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4.1 Introduction

Plant diseases need to be controlled for maintaining the quality and quantity of

food, feed, and fiber. Soilborne plant pathogens are one of the major limiting factors

in most of the agroecosystems for the production of economical yields. Mostly they

survive in bulk soil, but the parasitic relationship with crop plants is established in

the rhizosphere. Soilborne pathogens caused numerous diseases like seed decay,

pre- and postemergence damping off, wilting of roots, root rot, stem rot, crown rot,

collar rot, decay of collar and fruits in trees, etc., and made serious losses to

agricultural crops. These pathogens produce resting bodies in the soil which are

long lasting and difficult to eliminate. The various diseases and symptoms are

manifested by the plants which are difficult to diagnose and generally confused

with the nondistinct symptoms caused by abiotic factors and/or due to lack of

nutrients. Various approaches have been used to prevent, mitigate, or control the

plant diseases. The practices for managing plant disease are largely based on

genetic resistance in the host plants, management of the plant and its environment,

and use of synthetic chemicals (Strange 1993). However, the use of agrochemicals

needs to be ensured for safety of human health and environment (NRC 1996).
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Moreover, issues like legal control on pesticide use (NRC 1996), their nontarget

effects (Elmholt 1991), development of resistance in pathogens (Russell 1995),

political pressure to ban the use of such hazardous chemicals, etc., are the concerns

to think about other eco-friendly alternatives for stable agroecosystems. For this,

developing disease-suppressive soils is one of the most eco-friendly viable options

to reduce the plant disease pressure as well as to strengthen the agroecosystems for

sustainable agriculture. Generally, competition, antibiosis, parasitism, enhance-

ment of plant resistance, etc., are the major mechanisms employed in developing

suppressive soils. Numerous factors like soil properties (Hoeper and Alabouvette

1996), soil microbial activity or the soil respiration (Van Os and Van Ginkel 2001),

microbial diversity and composition (Garbeva et al. 2006), microbial population

density (Tuitert et al. 1998), presence of antibiotic genes (Garbeva et al. 2006),

agronomic management (Hoitink and Boehm 1999; Berg et al. 2002; Larkin and

Honeycutt 2006), etc., are the key factors to determine the soil suppressiveness.

Although, the mechanism behind soil suppressiveness is still not clear in many

pathosystems. Both positive and negative correlations were reported between

soil characteristics and suppressiveness, depending on the pathogens and the

agroecosystems involved (Janvier et al. 2007).

The farm management practices used for crop cultivation not only promote the

plant growth but also the soil suppressiveness having high efficacy for disease

control without any additional cost and effect on the environment. Therefore,

agronomic management practices are of multidimensional effects and have the

high priority in contemporary agriculture (Martin 2003). The agricultural practices

like crop rotation, tillage, fertilizers and organic amendments, use of microbes, etc.,

influence disease suppressiveness considerably. Nonetheless, many soil character-

istics could interact, and hence, it will be very difficult to predict the precise effects

of the agricultural practices on suppressiveness for specific disease and soil type

(Janvier et al. 2007). Probably the soil suppressiveness is a combined effect of

general and specific suppression, where the first relates to activity, biomass, and

diversity and the second is the result of the presence of specific antagonistic groups.

Therefore, knowledge about the process that results in increased soil suppressive-

ness is a prerequisite for its application under natural conditions. In this review,

agronomic strategies for developing disease-suppressive soils for improved soil and

plant health and productivity as well as for environmental benefits are discussed.

4.2 Suppressive Soils

The soils in which pathogens fail to establish or to produce disease are called

disease-suppressive soils (Baker and Cook 1974). Two types of disease suppression

have been described on biological basis, i.e., general and specific suppressions

(Fig. 4.1). General suppression is the overall effect of the microbial community

principally through resource competition which differs from specific suppression.

The specific suppression relates with specific mode of action against pathogen

populations (Weller et al. 2002). It is evident that most of the soils possess both
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general and specific suppressive activities at varying degrees which are greatly

altered by management practices (Weller et al. 2002). The suppressive soils are also

known for multiple soilborne pathogens and have been further categorized as long-

standing or induced (Hornby 1983). Long-standing suppression is naturally asso-

ciated with soil and is of unknown origin, whereas induced suppression develops as

a result of crop management (Fig. 4.1). Some well-known examples of specific

suppressive soils are Fusarium wilt of watermelon, take-all decline of wheat

(Weller et al. 2002), Rhizoctonia damping off of cucumber, scab decline of potato,

etc. (Menzies 1959).

Naturally occurring disease-suppressive soils have been well documented in a

variety of cropping systems, and in many instances, the biological attributes contri-

buting to suppressiveness have been identified. In spite of an understanding for

mechanisms leading to the suppressive state, it is very difficult to realize the

transfer of this knowledge into achieving effective field-level disease control.

This might be due to the complex nature of biological control system and the

inconsistent results for disease control in different agroecosystems under disease-

suppressive soils (Pal and Gardener 2006). Therefore, greater emphasis is to be

placed on manipulation of the cropping system to manage resident beneficial

rhizosphere microorganisms as a means to suppress soilborne plant pathogens.

Maintaining high levels of organic matter on the soil surface and incorporated

into soil generally is associated with lower incidence and severity of root diseases

(Bailey and Lazarovits 2003).

Fig. 4.1 Types of suppressiveness occurred in soils under different agroecosystems
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4.3 Factors Responsible for Enhancing Soil Quality, Plant

Health, and Crop Productivity

The agronomic operations like plant species, land preparation, irrigation, and

manure and fertilizer application are generally used by the farmers for crop culti-

vation. These practices considerably influenced the soil rhizosphere and biogeo-

chemistry as well as growth and composition of microbial communities around

plant roots. Plant roots and microorganisms are the vital component of the rhizo-

sphere, and the total biomass and composition of rhizosphere microbial populations

markedly affect interactions between plants and the soil environment. Therefore,

the beneficial conditions for plant growth could be created by the use of amend-

ments in the soil, breeding or engineering better plants, and manipulating plant/

microorganism interactions. Plant root system, rhizosphere and rhizodepositions,

soil properties, microbial diversity and microbiome, cultural practices, etc., are

some of the major factors responsible for soil health and productivity of the crop

plants (Fig. 4.2). These factors have positive influence on plant growth and devel-

opment by facilitating plant establishment, enhanced nutrient availability, tolerance

to stresses, improved plant protection, induced systemic plant disease resistance,

etc. However, the benefits of root zone microbial biodiversity are still not certain in

managed agroecosystems. Further management for disease control and yield max-

imization often minimized the community complexity and also disrupted the

ecosystem stability. Therefore, the complexity of plant–soil–microbial interactions

varied greatly, and the complete understanding of all the relationships involved

is very difficult to be understood. Nevertheless, these beneficial biological

Fig. 4.2 Factors interacting with soil quality and affecting the plant health and productivity
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interactions can be evaluated for better soil and plant health and also devised the

management strategies accordingly.

4.3.1 Root System and Rhizosphere

Traditionally the root system was thought to provide anchorage and uptake of

nutrients and water. However, it is the key element to a plant interacting with its

surroundings by secreting various biochemical compounds as root exudates (Bais

et al. 2006). Secretion of these compounds varies between different plant species

(Rovira 1969), ecotypes (Micallef et al. 2009), and even distinct roots within a plant

(Uren 2007). The diverse compounds released by plants as root exudates including

sugars, proteins, fatty acids, flavonoids, amino acids, aliphatic acids, etc., create a

unique environment in the rhizosphere (Badri and Vivanco 2009). All these differ-

ent compounds are able to attract and initiate both symbiotic and pathogenic

interactions within the rhizosphere (Bais et al. 2006).

Rhizodeposition that comprises of border cells, root debris, and root exudates are

the major organic carbon source to the soil (Uren 2007) which could probably

attract microorganisms that service the plant via biochemically active root system.

Root exudates varied in composition and concentration depending on many factors

like edaphic conditions, agronomic management (Bowen and Rovira 1999), age of

the plant (De-la-Pena et al. 2010), soil type (Rovira 1969), biotic and abiotic factors

(Flores et al. 1999), etc. All these factors also alter the microbial composition of the

rhizosphere (Micallef et al. 2009) as these exudates are also used as growth sub-

strates (Vandenkoornhuyse et al. 2007) by soil microbes for their population

density and activities. Hence, the rhizosphere harbors many organisms having

multiple effects on the plants like deleterious, beneficial, and neutral in action.

The rhizosphere is also a battlefield where the complex rhizosphere community,

both microflora and microfauna, interact with pathogens and influence the outcome

of pathogen infection. Therefore, rhizosphere engineering may ultimately reduce

our reliance on agrochemicals by replacing their functions with beneficial

microbes, biodegradable biostimulants, or transgenic plants. For further details,

see Ryan et al. (2009).

4.3.2 Soil Properties and Plant Health

Soils are highly diverse and dynamic in nature, allowing for habitation to diverse

communities of microorganisms (Schloss and Handelsman 2006). The diverse

communities of microbes have been associated with soils of varying texture

(Girvan et al. 2003), nutrient content (Frey et al. 2004; Faoro et al. 2010), and

soil pH (Fierer and Jackson 2006; Rousk et al. 2010). The bacterial community in

soils was greatly influenced by soil pH (Fierer and Jackson 2006), and a strong
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correlation was observed between soil pH and the diversity and composition of

bacterial communities across the biomes (Rousk et al. 2010). Thus, soil factors and

plant root activities have been shown to strongly influence the soil microbial

community.

Physicochemical properties of the soils like texture, structure, density, pH, EC,

carbon content, nutrient content, C:N ratio, altitude, ratio of cations (Ca2+, Mg2+,

and Al3+), etc., were more or less correlated to suppressiveness (Faoro et al. 2010).

These suppressive effects were found variable among different soil types like more

effective in sandy organic matter poor soils (Tenuta and Lazarovits 2004) and

reduced Fusarium diseases at high soil pH (Borrero et al. 2004). Soil biological

properties like enzymes, respiration, microbial functions, etc., strongly influenced

the soil suppressiveness against multiple soilborne pathogens. Fluorescein diacetate

(FDA) hydrolysis is consistently related to suppressiveness of composts on Pythium
(Chen et al. 1988). FDA hydrolysis was also proposed as a promising indicator for

predicting organic matter suppressiveness (Hoitink and Boehm 1999). However,

subsequent studies reported contrasting relationships for disease suppression in

relation to both OM type and pathogen species (Yulianti et al. 2006). The substrate

respiration was also considered as an important indicator for disease suppression as

FDA hydrolysis which could be explained by the model of general suppression

(Weller et al. 2002).

4.4 Microbial Diversity and Disease Suppression

The microorganisms in the rhizosphere are the key agents for changes in soil

agroecosystems. The interactions between plant root systems and microorganisms

have an intense effect on crop health, yield, and soil quality. Microorganisms like

pathogenic fungi, oomycetes, bacteria, and nematodes adversely affect plant

growth and health. In contrast, a wide range of microorganisms are also present

which are beneficial to the plant and include nitrogen-fixing bacteria, endo- and

ectomycorrhizal fungi, and plant growth-promoting bacteria and fungi (Pal and

Gardener 2006). Several microorganisms have been suggested to be involved for

general soil suppressiveness like Trichoderma spp. (Wiseman et al. 1996),

V. biguttatum (Velvis et al. 1989), Pseudomonas population (Mazzola and Gu

2002), combination of Pantoea, Exiguobacterium, and Microbacteria (Barnett

et al. 2006), etc., but their mode of action is still not clear. The nonpathogenic

fusaria (the most common components of soil microbial communities) and

deuteromycetes such as Penicillium species are strongly antagonistic to pathogenic

fusaria (Fravel et al. 2003; Sabuquillo et al. 2005). Actinomycetes are also known

to be a strong producer of antibiotics and have a direct influence on disease

suppression (Mazzola et al. 2001). Recently fluorescent pseudomonads attained

the highest percentage of positive correlation (73 %), followed by sporigenus

bacteria (60 %) and Trichoderma spp. (56 %) with no cases of negative correlation

with suppressiveness (Pal and Gardener 2006). These microbial groups are able to
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increase plant growth and development through production of phytohormones

(Patten and Glick 1996), as biocontrol of phytopathogens in the root zone (Weller

1988), manipulation of ethylene levels (Glick et al. 1998), enhanced availability of

minerals (Marschener and R€omheld 1994), etc. Several species have been devel-

oped as biocontrol agents, with modes of action such as antibiotic production

(Whipps 1997) and mycoparasitism (Harman et al. 2004).

Mycorrhizae are the dynamic symbionts between fungi and plants and occur on

most terrestrial plant species. These fungi can prevent root infections by reducing

the access sites and stimulating host defense. Various mechanisms employed by

mycorrhizae to suppress plant pathogens includes intricate network of fungal

hyphae around the roots, physical protection, chemical interactions, and other

indirect effects like enhanced plant nutrition, increased root lignifications, bio-

chemical changes of the plant tissues (Morris andWard 1992), alleviation of abiotic

stress, changes in mycorrhizosphere biology (Linderman 1994), etc. Specifically,

disease protection by ectomycorrhizal fungi may involve multiple mechanisms

including antibiosis, synthesis of fungistatic compounds by plant roots in response

to mycorrhizal infection, and a physical barrier of the fungal mantle around the

plant root (Duchesne 1994). Hence, the rich diversity of the soil microbes provides

apparently the incessant resource for suppression of plant diseases (Elizabeth and Jo

1999).

4.5 Role of the Microbiome in Plant Health

and Productivity

Soil microbiome provides an important role in disease-suppressive soils along with

increased plant productivity (Mendes et al. 2011). Enhanced species richness and

diversity resulted into quick recovery from the stresses which might be due to high

functional redundancy within the soil microbiome (Nannipieri et al. 2003). The

high functional redundancy in soil microbial diversity also confers protection

against soilborne diseases (Brussaard et al. 2007; Mendes et al. 2011). This

balanced microbiome due to enhanced microbial diversity does not allow pathogens

to flourish (Mendes et al. 2011; Schnitzer et al. 2011). Many studies on disease-

suppressive ability of particular taxons or group of microbes have been correlated

with soil community as a whole (Garbeva et al. 2004; Mendes et al. 2011). For

further details, see Chaparro et al. (2012).

Microbial community evenness has been also identified as one of the important

factors for community functioning, soil health, and plant productivity (Crowder

et al. 2010; Wittebolle et al. 2009). It ensures that no individual microbial taxum is

able to flourish and/or upsetting the ecological balance (Elliott and Lynch 1994).

Increased competition found in diverse and even microbial communities reduces

the niche spaces available for potential invaders (Hillebrand et al. 2008; Naeem

et al. 2000), and a lack of community microbial evenness has been associated with
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reduced plant productivity (Wilsey and Potvin 2000). It is suggested that when

environmental fluctuations occur, even communities are quickly able to adapt to the

new environment and sustain high productivity over time (Hillebrand et al. 2008;

Wittebolle et al. 2009). These examples highlight the benefits of ensuring even and

diverse microbial communities to produce healthy soil, high levels of nutrient

cycling (Elliott and Lynch 1994) and to combat stress and disease (van Bruggen

and Semenov 2000).

4.6 Mechanisms of Suppressive Soils

The ability of soil to suppress disease is of key importance in measuring soil

productivity (Janvier et al. 2007). Many factors as discussed in the previous section

determine the effectiveness of suppressive soils to combat the invading pathogens

in soil–plant systems. The soil suppressiveness encompasses various mechanisms

including competition, antibiosis, allelopathy, hyperparasitism, and induction of

plant disease resistance (Fig. 4.3), which are being operative through different

precursors like soil microbes, soil amendments, cropping systems, etc. (Haas and

Défago 2005). Various soil bio-indicators like microbial biodiversity and compo-

sition (Garbeva et al. 2006), population density (Postma et al. 2008), the presence of

specific antagonists (Postma et al. 2008), the presence of antibiotic genes (Garbeva

et al. 2006), or combination of these have been related to soilborne disease

suppressiveness. However, these mechanisms responsible for soil suppressiveness

are not fully understood, and the effect may also differ depending on the host–

pathogen systems (Janvier et al. 2007). The airborne diseases may also be reduced

Fig. 4.3 Mechanisms of soil suppression in different agroecosystems
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by soil microorganisms and induced systemic resistance (ISR) as reported in

experiments under controlled conditions (Kloepper et al. 1999).

4.6.1 Allelochemicals

Allelochemicals are well known to influence a wide variety of soil and crop

management-related processes (Sturz and Christie 2003). These processes include

soil health, nutrient transfer, weed control, crop compatibility within rotations,

residue management, plant growth and development, and disease-suppressive

soils (Narwal 2000). Various plant-derived allelochemicals have been identified

for weeds (Hoagland and Cutler 2000), fungal pathogens (Lovett and Hoult 1995),

nematodes (Sukul 1992), and insects (Jacobsen 1989). Allelochemicals are second-

ary metabolites comprising lytic agents and enzymes (Glick et al. 1998), antibiotics

(Bender et al. 1999), siderophores (Marschener and Crowley 1997), auxins (Patten

and Glick 1996), volatile compounds (Claydon et al. 1987), and phytotoxic sub-

stances (Hoagland and Cutler 2000). However, the major source of allelochemicals

in the rhizosphere is believed to be the plants. These allelochemicals are generated

directly or indirectly, from precursor compounds released into the root zone and

subsequently transformed through abiotic (i.e., oxidation) or biochemical reactions

through the action of microbes or higher organisms (Tang et al. 1989). Suppression

ofMeloidogyne incognita by entomopathogenic nematodes has been proposed to be

an allelopathic event mediated by symbiotic bacteria (Grewal et al. 1999).

4.6.2 Niche Competition and Microbiostasis

These are the mechanism that exists between pathogens and other microbial

populations (Stephens et al. 1993). The siderophore-producing bacteria with high

affinities for iron have been found to inhibit certain phytopathogens in iron-limited

soils due to iron deficiency (Dowling et al. 1996). Similarly, by establishing partial

sinks for nutrients, rhizobacteria can reduce the amount of carbon and nitrogen

available for fungal spore germination and phytopathogen growth in the root zone

(Elad and Baker 1985). The action of microbial population against pathogens was

also proposed by altering the physical habitat rather than denial of the food source

(Lockwood 1988) which were described as substrate antagonism (Lockwood 1986).

In soil biostasis, microbial decomposers produce inhibitors during competitive

interactions. The spectrum of inhibitors varies with microbial community compo-

sition. The inhibitors do not only affect the direct microbial competitors but have

also negative effect on other soil-inhabiting organisms (Fig. 4.4). This ability of

certain portions of a soil microbial population to impose fungistasis/biostasis

appears to be relatively nonspecific. Thus, most isolates of actinomycetes, bacteria,

and fungi were capable of initiating some degree of fungistasis (Lockwood 1964) or
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general microbiostasis (Ho and Ko 1986) when applied to sterilized soil or artificial

soil, respectively. A more detailed discussion on biostasis can be found in Garbeva

et al. (2011).

4.6.3 Antibiosis

Production of specific or nonspecific microbial metabolites, lytic agents, enzymes,

volatile compounds, or other microbial toxins is often reported as agents of disease

suppression (Fravel 1988; Lambert et al. 1987; Leyns et al. 1990). Antibiotics

synthesized by rhizobacteria can contribute to microbial antagonism and persis-

tence in the root zone soil (Kerry 2000). Antibacterial, antifungal, and anti-

nematode activity has been identified in the antibiotic-producing strains of a wide

range of bacterial genera, but most notably from Agrobacterium spp., Pseudomonas
spp., Bacillus spp., Trichoderma virens, Lysobacter spp., Pantoea agglomerans,
Burkholderia cepacia, etc. (Table 4.1). P. fluorescens bacteria that produce the

antibiotic 2, 4-diacetylphloroglucinol (DAPG) are well known for their capacity to

suppress diverse soilborne diseases (Weller et al. 2002), especially take-all disease

of wheat (Raaijmakers and Weller 1998). Antibiotic production confers a compe-

titive ecological advantage to the producer microbe; plants that stimulate root zone

colonization by beneficial rhizobacteria will also benefit through the development

Fig. 4.4 Illustration of the soil biostasis concept. The length, weight, and pattern of the arrows
illustrate the amount of supporting evidence for this concept (Source: Garbeva et al. 2011)
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of a protective root zone microflora. Similar antibiosis responses may also be

delivered by a protective bacterial endophyte flora localized within specific tissues

of the host (Sturz et al. 1999).

4.6.4 Induced Systemic Resistance in Plants

Induced systemic resistance (ISR) in plants occurs when root colonization by

certain nonpathogenic rhizobacteria stimulates defense-related genes such as

those encoding the production of jasmonate (van Wees et al. 1999), peroxidase

(Jetiyanon et al. 1997), and enzymes involved in the synthesis of phytoalexins (van

Peer et al. 1991). ISR is often described as a heightened state of defense-related

preparedness, which may be expressed locally or systemically within the activated

plant, and results in either delayed symptom development or reduced disease

expression (Liu et al. 1995) but only after pathogen penetration. While bacterial

strains can differ in their ability to induce resistance, multiple pathogens may be

inhibited by individual strains of rhizobacteria, indicating a general defense mecha-

nism being induced in the plant (Hoffland et al. 1996). Even so, no consistent

structural alterations have been identified in plants subjected to ISR, and cultivar-

specific variations in the level of the ISR response have been reported (see review

by Van Loon et al. 1998; Sturz and Christie 2003). Some of the bacterial determi-

nants and type of host resistance induced by biocontrol agents as described by Pal

and Gardener (2006) are given in Table 4.2.

4.6.5 Root Camouflage

Root camouflage (Gilbert et al. 1994) is the concept to explain decreased microbial

population densities in the rhizospheres of disease-resistant cultivars (Lochhead

et al. 1940). This mechanism was postulated to attract soil pathogens on plant roots

(i.e., rhizosphere) than in root-free soil so as to targeting the root system for

pathogen attack. A reduction in the population densities of root zone microbial

communities was observed to the levels of resistant donor parent in wheat cultivars

and to that of the surrounding soil (Neal et al. 1970, 1973). Thus, the presence of the

root system is believed to be masked. Further it refers to the mechanisms involved

in regulating disease suppression and pathogen reduction as described by Sturz and

Christie (2003).

72 R.S. Yadav et al.



4.7 Agronomic Management Practices to Develop

Suppressive Soils

Agricultural practices like crop rotation (Cook et al. 2002), intercropping

(Schneider et al. 2003), tillage and organic amendments (Tilston et al. 2002;

Mazzola 2004; Stone et al. 2003), and their combinations (Garbeva et al. 2004)

Table 4.2 Bacterial determinants and types of host resistance induced by biocontrol agents

Bacterial strain

Plant

species Bacterial determinants Type References

Bacillus mycoides
strain Bac J

Sugar beet Peroxidase, chitinase,

and β-1,3-glucanase
ISR Bargabus

et al. (2002)

Bacillus pumilus 203-6 Sugar beet Peroxidase, chitinase,

and β-1,3-glucanase
ISR Bargabus

et al. (2004)

Bacillus subtilis GB03
and IN937a

Arabidopsis 2,3-butanediol ISR Ryu et al. (2004)

Pseudomonas
fluorescens strains
CHA0

Tobacco Siderophore SAR Maurhofer

et al. (1994)

Arabidopsis Antibiotics (DAPG) ISR Iavicoli

et al. (2003)

WCS374 Radish Lipopolysaccharide ISR Leeman

et al. (1995a, b)

Siderophore Leeman

et al. (1995a, b)

Iron-regulated factor Leeman

et al. (1995a, b)

WCS417 Carnation Lipopolysaccharide ISR Van Peer and

Schippers (1992)

Radish Lipopolysaccharide ISR Leeman

et al. (1995a, b)

Iron-regulated factor ISR Leeman

et al. (1995a, b)

Arabidopsis Lipopolysaccharide – Van Wees

et al. (1997)

Tomato Lipopolysaccharide – Duijff

et al. (1997)

Pseudomonas putida
strains

Arabidopsis Lipopolysaccharide – Meziane

et al. (2005)

WCS 358 Arabidopsis Lipopolysaccharide – Meziane

et al. (2005)

Siderophore – Meziane

et al. (2005)

BTP1 Bean Z,3-hexenal – Ongena

et al. (2004)

Serratia marcescens
90–166

Cucumber Siderophore ISR Press et al. (2001)

Source: Pal and Gardener (2006)
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spectacularly influenced the disease suppressiveness. Although the changes in soil

suppressiveness due to altered agricultural management are often site-specific

(Cook 2007). It is a well-known fact that agronomic practices have often lead to

decreased soil fertility by loss in soil organic matter, soil microbial biomass, soil

organisms, and soil structure (Bellamy et al. 2005; Khan et al. 2007); consequently,

it affected the soil suppressiveness to control the diseases (Van Bruggen and

Semenov 2000). Therefore, better understanding of the processes and the potential

to maintain or reestablish disease suppressiveness is essential for developing

sustainable agricultural practices.

It is uncertain up to what extent soil suppressiveness could be reestablished by

agronomic management practices or by introduction of soil microbial communities

in disturbed soils. Numerous strategies have been investigated, altering soil micro-

bial communities to develop soil capacity for suppression of soilborne plant

diseases. Crop management practices including crop rotation (Huber and Schneider

1982), input system like organic versus conventional (Workneh et al. 1993; van

Bruggen 1995), and tillage and fertilization (Smiley 1978) will influence ecological

processes that affect microbial communities involved in the suppression of soil-

borne plant pathogens. All these observations inferred that based on the knowledge

of the operative biological mechanisms, the capacity exists to enhance or diminish

the suppressive nature of the resident microbial community through timely appli-

cation of the appropriate agronomic practices (Hoeper and Alabouvette 1996;

Pankhurst et al. 2002). It is well evident that induction of soil suppressiveness is

often mediated through transformations in soil microbial communities over time

(Liu and Baker 1980; Larkin et al. 1993; Raaijmakers et al. 1997; Mazzola and Gu

2002). Hence, there may be a commendable opportunity to enhance the disease-

suppressive state in the soils using various agronomic practices which would be the

prerequisite for successful adoption of such disease control strategy. Some of the

agronomic practices enhancing soil suppressiveness are summarized as mentioned

below.

4.7.1 Organic Amendments

Various organic amendments like cover crops, animal and green manure, organic

wastes, plant residues, composts and peats, etc., have been proposed to provide

plant nutrition as well as control of diseases caused by soilborne pathogens

(Steinberg et al. 2004; Widmer et al. 2002; Cotxarrera et al. 2002). These organic

amendments have been successfully used to increase the soil suppressiveness to

different diseases in agricultural and horticultural crops (Table 4.3). The effective-

ness and the level of disease control obtained depend on many factors like chemical

nature of the materials used, the composting process and degree of decomposition,

type of microorganisms present, etc. These factors might be the probable reasons

for contradictory reports for efficacy of disease control by organic amendments

in the soil which seriously hinder the practical use of these amendments as
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Table 4.3 Organic amendments and plant disease suppression

S. No.

Organic

amendments Disease suppression References

1. Vermicompost Phytophthora Szczech and

Smolinska (2001)

2. Vermicompost Chickpea collar rot disease (Sclerotium
rolfsii)

Sahni et al. (2008)

3. Vermicompost Verticillium wilt of eggplant Elmer and Ferrandino

(2009)

4. Hairy vetch

(Vicia villosa)
Fusarium wilt of watermelon Zhou and Everts

(2004)

5. Swine manure Microsclerotia of Verticillium dahliae Tenuta et al. (2002)

6. Compost tea Damping off (Pythium ultimum) Scheuerell and

Mahaffee (2004)

7. Composted

hardwood bark

Rhizoctonia damping off Nelson et al. (1983)

8. Brassica napus
seed meal

amendment

Apple root pathogens Mazzola et al. (2001)

9. Broccoli

residues

Verticillium wilt of cauliflower Koike and Subbarao

(2000)

10. Composted

swine

Waste

Rhizoctonia
solani on Impatiens

Diab et al. (2003)

11. Composts Damping off and root rot (Pythium
graminicola) of creeping bent grass

Craft and Nelson

(1996)

12. Brassica napus
seed

meal

Rhizoctonia root rot Cohen et al. (2005)

13. Hardwood bark

media

Rhizoctonia solani Chung, et al. (1988)

14. Synthetic and

organic

soil fertility

amendments

Southern blight of tomato Bulluck and Ristaino

(2002)

15. Composted

municipal

biowaste

Composted cow

manure

Sclerotinia minor (garden cress) Pane et al. (2011)

16. Vegetal

composts

Rosellinia necatrix (avocado) Bonilla et al. (2009)

17. Fresh farmyard

manure

Rhizoctonia solani (basil) Tamm et al. (2010)

18. Viticulture

waste compost

Composted cow

manure

Rhizoctonia solani (garden cress) Pane et al. (2011)

19. Bark compost Pythium ultimum (garden cress) Erhart et al. (1999)

(continued)
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disease-suppressive materials (Termorshuizen et al. 2006). The effectivity and

suppressive potential of organic amendments could be improved by inoculation

of decomposed composts with specific strains of antagonistic microorganisms.

Substantial effort has been made during the last decade for reliable indicators

of organic matter-suppressive capability (Noble and Coventry 2005; Janvier

Table 4.3 (continued)

S. No.

Organic

amendments Disease suppression References

20. Animal and

vegetal

composts

Pythium ultimum (garden cress) Pane et al. (2011)

21. Chipped euca-

lyptus

trimmings

Phytophthora cinnamomi (avocado) Downer et al. (2001)

22. Sludge

vermicompost

Phytophthora cinnamomi (avocado) Bender et al. (1992)

23. Fresh and

composted

chicken manure

Phytophthora cinnamomi
(white lupin)

Aryantha et al. (2000)

24. Vegetal

composts

Fusarium spp. on several hosts Yogev et al. (2006)

25. Vegetal com-

post

Poultry manure

Green manure

(legumes)

Sclerotium rolfsii (tomato) Bulluck and Ristaino

(2002)

26. Horse manure

Municipal green

waste

Wood shavings

Verticillium dahliae (eggplant) Malandraki et al.
(2008)

27. Sewage sludge Laetisaria fuciformis, Pythium
graminicola, R. solani, Sclerotinia
homoeocarpa, and Typhula incarnate

Nelson and Boehm

(2002)

28. Brassica napus
seed meal

Rhizoctonia root rot (Rhizoctonia solani
AG-5) in apple

Cohen et al. (2005)

29. Cruciferous soil
amendments

Aphanomyces root rot of peas Papavizas (1966)

30. Organic

amendments

Thielaviopsis basicola Papavizas (1968)

31. Organic

amendments

Gaeumannomyces graminis var. Tritici in
wheat

Mazzola and Gu

(2002), Weller et al.
(2002), Tilston

et al. (2002)

32. Organic

amendments

Pythium splendens McKellar and Nelson

(2003)

33. Cotton-gin trash Sclerotium rolfsii Coventry et al. (2005)

34. Organic

amendments

Macrophomina phaseolina Lodha (1995)
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et al. 2007). Testing of various organic matters on different pathosystems is the

traditional approach for identification of characteristics responsible for disease

suppression (Scheuerell et al. 2005; Termorshuizen et al. 2007). For instance,

FDA hydrolysis assay has been correlated with organic matter decomposition

(Schnurer and Rosswall 1982), peat (Boehm et al. 1997), and compost suppressive-

ness (Chen et al. 1988). The degree of decomposition of the amendments (Hoitink

and Boehm 1999; Janvier et al. 2007) is also an important indicator for disease

suppression in different plant species.

Significant changes in the correlation between suppressiveness and the level of

decomposition have been reported for crop residues (Papavizas and Davey 1960),

organic wastes (Kotsou et al. 2004), peats (Boehm et al. 1997), and composts (Diab

et al. 2003). The biocontrol effect is sustained for as long as the parent organic

matter remains constant for factors like particle size, salinity, pH, carbon-to-

nitrogen ratio, lignin-to-cellulose ratio, and moisture (Hoitink et al. 1997). The

microbial carrying capacity declines with decomposition of organic matter which

ultimately declines the disease suppression. However, mostly biological control

agents colonized naturally in the composts at indefinite extent which often leads to

reduction in the efficacy or reproducibility effects between batches of composts.

Therefore, an understanding of the influence of the degree of organic matter

decomposition on the suppression of soilborne disease is essential to improve our

predictive capability.

Plant residues left on or near the soil surface may contribute to an increase of

disease suppressiveness through the promotion of the general microbial activity.

When residues are buried, the pathogens are displaced from their niche to deeper

layers in the soil and their ability to survive is severely decreased. Repeated

incorporations of crop residues can affect a change in the activity of residue-

borne microorganisms that in turn influence the decomposition of crop residues.

Carbon released from this decomposition contributes to an increase of soil micro-

bial activity and thereby enhances the level of general suppression. Developing

disease-suppressive soils by introducing organic amendments and crop residue

management takes time, but the benefits accumulate across successive years,

thereby leading to an improvement of soil health and structure (Bailey and

Lazarovits 2003).

4.7.2 Soil Solarization and Biofumigation/Biodisinfection

Solarization or solar heating is a method that uses the solar energy to enhance the

soil temperature to levels at which many plant pathogens will be killed or suffi-

ciently weakened to obtain significant control of the diseases. Solarization is a

hydrothermal process, and its effectiveness is not only related to the temperature

but also to the soil moisture. The efficiency of the process can be improved by

combining soil solarization and organic amendments (Ndiaye et al. 2007; Oka

et al. 2007). The duration of solarization is also an important factor determining
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the effectiveness of the treatment. Solarization does not destroy all soil microor-

ganisms, but modifies the microbial balance in favor of the beneficial microorgan-

isms. An important characteristic of soil solarization is its broad spectrum of

activity including activity against fungi, nematodes, bacteria, weeds, arthropod

pests, and some unidentified agents.

Disease control and yield increase have been reported after 2–3 years of solar-

ization (Gallo et al. 2007). This long-term effect is probably due to both the

reduction of the inoculums density and some induced level of disease suppressive-

ness of the soil. Many studies report that the efficacy of soil solarization is not only

due to a decrease of pathogen populations but also to an increase of the density and

activity of populations of antagonistic microorganisms such as Bacillus spp.,
Pseudomonas spp., and Talaromyces flavus. Several review papers are available

that describe both the technology of solar heating and mechanisms involved in the

control of pests, pathogens, and weeds by solarization (DeVay 1995; Katan 1996).

Biofumigation or biodisinfection is the strategy based on plastic mulching of the

soil after incorporation of fresh organic matter which is suitable for cooler regions

(Blok et al. 2000). Although the mechanisms involved are not fully understood,

anaerobic fermentation of organic matter under plastic mulch and production of

toxic metabolites are the two mechanisms considered to be contributed to the

inactivation or destruction of pathogenic fungi. Therefore, two definitions have

been proposed by Lamers et al. (2004), that is, biofumigation corresponds to the use

of specific plant species containing identified toxic molecules, whereas bio-

disinfection refers to the use of high quantities of organic matter resulted in

anaerobic conditions mainly responsible for the destruction of pathogens. For

example, many species of Brassicaceae produce glucosinolates, a class of organic
molecules that may represent a source of allelopathic control of various soilborne

plant pathogens (Kirkegaard and Sarwar 1998).

4.7.3 Soil Tillage

However, it is very difficult to assess the role of tillage on disease suppression as its

evaluation is often combined with the effects of other agricultural practices such as

organic amendments and green manure burial, residue management, or crop rota-

tions (Bailey and Lazarovits 2003). Therefore, tillage appears as giving conflicting

effects on disease suppression. Conventional tillage results in considerable distur-

bance of the soil but removes residue from the surface. Tillage also disrupts hyphae,

thereby affecting the ability of fungi such as R. solani to survive (Bailey and

Lazarovits 2003). Reduced tillage can also favor pathogens by protecting the

pathogen’s refuge in the residue from microbial degradation, lowering soil temper-

ature, increasing soil moisture, and leaving soil undisturbed (Bockus and Shroyer

1998).

A variable impact of conservation tillage practices on plant disease development

has been reported depending on the specific regional crop–pathogen–environment
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interactions (Sturz et al. 1997; Bailey et al. 2001). Leaving plant debris on the

surface or partially buried in the soil may facilitate the survival of some pathogens

until the succeeding crop is planted, but conditions favorable for microbial anta-

gonism of plant pathogens may also be increased (Baker and Cook 1974; Boosalis

et al. 1981) under such systems. Soil physical and chemical properties, moisture

and temperature, root growth, and pathogen vectors are all influenced by tillage

practice, and consequently pathogen virulence, diversity, and host susceptibility are

likewise influenced (Sumner et al. 1981). A list of the impacts of minimum tillage

on specific crops and their associated pathogens can be found in Sturz et al. (1997).

Plant residues left on or near the soil surface may contribute to the suppression of

soilborne pathogens in minimum tillage systems.

4.7.4 Crop Rotation

Crop rotation is an agricultural management tool with ancient origins (Howard

1996). Besides the benefits like maintenance of soil health, soil organic matter,

reduction in soil erosion, etc., crop rotation spectacularly declined the incidence of

plant disease caused by soilborne pathogens (Pedersen and Hughes 1992).

Monocropping generally led to the buildup of soil populations of specific plant

pathogens resulting in the decline of crop yield and quality (Honeycutt et al. 1996).

In contrary, crop rotation with resistant and/or less susceptible to specific pathogens

enhanced the crop yield and quality because it declined the pathogen populations

due to natural mortality and the antagonistic activities of root zone microorganisms

(Fry 1982). Rotation is most successful in limiting the impact of biotrophic patho-

gens that require living host tissues or those pathogens with low saprophytic

survival capability (Bailey and Duczek 1996). However, it is least successful in

reducing disease caused by pathogens with a wide host range or that produce long-

lived survival structures such as sclerotia or oospores (Umaerus et al. 1989). Crop

choice in a rotation may also harvest microbial benefits beyond those normally

associated with pathogen host range and saprophytic pathogen survival. For exam-

ple, analysis of microbial populations in plant tissues and soils when clover

preceded potato in a rotation revealed that 25 bacterial species were common to

both clover and potatoes and represented 73 % of culturable bacteria recovered

from clover roots and potato tubers (Sturz et al. 1998). Endophytic bacteria found

inhibitorier to R. solani than the bacteria present in the root zone. Therefore, it

emphasized that adaptation of bacteria to host plants can result in the expression of

a mutually beneficial relationship (Sturz et al. 1998). Crop rotation also influences

disease suppressiveness of the soil (Garbeva et al. 2006; Postma et al. 2008). The

best examples are take-all disease (Weller et al. 2002), Rhizoctonia solani in wheat
(Mazzola and Gu 2002), potato (Jager and Velvis 1995), sugar beet (Sayama

et al. 2001), radish (Chet and Baker 1980), and cauliflower (Davik and Sundheim

1984). However, knowledge on the mode of action of Rhizoctonia disease decline is
lacking. In most pathogen–crop combinations, it is unknown if the host crop or the
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pathogen itself are needed for the development of disease decline. In few cases, it

was described that virulent R. solani was required to induce Rhizoctonia disease

decline (Sayama et al. 2001).

4.7.5 Use of Beneficial Microbes

Agricultural management practices impact soil and rhizosphere microbial diversity

and community structure. Management of soil properties is an important approach

to promote the activities of beneficial microbes in the rhizosphere and thus limiting

the densities and activities of soilborne pathogens to a tolerable level (Janvier

et al. 2007). Furthermore, soil type is known to be a key determinant for soil

microbial community structure (Garbeva et al. 2004). Adaptation of cultural prac-

tices has been proposed as a means to decrease the soil inoculum potential or

increase the level of suppressiveness to diseases (Steinberg et al. 2007). Hence, it

is evident that various cultural and management practices significantly influenced

the microbial community structures and activities in the rhizosphere. Tillage (Feng

et al. 2003), rotation (Lupwayi et al. 1998; Larkin 2003), use of mulches (Tiquia

et al. 2002), cover crops (Schutter et al. 2001; Schutter and Dick 2002), and

amendments (Parham et al. 2003; Pérez-Piqueres et al. 2006) are also known to

influence the structure and activity of microbial communities.

Adding beneficial microorganisms to those already present in the soil can

maximize plant nutrient uptake (Kirankumar et al. 2008), increase plant growth

(Cummings 2009; Gui~nazú et al. 2009), confer resistance to abiotic stress

(Selvakumar et al. 2012), and suppress disease (De Vleesschauwer and H€ofte
2009). These living microorganisms are dynamic and potentially self-sustaining,

reducing the need for repeated applications, and can avoid the problem of pests

and pathogens, evolving resistance to the treatments (Lucas 2011). A possible

management technique is to apply plant growth-promoting rhizobacteria

(PGPRs) as an agricultural treatment to minimize niche vacancy and effectively

fill vacant niches. It has been shown that PGPRs colonize particularly and

effectively in soils with low microbial biomass (Fliessbach et al. 2009) so

inoculations are more likely to be successful. Beneficial microorganisms that

thrive in this environment can more quickly take up space and nutrients made

available for potential pathogen invaders and assist with achieving sustained

niche occupancy (Kaymak 2011). In addition, PGPRs offer benefits of increased

yields, nutrient acquisition, stress tolerance, and disease resistance to the plant

host (Lugtenberg and Kamilova 2009). The application of PGPRs consortia has

been shown to be even more effective than one treatment alone in suppressing

disease (Ahemad and Khan 2011; Yang et al. 2011). This combination of

beneficial microbes also had the added effect of stimulating plant N and P

absorption (Hernandez and Chailloux 2004). Formulations of compost with

beneficial bacteria have also shown the ability to suppress plant pathogens

(Pugliese et al. 2011; Yang et al. 2011). The ability of formulations of multiple

beneficial microbes to increase plant productivity and health hints at the
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potential of the entire microbiome and plants working together with mutually

beneficial outcomes.

Sometimes, the same effect can be achieved by applying a microbial elicitor

(compound produced by the microorganism and causes the desired effect).

For example, exogenous application of the Bacillus subtilis-derived elicitor, acetoin
(3-hydroxy-2-butanone), was found to trigger induced systemic resistance (ISR)

and protect plants against Pseudomonas syringae pv tomato pathogenesis

(Rudrappa et al. 2008). Similarly, adding low doses of Chryseobacterium
balustinum AUR9 cell wall lipopolysaccharides, another bacterial elicitor, to

A. thaliana reproduced systemic induction (Ramos Solano et al. 2008). Appli-

cations of living microbes or their elicitors have potential use for agricultural

priming, the induction of ISR (Conrath and Loon 2009), which has been shown

as an efficient way to increase pathogen resistance with little cost to the plant

(De Vleesschauwer and H€ofte 2009). An important addition to strategic manage-

ment practices will be the development of crop species that are able to accomplish

their own priming and ISR induction, which will reduce the use of microbial

applications. Although, ideally, adding PGPRs as inoculants into the rhizosphere

to exploit the immense benefits they provide is, potentially, an easy fix, there is still

much inconsistency in their performance at the field scale (Morrissey et al. 2004;

Mark et al. 2006). Research has begun to focus on how to cater the rhizosphere

environment for PGPR rhizosphere colonization by means of rhizosphere engineer-

ing (Ryan et al. 2009), by understanding which PGPR traits are essential for

rhizosphere competence (Barret et al. 2011), or by considering which indigenous

soil microbial communities respond most favorably to inoculation (Bernard

et al. 2012).

4.8 Conclusion

The evergrowing human population coupled with reduced natural resources and the

need for more environmentally friendly agricultural practices have highlighted the

need for sustainable farming. The intricacies of the plant–microbiome interaction

and its impact on plant health and productivity need to be understood for obtaining

healthier and more productive plants. Suppressive soils represent an underutilized

resource for the control of soilborne pathogens of food, fiber, and ornamental crops.

Early research identified the characteristics of soil suppressiveness and the major

groups of microorganisms involved, but in recent past due to availability of

molecular tools, it has been made possible to characterize and identify the factors

and mechanisms responsible for genetic and functional determinants underlying the

activity of some biologically suppressive soils. Adoption of different agronomic

practices by the farmers spectacularly altered the soil microbiome and considerably

enhanced soil suppressiveness to various soilborne diseases. The use of organic

amendments or composts for the suppression of plant pathogens could be a prom-

ising and environmentally benign alternative to chemical pesticides. The deeper
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understanding of microbial ecology processes could also provide directions for

possible manipulations of the community, leading to a reproducible suppressive

amendment. Combining measures of microbial structural diversity with functional

traits should be explored in relation to soil and root health in agricultural systems.

Manipulating soil quality to achieve an economic level of disease control via

agronomic management has been deliberately reviewed with some skepticism.

However, crop rotation, residue management practices, and various forms of

organic amendments do contribute to the suppression of soilborne diseases. How-

ever, the level of understanding for the mechanisms involved in suppressive soils is

still limited and not so clear. The benefits of applying organic amendments for

disease control are incremental and long lasting depending upon soil ecosystems.

The conventional agricultural systems need to be discouraged because of poor

production efficiency due to reduced crop diversity, increased genetic uniformity,

and shorter rotations. More attention is to be paid on conservation agriculture

including maximum use of natural resources. Through the application of green

and livestock manures, mulches, and composts, it is hoped that plant beneficial soil

microbial populations will develop spontaneously. Selection of complementary

rotation crops may also increase the buildup of beneficial microflora during suc-

cessive field seasons. Plants can manage the development of beneficial microbial

populations through the release of specific root exudates in the root zone. Recently,

it has been proposed that plants may also be able to camouflage their presence to

phytopathogens by blending into the soil microbial background through restricting

the proliferation of root zone bacterial populations. Therefore, the future studies of

biologically based soil suppressiveness will put new insights into the microbial

ecology of agricultural soils and lay the foundation for the development of creative

management strategies for the suppression of soilborne diseases.
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