, with increase in sample size (n) as well as
increase in set size (m) keeping sample size (n)

fixed, the variance of the proposed SE under RSS
always decreases. This ensures the consistency
of the proposed SE under RSS of the population
mean.

l The value of skewness and kurtosis of the proposed
SE under RSS is near to zero. Therefore, it can be
concluded that the distribution of the proposed SE
is symmetric and mesokurtic in nature.

l In terms of gain in efficiency, it can be seen that
there is reasonable gain in efficiency (approximately
13-14%) in case of the proposed SE under RSS as
compared to usual RSS estimator. Therefore,
empirical results clearly support theoretical findings
as it is already shown theoretically that the proposed
SE is superior with respect to the usual RSS
estimator of population mean. While comparing with
SRSWOR estimator, the proposed SE in case of
RSS always provides remarkable gain in efficiency
and it increases with the increase in set size (m)
for a fixed sample size (n).

5. Conclusion
In this article, a spatial estimation procedure for

estimation of finite population mean was developed
under RSS randomization framework. The proposed
Spatial Estimator (SE) in case of RSS was developed
through prediction approach based on IDW method.
This estimator accounts for the spatial dependencies in
population using the distances between sampling units.
It has been shown that the proposed SE performs better
than usual RSS estimator of population mean. However,
simulation results show the proposed SE produces
negligible bias in estimation of finite population mean.

Table 1 : Variance, % Bias, % CV, Skewness, Kurtosis and GE of the proposed SE under RSS with respect to usual RSS and
SRS estimator for varying sample sizes (n) with different combination of set size (m) and number of cycles (r).

n m r SE Variance % Bias % CV Skewness Kurtosis GERSS GESRS

60 2 30 30.27 0.37 -0.28 1.99 -0.38 0.93 9.55 42.18
120 2 60 30.24 0.18 -0.39 1.41 0.27 0.59 13.52 21.06
180 2 90 30.30 0.10 -0.18 1.02 -0.38 0.62 14.36 50.46
60 3 20 30.23 0.31 -0.42 1.86 -0.06 -0.36 8.93 63.87
120 3 40 30.27 0.13 -0.31 1.21 -0.09 -0.48 13.28 64.28
180 3 60 30.28 0.09 -0.26 1.00 0.25 -0.01 13.68 59.77
60 4 15 30.23 0.30 -0.42 1.82 -0.16 -0.05 9.50 71.51
120 4 30 30.25 0.14 -0.37 1.22 -0.38 0.20 14.75 61.68
180 4 45 30.26 0.08 -0.32 0.94 -0.00 0.26 13.99 78.72
60 5 12 30.28 0.28 -0.25 1.75 -0.18 0.08 9.54 85.51
120 5 24 30.31 0.11 -0.17 1.11 -0.23 -0.03 11.76 93.89
180 5 36 30.30 0.06 -0.20 0.84 -0.13 0.17 16.02 126.12



It was also found to be more efficient than the usual
RSS estimator. Thus, while sampling from a spatially
correlated finite population using RSS design, it is
suggested to use the proposed Spatial Estimation
approach for estimation of population mean.
A. Appendix

For detailed derivations in Section 2 expectation

over non-sampled units of the population Esc h  has to

be taken on random variables R j  and D j
' .  For this

purpose first the expectation over non-sampled units

of the population Esc h  was obtained for the mean of
Y’s in the non-sample part as follows. These results
can be replicated to the random variables R j and D j

' .

In the non-sample part in case of RSS, there are
clearly two disjoint subsets. Suppose,

s  = the set of all units in the population falling in
the non-sample part of RSS design.

   = s s1 2

Where,

s1  = the subset containing all the units which were
initially selected in the SRSWOR sample of
m2r units but further were not selected in the
final RSS sample of size mr,

s2  = the subset containing all the units which were
not selected in the initial SRSWOR sample of
m2r units,

and s s1 2  .

Let us define, the mean of Y’s in the non-sample
part as
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Now, taking the expectation over non-sampled units
of the population Esc h  on yNon RSS, ,
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For obtaining the variance of yNon RSS, ,  we have
taken help of the following heuristic approach as
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