
 

 

 

 

 

 

 

 

प्रशिक्षण पसु्तिका-II  
Training Manual-II 

 

उच्च संकाय प्रशिक्षण कें द्र के अंिर्गि 
CENTRE OF ADVANCED FACULTY TRAINING 

 

on 

कृषि आँकड़ो के मॉडलििंग एविं पवूवानमुवन के लिए सविंख्यिकी एविं मशीन िर्निंग तकनीके 

Statistical and Machine Learning Techniques for Modeling 

and Forecasting Agricultural Data                             

 
दिसम्बर 20, 2019 -  जनवरी 09, 2020 

December 20, 2019 – January 09, 2020 
December 20, 2019 - January 9, 2020 

 
 

पाठ्यक्रम समन्वयक  : डॉ मनृमय राय 
Course Coordinator : Dr. Mrinmoy Ray 

पाठ्यक्रम सहसमन्वयक : श्री शिवतवामी जी.पी. 
Co-Course Coordinator : Dr. Shivaswamy G P 

पाठ्यक्रम सहसमन्वयक : डॉ हरीि कुमार एच.वी. 
Co-Course Coordinator : Dr. Harish Kumar H V 

 

पवूागनमुान एवं कृषि प्रणाली मॉडशलरं् प्रभार् 
भा.कृ.अ.प. - भारिीय कृषि सासं्ययकी अनसंुधान संतथान  

लाइबे्ररी एवेन्य ू, पसूा नई दिल्ली -110012 
 

Division of Forecasting and Agricultural Systems Modeling 

ICAR-Indian Agricultural Statistics Research Institute 

Library Avenue, Pusa, New Delhi-110012 
 

   2019-2020 











CONTENTS 

Chapter Title Page No. 

1 Application of GIS and Remote Sensing for Crop Yield Forecasting 

K. N. Singh and Bishal Gurung 
1-6 

2 Log Linear Models 

Anil Rai 
7-14 

3  Regression Analysis: Diagnostics and Remedial Measures 

Lalmohan Bhar 
15-40 

4 Modeling the Growth of Lactococcus lactis. 

Sunita Singh 
41-46 

5 Hybrid Time Series Models 

Wasi Alam and Santosha Rathod 
47-54 

6 Satistical Modelling of Sensitive Issues on Successive Waves 

Kumari Priyanka 
55-92 

7 Random Forest for Classification and Regression 

P. K. Meher 
93-100 

8 Introduction to Particle Swarm Optimization 

Santosha Rathod and Mrinmoy Ray 
101-116 

9 Artificial Neural Network approach for Time Series Forecasting 

Mrinmoy Ray, K N Singh, Kanchan Sinha and Santosha Rathod 
117-128 

10 Support Vector Machine: A Non-Linear Machine Learning Technique 

Amit Saha, K. N. Singh, Mrinmoy Ray and Santosha Rathod 
129-138 

11 Spatio-temporal Time Series Modelling and Forecasting 

Santosha Rathod and Mrinmoy Ray 
139-152 

12 Nonlinear Growth Model: Introduction and overview 

Mrinmoy Ray, K N Singh, Achal Lama, Kanchan Sinha and Santosha Rathod 
153-164 

13 An Introduction to Fuzzy Set and Fuzzy Time Series Forecasting 

Amit Saha, K. N. Singh, Mrinmoy Ray and Sanjay Kumar 
165-176 

14 Panel Data Regression Model 

Ravindra Singh Shekhawat, Bishal Gurung and Achal Lama 
177-186 

15 Modelling and Forecasting of Volatile Time-Series Data 

Achal Lama, Bishal Gurung and R S Shekhawat 
187-202 

16 An Introduction to Genetic Algorithm 

Kanchan Sinha, K.N. Singh, Mrinmoy Ray and Achal Lama  
203-208 

17 ARFIMA Models for Modeling and Forecasting Long Memory Time Series 

Achal Lama, Santosha Rathod and R S Shekhawat 
209-216 

18  An Introduction to Recurrent Neural Networks 

Kanchan Sinha 
217-226 

19 Impact Assessment using Instrumental Variable and Propensity Score 

Matching Techniques 

Anuja A R, Shivaswamy G P, K N Singh, Rajesh T and Harish Kumar HV 

 

227-248 

 



 

 

1 

 

Application of GIS and Remote Sensing for Crop Yield Forecasting 

K. N. Singh and Bishal Gurung 

ICAR-IASRI, New Delhi  

 knsingh@icar.gov.in 

 

The soil fertility changes occur due to cropping, manure and fertilizer applications. 

Soil test results of one farm need to have scope to be connected with the broader population 

of all farms in a given area. But we may not be able to sample each farm in the population, 

because it is too costly, troublesome and time consuming, especially with the multiple small 

farm holdings as in India. We thus need to generalize results over an entire area. For the 

periods between 1975 to 1980, soil fertility maps for nitrogen (N), phosphorous (P) and 

potassium (K) were prepared using soil test data generated by soil testing laboratories 

functioned throughout the country (Ghosh and Hasan, 1979). Till date there is no major up-

gradation in these maps. Singh et al. (2004) used point estimates for districts to prepare soil 

fertility maps of N, P and K for the states of Andhra Pradesh and Maharashtra. Further, Singh 

et al. (2006) have interlinked fertilizer recommendations for targeted yields of crops with 

these maps. Soil fertility maps have been prepared for 12 agriculturally important states using 

Soil Index Values (IV) for each district. Index values were calculated using standard 

procedure (Biswas and Mukherjee, 1987).  

The IVs were classified in to three categories viz. (Low 0- 1.5, Medium 1.5-2.5 and 

High >2.5). Soil Test Crop Response (STCR) approach was used to prescribe optimum doses 

of nutrients, based on available soil nutrients. From available nutrient Index Values and 

STCR equations the backward calculation for soil test values (STV) were obtained as 

follows: 

 

Low :  0.0 - 1.5 :: 0-a (a>0) 

Medium:  1.5 - 2.5 :: a-b (b>a) 

High :  >2.5 :: >b 

If IV<=1.5 

STV= ax (IV)/(1.5) 

If IV>1.5 and<= 2.5 

STV= a+[(b-a) x (IV-1.5)] 

If IV >2.5 

mailto:knsingh@icar.gov.in
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STV=(b/2.5) x IV  

 

Where a and b were positive coefficients used for describing the range of different 

nutrients. The a and b values depend on soil characteristics and are different for different 

soils. These denote the fertility of a soil with respect to N, P or K and are determined through 

soil test crop response correlation experiments. If a soil sample has available nutrient (N, P or 

K) below ‘a’ that means it is low, between ‘a’ and ‘b’, it is medium and above ‘b’, it is high. 

The district wise index values have been assigned from the database generated on N, P and K 

index values to the corresponding district layer of the state in GIS and generated the thematic 

maps accordingly.  

The calculated soil test values were incorporated into the fertility maps to prescribe 

nutrients for targeted yields. This online application Software was developed to recommend 

fertilizer doses for the targeted yield at the District level. This system has the facility to input 

actual soil test values at the farmer’s fields to obtain optimum dozes. The application is a 

user-friendly tool to help the farmer in improving the efficiency (appropriate dose) of 

fertilizer use to achieve a specific crop yield. 
 

  Remote Sensing, Geographic Information Systems (GIS), and the Agricultural Non-

point Source Pollution (AGNPS) model have been used to assess runoff and sediment yield 

from various sub-watersheds above Cheney Reservoir in Kansas, USA ( Bhuyan et al. 

(2002)). Ray and Dadhwal (2001) used satellite-based remote sensing data and GIS tools for 

estimating seasonal crop evapotranspiration in Mahi Right Bank Canal (MRBC) command 

area of Gujarat, India.  
 

The recent technologies like GIS and GPS thus have much to offer for preparing soil 

fertility maps. Once the soil fertility maps are created, it is possible to transform the 

information from Soil Test Crop Response models into Spatial fertilizer recommendation 

maps.  Such maps provide site-specific recommendation, validation for soil fertility over the 

following years.  The fertilizer doses for targeted yield can be prescribed to the farmers by 

locating his field/ area on the map with the help of latitude/longitude information.  

 To cover complete district Stratified Multistage Stratified Random Sampling has been 

adapted. To select the soil samples from different categories (big, small and marginal) of 
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farmers it was essential to select farmers and to select farmers first to select village which is 

first stage unit. To select villages from a tehsil Simple Random Sampling without 

Replacement (SRSWOR) has been used. There is problem of spatial estimation, sometimes 

called spatial prediction. This arises in case a spatial field is partially observed at selected 

sites and the goal is to infer the field at unobserved sites.  An example of spatial random field 

is soil nutrient concentrations over an agricultural domain. Among different methods of 

spatial interpolation of soil properties, kriging is an optimal interpolation method (Issak and 

Srivastava, 1989). To select the best model Akaike’s (1973) information criterion (AIC) has 

been used.  
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Fig 1. Kriged raster images (response surface) of different soil nutrients of Hoshangabad 

district. 

In case of N, spherical method had the least AIC value. Hence for N, spherical 

Variogram method was used for kriging. Similarly linear, spherical, exponential, linear and 

linear Variogram methods of kriging were used for P, K, OC, EC and pH respectively. 

Estimated response surface (Fig. 1) clearly showed that in Hoshangabad district OC in 

soil ranged between 0.28% to 0.81%, available soil N was in the range of 104 to 279 kg/ha, 

available soil P was in the range of 10 to 22.9 kg/ha, available soil K was in the range of 282 

to 529 kg/ha. The EC was in the range of 0.08 to 0.34 desi siemens (dS/m) and pH was in the 

range of 7.2 to 7.9. With the help of these raster images all the ground points (pixel) was 

assigned with unique estimated value of respective nutrients.  It was observed that calculated 

Abs (t) was less than that of tabulated t (for P< 0.05) for all the nutrients in 2007. This showed 

that in subsequent year there was no significant change in these nutrients. The results of year 

2008 showed that only pH changed. For other nutrients there was no significant difference. 

Therefore, it is inferred that observed soil parameters for Hoshangabad district did not change 

significantly for at least two consecutive years except for pH.  Again a web based on line 

spatial fertilizer recommendation system has been developed where farmers can get 

information up to field level if he has knowledge of Longitude and Latitude, otherwise all the 

villages have been included in the system and village wise recommendation can be obtained.  

 

The crop yield can be forecasted using the equations of the form: 

FN=3.92T–0.46SN, 4.26T-0.59SN, 3.47T-0.37SN, 4.00T-0.44SN, 3.78T- 0.48SN, 

etc. 

FP2O5=2.61T- 2.45SP, 2.35T-3.16SP, 2.53T- 2.12SP, 2.32T-2.09SP, 2.39T-2.90SP, 

etc. 

FK2O =2.47T-0.25SK, 1.89T-0.20SK, 2.12T-0.20SK, 1.82T-0.17SK, 1.24T-0.12SK, 

etc. 

 

Where,  

FN, FP2O5, FK2O are fertilizer applied. 

SN, SP, SK are soil test values for N, P and K and T is forecast yield (qt/ha) 

  Singh et al. (2006) utilized remote sensing data for preparing land productivity maps 

using simple linear relationship between Normalized Difference Vegetative Index (VDVI) 

values and Land Productivity Index (LPI) values. Satellite data for selected areas of 
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Hoshangabad and Guna Districts have been used to obtain relationship between NDVI values 

and soil nutrients (Singh et al. (2009)). To obtain frequency data for each nutrient polygon to 

carry out statistical analysis the union of polygons was performed.  Relationships between 

nutrients and NDVI values have been obtained for different months. The results indicate 

satisfactory relationship between nutrients and NDVI values. There is a good agreement 

between available nitrogen and maximum of maximum of NDVI values and it is best in the 

month of December and February. Available phosphorus can be estimated using average of 

average of NDVI values in the month of February and Potassium can be estimated using 

average of average of NDVI in the month of December. 
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Regression Analysis: Diagnostics and Remedial Measures 

Lalmohan Bhar 

ICAR-IASRI, New Delhi 

lmbhar@iasri.res.in; lmbhar@gmail.com 

 

 

1. Introduction 

Regression analysis is a statistical methodology that utilizes the relation between two or more 

quantitative variables so that one variable can be predicted from the other, or others. This 

methodology is widely used in business, the social and behavioral sciences, the biological 

sciences including agriculture. For example, fish weight at harvest can be predicted by utilizing 

the relationship between fish weights and other growth affecting factors like water temperature, 

dissolved oxygen, free carbon dioxide etc. There are other situations in agriculture where 

relationship among variables can be exploited through regression analysis. We frequently use 

equations to summarize or describe a set of data. Regression analysis is helpful in developing 

such equations. For example we may collect a considerable amount of fish growth data and 

data on a number of biotic and abiotic factors, and a regression model would probably be a 

much more convenient and useful summary of those data than a table or even a graph. Besides 

prediction, regression models may be used for control purposes.   

A functional relation between two variables is expressed by a mathematical formula. If x 

denotes the independent variable and y the dependent variable, then y can be related x through 

a functional relation of the form y = f(x). Given a particular value of x, the function f indicates 

the corresponding value of y. In regression analysis, the variable x is known as input variable, 

explanatory variable or predictor variable. This is an exact mathematical relationship. In 

statistical relation, may not be perfect owing to sampling. The above functional form is made 

a statistical model by adding an error term as 

    += )(xfy , 

where e denotes the error term. 

 Depending on the nature of the relationships between x and y, regression approach may be 

classified into two broad categories viz., linear regression models and nonlinear regression 

models. The response variable is generally related to other causal variables through some 
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parameters. The models that are linear in these parameters are known as linear models; whereas 

in nonlinear models parameters appear nonlinearly.   

 

2. Linear Regression Models 

We consider a basic linear model where there is only one predictor variable and the regression 

function is linear.  The model can be stated as follows: 

iii xββy ε10 ++=                       (1)              

Where yi is the value of the response variable in the ith trial 0 and 1 are parameters, xi is  the 

value of the predictor variable in the ith trial, i is a random error term with mean zero and 

variance 2 and i and j are uncorrelated so that their covariance is zero. 

Regression model (1) is said to be simple and linear regression model. It is “simple” in the 

sense that there is only one predictor variable and “linear” in the sense that all parameters 

appeared linearly with the predictor variables. The parameters 0 and 1 in regression model 

(1) are called regression coefficients, 1 is the slope of the regression line. It indicates the 

change in the mean of the probability distribution of y per unit increase in x. The parameter 0 

is the y intercept of the regression line. When the scope of the model includes x = 0, 0 gives 

the mean of the probability distribution of y at x = 0. When the scope of the model does not 

cover x = 0, 0 does not have any particular meaning as a separate term in the regression model. 

Extension of this model to more than one predictor variable is straight forward. If the linear 

model contains more than one predictor variable, then it is known as multiple linear regression 

model. For example, if we have p predictor variables, then a multiple linear regression model 

can be formulated as 

ipipiii xxxββy  +++++= ...22110 .              (2) 

If the model contains an intercept term, then this model is known as model “with intercept” 

otherwise it is known as “no intercept” model. Thus both the models (1) and (2) are “with 

intercept” models. In practice, we must be careful in choosing the model. If our situation 

demands that there should not be any intercept in the model, then we should use a “no 

intercept” model. On the other hand if in our situation even after putting the values of predictor 

variables as zero, we get some response, we should use a “with intercept” model. 
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Estimation of Parameters 

In the above models the variables y and x are known, these are observed. The only unknown 

quantities are the parameters’s. In regression analysis, our main concern is how precisely we 

can estimate these parameters. Once these parameters are estimated, our model becomes 

known and we can use it for further analysis. The method of least squares is generally used to 

estimate these parameters. For each observations (xi, yi), the method of least squares considers 

the error of each observation, i.e, for a simple model iii xββy 10 −−= . The method of least 

squares requires the sum of the n squared errors. This criterion is denoted by Q: 


=

−−=
n

i

ii xββyQ
1

2

10 )( .                     (3) 

According to the method of least squares, the estimators of 0 and 1 are those values 0β̂  and

1β̂ , respectively, that minimize the criterion Q for the given observations. To minimize Q, we 

differentiate Q with respect to each parameter and equate to zero. We get as many equations 

as the number of parameters. Solving these equations simultaneously, we get the estimates of 

parameters. For example for the regression model (1) the values of 0β̂  and 1β̂ that minimizes 

Q for any particular set of sample data are given by the following simultaneous equations: 
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These two equations are called normal equations and can be solved for 0β̂  and 1β̂ as follows: 
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where x and y are the means of the xi and the yi observations, respectively. 
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Some Properties of Fitted Regression Line 

Once the parameters estimates are obtained, the fitted line would be  

ii xy 10
ˆ  +=                 (4) 

We can compute residuals of each observation. The ith residual is the difference between the 

observed value yi and the corresponding fitted value iŷ , i.e., iii yyr ˆ−= . These residuals play 

an important role in diagnosing any problem associated with data. The estimated regression 

line (4) fitted by the method of least squares has a number of properties worth noting.  

(i) The sum of the residuals is zero, 0
1

=
=

n

i

ir . 

(ii) Sum of the squared residuals,
=

n

i

ir
1

2
 is a minimum. 

(iii)Sum of the observed values yi  equals the sum of the fitted values iŷ , 
==

=
n

i

i

n

i

i yy
11

ˆ . 

(iv) Sum of the weighted residuals is zero, weighted by the level of the predictor variable 

in the ith observation, i.e.,  0
1

=
=

n

i

iirx . 

(v) Sum of the weighted residuals is zero, weighted by the fitted value of the response 

variable in the ith observation, i.e., 0ˆ
1

=
=

n

i

iiry . 

(vi) The regression line always goes through the points ( x , y ). 

 

Estimation of Error Term Variance 
2  

The variance 
2 of the error terms i in regression model needs to be estimated to know the  

variability of the probability distribution of y. In addition, a variety of inferences concerning 

the regression function and the prediction of y require an estimate of
2 . Denote by 


==

=−=
n

i

i

n

i

ii ryySSE
1

2

1

2)ˆ( , is  the residual sum of squares. Then an estimate of 
2  is given 

by, 

  
pn

SSE

−
=2ˆ ,                   (5) 
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where p is the total number of parameters involved in the model including the intercept term, 

if the model contains it. We also denote this quantity by MSE. 

Inferences in Linear Models 

In multiple linear regression model, all variables may not be contributing significantly to the 

model. In other word, each of the parameters may not be significant. Therefore, these 

parameters must be tested whether they are significantly different from zero or not. That is, we 

test the null hypothesis (H0) against the alternative hypothesis (H1) for a parameter i (say) as 

follows: 

   00 == iH   

  01 = iH  . 

When 00 == iH  is accepted we infer that there is no linear association between y and xi. For 

normal error regression model, the condition 0=i  implies even more than no linear 

association between y and xi. 0=i  for the normal error regression model implies not only 

that there is no linear association between y and xi but also that there is no relation of any kind 

between y and xi, since the probability distribution of y are then identical at all levels of xi. The 

test is based on t test   

)( i

i

s
t




= , 

where )( is   is the standard error of i  and calculated as )( is  =


=

−
n

i

i xx

MSE

1

2)(

. 

The decision rule with this test statistic when controlling level of significance at   is  

 if ),;2/1( pntt −−   conclude H0,  

 if ),;2/1( pntt −−   conclude H1. 

Similarly testing for other parameters can be carried out. 

 

Prediction of New Observations 

The new observation on y to be predicted is viewed as the result of a new trial, independent of 

the trials on which the regression analysis is based. We denote the level of x for the new 
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observation as xh and the new observation on y as yh. We also assume that the underlying 

regression model applicable for the basic sample data continues to be appropriate for the new 

observation. 

The distinction between estimation of the mean response, and prediction of a new response, is 

basic. In the former case, we estimate the mean of the distribution of y. In the present case, we 

predict an individual outcome drawn from the distribution of y. The great majority of individual 

outcomes deviate from the mean response, and this must be taken into account by the procedure 

for predicting yh(new). We denote by hŷ , the predicted new observation and by )ˆ(2

hy the 

variance of hŷ . An unbiased estimator of )ˆ(2

hy  is given by )ˆ(ˆ 2

hy = )ˆ(ˆ 22

hys+ , where 

)ˆ(2

hys  is the estimate of variance of prediction at xh and given by 

)ˆ(2

hys = 
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Confidence interval of hŷ  can be constructed by using t-statistic namely, 

  );2/1(ˆ pntyh −−  )ˆ(2

hy . 

 

Measure of Fitting, R2 

The overall fitting of a regression line can be judged by the F-statistic by carrying out an 

analysis of variance. If the F-statistic is significant, we say that our model is fitted well. 

However, there are times when the degree of linear association is of interest. A frequently used 

statistic is R2. We describe this descriptive measure to describe the degree of linear association 

between y and x.  

Denote by SSTO = 
=

−
n

i

i yy
1

2)( , total sum of squares which measures the variation in the 

observation yi , or the uncertainty in predicting y, when no account of the predictor variable x 

is taken. Thus SSTO is a measure of uncertainty in predicting y when x is not considered. 

Similarly, SSE measures the variation in the yi when a regression model utilizing the predictor 

variable x is employed. A natural measure of the effect of x in reducing the variation in y, i.e., 

in reducing the uncertaintity in predicting y, is to express the reduction in variation (SSTO−

SSE=SSR) as a proportion of the total variation and it is denoted by 
2R  
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SSTO

SSE

SSTO

SSR
R −== 12

              (7) 

The measure 
2R  is called coefficient of determination, 10 2  R . In practice 

2R  is not likely 

to be 0 or 1 but somewhere between these limits. The closer it is to 1, the greater is said to be 

the degree of linear association between x and y. Remember that 
2R statistic should be used 

only when in the model an intercept term is involved. For the model with no intercept, 
2R  is 

not a good statistic. In case of “no intercept” model, sum of all residuals may not be equal to 

0, making 
2R inflated.                                                                                                                                                                                                                                                                                                                                                                                                                

An Example 

Consider the following data: 

Table 1: Data 
Case 

No. 

x1 x 2 x 3 y  Case 

No. 

x1 x 2 x 3 y 

1 12.980 0.317 9.998 57.702 14 14.231 10.401 1.041 41.896 

2 14.295 2.028 6.776 59.296 15 15.222 1.220 6.149 63.264 

3 15.531 5.305 2.947 56.166 16 15.740 10.612 -

1.691 

45.798 

4 15.133 4.738 4.201 55.767 17 14.958 4.815 4.111 58.699 

5 15.342 7.038 2.053 51.722 18 14.125 3.153 8.453 50.086 

6 17.149 5.982 -

0.055 

60.446 19 16.391 9.698 -

1.714 

48.890 

7 15.462 2.737 4.657 60.715 20 16.452 3.912 2.145 62.213 

8 12.801 10.663 3.048 37.447 21 13.535 7.625 3.851 45.625 

9 17.039 5.132 0.257 60.974 22 14.199 4.474 5.112 53.923 

10 13.172 2.039 8.738 55.270 23 15.837 5.753 2.087 55.799 

11 16.125 2.271 2.101 59.289 24 16.565 8.546 8.974 56.741 

12 14.340 4.077 5.545 54.027 25 13.322 8.589 4.011 43.145 

13 12.923 2.643 9.331 53.199 26 15.949 8.290 -

0.248 

50.706 

 

In the present example, we have 3 three predictor variables x1, x2 and x3 and there are 26 

observations. The response variable denoted by y. Applying least square method we obtain the 

parameter estimates as follows:  

 

Table 2: ANOVA with intercept model 
Source Degrees of 

freedom 

Sum of 

Square 

Mean 

Square 

 F-

value 

Prob. > F 

Model 3 1062.34  354.11  109.69 <.0001 

Error 22 71.02  3.22      

Corrected Total 25 1133.37        
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Table 3: Parameter Estimates with intercept model 
Variable Degrees of 

freedom 

Parameter 

Estimates 

Standard 

Error 

t-value Prob. > |t| 

Intercept 1 8.19  6.29  1.30 0.2060 

x1 1 3.56  0.36  9.86 <.0001 

x2 1 -1.64  0.15  -10.28 <.0001 

x3 1 0.33  0.17  1.88 0.0741 

 

The value of R2 of this model is 0.93. From Table 2, we see that F-statistic is highly significant, 

indicating that overall model fitting is good. R2 is also very high. The fitted regression line is  

321 33.064.156.319.8ˆ xxxy +−+= . The corresponding standard errors are given in the 4th 

column of Table 3. However, while testing the significance of the parameter estimates, we find 

that the intercept and the parameter for the variable x3, i.e., 3 are not significant  at 5% level 

of significance (probability values for these parameters are greater than 0.05). Since intercept 

term is not significant, one may interested to fit this model without intercept. The fitted model 

summary is given in Table 4 and Table 5. 

 

Table 4: ANOVA with no intercept model 
Source Degrees of 

freedom 

Sum of 

Square 

Mean 

Square 

 F-

value 

Prob. > F 

Model 3 76313 25438 7647.29 <.0001 

Error 23 76.50 3.32      

Corrected Total 26 76389       

 

 

Table 5: Parameter Estimates with no intercept model 
Variable Degrees of 

freedom 

Parameter 

Estimates 

Standard 

Error 

t-value Prob. > |t| 

x1 1 4.02  0.07  54.36 <.0001 

x2 1 -1.53  0.13  -11.04 <.0001 

x3 1 0.51  0.11  4.36 0.0002 

 

The R2 value has been increased to 0.99. The dramatic change to notice here is that all 

parameter estimates are highly significant. The fitted model is 321 51.053.102.4ˆ xxxy +−= . 

With this ‘good’ result one may be tempted to use a ‘no intercept’ model to report his/her 

findings. However, the situation from where the data is collected may demand a model with 

intercept. But intercept in that model is not significant. What to do? Actually our investigation 

starts from here. Many things essential for regression analysis have been ignored while fitting 

the model including statistical assumptions. One must check whether model assumptions 

required for analysis are satisfied or not before inferring from a data set. Once these 
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assumptions are satisfied, we can go ahead for further analysis. If any one of these assumptions 

is violated, we have to some remedial measures to rectify problem. In the present case intercept 

term becomes non-significant may due to non fulfillment of some assumptions. In the next 

section we describe how to carry on a diagnostic check to see whether model assumptions are 

satisfied or not. 

  

3 Diagnostics    

As mentioned earlier when a regression model is considered for an application, we can usually 

not be certain in advance that the model is appropriate for that application, any one, or several, 

of the features of the model, such as linearity of the regression function or normality of the 

error terms, may not be appropriate for the particular data at hand. Hence, it is important to 

examine the aptness of the model for the data before inferences based on that model are 

undertaken. In this section we discuss some simple methods for studying the appropriateness 

of a model. 

 

 Generally following departures may happen with a linear regression model.  

(i) The linearity of regression function.  

(ii) The normal distribution of error terms. 

(iii) The constancy of error variance. 

(iv) The independency of error terms. 

(v) Presence of one or a few outlier observations.  

(vi) One or several important predictor variables have been omitted from the model. 

(vii) Presence of multicollinearity. 

  

We now describe some tests to detect these departures. 

  

3.1 Linearity of Regression Model 

Whether a linear regression function is appropriate for the data being analyzed can be studied 

by plotting residuals against the predictor variables or equivalently against the fitted values. 

Figure 1 shows a prototype situation of the residual plot against x when a linear regression 

model is appropriate. In this plot the residuals fall within a horizontal band centred around 0, 

displaying no systematic tendencies to be positive and negative. Thus when the residuals 
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scattered around zero, we say that linearity assumption is satisfied, otherwise not. Figure 1 

presents a prototype plot of this situation. 

 

  

 

      

 

   

                                 Figure 1: Prototype residual plot 

 

From our data we plotted residuals against the fitted values. This plot is displayed in Figure 2. 

 

 

Figure 2: Residual plot of the data 

 

From this plot it is evident that apart from a few points, most of the residuals are scattering 

around zero, indicating that the assumption of linearity of the regression function is satisfied. 

 

3.2 Normality of Errors 

Small departures from normality do not create any serious problems. Major departures, on the 

other hand, should be of concern. There are many tests available for testing normality of errors. 

Here we discuss some of these tests in brief. 

 

Comparison of frequencies: When the number of cases is reasonably large is to compare actual 

frequencies of the residuals against expected frequencies under normality. For example, one 

can determine whether, say, about 90% of the residuals fall between  1.645 MSE . 
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Correlation Test for Normality: A formal test for normality of the error terms can be 

conducted by calculating the coefficient of correlation between residuals ri and their expected 

values under normality. A high value of the correlation coefficient is indicative of normality. 

 

Kolmogorov-Smirnov test: The Kolmogorov-Smirnov test  is used to decide if a sample 

comes from a population with a specific distribution. The Kolmogorov-Smirnov (K-S) test is 

based on the empirical distribution function (ECDF). Given n ordered residuals )()2()1( ,...,, nrrr

, the ECDF is defined as  

n

in
En

)(
= , 

where ( )n i   is the number of points less than r(i) and the r(i) are ordered from smallest to largest 

value. This is a step function that increases by 1/n at the value of each ordered data point. Then 

the distance between the empirical distribution function and a normal cumulative distribution 

function is computed for each point. The K-S test is based on the maximum distance between 

these two distributions. An attractive feature of this test is that the distribution of the K-S test 

statistic itself does not depend on the underlying cumulative distribution function being tested. 

Another advantage is that it is an exact test    

  

The hypotheses tested under Kolmogorov-Smirnov test are  

H0: The data follow a specified distribution 

H1: The data do not follow the specified distribution 

 

The Kolmogorov-Smirnov test statistic is then defined as  

  ))(,
1

)(( )()(
1

ii
ni

rF
n

i

n

i
rFmaxD −

−
−=


      (8) 

where F is the theoretical cumulative distribution of the normal distribution. The hypothesis 

regarding the distributional form is rejected if the test statistic, D, is greater than the critical 

value obtained from a table which is available in the literature.  

 

Anderson-Darling Test: The Anderson-Darling test is used to test if a sample of data came 

from a population with a specific distribution. It is a modification of the Kolmogorov-Smirnov 

http://itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
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(K-S) test and gives more weight to the tails than does the K-S test. The K-S test is distribution 

free in the sense that the critical values do not depend on the specific distribution being tested. 

The Anderson-Darling test makes use of the specific distribution in calculating critical values. 

This has the advantage of allowing a more sensitive test and the disadvantage that critical 

values must be calculated for each distribution. Currently, tables of critical values are available 

for the normal, lognormal, exponential, Weibull, extreme value type I, and logistic 

distributions.   

 

The Anderson-Darling test is defined as:  

H0: The data follow a specified distribution. 

H1: The data do not follow the specified distribution 

 

The Anderson-Darling test statistic is defined as SnA −−=2
, 

where, )](1(ln)([ln
)12(

)1()(

1

ini

n

i

rFrF
n

i
S −+

=

−+
−

=             (9) 

F is the cumulative distribution function of the specified distribution. Note that the r(i) are the 

ordered data (residuals in our case). The critical values for the Anderson-Darling test are 

dependent on the specific distribution that is being tested. Tabulated values and formulas are 

available in literature for a few specific distributions (normal, lognormal, exponential, Weibull, 

logistic, extreme value type 1). The test is a one-sided test and the hypothesis that the 

distribution is of a specific form is rejected if the test statistic, A, is greater than the critical 

value.  

 

Some of the test-statistics available in the literature are applied to the present data. The results 

are given in Table 6. From the table, it is seen that all test-statistics values are highly significant. 

Thus null hypothesis is rejected and concluded that the error distribution is not normal. The 

theoretical normal curve is matched with the histogram obtained from the data. It is presented 

as Figure 3. Figure 3 also indicates that the distribution of error is not normal. All test like t- 

and F- are based on the assumption of the normal distribution of error. Since, the present data 

does not satisfy the assumption of normality, t and F values presented in Tables 2, 3, 4 and 5 

are not reliable. 

http://itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3669.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3668.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda366g.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda362.htm#CDF
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Table 6: Test For Normality 
Name of Test Teast-value p-value 

Shapiro-Wilk 0.761333 <0.0001 

Kolmogorov-Smirnov 0.244031 <0.0100 

Cramer-von Mises 0.43331 <0.0050 

Anderson-Darling 2.357103 <0.0050 

 

 

 
Figure 3: Normal curve along with the histogram of the data 

 

3.3 Nonconstancy of Error Variance 

Plots of residuals against the predictor variable or against the fitted values are not only helpful 

to study whether a linear regression function is appropriate but also to examine whether the 

variance of the error terms is constant. The prototype plot in Figure 1 exemplifies residual plots 

when error term variance is constant.  However, there are many statistical tests available in the 

literature for testing constancy of error variance. We describe two such popular tests here. 

  

Modified Levene Test: The test is based on the variability of the residuals. We divide all 

residuals in two groups. Let ri1 denotes the ith residual for group 1 and ri2 denotes the ith residual 

for group 2. Also we denote n1 and n2 to denote the sample sizes of the two groups, where: n1 

+ n2 = n. Further, we use 1
~r and 2

~r to denote the medians of the residuals in these groups. The 

modified Levene test uses the absolute deviations of the residuals around their median (in 

original Levene test mean was used in place of median), to be denoted by di1 and di2: 

 

111
~rrd ii −= ,     222

~rrd ii −= . 

The test used is t-test. The t-statistic is given as 
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*

Lt = 
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  ,            (10) 

where 1d and 2d are the sample means of the di1 and di2, respectively, and the pooled variance 

s2   is: 

2

)()( 2

22

2
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−

−+−
=
 

n

dddd
s

ii
. 

If the error terms have constant variance and n1 and n2 are not too small, *

Lt  follows 

approximately the t distribution with n−2 degrees of freedom. Large absolute values of 
*

Lt

indicate that the error terms do not have constant variance. 

 

White Test: The White test is a statistical test that establishes whether the residual variance of 

a variable in a regression model is constant, i.e., homoscedastic. This test was proposed by 

Halbert White in 1980. This test is widely used test in practice.  To test for constant variance 

of errors one has to carry out an auxiliary regression analysis. This regression is carried out by 

taking the squared residuals from the original regression model as dependent variable and a set 

of regressor variables, which contains the original regressors, the cross-products of the 

regressors and the squared regressors. One then compute R2 from this fitting. The test statistic 

is the product of the R2 value and sample size 

2.LM n R=                 

(12) 

This follows a chi-square distribution, with degrees of freedom equal to the number of 

estimated parameters (in the auxiliary regression) minus one. 

 

For the present data, White test and an improvement over this test Breusch-Pagan test were 

carried out. Results are presented in Table 7. From this Table, it is evident that the null 

hypothesis of equality of variance is accepted. Thus the present data is homoscedastic. 

 

  

http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Regression_model
http://en.wikipedia.org/wiki/Homoscedasticity
http://en.wikipedia.org/wiki/Halbert_White
http://en.wikipedia.org/wiki/Regressor
http://en.wikipedia.org/wiki/Chi-square_distribution
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Table 7: Test for homoscedasticity 

Test Statistic Degrees of 

freedom 

Pr > ChiSq 

White's Test 26.04 25 0.4056 

Breusch-Pagan 3.90 9 0.9181 

 
 

3.4 Independence of Error Terms 

A run test is frequently used to test for lack of randomness in the residuals arranged in time 

order. Another test, specially designed for lack of randomness in least squares residuals, is the 

Durbin-Watson test. 

 

Durbin-Watson test: The Durbin-Watson test   assumes the first order autoregressive error 

models. The test consists of determining whether or not the autocorrelation coefficient (  , 

say) is zero. The hypotheses for this test are: 

 0:0 =H  

0:0 H  

The Durbin-Watson test statistic D is obtained by calculating the ordinary residuals tr , and 

then calculating the statistic: 





=

=

−−

=
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2
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rn

rr

D                      (13) 

Exact critical values are difficult to obtain, but Durbin-Watson have obtained lower and upper 

bound Ld and Ud  such that a value of D outside these bounds leads to a definite decision. The 

decision rule for testing between the alternatives is: 

  

            if  D > dU, conclude H0 

 if  D <dL, conclude H1 

 if   UL dDd  , test is inconclusive. 

Small value of D lead to the conclusion that  >0. 

 

Whenever data are obtained in a time sequence or some other type of sequence, such as for 

adjacent geographical areas, it is good idea to prepare a sequence plot of the residuals. The 
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purpose of plotting the residuals against time or some other type of sequence is to see if there 

is any correlation between error terms that are near each other in the sequence. 

  

3.5 Omission of Important Predictor Variables 

Residuals should also be plotted against variables omitted from the model that might have 

important effects on the response. The purpose of this additional analysis is to determine 

whether there are any key variables that could provide important additional descriptive and 

predictive power to the model. The residuals are plotted against the additional predictor 

variable to see whether or not the residuals tend to vary systematically with the level of the 

additional predictor variable. If a particular predictor variable vary systematically with the 

residual, we say that this variable is important and refit the model using this variable also as a 

predictor variable. 

   

  

3.6 Tests for Outliers 

As a rough definition, we refer to outliers as those observations for which the inputs are 

reasonable but the response is abnormally large or small as compared to other cases with 

similar inputs. Extreme cases are those for which the input value is, in some cases, far from 

rest of the data. Such cases are also referred to as high leverage points. In either case, these 

observations may greatly influence the least squares estimates. Detecting these observations, 

therefore, is very important.  Here we discuss some important test-statistics for detecting 

outliers in linear regression model.   

 

Elements of Hat Matrix )( iih : The Hat matrix is defined as XXXXH = −1)( , where X is 

obtained using all explanatory variables. The larger values reflect data points are outliers.  

 

WSSDi: WSSDi is an important statistic to locate points that are remote in x-space. WSSDi 

measures the weighted sum of squared distance of the ith point from the center of the data.  

Generally if the WSSDi values progress smoothly from small to large, there are probably no 

extremely remote points. However, if there is a sudden jump in the magnitude of WSSDi, this 

often indicates that one or more extreme points are present. 
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Cook's Di: Cook's Di is designed to measure the shift in ŷ when ith obsevation is not used in 

the estimation of parameters. iD  follows approximately ( )1, −−pnpF (1-). Lower 10% point of 

this distribution is taken as a reasonable cut off (more conservative users suggest the 50% 

point). The cut off for iD  can be taken as 
n

4
, where n is the total number of observations. 

DFFITSi : DFFIT is used to measure difference in ith component of ( )( )iŷŷ − , where is 

obtained after deleting the ith data point. It is suggested that 
2

1

i
n

1p
2DFFITS 







 +
 may be 

used to flag off influential observations.  

 

)(ijDFBETAS : Cook's iD  reveals the impact of ith observation on the entire vector of the 

estimated regression coefficients. The influential observations for individual regression 

coefficient are identified by pjDFBETAS ij ,...,2,1,)( = , where each )i(jDFBETAS  is the 

standardized change in j  when the ith observation is deleted. 

 

iCOVRATIO :The impact of the ith observation on variance-covariance matrix of the estimated 

regression coefficients is measured by the ratio of the determinants of the two variance-

covariance matrices, one is obtained with full data and the other is obtained after deleting the 

ith data point. Thus, COVRATIO reflects the impact of the ith observation on the precision of 

the estimates of the regression coefficients. Values near 1 indicate that the ith observation has 

little effect on the precision of the estimates. A value of COVRATIO greater than 1 indicates 

that the deletion of the ith observation decreases the precision of the estimates; a ratio less than 

1 indicates that the deletion of the observation increases the precision of the estimates. 

Influential points are indicated by 
( )

n

p
COVRATIO i

13
1

+
− . 

 

iFVARATIO : The statistic detects change in variance of iŷ  when an observation is deleted. 

A value near 1 indicates that the ith observation has negligible effect on variance of iy . A value 
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greater than 1 indicates that deletion of the ith observation decreases the precision of the 

estimates, a value less than one increases the precision of the estimates.  

 

Table 8:  Indicators of Influential Observations 
Case hii Di WSSDi Cov Ratio Dffits  DFBETAS 

      Intercept 
0
 

1  
2  

1 0.215 0.005 39 1.512 0.148 0.056 -0.053 -0.006 0.006 

2 0.093 0.013 12 1.203 0.232 0.062 -0.042 -0.042 -0.050 

3 0.048 0.001 1 1.254 0.047 -0.005 0.010 -0.008 -0.007 

4 0.042 0.000 1 1.257 0.005 0.000 0.000 -0.001 0.000 

5 0.053 0.000 3 1.267 -0.033 -0.001 -0.001 -0.006 0.006 

6 0.155 0.017 20 1.331 0.258 -0.095 0.132 -0.042 -0.050 

7 0.081 0.001 7 1.299 0.068 -0.005 0.015 -0.036 -0.005 

8 0.301 0.001 41 1.721 0.057 0.027 -0.034 0.026 -0.006 

9 0.155 0.003 18 1.408 0.109 -0.030 0.048 -0.035 -0.031 

10 0.147 0.005 23 1.380 0.144 0.058 -0.058 -0.041 0.016 

11 0.173 0.214 14 0.639 -1.004 -0.154 -0.045 0.776 0.525 

12 0.053 0.001 3 1.260 -0.054 -0.017 0.014 0.014 0.000 

13 0.163 0.001 24 1.435 0.051 0.017 -0.19 -0.004 0.013 

14 0.175 0.001 23 1.452 -0.074 -0.026 0.031 -0.35 0.015 

15 0.122 0.007 15 1.315 0.175 -0.008 0.033 -0.105 0.002 

16 0.177 0.005 26 1.441 -0.134 -0.014 0.014 -0.044 0.047 

17 0.041 0.048 0 0.496 0.482 0.061 -0.17 -0.107 -0.046 

18 0.114 0.412 8 0.410 -1.945 0.362 -0.308 -0.220 -1.177 

19 0.160 0.025 24 1.301 -0.341 0.031 -0.045 -0.080 0.094 

20 0.114 0.014 11 1.252 0.236 -0.055 0.097 -0.105 -0.051 

21 0.119 0.003 12 1.350 0.095 0.054 -0.061 0.024 -0.018 

22 0.055 0.003 3 1.228 0.108 0.052 -0.048 -0.028 -0.020 

23 0.059 0.000 3 1.279 -0.008 0.001 -0.002 0.001 0.002 

24 0.927 4.409 19 12.715 4.230 -3.642 3.276 3.180 3.934 

25 0.159 0.001 19 1.426 0.069 0.031 -0.039 0.029 -0.003 

26 0.101 0.004 11 1.309 -0.117 0.000 -0.007 -0.016 0.043 

  

For the present data, some of these statistics are used to detect outliers, if any. The results are 

presented in Table 8. From this Table, we see that observation Numbers 11, 17, 18 and 24 

stand out with respect to some of the statistics. These observations are tested with cut-off values 

and found to be outliers. 

 

3.7 Tests for Multicollinearity  

The use and interpretation of a multiple regression model depends implicitly on the assumption 

that the explanatory variables are not strongly interrelated. In most regression applications the 

explanatory variables are not orthogonal. In some situations the explanatory variables are so 

strongly interrelated that the regression results are ambiguous. Typically, it is impossible to 

estimate the unique effects of individual variables in the regression equation. The estimated 



33 

 

values of the coefficients are very sensitive to slight changes in the data and to the addition or 

deletion of variables in the equation. The regression coefficients have large sampling errors 

which affect both inference and forecasting. The condition of severe non-orthogonality is also 

referred to as the problem of multicollinearity. Multicollinearity also tends to produce least 

squares estimates j  that are too large in absolute value.   

Detection of Multicollinearity: Let ( )ijrR =  and ( )ij1 rR =−  denote simple correlation matrix 

and its inverse. Let ( )11ppi ....p,...,2,1i,  = −  denote the eigen values of R. The 

following are common indicators of relationships among independent variables. 

(i) Simple pair-wise correlations 1rij =  

(ii) The squared multiple correlation coefficients 9.0
r

1
1R

ii

2
i −= , where 

2
iR  

denote the squared multiple correlation coefficients for the regression of xI on 

the remaining x variables. 

(iii) The variance inflation factors, 10rVIF ii
i =  and  

(iv) eigen values, 0i = . 

 

The first of these indicators, the simple correlation coefficients between pairs of independent 

variables ijr , may detect a simple relationship between ix  and jx . Thus 1=ijr  implies that 

the ith and jth variables are nearly proportional. 

 

The second set of indicators, 
2
iR , the squared multiple correlation coefficient for the regression 

of ix  on the remaining x variables indicates the degree to which ix  is explained by a linear 

combination of all of the other input variables. 

 

The third set of indicators, the diagonal elements of the inverse matrix, which have been 

labeled as the Variance Inflation Factors, iVIF . The term arises by noting that with standardized 

data (mean zero and unit sum of squares), the variance of the least squares estimate of the ith 
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coefficient is proportional to 
iir , 10VIFi   is probably based on the simple relation between 

iR  and iVIF . That is 10VIFi   corresponds to 9.0R2
i  . 

   

Sometimes condition numbers are used. It equals the square root of the largest eigenvalue ( 1

) divided by the smallest eigenvalue ( p ), i.e., 

p


 1= . 

When there is no collinearity at all, the eigenvalues and condition number will all equal one. 

As collinearity increases, eigenvalues will be both greater and smaller than 1 (eigenvalues close 

to zero indicate a multicollinearity problem), and the condition number will increase. An 

informal rule of thumb is that if the condition number is 15, multicollinearity is a concern; if it 

is greater than 30 multicollinearity is a very serious concern.   

 

Table 9: Collinearity Diagnostics 
Variable VIF Eigenvalue Condition Index 

Intercept 0 3.38175 1.00000 

x1 1.76883 0.53975 2.50308 

x2 1.86011 0.07670 6.64020 

x3 2.82000 0.00180 43.31982 

 

For the present data these are worked out and presented in Table 9. On the basis of these values 

we conclude that variable x3 is creating the problem of multicollinearity. 

 

Thus we, see that in the present data, there are four outliers and one variable which causes 

multicollinearity. As a remedial measures we delete these four observations and dropped 

variable x3. The results are presented in Table 10 and Table 11. The dramatic change now can 

be noticed. All parameter estimates are now highly significant. F-statistic is highly significant 

as well as the model fit has a high R2 (0.99) value.  

 

Table 10: ANOVA with cleaned data 
Source Degrees of 

freedom 

Sum of 

Square 

Mean 

Square 

 F-value Prob. > F 

Model 2 1048.11 524.05 2221.21 <.0001 

Error 19 4.48 0.23     

Corrected Total 21 1052.60       
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Table 11: Parameter Estimates of model with cleaned data 
Variable Degrees of 

freedom 

Parameter 

Estimates 

Standard 

Error 

t-value Prob. > |t| 

Intercept 1 19.45 1.16 16.74 <0.0001 

x1 1 3.03 0.07 38.63 <0.0001 

x2 1 -1.99 0.03 -59.09 <0.0001 

 

However, our data was non-normal. We have not taken any remedial measure for it. But after 

removal of outliers and rectifying the problem of multicollinearity, our data may become 

normal. We, therefore, again tested for normality on the rectified data. The results are presented 

in Table 13. It is now seen that the errors of the reduced data is normal. Figure 4 which shows 

the histogram with normal curve also confirms this fact. 

 

Table 13: Test for normality of cleaned data 
Name of Test Teast-value p-value 

Shapiro-Wilk 0.980664 0.9261 
Kolmogorov-Smirnov 0.136376 >0.1500 
Cramer-von Mises 0.03889 >0.2500 
Anderson-Darling 0.223155 >0.2500 

 
 

  

 
Figure 4: Normal curve and Histogram of cleaned data 

 

The remedial measures taken above are not the only measures available. There are other 

measures which can be applied when any of the above assumptions is violated. We now discuss 

these remedial measures in brief in the next Section.  
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4. Remedial Measures 

If the regression model is not appropriate for a data set, there are two basic choices: 

 

(i) Abandon regression model and develop and use a more appropriate model. 

(ii) Employ some transformation on the data so that regression model is 

appropriate for the transformed data. 

 

Each approach has advantages and disadvantages. The first approach may entail a more 

complex model that could yield better insights, but may also lead to more complex procedure 

for estimating the parameters. Successful use of transformations, on the other hand, leads to 

relatively simple methods of estimation and may involve fewer parameters than a complex 

model, an advantage when the sample size is small. Yet transformation may obscure the 

fundamental interconnections between the variables.  

 

Nonlinearity of Regression Function 

When the regression function is not linear, a direct approach is to modify regression model. 

For example, we can modify the simple regression model (1) by altering the nature of the 

regression function. For instance, a quadratic regression function might be used. 

iiii xxy  +++= 2

210  

or an exponential regression function: 

i

x

i
iy  += 10 . 

When the nature of the regression function is not known, exploratory analysis that does not 

require specifying a particular type of function is often useful. 

 

Nonconstancy of Error Variance 

When the error variance is not constant but varies in a systematic fashion, a direct approach is 

to modify the method to allow for this and use the method of weighted least squares to obtain 

the estimates of the parameters. 

 

Transformation is another way in stabilizing the variance.  We first consider transformation 

for linearizing a nonlinear regression relation when the distribution of the error terms is 
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reasonably close to a normal distribution and the error terms have approximately constant 

variance. In this situation, transformation on x should be attempted. The reason why 

transformation on y may not be desirable here is that a transformation on y, such as yy = , 

may materially change the shape of the distribution and may lead to substantially differing 

error term variance.  

 

Following transformations are generally applied for stabilizing variance. 

(1) when the error variance is rapidly increasing yy 10log=  or yy =  

(2) when the error variance is slowly increasing, 2yy =  or )(yExpy =  

(3) when the error variance is decreasing, yy /1=  or  )( yExpy −= . 

 

Box - Cox Transformations: It is difficult to determine, which transformation of y is most 

appropriate for correcting skewness of the distributions of error terms, unequal error variance, 

and nonlinearity of the regression function. The Box-Cox transformation automatically 

identifies a transformation from the family of power transformations on y. The family of power 

transformations is of the form: 
yy = , where is a parameter to be determined from the data. 

Using standard computer programme it can be determined easily. 

  

Nonindependence of Error Terms 

When the error terms are correlated, a direct approach is to work with a model that calls for 

error terms. A simple remedial transformation that is often helpful is to work with first 

differences. 

Nonnormality of Error terms 

Lack of normality and non-constant error variance frequently go hand in hand. Fortunately, it 

is often the case that the same transformation that helps stabilize the variance is also helpful in 

approximately normalizing the error terms. It is therefore, desirable that the transformation for 

stabilizing the error variance be utilized first, and then the residuals studied to see if serious 

departures from normality are still present. 
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Omission of Important Variables 

When residual analysis indicates that an important predictor variable has been omitted from 

the model, the solution is to modify the model. 

Outlying Observations 

Outliers can create great difficulty. When we encounter one, our first suspicion is that the 

observation resulted from a mistake or other extraneous effect. On the other hand, outliers may 

convey significant information, as when an outlier occurs because of an interaction with 

another predictor omitted from the model. A safe rule frequently suggested is to discard an 

outlier only if there is direct evidence that it represents in error in recording, a miscalculation, 

a malfunctioning of equipment, or a similar type of circumstances. When the outlying 

observations do not represent recording errors and should not be discarded, it may be desirable 

to use an estimation procedure that places less emphasis on such outlying observations. Robust 

Regression falls under such methods. 

Multicollinearity 

(i) Collection of additional data: Collecting additional data has been suggested as one 

of the methods of combating multicollinearity. The additional data should be collected in a 

manner designed to break up the multicollinearity in the existing data.  

 

(ii) Model respecification: Multicollinearity is often caused by the choice of model, 

such as when two highly correlated regressors are used in the regression equation. In these 

situations some respecification of the regression equation may lessen the impact of 

multicollinearity. One approach to respecification is to redefine the regressors. For example, if 

x1, x2 and x3 are nearly linearly dependent it may be possible to find some function such as x = 

(x1+x2)/x3 or x = x1x2x3 that preserves the information content in the original regressors but 

reduces the multicollinearity. 

 

(iii) Ridge Regression: When method of least squares is used, parameter estimates are 

unbiased. A number of procedures have been developed for obtaining biased estimators of 

regression coefficients to tackle the problem of multicollinearity. One of these procedures is 
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ridge regression. The ridge estimators are found by solving a slightly modified version of the 

normal equations. Each of the diagonal elements of XX matrix are added a small quantity.  

   

Note: This note is prepared on the basis of materials taken from the references cited below 

and statistical analysis of the example is done through SAS software available at Indian 

Agricultural Statistics Research Institute, New Delhi. 
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Microbial growth kinetics can be determined by different models. A mathematical 

model is an expression of a defined equation, or a set of equations, that attempts to 

explain instances of reality in a simplified manner, utilizing only a system’s most 

pertinent properties [Pérez-Rodríguez and Valero, 2013].  

 

Models can have three levels: 1) Primary level models that describe changes in 

microbial numbers with time, 2) Secondary level models that show how the parameters of 

the primary model vary with environmental conditions, and 3) Tertiary level that combine 

the first two types of models with user-friendly application software or expert systems to 

calculate microbial behavior under the specified conditions (Whiting, 1995).  Primary 

models include time-to-growth, Gompertz function, exponential growth rate, and 

inactivation/survival models. Commonly used secondary models are response surface 

equations and the square root and Arrhenius relationships. Such models are used to 

describe the behavior of microorganisms under different physical or chemical conditions 

such as temperature, pH, and water activity. These models allow the prediction of 

microbial growth, safety or shelf life of products, the detection of critical parts of the 

production and distribution process, and the optimization of production and distribution 

chains (Zwiettering, et al., 1990). Thus to build these models, firstly growth has to be 

measured using models. These models include: (1) Monod, (2) Gompertz, (3) Contois, (4) 

Baranyi-Roberts, (5) logistic, 6) Richards, 7) Schnute, and 8) Stannard 

equations/functions [Monod, 1949; Zwiettering, et al., 1990; Contois, 1959; Grijspeerdt 

and Vanrolleghem, 1999). The usefulness of any empirical equation of such a model is 

enhanced, if the constants easily yield information, on direct biological interest (Richards, 

1959).  

 

Such microbial models can be used to compare and describe a bacterial growth 

curve (Zwiettering, et al., 1990; Esser et al., 2015). On the other hand microbial death has 

also been modeled in predictive microbiology applications for different applications 

(challenge test, evaluation of microbiological shelf life, prediction of the microbiological 
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hazards connected with foods, etc (Bevilacqua et al., 2015). Having said this, where 

predictive modeling has applications focused on mathematical models for microbial 

inactivation, the primary models used in those studies are still necessary for information 

on growth, for predictive applications, where inhibition and death kinetics is the major 

concern. How well they fit to predict experimental growth data, is always the target.  

 

For increasing overall predictive accuracy, purpose of modeling growth (batch 

culturing, continuous or fed-batch culture) or predictive modeling as in microbial 

inactivation, must be clearly defined, to help improve models.  

 

To determine growth characteristics of microbes in absence of software or other 

appropriate methods, the use of subjective graphical interpretations of linearized 

logarithmic data are also most commonly used. In comparison to graphical 

determinations, modified Maclaurin series have also been evaluated for microbial growth 

kinetics (Talkington, et al., 2013) in bacteria.   

In this lecture we are going to focus on primary microbial growth modeling. This 

can be applied to obtain information on the specific growth rate to exploit the harvest of 

useful microbial metabolite(s) nisin (an antimicrobial compound) excreted by 

Lactococcus lactis, a lactic acid bacteria (LAB). In describing the study (Singh et al., 

2015), a batch fermenter with a closed habitat was used that showeda typical growth of 

bacteria with four growth stages namely, a “lag phase,” “exponential growth phase,” a 

“stationary phase,” and a“mortality phase” (McKellar and Lu, 2004). The specific growth 

rates of bacterial populations are a function of their population density (Bail, 1929). On 

the other hand bacterial concentrations have also been used to interpret growth in various 

studies. 

 

Initially an aim is set to evaluate differences (if any) in the 3 different sigmoidal 

growth functions used to model growth of L. lactis. As the bacteria grows exponentially, 

the sigmoidal functions (Gompertz , logistic) can be compared to Richards function that 

has a fourth parameter known to describe shape of growth curve.  

Using the SPSS software to fit data, the RSS (residual sum of squares) values are 

calculated for the three functions. The three-parameter functions can be statistically 

compared to the four-parameter function by the F test, to discriminate among the three-

parameter functions (Logistic/Gompertz) from four-parameter function (Richards). The 
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fitted data are analyzed and used in calculating fd values that are tested against F (Table 

values). The residual sum of squares RSS1 (of fourth parameter Richards function), can 

be used as a measuring error (Zwiettering et al., 1990) to check the acceptability of either 

of the three-parameter sigmoidal functions,  in order to model growth of L. lactis.  

 

 

An algorithm (Marquardt), is used to fit growth data to these three nonlinear 

equations/functions [Logistic; Gompertz & Richards] as it removes the divergence of 

successive iterates while fitting data points, by the nearest neighborhood method, 

assuming local linearity at each iteration (as in Taylor series) [Marquardt, 1963]. This 

algorithm, closed in on the converged values rapidly after the vicinity of the converged 

values have been reached.  

The steps towards curve fitting: 

❖ Nonlinear regression using a Marquardt algorithm wherein the iteration method was 

by least square estimation.  

❖ Software SPSS 17.1 version was used to then fit data of the curve for a best fit 

curve. 

 

The LAB, Streptococcus lactis NCIM 2114 produced nisin as a primary metabolite. 

Being a primary metabolite, the rate of  nisin formed depends on its growth rate. 

Thus aiming to simplify the kinetics and describe the entire set of data with a growth 

model to estimate A, µm and  from the model, the function that best described growth 

curve (here Gompertz), was used to obtain mathematical parameters (a, b, c) rather than 

parameters with a biological meaning (A, μmax, and λ). Differentiating this function, to 

obtain simple equations in terms of the mathematical parameters (Zwiettering, et al., 

1990) helped to obtain simple equations to calculate specific growth rate of the bacteria 

(Singh et al., 2015).    

 

The maximum specific growth rate (μmax) during exponential growth of bacteria 
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also graphically corresponds to the slope of the log-linear part of the exponential growth 

curve and remains constant in that phase (Fig 1). The expression for the maximum 

specific growth rate was derived by calculated by the first derivative of function as the 

tangent on the inflection point (Zwiettering, et al., 1990). The second derivative of 

Gompertz function equals zero at the μmax and rate of change was maximum. In 

calculating microbial kinetics, the value of the inflection point is determined to pinpoint 

the shift from exponential increase to exponential decrease (Talkington et al., 2013) of 

growth. The inflection point is thus the maximum value of the signal prior to the 

beginning of the exponential decrease.  

 

 

a 

 

 

 

Point of inflection 
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b 

Fig 1. Microbial growth. [b)Source: Singh et al., 2015]. 

 

The lag time λ, needed for the population to adjust to its new environment, is marked at 

the X-axis intercept of the tangent on the inflection point (Fig 1). This point determines 

the point at which a tangent, drawn over the exponential phase, intercepts the horizontal 

axis to determine the lag time of the growth phase. The asymptote [A = ln(N∞/N0)] is the 

maximal value of growth reached (Zwiettering, et al., 1990).   

The mathematical parameter values were then obtained by using the equations : 

 

The study of the growth curve (characteristically a sigmoid shape growth), from lag to 

exponential phase can benefit to estimate lag period and the specific growth rate with 

which the microorganism can be handled or manipulated under a known set of 

environmental conditions.  
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In a developing country like India, food security means making available minimum quantity 

of food grains to the entire population. Despite the fact that India has made a satisfactory 

achievement in food grains production, its population growth has nullified the benefits of 

production. The FAO forecasts that global food production will need to increase by over 40% 

by 2030 and 70% by 2050 (FAO, 2009). Among food grains, rice is the most important crop 

of the developing world and the staple food for more than 60% of the Indian population. In 

India, the annual compounded growth rate of rice production has declined from 3.55 per cent 

during 1981-90 to 1.74 per cent during 1991-2000. Projection of rice demand/supply by 2030 

mentioned in vision 2030 of Central Rice Research Institute (Adhya et al., 2011) has been 

computed on the basis of fixed historical growth rate rather than time series approach. 

Forecasting the future demand/supply of crop production to meet the need of corresponding 

future growing population is a major concern for policy planners. In order to get more 

reliable future crop production forecast, we need more precise time series forecast. 

Traditionally, classical ARIMA model (Box et al., 2007; Cogger, 1988; Clements, 2003) has 

been widely used for short term time series forecasting. In ARIMA approach, the future 

value of a variable is assumed to be a linear function of several past observations and random 

errors. Classical ARIMA models are typically well-suited for short-term forecasts, but not for 

long term forecasts due to the convergence of the autoregressive part of the model to the 

mean of the time series. Moreover, this approach does not explain the nonlinear component 

of residuals obtained through ARIMA model. Here, we can improve the performance of 

ARIMA through the approach of Zhang (2003) in first instance and the improved forecast 

values can be used for long term forecast through the proposed technique. Rice is a rainfed 

crop and due to climate change rice yield may be tremendously influenced by weather 

variables. Hence, it is quite interesting to assess the impact of time series weather variables 

on yield and consequently rice production too. The ARIMAX model is a generalization of 

ARIMA model which is capable of incorporating an external input variable. Hyndman 

(2010) preferred to call ARIMAX as regression with ARIMA errors. 
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Univariate linear time series model 

The univariate linear time series model (ARIMA)was proposed by Box-Jenkins (1970).In 

ARIMA, the future value of a variable is assumed to be a linear function of several past 

observations and random errors. Because of its relative simplicity in understanding and 

implementation, it has been the main research focuses and applied tools during the past few 

decades.  Most time series can be described by Autoregressive Moving Average (ARMA) 

model. The stationary series Yt is said to be ARMA(p, q) if 

1 1 1 1 2 2... ...t t p t p t t q t q tY Y Y        − − − − −= + + − − − − +   

where t  is white noise and there is no common factor between autoregressive   

polynomial, (
2

1 21 ... p

pL L L  − − − − ) and moving average polynomial  

(
2

1 21 ... q

qL L L  + + + + ), where L is a lag operator. Also, these polynomials can be 

represented by ( )L and ( )L , respectively. If the series is not stationary then 

differencing is required to make the series stationary and the autoregressive integrated 

moving average (ARIMA) model is implemented and the series is called as ARIMA(p, d, 

q) if 

( )(1 ) ( )d

t tL L Y L  − =        

where d is the dth difference operator.  

The stationarity of the series is important otherwise non-stationary series can strongly 

influence its behaviour and properties - e.g. persistence of shocks will be infinite for non-

stationary series.  If the variables in the regression model are not stationary, then it can be 

proved that the standard assumptions for asymptotic analysis will not be valid. In other 

words, the usual “t-ratios” will not follow a t-distribution, so we cannot validly undertake 

hypothesis tests about the regression parameters.  

The Box–Jenkins methodology includes three iterative steps of model identification, 

parameter estimation and diagnostic checking. At identification stage, based on 

autocorrelation patterns (ACF or PACF) we identify one or several potential models for 

the given time series. Data transformation is often needed to make the time series 

stationary. Stationarity is a necessary condition in building an ARIMA model that is 

useful for forecasting. A stationary time series has the property that its statistical 
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characteristics such as the mean and the autocorrelation structure are constant over time. 

When the observed time series presents trend and heteroscedasticity, differencing and 

power transformation are often applied to the data to remove the trend and stabilize the 

variance before an ARIMA model can be fitted. Once a tentative model is specified, 

model parameters are estimated such that an overall measure of errors is minimized via 

nonlinear optimization procedure.At the diagnostic checking stage, white noise test for 

the residuals of the tentatively identified candidate model is tested through many 

diagnostic statistics and plots of the residuals. If residuals are not white noise, we again 

select candidate model and repeat the same unless we get valid model. 

 

ARIMAX Model 

The ARMAX model is a generalization of ARMA model which is capable of 

incorporating an external input variable. ARIMA model is extended into ARIMA model 

with exogenous variable X, called ARIMAX (p, d, q).  Let the time series be denoted by 

1 2 ny ,y ,...,y and we assume the series to be stationary, hence, we only consider ARMA 

model. First, we define an ARMA(p, q) model with no covariates: 

 
1 -1 2 -2 - 1 -1 2 -2 -... - - -...-t t t p t p t t q t q ty y y y         = + + + +  

     Where t is a white noise process (i.e. identically independently distributed with mean=0). 

    An ARMAX model simply adds in the covariate on the right hand side: 

 1 -1 2 -2 - 1 -1 2 -2 -... - - -...-t t t t p t p t t q t q ty x y y y          = + + + + +  

   Where tx is a covariate at time t and  is its coefficient. 

   If we write the model using backshift operators, the ARMAX model is given by 

 ( ) ( )t t tB y x B   = +  

    or
( )

( ) ( )
t t t

B
y x

B B

 


 
= + , 

   1where ( ) 1   ...  p

pB B B  = − − − and 1where ( ) 1   ...  q

qB B B  = − − −  

  We note that autoregressive coefficients get mixed up with both the covariates and the error    

term. Hyndman (2010) preferred it to call regression with ARMA errors. Regression models 

with ARMA errors is defined as 
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1 -1 2 -2 - 1 -1 2 -2 -... - - - ... -

t t t

t t t p t p t t q t q t

y x

y y y

 

          

= +

= + + + +
 

In this case, the regression coefficient has its usual interpretation. Using backshift operators, 

this model can be written as  

 
( )

( )
t t t

B
y x

B


 


= +

 

when the data is non-stationary, for the ARIMA errors, we simply replace 

( ) with ( ) where 1dB B B   = − denotes the differencing operator. Differencing of ty and 

tx is required before fitting the model with ARMA errors. Hence, differencing all variables is 

necessary because estimation of a model with non-stationary errors is not consistent and can 

lead to spurious regression. The first step in building an ARMAX model consists of 

identifying a suitable ARMA model for the endogenous variable. The ARMAX model 

concept requires to test for stationarity of exogenous variable before modeling. Nonlinear 

least square estimation procedure is employed to estimate the parameters of ARMAX model. 

In the above model, crop yield has been considered as dependent variable (Y) while 

minimum temperature, maximum temperature and rainfall as exogenous variables (X).To this 

end, forecast of covariates using hybrid time domain approaches and neural network have 

been utilized in the fitted ARIMAX. Performance of developed forecast models have been 

thoroughly examined. 

 

Hybrid linear time series approach using machine learning techniques 

ARIMA model does not explain the nonlinearity component i.e. errors. Here, we can try to 

improve the performance of ARIMA model by explaining residuals through machine 

learning approaches like ANN and SVM. This method consists of two phases. In the first 

phase, the time series is analyzed by using ARIMA models. In the next phase, the residuals 

obtained in the previous phase are examined by ANN and then forecast values obtained from 

the ARIMA model are summed. Here, time delay neural network approach has been used to 

develop a new hybrid model to overcome the limitations of ARIMA in an attempt to yield 

more accurate results. A typical time delay neural network structure with one hidden layer is 

denoted by I:Hs:Ol, where I is the number of nodes in input layer, s denotes the logistic 
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sigmoid transfer function, O denotes number of nodes in the output layer and I indicates 

linear transfer function. Here, an ARIMA model is first used to model the linear patterns of 

time series. The residuals of the linear model will then contain only the nonlinear 

relationship. Therefore, in the second phase, the ANN and SVM are used to model the 

nonlinear patterns of ARIMA residuals. This hybrid approach is used to get better forecasts 

as compare to classical time series models. Artificial Neural Networks are flexible computing 

frameworks for modeling a broad range of nonlinear problems. One significant advantage of 

the ANN models over other classes of nonlinear models is that ANNs are universal 

approximators that can approximate a large class of functions with a high degree of accuracy. 

Their power comes from the parallel processing of the information from the data. No prior 

assumption of the model form is required in the model building process. The network model 

is largely determined by the characteristics of the data. Single hidden layer feed forward 

network is the most widely used model form for time series modeling and forecasting. The 

model is characterized by a network of three layers of simple processing units connected by a 

cyclic links. The relationship between the output and the inputs has the following 

mathematical representation: 

    

 

The logistic function is often used as the hidden layer activation function. Data normalization 

is often performed before the training process begins. When nonlinear transfer functions are 

used at the output nodes, the desired output values must be transformed to the range of the 

actual outputs of the network. Even if a linear output transfer function is used, it may still be 

advantageous to standardize the outputs as well as the inputs to avoid computational 

problems, to meet algorithm requirement and to facilitate network learning. In general data 

normalization is beneficial in terms of classification rate and mean squared errors, but the 

benefit diminishes as network and sample size increase. In addition data normalization 

usually slows down the training process. Normalization of the output values (targets) is 

usually independent of the normalization of the inputs. For time series modeling problems, 

however, the normalization of targets is typically performed together with the inputs. The 

choice of range to which inputs and targets are normalized depends largely on the activation 

function of output nodes, with typically [0, 1] for logistic function and [-1, 1] for hyperbolic 

0 0

1 1

( )
Q P

t j j i j t i t

j i

y w w g w w y e−

= =

= + + + 
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tangent function. It should be noted that, as a result of normalizing the target values, the 

observed output of the network should be correspond to the normalized range. Thus, to 

interpret the results obtained from the network, the outputs must be rescaled to the original 

range. From the user’s point of view, the accuracy obtained by ANNs should be based on the 

rescaled data sets. Performance measures is also be calculated on the rescaled outputs. Here, 

Zhang’s hybrid approach (Zhang, 2003) has been employed. This approach considers time 

series ( ty ) as a function of linear and nonlinear components. Hence 

( , )t t ty f L N=  

Where tL  and tN   represents the linear and nonlinear component, respectively. As needs be 

the relationship between linear and nonlinear components, it can be written as following 

t t ty L N= +  

The main strategy of this approach is to model the linear and nonlinear components 

separately by different model. The methodology comprises of three steps. Initially, an 

ARIMA model is employed to fit the linear component. Let the prediction series provided by 

ARIMA model denoted as ˆ
tL . In the second step, rather than predicting the linear component, 

the residuals denoted as te which are nonlinear in nature are predicted. The residuals can be 

gotten by subtracting the predicted value ˆ
tL  from actual value of the considered time series

ty . 

 
ˆ

t t te y L= −  

Now the residuals are predicted employing an ANN model. Let the prediction series provided 

by ANN model denoted as ˆ
tN . Eventually, the predicted linear and nonlinear components are 

combined to generate aggregate prediction. 

ˆ ˆˆ
t t ty L N= +

 

The ARIMA-ANN and ARIMA-SVM  hybrid approach is graphically shown below 
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On the similar line we can compute ARIMAX-ANN and ARIMAX-SVM for improving 

the short term forecast of the time series data.  

Out of sample forecast can be done through the identified neural network model based on 

minimum values of goodness of fit like MAPE. Using the forecasted out of sample rainfall 

values, we can get out of sample forecast of yield values using the selected ARIMAX model 

through forecast option of R-software.   

 

    Proposed approach for long term forecast 

As we know univariate linear time series approaches like ARIMA or ARIMAX 

provides short term H-step ahead forecast. In H-step ahead forecasting, we 

learn H different models of the form 

yt+h=fh(yt,…,yt−n+1)+ϵt+h, 

For forecast h>H, we have proposed the following iterative steps for long term 

forecast through hybrid time series models through machine learning approaches:   

1. Select the suitable ARIMA/ARIMAX model and obtain the fitted values of yield 

along with the residuals. 

Time 

Series 

 Linear 

Component 

Decomposition 

Nonlinear 

Component 

 ARIMA 

ANN/SVM 

Modeling 

 

Sum 

Aggregation 

Predicted 

Values 
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2. Test the residuals for nonlinearity, if residuals are nonlinear use machine learning 

techniques for modelling and forecasting of residuals. 

3. Select the best ANN model for the residuals on the basis of minimum values of 

forecast accuracy measure (MAE or MAPE) and correct the fitted values of yield 

obtained via ARIMA/ARIMAX model through the fitted residuals estimated by the 

selected ANN model. 

4. Compute the MAPE for the fitted values of yield through ARIMA/ARIMAX and 

hybrid approach.   

5. If MAPE for hybrid approach is less than ARIMA/ARIMAX model, use the hybrid 

approach for long term forecast in the following way:  

i. Obtain the short term out of sample forecast of yield through the selected 

ARIMA model using the actual yield data. 

ii. Forecast the fitted residuals up to the desired forecast horizon by the 

suitable ANN model. 

iii. Obtain baseline data by correcting the short term forecast values of yield 

(obtained by ARIMA/ARIMA model) through the forecasted residuals 

using the selected ANN model.  

iv. Select suitable ARIMA model on the basis of baseline data and obtain 

short term forecast of the yield up to the desired forecast horizon. 

v. Consider the baseline data obtained as above for further long term 

forecast. 

vi. Repeat steps i-v until we get the forecast of the desired forecast horizon.  
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1 Introduction

Surveys dealing with sensitive questions, for example, drug usage, tax evasion,
substance abuse, excessive gambling and AIDS pose particular problems. In
such surveys, many respondents either refuse to participate or give false
or evasive responses. Hence, in such situations the methods that protect
anonymity are a solution. Such protection is built in to the two widely practiced
ways. One is Randomized Response Technique(RRT) and other is Scrambled
Response Technique(SRT). Whereas, recently a new technique called Item Sum
Technique(IST) has been developed. Hence, here we intend to elaborate Item
Sum Technique(IST) dealing with sensitive issues in successive sampling.

2 The item sum technique(IST)

The well known technique in sensitive characteristics estimation is the item count
technique (ICT), however the ICT is generally applicable for qualitative variables
only. Hence, the ICT was generalized by Chaudhuri & Christofides(2013) that can
be used to estimate quantitative sensitive variable. Later Trappmann et al. (2014)
named this generalized version of ICT as item sum technique (IST) and used it
for estimating some quantitative sensitive variable. The algorithm for the IST is
as follows:
From a random sample (say s), two random sub-samples (say sll and ssl) are
generated. The sub-sample sll, is confronted with a long list (LL) of items con-
taining the sensitive question and a number of innocuous/non-sensitive questions.
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However the respondents in sub-sample ssl has been given a short list (SL)
of items containing only the innocuous questions present in LL sample. The
respondents in each samples are asked to report the total score of all the items
given to them, without disclosing the individual scores for the items. The mean
difference of the answers between the sll and ssl is used as an unbiased estimator
of the population mean of sensitive variable. It is to be noted that all sensitive
and innocuous variables should be quantitative in nature and possibly measured
on the same scale as that of the sensitive variable in the IST.

However, the decisive point in the IST is how to split the total sample in to the LL
sample and SL sample. Trappmann et al. (2014) allocated the same number of
units to each sample irrespective of the variation of items in the two list. However,
Perri et al. (2018) advocated the requirement of optimum allocation of LL and
SL samples. If the sensitive variable is also changing by time, which is often the
scenario, then the IST may be modified to deal with sensitive issues on successive
waves. For example if the sensitive variable is the amount spent on drugs such as
cigarette, pan masala, etc. per month, by college students, then the non-sensitive
variable may be taken as the total monthly pocket money received by them or
the amount spent on purchasing books etc.. Similarly, if the sensitive variable is
the number of abortion, then the non-sensitive variable may be the number of
childrens or total number of members in that family etc.. The sensitive question
together with non-sensitive questions will comprise of LL sample, however only
non-sensitive questions will comprise of SL sample. There may be any number of
non-sensitive question with a sensitive question to be used for LL sample and the
same non-sensitive questions to be used for SL sample. But here we will consider
one sensitive and one non-sensitive question case on successive waves.

3 Proposed IST Frame work in Successive

Sampling Design

Consider a finite population P consisting of N identifiable units for sampling over
two successive waves. Let x denote the quantitative sensitive variable at the first
wave which changes to y at second wave. Similarly let t1 be the non sensitive
variable at the first wave which changes to t2 at the second wave. Assume that
xi, yi, t1i and t2i denotes the value of x, y, t1 and t2 respectively on the unit
iε P . To estimate the population mean of quantitative sensitive variable Ȳ at
current wave using the IST, the sampling design is proposed as:
At first wave a sample of size n is drawn using simple random sample without
replacement (SRSWOR) which has been split to snll and snsl samples called the
LL-sample and SL-sample respectively. Now, at the second wave considering the
partial overlap case, two independent samples are considered, one is a matched
sample of size m = nλ drawn as SRSWOR sub-sample from sample size n at
first wave and second is a fresh sample of size u = (n − m) = nµ, which is
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drawn afresh at current wave. Further, the samples of sizes m and u are split
in to corresponding LL-sample and SL-samples as smll, smsl, sull and susl
respectively. The response obtained from the respondents on two waves and the
corresponding IST estimate based on different samples are presented in Table 1.

Table 1: Response received under IST

Wave Sample size Response received IST estimate

I n z1i =

{
xi + t1i if iεsnll

t1i if iεsnsl
ˆ̄xn = z̄1nll − t̄1nsl

m z1i =

{
xi + t1i if iεsmll

t1i if iεsmsl
ˆ̄xm = z̄1mll − t̄1msl

II m z2i =

{
yi + t2i if iεsmll

t2i if iεsmsl
ˆ̄ym = z̄2mll − t̄2msl

u z2i =

{
yi + t2i if iεsull

t2i if iεsusl
ˆ̄yu = z̄2ull − t̄2usl

Note: zji ; j = 1, 2 denote the observed response at first and second wave
respectively on the ith observation.

z̄jill ; j = 1, 2; i ε {n, m, u} denote the mean of zj in the long list (LL )
samples.

t̄jisl ; j = 1, 2 ; i ε {n, m, u} denote the mean of t1 and t2 in the short
list (SL) samples.

4 IST Successive Difference Estimator

In order to utilize informations available from previous wave an IST difference
type estimator T1m is considered based on sample of size m retained from
previous wave and the estimator based on sample of size u is the IST estimator
Tu = ˆ̄yu. Combining the two estimators as the convex linear combinations, the
final estimator for sensitive population mean at current wave is given by

T1 = φ1Tu + (1− φ1)T1m (1)

where Tu = ˆ̄yu and T1m = ˆ̄ym + k(ˆ̄xn − ˆ̄xm) ; φ1 ε [0, 1] and k is a scalar
quantities to be chosen suitably.

5 IST Successive Regression Estimator

The another well known estimator in survey sampling theory is regression
estimator. Hence, the estimator for the matched portion of sample have been
chosen as regression type estimator given by T2m. The final estimator called
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IST successive regression estimator for estimating sensitive population mean at
current wave is given as

T2 = φ2Tu + (1− φ2)T2m (2)

where T2m = ˆ̄ym + b̂(mll)(ˆ̄xn− ˆ̄xm) with b̂(mll) =
sz1z2 (mll)

s2z2 (mll)
and φ2 ε [0, 1] is a

scalar quantity to be chosen suitably.

6 IST Successive General Class of Estimator

Many estimators such as ratio, product, exponential ratio etc., may be thought
on similar lines for proposing estimator based on matched sample of size m.
Therefore, in order to generalized the frame work, an IST general class of
estimator has been proposed, so that the IST difference, IST regression and many
others may be viewed as members of the proposed class of estimator. Hence, the
final estimator in this case is given as

T3 = φ3Tu + (1− φ3)T3m (3)

where, T3m = g(ˆ̄ym, ˆ̄xm, ˆ̄xn) is a function of ˆ̄ym, ˆ̄xm and ˆ̄xn. Following Priyanka
& Trisandhya (2018), the function g is assumed such that it satisfies following
conditions:

(i) The point (ˆ̄ym, ˆ̄xm, ˆ̄xn) assumes the value in a closed convex subset R3 of
three dimensional real space containing the point (Ȳ , X̄, X̄).

(ii) The function g (ˆ̄ym, ˆ̄xm, ˆ̄xn) is continuous and bounded in R3.

(iii) g(Ȳ , X̄, X̄) = Ȳ and g1(Ȳ , X̄, X̄) = ∂g(ˆ̄ym, ˆ̄xm, ˆ̄xn)

∂ ˆ̄ym
= 1.

(iv) The first and second order partial derivatives of g (ˆ̄ym, ˆ̄xm, ˆ̄xn) exist and
are continuous and bounded in R3.

7 Analysis of IST estimators on Successive

waves

To elucidate the performances of proposed IST estimators, the bias,
variance/mean squared error of the proposed estimators Ti (i = 1, 2, 3) has
been calculated as

B(Ti) = E
(
Ti − Ȳ

)
; (i = 1, 2, 3)

= E
[
φi(Tu − Ȳ ) + (1− φi)(Tim − Ȳ )

]
= φiB [Tu] + (1− φi)B [Tim]
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Since, Tu is unbiased for Ȳ , so B(Tu) = 0. Therefore, the bias of estimator Ti is
given as

B(Ti) = (1− φi)B(Tim) ; (i = 1, 2, 3) (4)

The variance of the estimator Ti is computed as

V(Ti) = E
(
Ti − Ȳ

)2
; (i = 1, 2, 3)

= E
[
φi(Tu − Ȳ ) + (1− φi)(Tim − Ȳ )

]2
= φ2

iV(Tu) + (1− φi)2V(Tim) + 2φi(1− φi)cov(Tu, Tim) (5)

As Tu and Tim are based on two independent samples of sizes u and m
respectively. So, cov(Tu, Tim) = 0. Therefore, the variance of estimator Ti
becomes

V(Ti) = φ2
iV(Tu) + (1− φi)2V(Tim) (6)

It can be seen that, V(Ti) in equation (6) is a function of φi. So, it has been
optimized with respect to φi and optimum value of φi is obtained as:

φiopt. =
V(Tim)

V(Tu) + V(Tim)
; i = 1, 2, 3 (7)

Substituting the optimum value of φi from equation (7) in equation (6) the
optimum variance of the proposed estimator Ti is computed as

V(Ti)opt. =
V(Tu)× V(Tim)

V(Tu) + V(Tim)
; i = 1, 2, 3 (8)

7.1 Bias and Variance of Tu and Tim ; i = 1, 2, 3

The estimator Tu is unbiased for Ȳ , hence, its variance is computed as

V(Tu) =

(
S2
z2

ull

)
+

(
S2
t2

usl

)
−
(
S2
z2

+ S2
t2

N

)
(9)

The estimator T1m is also unbiased for Ȳ , so its variance is obtained as

V(T1m) =

(
1

mll

)[
k2S2

z1
− 2kρz1z2Sz1Sz2 + S2

z2

]
+

(
1

msl

)[
k2S2

t1
− 2kSt1St2ρt1t2 + S2

t2

]
+(

1

nll

)[
2kρz1z2Sz1Sz2 − k2S2

z1

]
+

(
1

nsl

)[
2kSt1St2ρt1t2 − k2S2

t1

]
−(

1

N

)[
S2
z2

+ S2
t2

]
(10)
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The above expression for variance of T1m contain an unknown constant k, hence,
it is optimized with respect to k and optimum value of k is obtained as

kopt. =
( 1
mll
− 1

nll
)Sz1Sz2ρz1z2 + ( 1

msl
− 1

nsl
)St1St2ρt1t2

( 1
mll
− 1

nll
)S2

z1
+ ( 1

msl
− 1

nsl
)S2

t1

Now, as the estimator T2m and T3m are biased for Ȳ , hence the expression for
their bias and mean squared error have been computed under the following
transformations: :
z̄2ull = Z̄2 (1+e0), z̄2mll = Z̄2 (1+e1), z̄1mll = Z̄1 (1+e2), z̄1nll = Z̄1 (1+e3),
t̄2usl = T̄2 (1+e4), t̄2msl = T̄2 (1+e5), t̄1msl = T̄1 (1+e6), t̄1nsl = T̄1 (1+e7),
s2
z2

(mll) = S2
z2

(1 + e8), sz1z2(mll) = Sz1z2 (1 + e9), nrs = νrs
(ν20)r/2(ν02)s/2

, νrs =
1

n−1
Σ(z1i − z̄1)r(z2i − z̄2)s.

such that, E(ei) = 0; |ei| < 1 where, i = 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
Under the above transformations, retaining the terms up to first order of
approximation, we have for bias and mean squared error of T2m as

B(T2m) =

(
1

mll

− 1

nll

)
βz1z2

[
Sz1n03 − Sz1

n12

ρz1z2

]
(11)

and

V(T2m) =

(
1

mll

)[
S2
z1
β2
z1z2
− 2Sz1Sz2βz1z2ρz1z2 + S2

z2

]
+

(
1

msl

)[
S2
t2

+ β2
z1z2

S2
t1
−

2βz1z2St1St2ρt1t2 ] +

(
1

nll

)[
2Sz1Sz2βz1z2ρz1z2 − S2

z1
β2
z1z2

]
+(

1

nsl

)[
2St1St2ρt1t2βz1z2 − S2

t1
β2
z1z2

]
−
(

1

N

)[
S2
z2

+ S2
t2

]
(12)

Also, the bias and mean squared error of the estimator T3m has been is derived
under above considered transformations as:

T3m = g(ˆ̄ym, ˆ̄xm, ˆ̄xn)

Expanding g(ˆ̄ym, ˆ̄xm, ˆ̄xn) about the point K = (Ȳ , X̄, X̄) using Taylor series
expansion, retaining terms up to first order of approximations, we have

T3m = g
[
Ȳ + (ˆ̄ym − Ȳ ), X̄ + (ˆ̄xm − X̄), X̄ + (ˆ̄xn − X̄)

]
= (ˆ̄ym + (ˆ̄xm − X̄)G2 + (ˆ̄xn − X̄)G3 +

[
(ˆ̄ym − Ȳ )2G11 + (ˆ̄xm − X̄)2G22+

(ˆ̄xn − X̄)2G33 + (ˆ̄ym − Ȳ )(ˆ̄xm − X̄)G12 + (ˆ̄ym − Ȳ )(ˆ̄xn − X̄)G13+(
ˆ̄xm − X̄)(ˆ̄xn − X̄)G23 + . . .

]
(13)
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where,

G1 = ∂g
∂ ˆ̄ym
|K = 1, G2 = ∂g

∂ ˆ̄xm
|K , G3 = ∂g

∂ ˆ̄xn
|K , G11 = 1

2
∂2g
∂ ˆ̄y2m
|K =

0, G22 = 1
2
∂2g
∂ ˆ̄x2m
|K , G33 = 1

2
∂2g
∂ ˆ̄x2n
|K , G12 = 1

2
∂2g

∂ ˆ̄ym∂ ˆ̄xm
|K , G13 = 1

2
∂2g

∂ ˆ̄ym∂ ˆ̄xn
|K and

G23 = 1
2

∂2g
∂ ˆ̄xm∂ ˆ̄xn

|K .

Bias and Mean squared error of the class of estimator T3m to the first order
approximations are obtained as

B(T3m) =
1

mll

[S2
z1
G22 + ρz1z2Sz1Sz2G12] +

1

msl

[S2
t1
G22 + ρt1t2St1St2G12]+

1

nll
[S2
z1
G33 + ρz1z2Sz1Sz2G13 + S2

z1
G23] +

1

nsl
[S2
t1
G33 + ρt1t2St1St2G13+

S2
t1
G23]− 1

N
[S2
t1

(G22 +G33 +G23) + St1St2ρt1t2(G12 +G13)+

S2
z1

(G22 +G33 +G23) + Sz1Sz2ρz1z2(G12 +G13)] (14)

and

V(T3m) =

(
1

mll

)[
S2
z1
G2

2 + 2ρz1z2Sz1Sz2G2 + S2
z2

]
+

(
1

msl

)[
S2
t1
G2

2+

2St1St2ρt1t2G2 + S2
t2

]
+

(
1

nll

)[
S2
z1
G2

3 + 2ρz1z2Sz1Sz2G3 + 2G2G3S
2
z1

]
+(

1

nsl

)[
S2
t1
G2

3 + 2G3St1St2ρt1t2 + 2G2G3S
2
t1

]
−
(

1

N

)[
S2
z1
G2

2+

2ρz1z2Sz1Sz2G2 + S2
t1
G2

2 + 2St1St2ρt1t2G2 + S2
z2

+ S2
t2

+ S2
z1
G2

3+

2ρz1z2Sz1Sz2G3 + 2G2G3S
2
z1

+ S2
t1
G2

3 + 2St1St2ρt1t2G3 + 2G2G3S
2
t1

]
(15)

Clearly, we can see that equation (15) is a function of G2 and G3. So, after
minimizing equation (15) by partially differentiating with respect to G2 and G3

respectively and equating to zero we get the optimized value of G2 and G3 as

G2opt. = −

[
( 1
mll
− 1

nll
)Sz1Sz2ρz1z2 + ( 1

msl
− 1

nsl
)St1St2ρt1t2

]
( 1
mll
− 1

nll
)S2

z1
+ ( 1

msl
− 1

nsl
)S2

t1

,

G3opt. = −

[
( 1
nll
− 1

N
)(Sz1Sz2ρz1z2 + S2

z1
G2) + ( 1

nsl
− 1

N
)(St1St2ρt1t2 + S2

t1
G2)
]

( 1
nll
− 1

N
)S2

z1
+ ( 1

nsl
− 1

N
)S2

t1
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7.2 Allocating LL & SL Sample using Trappmann et al.
(2014) approach and Perri et al. (2018) approach

Since, in IST a sample is split in to LL sample and SL sample. Trappmann et
al. (2014) considered equal number of units in both the samples irrespective of
variability of the items in the two lists. Applying his approach on successive waves
we have the following allocations:
nll = nsl = n

2
, mll = msl = m

2
and ull = usl = u

2

However, Perri et al. (2018) concluded that the estimates may be affected due
to high variability of items in LL sample and SL sample. Hence, they proposed
optimal sample size allocation to LL and SL samples by minimizing the variance
of IST estimates under a budget constraints. Hence, modifying this ideas to work
for allocating LL sample and SL sample on various samples at first and second
wave assuming same budget allocation for each LL and SL samples we have:

nll =
nSz1

Sz1+St1
= nβ1 (say), nsl =

nSt1

Sz1+St1
= nβ2 (say), ull =

uSz2

Sz2+St2
= uβ3

(say), usl =
uSt2

Sz2+St2
= uβ4 (say), mll =

mSz1

Sz1+St1
= mβ1 (say) and

msl =
mSt1

Sz1+St1
= mβ2 (say).

Using the assumptions of both the approaches the minimum variance of proposed
estimators Ti has been obtained and are presented in Table 2.

Table 2:

Minimum Variance under Trappmann et al.(2014) approach

Vt(T1)min. =
[
µ̂21tJ11−µ̂1tJ12+J13
µ̂21tJ14+µ̂1tJ15+K11

]
with, µ̂1t = min

{
−I12+

√
I212+I11I13
I11

,
−I12−

√
I212+I11I13
I11

}
ε [0, 1]

Vt(T2)min. =
[
µ̂22tJ31−µ̂2tJ32+J33
µ̂22tJ34+µ̂2tJ35+K31

]
with, µ̂2t = min

{
−I32+

√
I232+I31I33
I31

,
−I32−

√
I232+I31I33
I31

}
ε [0, 1]

Vt(T3)min. =
[
µ̂23tJ51−µ̂3tJ52+J53
µ̂23tJ54+µ̂3tJ55+K51

]
with, µ̂3t = min

{
−I52+

√
I252+I51I53
I51

,
−I52−

√
I252+I51I53
I51

}
ε [0, 1]

Minimum Variance under Perri et al. (2018) approach

Vp(T1)min. =

[
µ̂21pJ21−µ̂1pJ22+J23

µ̂21pJ24+µ̂1pJ25+K21

]
with, µ̂1p = min

{
−I22+

√
I222+I21I23
I21

,
−I22−

√
I222+I21I23
I21

}
ε [0, 1]

Vp(T2)min. =

[
µ̂22pJ41−µ̂2pJ42+J43

µ̂22pJ44+µ̂2pJ45+K41

]
with, µ̂2p = min

{
−I42+

√
I242+I41I43
I41

,
−I42−

√
I242+I41I43
I41

}
ε [0, 1]

Vp(T3)min. =

[
µ̂23pJ61−µ̂3pJ62+J63

µ̂23pJ64+µ̂3pJ65+K61

]
with, µ̂3p = min

{
−I62+

√
I262+I61I63
I61

,
−I62−

√
I262+I61I63
I61

}
ε [0, 1]
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where,

Jj1 = Kj0Kj3f −Kj0Kj4f
2, Jj2 = Kj1Kj3 − f(Kj0Kj4f −Kj0Kj2 −Kj0Kj3+

Kj1Kj4), Jj3 = Kj1Kj2 +Kj1Kj3 − fKj1Kj4, Jj4 = f(Kj0 +Kj4)−Kj3,

Jj5 = Kj2 + Kj3 −Kj1 − f(Kj0 +Kj4), Ij1 = Jj1Jj5 + Jj2Jj4, Ij2 = Jj1Kj1−

Jj4Jj3, Ij3 = Jj2Kj1 + Jj3Jj5, Kj0 = S2
z2

+ S2
t2

; ∀ j = 1, 2, . . . , 6 ;

Kj1 = 2S2
z2

+ 2S2
t2

; ∀ j = 1, 3, 5 ; Kj1 =
S2
z2

β3

+
S2
t2

β4

; ∀ j = 2, 4, 6 ;

K12 = 2(k2
tS

2
z1
− 2ktSz1Sz2ρz1z2 + S2

z2
+ k2

tS
2
t1
− 2ktSt1St2ρt1t2 + S2

t2
),

K13 = 2(2ktSz1Sz2ρz1z2 − k2
tS

2
z1

+ 2ktSt1St2ρt1t2 − k2
tS

2
t1

), K14 = S2
z2

+ S2
t2
,

K22 =
k2
pS

2
z1
− 2kpSz1Sz2ρz1z2 + S2

z2

β1

+
k2
pS

2
t1
− 2kpSt1St2ρt1t2 + S2

t2

β2

,

K23 =
2kpSz1Sz2ρz1z2 − k2

pS
2
z1

β1

+
2kpSt1St2ρt1t2 − k2

pS
2
t1

β2

, K24 = S2
z2

+ S2
t2

kt = (Sz1Sz2ρz1z2 + St1St2ρt1t2) /
(
S2
z1

+ S2
t1

)
,

kp =

(
Sz1Sz2ρz1z2

β1

+
St1St2ρt1t2

β2

)
/

(
S2
z1

β1

+
S2
t1

β2

)
,

K32 = 2(
S2
z1z2

S4
z2

S2
z1
− 2

Sz1z2
S2
z2

Sz1Sz2ρz1z2 +
S2
z1z2

S4
z2

S2
t1
− 2

Sz1z2
S2
z2

St1St2ρt1t2 + S2
z2

+ S2
t2

),

K33 = 2(2Sz1Sz2ρz1z2
Sz1z2
S2
z2

− S2
z1

S2
z1z2

S4
z2

+ 2St1St2ρt1t2
Sz1z2
S2
z2

− S2
t1

S2
z1z2

S4
z2

),

K34 = S2
z2

+ S2
t2
, K42 =

(
S2
z1

S2
z1z2

S4
z2

− 2Sz1Sz2ρz1z2
Sz1z2
S2
z2

+ S2
z2

)
1

β1

+

(
S2
t1

S2
z1z2

S4
z2

− 2
Sz1z2
S2
z2

St1St2ρt1t2 + S2
t2

)
1

β2

,

K43 =

(
2Sz1Sz2ρz1z2

Sz1z2
S2
z2

− S2
z1

S2
z1z2

S4
z2

)
1

β1

+

(
2St1St2ρt1t2

Sz1z2
S2
z2

− S2
t1

S2
z1z2

S4
z2

)
1

β2

,

K44 = S2
z2

+ S2
t2
, K52 = 2

(
S2
z1
G2

2t + 2ρz1z2Sz1Sz2G2t + S2
t1
G2

2t + 2St1St2ρt1t2G2t+

S2
z2

+ S2
t2

)
, K53 = 2

[
S2
z1
G2

3t + 2ρz1z2Sz1Sz2G3t + 2G2tG3tS
2
z1

+ S2
t1
G2

3t + 2G3tSt1St2ρt1t2+

2G2tG3tS
2
t1

]
, K54 =

[
S2
z1
G2

2t + 2ρz1z2Sz1Sz2G2t + S2
t1
G2

2t + 2St1St2ρt1t2G2t + S2
z2

+ S2
t2

+

S2
z1
G2

3t + 2ρz1z2Sz1Sz2G3t + 2G2tG3tS
2
z1

+ S2
t1
G2

3t + 2G3tSt1St2ρt1t2 + 2G2tG3tS
2
t1

]
,
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K62 =
1

β1

(
S2
z1
G2

2p + 2ρz1z2Sz1Sz2G2p + S2
z2

)
+

1

β2

(
S2
t1
G2

2p + 2St1St2ρt1t2G2p + S2
t2

)
,

K63 =
1

β1

(
S2
z1
G2

3p + 2ρz1z2Sz1Sz2G3p + 2G2pG3pS
2
z1

)
+

1

β2

(
S2
t1
G2

3p + 2G3pSt1St2ρt1t2+

2G2pG3S
2
t1

)
,

K64 =
[
S2
z1
G2

2p + 2ρz1z2Sz1Sz2G2p + S2
t1
G2

2p + 2St1St2ρt1t2G2p + S2
z2

+ S2
t2

+ S2
z1
G2

3p+

2ρz1z2Sz1Sz2G3p + 2G2pG3pS
2
z1

+ S2
t1
G2

3p + 2G3pSt1St2ρt1t2 + 2G2pG3pS
2
t1

]
,

G2t = −(Sz1Sz2ρz1z2 + St1St2ρt1t2)/(S
2
z1

+ S2
t1

), G3t = −(Sz1Sz2ρz1z2 + S2
z1
G2t+

St1St2ρt1t2 + S2
t1
G2t)/(S

2
z1

+ S2
t1

), G2p = −(
Sz1Sz2ρz1z2

β1

+
St1St2ρt1t2

β2

)/(
S2
z1

β1

+
S2
t1

β2

),

G3p = −(
Sz1Sz2ρz1z2 + S2

z1
G2p

β1

+
St1St2ρt1t2 + S2

t1
G2p

β2

)/(
S2
z1

β1

+
S2
t1

β2

) and f =
n

N
.

8 Efficiency Comparison

In order to compare various proposed IST estimators in successive sampling, the
percent relative efficiencies have been computed for data considered in section (9)
under Trappmann et al. (2014) as well as Perri et al. (2018) allocation designs
as follows:

E1 =
Vt(T1)min.
Vp(T1)min.

× 100, E2 =
Vt(T2)min.
Vp(T2)min.

× 100 and E3 =
Vt(T3)min.
Vp(T3)min.

× 100.

9 Numerical Demonstration

Population Source:[Free access to data by Statistical Abstracts of United
States ]
To evaluate the performance of proposed IST successive sampling estimators,
numerical illustrations has been supplemented using natural population. The
population consists of N = 51 states. Let the aim be to estimate rate of abortion
in year 2004. Therefore, for IST successive sampling frame work we consider:
y=Rate of abortions in the year 2004
x=Rate of abortions in the year 2000
t1=Number of residents in the year 2000
t2=Number of residents in the year 2004.
Clearly the rate of abortion is sensitive, however, rate of residents is non-sensitive.
Hence, the data is suitable to be applied for IST frame work. Since same study
variable “rate of abortion”has been observed for two different years 2000 and
2004, therefore, the considered data is suitable to be used for IST successive
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sampling frame work. The numerical calculations have been performed on above
said data and results are represented in Table 3 :

Table 3: Emperical results

µ̂1p µ̂1t µ̂2p µ̂2t µ̂3p µ̂3t E1 E2 E3

0.8424 0.8359 0.7617 0.7626 * * 114.9334 115.8558 −
Note: ′∗′ indicates that the optimum value of fraction of sample to be drawn afresh do not

exist and ′−′ denote corresponding percent relative efficiency cannot be computed.

The value of Ei (i = 1, 2) are observed to be more than 100, this
indicates that optimum allocation design by Perri et al. (2018) is preferable
over Trappmann et al. (2014) design. Therefore, the further numerical analysis
has been carried out using Perri et al. (2018) allocation design.

10 Simulation Study

An extensive simulation study has been carried out using Monte Carlo simulation
for the data mentioned in section (9). The 5, 000 different Monte carlo replications
have been observed. The process is also repeated for different combination of
constants termed as sets. The variance/mean squared error of the proposed
estimators T1, T2 and T3 has been computed under Perri et al. (2018) allocation
design and are denoted by Vp(T1), Vp(T2) and Vp(T3) respectively. The percent
relative efficiencies of IST successive difference and regression estimators with
respect to IST successive general class of estimator have been computed as:

Es1 =
Vp(T1)

Vp(T3)
× 100 and Es2 =

Vp(T2)

Vp(T3)
× 100

The procedure have been repeated for three different combinations of constants,
termed as different sets given as:
I: n = 24, u = 04,m = 20
II: n = 24, u = 08,m = 16
III: n = 24, u = 10,m = 14.
The outcomes of simulation results are summarized in Figure 10.1 and Figure
10.2 respectively.

11 Direct Method

It is to be noted that under IST the estimators are less efficient than estimators
obtained using direct questioning. Hence, in order to identify the amount of loss
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Figure 10.1: Simulated Percent relative efficiency of the IST general class of
estimator with respect to IST difference estimator for three different sets

Figure 10.2: Simulated Percent relative efficiency of the IST general class of
estimator with respect to IST regression estimator for three different sets
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we compare the class of estimator T3 with respect to corresponding direct method.
The estimator under direct questioning method is given as

TD = χTuD + (1− χ)T3mD ; χ ε [0, 1] (16)

where

TuD = ȳu (17)

T3mD = d(ȳm, x̄m, x̄n) (18)

where, T3mD follow similar regularity conditions as stated in section (6). The,
minimum mean squared error of the class of estimator TD is obtained as

V(TD)min. =

[
−µ̂2

DJd1 + µ̂DJd2 + Jd3

µ̂2
DJd4 − µ̂DJd5 +Kd1

]
(19)

with,

µ̂D = min

{
Id2 +

√
I2
d2 − Id1Id3

Id1

,
Id2 −

√
I2
d2 − Id1Id3

Id1

}
such that µ̂D ε [0, 1]

(20)

where,
Jd1 = Kd1Kd3f

2, Jd2 = f(Kd1Kd3 − Kd1Kd2 + fKd1Kd3), Jd3 = Kd1Kd2 −
fKd1Kd3, Jd4 = f(Kd1 +Kd3), Jd5 = Kd1 −Kd2 + f(Kd1 +Kd3), Id1 = Jd1Jd5 −
Jd2Jd4, Id2 = Jd3Jd4 + Jd1Kd1, Id3 = Jd2Kd1 + Jd3Jd5, Kd1 = S2

y , Kd2 = S2
y +

SxSyD
2
2+2S2

yD2ρyx, Kd3 = S2
y+S

2
xD

2
2+2SySxρyxD2 and D2 = (−SySxρyx)/(S2

x).

Further the simulated ratio of the mean squared error of TD and T3 have been
computed by considering 5, 000 different samples using Monte carlo simulation
study for different sets and results are presented in Figure 11.1 and Figure.11.2
respectively

Ratio =
V(TD)

Vp(T3)
(21)

12 Results and Discussions

Following interpretations can be drawn from empirical and simulation results:

1. It has been observed that IST is feasible in successive sampling to handle
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Figure 11.1: Ratio of mean squared error of T3 (under optimum allocation design)
with respect to direct method under IST in two wave successive sampling for Set-I

Figure 11.2: Ratio of mean squared error of T3 (under optimum allocation design)
with respect to direct method under IST in two wave successive sampling for Set-
II
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sensitive issues on successive waves.

2. From Table 3, it is clear that E1 and E2 both are coming out to be greater than
100, this implies that optimum allocation design by Perri et al. (2018) is more
efficient than allocation by Trappmann et al. (2014) design in two wave successive
sampling. It is to be noted that for the considered data the optimum fraction
to be drawn afresh do not exist for IST successive general class of estimator,
so corresponding efficiency cannot be computed. Hence, in order to check the
validity of IST successive general class of estimator simulation has been carried
out with several choices of parameters.

3. Simulation results in Figure 10.1 and Figure 10.2 , justifies that Es1 and Es2 are
greater than 100 for all three considered sets. This indicates that IST successive
general class of estimators is more efficient than IST successive regression and
IST successive difference estimators. However, Es1 > Es2 indicate that IST
successive difference estimator is better than IST successive regression estimator.
Also, as φ increases, the simulated percent relative efficiency increases, this is in
accordance with the theory of successive sampling.

4. From Figure 11.1 and Figure 11.2, it is observed that as φ increases simulated
ratio of mean squared error of direct method and IST successive general class of
estimator increases. The values indicate loss in precision of IST general class of
estimator over direct method. Since the issues under consideration are sensitive
so direct method will not serve the purpose as privacy of respondents need to be
addressed. Hence, despite of loss in precision IST need to be preferred over direct
method for sensitive issues on successive waves.

The IST on successive waves enables us to estimate the population mean of
stigmatized quantitative variable using innocuous informations, there by reducing
social desirability response bias and providing privacy to some extent. Out of
the three proposed IST successive estimators, the IST successive general class
of estimator under both Trappmann et al. (2014) allocation design as well as
Perri et al. (2018) allocation design have been proved to be more efficient than
other two. The optimum allocation of LL and SL samples by Perri et al. (2018)
have been found to be more fruitful in successive sampling than allocation due to
Trappmann et al. (2014). While comparing with direct method, certain amount
of loss in precision is observed but that is realistic as the survey issues are sensitive
so there may be chances of complete refusal or partial refusal if we apply direct
method. However, using IST on successive wave atleast estimation of sensitive
issues are possible. Therefore it can be concluded that the proposed IST successive
estimators not only provide comfort and satisfaction to the respondents in terms
of privacy protection but will also be a methodological advancement in literature
related to successive sampling dealing sensitive issues.
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13 Extension of IST set up to General Sampling

Design on Successive Waves

Let us consider a finite population U = (U1, U2, . . . , UN) consisting ofN different
identifiable units, which has been sampled over two successive waves. Let y1(y2)
denote the sensitive variable at first(second) wave. Aim is to estimate population
mean of sensitive variable at current wave in an IST setting in successive sampling.
In doing so, a sample of size n is drawn at first wave with design d1 having
probability Pd1(sn), which is further split in to two independent samples say snll
and snsl called the long list (LL) sample and short list (SL) sample respectively
with design d1ll & d1sl and corresponding probabilities Pd1ll(snll) & Pd1sl(snsl)
respectively. Now, considering the partial overlap case on second wave, two
independent samples are drawn, one is matched sample of size m drawn as
a sub-sample from sample snll with design d2 having probability Pd2(sm|snll).
The sample sm is further split in to independent sub-samples smll and smsl with
design d2ll & d2sl with corresponding probabilities Pd2ll(smll|snll) & Pd2sl(smsl|snll)
respectively. However, other sample of size u is drawn afresh at current wave with
design d3 with probability Pd3(su|scn). For IST setting the sample su is further
split in to two independent sub-samples sull and susl with design d3ll & d3sl having
probability Pd3ll(sull) & Pd3sl(susl) respectively. The first and second order positive
inclusion probabilities for different samples are shown in Table 4.

Table 4: Inclusion Probabilities

First order inclusion probability Second order inclusion probability

n nll π
′
ill =

∑
snll3i

Pd1ll(snll) π
′
ijll =

∑
snll3i&j

Pd1ll(snll)

nsl π
′
isl =

∑
snsl3i

Pd1sl(snsl) π
′
ijsl =

∑
snsl3i&j

Pd1sl(snsl)

m mll πill|snll =
∑

smll3i
Pd2ll(smll) πijll|snll =

∑
smll3i&j

Pd2ll(smll)

msl πisl|snll =
∑

smsl3i
Pd2sl(smsl) πijsl|snll =

∑
smsl3i&j

Pd2sl(smsl)

u ull πill =
∑
sull3i

Pd3ll(sull) πijll =
∑

sull3i&j
Pd3ll(sull)

usl πisl =
∑

susl3i
Pd3sl(susl) πijsl =

∑
susl3i&j

Pd3sl(susl)

Note: sk 3 i denotes that the sum is over those samples sk that contain the given i,
where, k ∈ {nll, nsl, mll, msl, ull, usl}.

Now, applying IST setting, all LL samples are confronted with two questions,
out of which one refers to non-sensitive variable and other one is sensitive variable
under study. However, all SL samples receive only one innocuous question which
was used in LL sample. It is assumed that sensitive and non-sensitive items are
quantitative in nature. Respondents in each sample are requested to report the
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total score of items without revealing the individual scores for the items.
Let t1(t2) denote the non-sensitive item at first(second) wave. The response

obtained from the ith respondent at different waves in relevant samples in IST
set up are presented in Table 5.

Table 5: Response received

Wave Sample size Response received

I n z1i =

{
y1i + t1i if i ∈ snll
t1i if i ∈ snsl

m z1i =

{
y1i + t1i if i ∈ smll
t1i if i ∈ smsl

II m z2i =

{
y2i + t2i if i ∈ smll
t2i if i ∈ smsl

u z2i =

{
y2i + t2i if i ∈ sull
t2i if i ∈ susl

Note: zji ; j = 1, 2 denote the observed response at first and second wave
respectively on the ith observation.

The Sampling designs basic weights for the sample of size n, m and u are
described in Table 6.

Table 6: Sampling Design

Sample Sample Size Sampling design basic weight for selecting ith

unit in corresponding sample

LL-Sample SL-Sample

sn n a1i(ll) = 1

π
′
ill

a1i(sl) = 1

π
′
isl

sm m a∗i (ll) = 1

π
′
illπill|snll

a∗i (sl) = 1

π
′
islπisl|snll

su u b∗i (ll) = 1

(π
′
ill)

cπill|(sn)c
b∗i (sl) = 1

(π
′
isl)

cπisl|(sn)c

Based on above sampling design basic weight, we intend to modify Horvitz-
Thomson(1952) estimator in IST successive sampling setup to work for estimation
of sensitive population mean under generic sampling design on successive waves.
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14 IST successive HT-type Estimator

In IST successive sampling setup, to estimate sensitive population mean at
current wave in two wave successive sampling, in general two samples are
available.
Based on fresh sample of size u, the IST successsive Horvitz-Thomson type
estimator is proposed as

THu =
1

N

∑
iεsull

b∗i (ll)z2i −
1

N

∑
iεsusl

b∗i (sl)t2i (22)

Similarly, based on matched sample of size m, the IST successive HT-type
estimator is proposed as

THm =
1

N

∑
iεsmll

a∗i (ll)z2i −
1

N

∑
iεsmsl

a∗i (sl)t2i (23)

Now, Considering the convex linear combination of proposed estimators THu
and THm from (22) and (23) respectively, we have the final IST successive Horvitz-
Thomson type estimator TH of sensitive population mean Ȳ2 as

TH = φHTHu + (1− φH)THm, where φH ∈ [0, 1] (24)

14.1 Remark. Selection of φH is purely dependent on usage of estimates. If
fresh estimate of population mean is required on each wave then the estimator
THu is suitable. They may be utilized by choosing φH as 1 (or close to 1). While
for reliable estimates of change in population mean from one wave to another,
selecting φH as 0 (or close to 0) shows more emphasis to estimator THm. Hence,
a suitable choice of φH is desired for affirming both the situations at the same
time.

14.2 Remark. It is to be noted that, in order to propose IST successive Horvitz-
Thomson type estimator only informations at current occasion have been utilized.
However, there is a scope to use information from previous wave as an auxiliary
information to be used at current wave together with the availability of additional
auxiliary variables. To avoid the impact in inference, which may creep due to
bad sample selection and also to make use of additional auxiliary information,
calibration approach is more suitable. Hence, in next section we propose IST
successive calibration estimator to estimate sensitive population mean at current
wave in two waves successive sampling.

15 IST Successive Calibration Estimator

Let xi = (x1, x2, . . . , xp)
t be the p-additional auxiliary variables available

at both the waves. Utilizing these p-additional auxiliary variables, a new IST
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calibration estimator Tcu and Tcm have been proposed which are based on sample
of sizes u and m respectively for the estimation of sensitive population mean at
current(second) wave in two waves successive sampling.

15.1 Estimator based on fresh sample of size u

The proposed IST calibration estimator Tcu using p-additional auxiliary variables
based on sample of size u drawn afresh at current wave is described by replacing
the basic design weights b∗i (ll) & b∗i (sl) for LL & SL samples by the new weights
wulli & wusli respectively. Therefore, the proposed IST calibration estimator for
the estimation of sensitive population mean based on fresh sample becomes

Tcu =
1

N

∑
i∈sull

wulliz2i −
1

N

∑
i∈susl

wuslit2i (25)

To obtain the calibrated weight wulli of LL-sample, we minimize the chi-square
type function

∑
i∈sull

(wulli − b∗i (ll))
2

qullib∗i (ll)
(26)

subject to calibration constraints

1

N

∑
i∈sull

wullixi = X̄ (27)

with qulli being known positive constant unrelated to b∗i (ll) and xi =
(x1i, x2i, . . . , xpi)

t and X̄ = (X̄1, X̄2, . . . , X̄p)
t.

Now, Minimizing chi-square type function subject to constraints given in equation
(27) lead to the calibrated weight given by

wulli = b∗i (ll) + b∗i (ll)qulliN


(

X̄− 1
N

∑
i∈sull

b∗i (ll)xi

)
xi∑

i∈sull
xixtiqullib

∗
i (ll)

 (28)

Similarly, from SL sample the calibrated weight wusli is obtained as

wusli = b∗i (sl) + b∗i (sl)qusliN


(

X̄− 1
N

∑
i∈susl

b∗i (sl)xi

)
xi∑

i∈susl
xixtiquslib

∗
i (sl)

 (29)
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Therefore, after substituting the obtained calibrated weights wulli and wusli in
equation(25) we have the final IST calibrated estimator Tcu as

Tcu =

[
1

N

∑
i∈sull

b∗i (ll)z2i + B̂ull

(
X̄− 1

N

∑
i∈sull

b∗i (ll)xi

)t]
−

[
1

N

∑
i∈susl

b∗i (sl)t2i+

B̂usl

(
X̄− 1

N

∑
i∈susl

b∗i (sl)xi

)t]
(30)

where

B̂ull =

(∑
i∈sull

b∗i (ll)qullixix
t
i

)−1(∑
i∈sull

b∗i (ll)qullixiz2i

)

and

B̂usl =

(∑
i∈susl

b∗i (sl)quslixix
t
i

)−1(∑
i∈susl

b∗i (sl)quslixit2i

)

and qusli being known positive constant unrelated to b∗i (sl) and X̄. The estimator
Tcu in equation (30) can be written as:

Tcu = Tcull − Tcusl (31)

15.2 Estimator based on matched sample

To improve the performance of the estimators on the current wave, it is well-
known practice to utilize the information gathered on the previous occasion as
auxiliary information in addition to p-additional auxiliary variables. Based on
sample of size m at current(second) wave with the new calibrated weight, the
IST calibration estimator is proposed as

Tcm =
1

N

∑
i∈smll

wmlliz2i −
1

N

∑
i∈smsl

wmslit2i (32)

Now, to obtain the calibrated weight wmlli of LL sample we minimize the chi-
square function

∑
i∈smll

(wmlli − a∗i (ll))
2

qmllia∗i (ll)
(33)
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subject to calibration constraints

1

N

∑
i∈smll

wmlliy1i
= ȳc1nll, (34)

and

1

N

∑
i∈smll

wmllixi = X̄ (35)

with qmlli as known positive constant unrelated to a∗i (ll) and X̄. Following similar
procedure, we obtain the IST Calibration estimator ȳc1nll based on sample of size
n drawn at first wave and used as auxiliary information at current(second) wave
as.

ȳc1nll =

[
1

N

∑
i∈snll

a1i(ll)z1i + B̂nll

(
X̄− 1

N

∑
i∈snll

a1i(ll)xi

)t]
(36)

with

B̂nll =

(∑
i∈snll

a1i(ll)qnllixix
t
i

)−1(∑
i∈snll

a1i(ll)qnllixiz1i

)

where qnlli is known positive constant unrelated to a1i(ll) and X̄.
Now, Minimizing chi-square function in equation (33) subject to constraints in
equation (34) and equation (35) lead to the calibrated weight given by

wmlli = a∗i (ll) + a∗i (ll)qmlliN


(

X̄lm − 1
N

∑
i∈smll

a∗i (ll)xmi

)
xmi∑

i∈smll

xmixtmiqmllia
∗
i (ll)

 (37)

Where, xmi = (y1i, x1i, x2i, . . . , xpi)
t, X̄lm = (ȳc1nll, X̄1, X̄2, . . . , X̄p)

t.
Now, by following similar procedure for SL-sample, the calibrated weight wmsli
is given as

wmsli = a∗i (sl) + a∗i (sl)qmsliN


(

X̄sm − 1
N

∑
i∈smsl

a∗i (sl)xmi

)
xmi∑

i∈smsl

xmixtmiqmslia
∗
i (sl)

 (38)

with qmsli as known positive constant unrelated to a∗i (sl) and X̄sm =
(ȳc1nsl, X̄1, X̄2, . . . , X̄p)

t where
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ȳc1nsl =

[
1

N

∑
i∈snsl

a1i(sl)t1i + B̂nsl

(
X̄− 1

N

∑
i∈snsl

a1i(sl)xi

)t]
(39)

with

B̂nsl =

(∑
i∈snsl

a1i(sl)qnslixix
t
i

)−1(∑
i∈snsl

a1i(sl)qnslixit1i

)

with qnsli as known positive constant unrelated to a1i(sl) and X̄.
Now, substituting the calibrated weights wmlli in equation (37) and wmsli in
equation (38) in to equation (32), the final proposed IST calibrated estimator
Tcm based on sample size m at current wave becomes

Tcm =

[
1

N

∑
i∈smll

a∗i (ll)z2i + B̂mll

(
X̄lm −

1

N

∑
i∈smll

a∗i (ll)xmi

)t]
−

[
1

N

∑
i∈smsl

a∗i (sl)t2i+

B̂msl

(
X̄sm −

1

N

∑
i∈smsl

a∗i (sl)xmi

)t]
. (40)

with,

B̂mll =

(∑
i∈smll

a∗i (ll)qmllixmix
t
mi

)−1(∑
i∈smll

a∗i (ll)qmllixmiz2i

)

and

B̂msl =

( ∑
i∈smsl

a∗i (sl)qmslixmix
t
mi

)−1( ∑
i∈smsl

a∗i (sl)qmslixmit2i

)
.

15.3 Composite IST Successive Calibration Estimator

Considering the convex linear combination of the proposed IST Calibration
estimators Tcu & Tcm, the final IST Calibration estimator for p-additional
available auxiliary variables is proposed as

Tc = φcTcu + (1− φc)Tcm (41)

where Tcu and Tcm are given in equation (30) and equation (40) respectively and
φc ∈ [0, 1] is a scalar quantity to be chosen suitably.
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16 Asymptotic Variance of IST Calibration

estimator

This section is devoted to elaboration of asymptotic properties of the proposed
IST calibration estimator Tc. As the estimator Tc depends on the estimators Tcu
and Tcm given in equation (30) and equation (40) respectively, therefore first
we discuss the asymptotic properties of Tcu and Tcm. From equation (31), it is
observed that Tcu further depends on Tcull and Tcusl. Hence, following results due
to Randles(1982), some theorem can be established for Tcull as

16.1 Theorem. The asymptotic behaviour of the IST calibration estimator Tcull
is same as that of

Tcull|B =
1

N

∑
i∈sull

b∗i (ll)z2i +

(
X̄− 1

N

∑
i∈sull

b∗i (ll)xi

)t

B (42)

with

B =

(∑
i∈sull

qullixix
t
i

)−1(∑
i∈sull

qullixiz2i

)
(43)

Proof. Let us assume

Tcull(α) =
1

N

∑
i∈sull

b∗i (ll)z2i +

(
X̄− 1

N

∑
i∈sull

b∗i (ll)xi

)t

α (44)

where α is assumed to be a p-dimentional vector.

Equation (44) shows Tcull(α) is the calibration estimator Tcull when B̂ull is
replaced by a vector of variables α.

Therefore, the limiting mean of Tcull(α) when the actual parameter value is B
(given in equation (43)) can be written as

µ(α) = lim
ull→+∞

EB [Tcull(α)] = Z̃2 (45)

where Z̃2 is the limiting value of Z̄2 as N →∞.

Hence, by Randles(1982), the estimator Tcull has the same asymptotic
behaviour as that of the estimator

Tcull|B =
1

N

∑
i∈sull

b∗i (ll)z2i +

(
X̄− 1

N

∑
i∈sull

b∗i (ll)xi

)t

B (46)
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16.2 Theorem. The variance of the estimator Tcull|B is given by

V
(
Tcull|B

)
=

[
1

N2

∑
i∈U

∑
j∈U

∆c
ijll

z2i

(πill)c
z2j

(πjll)c

]
+

E1

 1

N2

∑
i∈(snll)c

∑
j∈(snll)c

∆ijll|(snll)c

(π
′
ill)

c(π
′
jll)

c

ei
πill|(snll)c

ej
πjll|(snll)c

 (47)

where, ei = z2i − (xi)
tB and E1 is the expectation under the design d1.

Proof. Since, the estimator Tcull|B is unbiassed. Hence, its variance is given by

V (Tcull|B) = V1

(
E3

[
Tcull|B

])
+ E1[V3

(
Tcull|B

)
] (48)

where, E1 and V1 are the expectation and variance under the design d1

respectively, and E3 and V3 represent the conditional expectation and conditional
variance under design d3 respectively.

V1

(
E3

[
Tcull|B

])
=V1

(
1

N

∑
i∈sull

b∗i (ll)z2i

)

=
1

N2

∑
i∈scn

∑
j∈scn

∆ij
z2i

πi

z2j

πj
(49)

Now,

E1

[
V3

(
Tcull|B

)]
=E1

[
V3

{(
1

N

∑
i∈sull

b∗i (ll)z2i

)
+

(
X̄− 1

N

∑
i∈sull

b∗i (ll)xi

)t

B

}]

= E1

[
V3

(
1

N

∑
i∈sull

b∗i (ll)z2i −
1

N

∑
i∈sull

b∗i (ll)xiB

)]

= E1

[
V3

(
1

N

∑
i∈sull

b∗i (ll)ei

)]

= E1

[
1

N2

∑
i∈sull

∑
j∈sull

∆ij

πiπj

ei
πi

ej
πj

]
(50)

Using equation (49) and equation (50) in equation (48), we get the expression for
variance as in equation (47).
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16.1 Remark. From Theorem 16.1 and Theorem 16.2, the estimator Tcu and
Tcm are asymptotically unbiased and their asymptotic variances are given by

V (Tcu) =
1

N

[∑
i∈U

∑
j∈U

∆c
ijll

z2i

(πill)c
z2j

(πjll)c
−
∑
i∈U

∑
j∈U

∆c
ijsl

t2i
(πisl)c

t2j
(πjsl)c

]
+

1

N2
E1

 ∑
i∈(snll)c

∑
j∈(snll)c

∆ijll|(snll)c

(π
′
ill)

c(π
′
jll)

c

ei
πill|(snll)c

ej
πjll|(snll)c

−

∑
i∈(snsl)c

∑
j∈(snsl)c

∆ijsl|(snsl)c

(π
′
isl)

c(π
′
jsl)

c

ξi
πisl|(snsl)c

ξj
πjsl|(snsl)c

 (51)

Similarly,

V (Tcm) =
1

N

[∑
i∈U

∑
j∈U

∆
′

ijll

z2i

(πill)c
z2j

(πjll)c
−
∑
i∈U

∑
j∈U

∆
′

ijsl

t2i
(πisl)c

t2j
(πjsl)c

]
+

1

N2
E2

[∑
i∈snll

∑
j∈snll

∆ijll|snll
π

′
illπ

′
jll

ei
πill|snll

ej
πjll|snll

−

∑
i∈snsl

∑
j∈snsl

∆ijsl|snsl
π

′
islπ

′
jsl

ξi
πisl|snsl

ξj
πjsl|snsl

]
(52)

ξi = t2i − (xi)
tB and E2 is the expectation under the design d2.

16.3 Theorem. The asymptotic variance of proposed IST Calibration estimator
for p-auxiliary variables is obtained as

V (Tc) = φ2
cV (Tcu) + (1− φc)2 V (Tcm) (53)

where V (Tcu) and V (Tcm) are given in equation (51) and equation (52) respectively

Proof. The asymptotic variance of IST Calibration estimators Tc is given by

V (Tc) = E
(
Tc − Ȳ2

)2

= E
[
φc
(
Tcu − Ȳ2

)
+ (1− φc)

(
Tcm − Ȳ2

)]2
= φ2

cV (Tcu) + (1− φc)2 V (Tcm) + 2φc (1− φc) cov (Tcu, Tcm)
(54)

Since, Tcu and Tcm are based on two non-overlaping samples of sizes u and
m respectively. So cov(Tcu, Tcm) = 0. Substituting the values of V (Tcu) and
V (Tcm) from the equation (51) and equation (52) respectively in the above
equation (54), we have the expression for the asymptotic variance of the IST
Calibration estimator Tc as in equation (53).

79



17 Optimum variance of IST Calibration

estimator

It is to be noted that, V (Tc) is a function of unknown constant φc. Hence, it
is optimized with respect to φc and subsequently the optimum value of φc is
obtained as

φc(opt.) =
V (Tcm)

V (Tcu) + V (Tcm)
(55)

Substituting φc(opt.) from equation (55) in equation (53), we get the optimum
variance of the proposed IST Calibration estimator Tc as

V (Tc)opt. =
V (Tcu)× V (Tcm)

V (Tcu) + V (Tcm)
(56)

18 Study under SRSWOR sampling design

In this section, we study the proposed IST calibration estimator under
SRSWOR(Simple Random Sampling Without Replacement) sampling design.
Therefore, we consider

π
′

i =
n

N
; π

′

ij =
n(n− 1)

N(N − 1)

Because the sample sn is drawn from U with SRSWOR of size n, it implies that
the complement scn = U − sn is a simple random sample without replacement of
size N − n, therefore we have

π
′c
i =

N − n
N

; π
′c
ij =

(N − n)(N − n− 1)

N(N − 1)

Also, we suppose that the matched sample sm is drawn from sn with SRSWOR
of size m so

πi|sn =
m

n
; πij|sn =

m(m− 1)

n(n− 1)

Finally, the unmatched sample su is drawn from scn with SRSWOR of size u.
Thus we have

πi|scn =
u

N − u
; πij|scn =

u(u− 1)

(N − n)(N − n− 1)

Now, based on sample of size u on current occasion, the proposed IST calibration
estimator Tcu under SRSWOR sampling design is obtained as

T scu =
[
z̄2u + Bull(X̄− x̄u)

t
]
−
[
t̄2u + Busl(X̄− x̄u)

t
]

(57)
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where, x̄u = (x̄1u, x̄2u, . . . , x̄pu)
t .

Similarly, based on sample of size m on current occasion, the proposed IST
calibration estimator Tcm under SRSWOR scheme is obtained as

T scm =
[
z̄2m + Bmll(X̄ll − x̄m)t

]
−
[
t̄2m + Bmsl(X̄sl − x̄m)t

]
(58)

Where, x̄m = (ȳ1m, x̄1m, x̄2m, . . . , x̄pm)t, X̄ll = (ȳs1nll, X̄1, X̄2, . . . , X̄p)
t and

X̄sl = (ȳs1nsl, X̄1, X̄2, . . . , X̄p)
t and

ȳs1nll =
[
z̄1n + Bnll(X̄− x̄n)t

]
, ȳs1nsl =

[
t̄1n + Bnsl(X̄− x̄n)t

]
where, x̄n = (x̄1n, x̄2n, . . . , x̄pn)t.
Now, taking convex linear combination of the proposed IST Calibration
estimators T scu and T scm for p-auxiliary variables under SRSWOR sampling design,
we get

T sc = φscT
s
cu + (1− φsc)T scm (59)

where T scu and T scm are given in equation (57) and equation (58) respectively and
φsc ∈ [0, 1] is a scalar quantity to be chosen suitably.

18.1 Remark. Further if we assume, qulli = qusli = qmlli = qmsli = 1 in Tc, then
the IST calibration estimator is becomes T ∗c given as

T ∗c = φ∗cT
∗
cu + (1− φ∗c)T ∗cm ; φ∗c ∈ [0, 1]

where,

T ∗cu =

[
1

N

∑
iεsull

b∗i (ll)z2i + B̂∗ull

(
X̄− 1

N

∑
iεsull

b∗i (ll)xi

)t]
−

[
1

N

∑
iεsusl

b∗i (sl)t2i+

B̂∗usl

(
X̄− 1

N

∑
iεsusl

b∗i (sl)xi

)t]
with

B̂∗ull =

(∑
iεsull

b∗i (ll)xix
t
i

)−1(∑
iεsull

b∗i (ll)xiz2i

)
,

B̂∗usl =

(∑
iεsusl

b∗i (sl)xix
t
i

)−1(∑
iεsusl

b∗i (sl)xit2i

)
and

T ∗cm =

[
1

N

∑
iεsmll

a∗i (ll)z2i + B̂∗mll

(
X̄lm −

1

N

∑
iεsmll

a∗i (ll)xmi

)t]
−

[
1

N

∑
iεsmsl

a∗i (sl)t2i+

B̂∗msl

(
X̄sm −

1

N

∑
iεsmsl

a∗i (sl)xmi

)t]
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with,

B̂∗mll =

(∑
iεsmll

a∗i (ll)xmix
t
mi

)−1(∑
iεsmll

a∗i (ll)xmiz2i

)
,

B̂∗msl =

(∑
iεsmsl

a∗i (sl)xmix
t
mi

)−1(∑
iεsmsl

a∗i (sl)xmit2i

)
.

19 Simulation Study

In order to reveal the behaviour of the proposed estimators and to compare
them, a simulation study has been carried out. For simplicity, the simulation
study has been carried out under SRSWOR (Simple Random Sampling Without
Replacement).

For this purposes a natural population has been used from statistical abstracts
of United States. The study and auxiliary variables for the considered population
having N = 51 is described as:
y1:Rate of abortion in 2007
y2:Rate of abortion in 2008
t1:Rate of residence in 2007
t2:Rate of residence in 2008
x1:Rate of abortion in 2000
x2:Rate of abortion in 2005

We compare the IST calibration estimator with IST Horvitz-Thomson estima-
tor under both the allocation designs. In order to do simulation with considered
data 10, 000 independent samples have been generated under sampling in two
wave under IST frame work. All samples are obtained under simple random
sampling without replacement.

The performance of proposed IST calibration estimator Tc for p = 1 and p = 2
additional auxiliary variables has been evaluated in terms of Absolute relative bias
(ARB) and Percent relative efficiency (PRE) under both Trappmann et al.(2014)
as well as Perri et al.(2018) optimum allocation designs as discussed in Section
(7.2).

ARBk =
1

10000

∣∣∣∣∣∣∣∣
10000∑
i=1

{θi}k − Ȳ2

Ȳ2

∣∣∣∣∣∣∣∣ & PREjk =

10000∑
i=1

[THi − Ȳ2]2

10000∑
i=1

[{Tci(p = j)}k − Ȳ2]2
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where θ ∈ {TH , Tc(p = j)} ; for j = 1, 2 and k =

{
1 for Trappman et al.(2014) allocation design
2 for Perri et al.(2018) allocation design

The simulation results have been represented in various graphs (Figure 1 - Figure
8) for varying φ = 0.1, 0.2, . . . , 0.9 where φ ∈ {φH , φc} .

20 Direct Method

In general the estimators under IST setup is less efficient than the estimators
obtained using direct questioning. Hence, in order to identify the amount of
loss, the proposed IST calibration estimator Tc has been compared with respect
to corresponding estimator under direct questioning (without IST set up). The
calibration estimator under direct questioning is proposed as

Td = φdTdu + (1− φd)Tdm ; φd ∈ [0, 1] (60)

where,

Tdu =
1

N

∑
iεsu

wuiy2i =
1

N

∑
iεsu

b∗i y2i + B̂ud

(
X̄− 1

N

∑
iεsu

b∗i xi

)t

(61)

with

B̂ud =

(∑
iεsu

b∗i quixix
t
i

)−1(∑
iεsu

b∗i quixiy2i

)

and

Tdm =
1

N

∑
iεsm

wmiy2i =
1

N

∑
iεsm

a∗i y2i + B̂md

(
X̄m −

1

N

∑
iεsm

a∗i xmi

)t

(62)

with

B̂md =

(∑
iεsm

a∗i qmixmix
t
mi

)−1(∑
iεsm

a∗i qmixmiy2i

)

It has been observed that optimum allocation of LL and SL sample in IST
under Perri et al.(2018) approach is more efficient than that of allocation by
Trappmann et al.(2014) allocation. Hence, we have compared IST calibration
estimator under Perriet al.(2018) optimum allocation with direct questioning
method. The cases of p = 1 and p = 2 additional auxiliary variables have been
discussed. The ratio of variance of IST calibration method with respect to direct
questioning method have been computed via simulation as
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Ratioj =

10000∑
i=1

[
Tdi(p = j)− Ȳ2

]2
10000∑
i=1

[
Tci(p = j)− Ȳ2

]2 ; j = 1, 2

Ten thousand different replications of samples have been taken for simulation and
the results have been demonstrated in different graphs(Figure 9 and Figure 10).

21 Discussion of Results

Following noteworthy results can be drawn from the simulation results shown in
Figure 1 to Figure 8:

1. All the three considered estimators TH , Tc(p = 1) & Tc(p = 2) have reasonable
absolute relative bias under both Trappmann et al.(2014) as well as Perri et
al.(2018) optimum allocation designs.

2. The IST calibrations estimators have less absolute relative bias than IST
Horvitz-Thomson estimator. So, in terms of absolute relative bias IST calibration
estimators are preferable over IST Horvitz Thomson estimator.

3. The percent relative efficiency confirm better behaviours of IST calibration
estimators when compared to IST Horvitz-Thomson type estimator.
4. The percent relative efficiency increase with increase in number of auxiliary

variable under both the allocation design considered. However, better PRE have
been observed in case of optimum allocation design by Perri et al.(2018) than
Trappmann et al.(2014) allocation design.

5. As enhanced PRE and less absolute relative bias has been observed in
optimum allocation design. Hence, further study of comparison with direct ques-
tioning method have been worked out considering optimum allocation design only.

6. From simulation results in Figure 9 and Figure 10 it is clear that for some
combination of parameters, the IST calibration estimator do not behave better
than direct questioning method. This is the cost, we have to pay for using IST
set up. However, if IST has not been used, then these might have created a
situation that we may not have obtained honest responses as the issues under
consideration are sensitve in nature. However, for few combination of constants
we see that ratio is coming out to be more than one, this indicates that despite
of IST, the estimators are so designed that it is coming out to be better than
direct questioning method.

22 Conclusion

In order to deal with sensitive issues which are dynamic over time, the new
methodology proposed have not only taken care of sensitivity of issues but
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also incorporates all the available auxiliary informations on both the waves in
successive sampling. The concept of IST manages sensitivity of issues, however
if bad samples are drawn, then that is managed by concept of calibration.
Combining the two concepts together yields fruitful results to deal with sensitive
issues over successive waves. The performance enhances as the number of
auxiliary variables increases. The IST calibration estimators are coming out to
be always efficienct than IST Horvitz-Thomson type estimators. Therefore, the
methodology proposed can be recommended as efficient alternative with a wide
number of desirable propertiers to be used by practitioners in this field.
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1. Introduction 

Decision tree learning is a method commonly used to create a model that predicts the value 

of target variable based on several input variables. Decision trees are of two types; (i) 

classification tree (ii) regression tree. Classification tree analysis is there when the response 

variable is a class label and the regression tree analysis is there when the response variable 

takes the values of real number. A classification tree is obtained by asking an ordered 

sequence of questions, where the type of questions asked at each step in the sequence 

depends upon the answers required for the previous questions of the sequence. The sequence 

always terminates in a prediction of the class label attached to the observation. The starting 

point of a classification tree is called the root node and consists of the whole data set at the 

top of the tree. A node in a tree can be a terminal or non-terminal node. A non-terminal (or 

parent) node is a node that split into daughter nodes. A node that doesn’t split is called a 

terminal node and is assigned a class label. When an observation of unknown class is 

dropped down the tree and ends up at a terminal node, it is assigned to that class 

corresponding to the class label attached to that node. There may be more than one terminal 

node with the same class label. A single split tree with only two terminal nodes is called a 

stump. In case of binary splitted node, the split is determined by a Boolean condition on the 

value of a single variable, where the condition is either satisfied (“yes”) or not satisfied 

(“no”) by observed value of that variable. All the observations in the data set that have 

reached to a particular node and satisfy the condition for that variable drop down to one of 

the two daughter nodes and the remaining observations at that node that don’t satisfy the 

condition drop down to the other daughter node.  

Let x1 and x2 be two variables and θi (i=1, 2, 3, 4) be any values of the variables then the tree 

is grown by asking following questions: 

(1) Is x2 ≤θ1? If the answer is yes, follow the left branch;  

      if no follow the right branch. 

(2) If the answer to question (1) is yes, then ask the next question: Is x1 ≤θ2?  

 x2 ≤θ1?  

 x1 ≤θ2?  

 x2 ≤θ3?  

 x1≤θ4?  
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     if the answer is yes, follow the left branch (terminal);  

     if no follow the right branch (terminal). 

(3) If the answer to question (1) is no, ask the next question: Is x2 ≤θ3?                

(4) if the answer to (3) is yes, {then ask the next question: Is x1 ≤θ4? 

     if the answer is yes, follow the left branch (terminal);  

     if no follow the right branch (terminal)}.  

     if the answer to (3) is no, it leads to the terminal node            

 

2. Aspect of growing Tree 

For growing a classification tree, following four aspects need to be discussed  

• Choosing the Boolean conditions for splitting at each node 

• Criterion to be used to split a parent node into its daughter nodes 

• To decide a node to become a terminal node 

• Assigning a class to a terminal node  

 

3. Splitting strategies 

In the splitting strategy the first two aspects of growing tree are discussed. 

Number of possible splits 

For continuous or ordinal variable, the total number of possible splits at a given node is one 

fewer than the number of its distinctly observed values. For nominal or categorical variable 

of m distinct categories, there will be 2m-1-1dinstict splits at a particular node. 

 Node impurity function 

To chose the best split among all variables, first chose the best split for a given variables by 

using measure of goodness of split. Let Π1,…,ΠK be the K≥2 classes. For node τ, the node  

impurity function i(τ) is given as i( ) (p(1 ),...,p(K ))   =  ,Where p(k/τ) is an estimate of 

P(ÐK/ô) which is the conditional probability that an observation X is in Ðk given that it falls 

into node ô. The function   will attain maxima at the point (
1

K
,

1

K
, … ,

1

K
 ) on the set of K-

tuples of probabilities (p1,…,pK) and its sum is unity. In the two classes case (K=2), these 

condition reduces to a symmetric (p)  maximized at the point p=1/2. One such function   is 

the entropy function,   

and for binary classes it reduces to                                                                 

K

k 1

i( ) p(k ) log p(k )  
=

= −

i( ) p log p (1 p) log(1 p) = − − − −
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 Choosing best split for a variable 

Let at node ô, after applying split s, a portion pl goes to the daughter node ôl and the 

remaining portion pr goes to the right daughter node ôr. Then the goodness of split s at nod ô 

is the reduction in impurity gained by splitting the parent node ô in to its daughter nodes ôl 

and ôr, which is given by                                                  . 

For example, consider a data set having the response variable y that has two values 0 and 1 

and suppose one of the possible split of the input variables xj is xj≤ c vs. xj> c, where c is 

some values of xj. Then a 2×2 table can be prepared as follows: 

 

 1 0 Row total 

xj ≤ c n11 n12 n1. 

xj > c n21 n22 n2. 

Column Total n.1 n.2 n.. 
 

 

 Now for the parent node ô,  pl=( n.1 / n..) and pr=( n.2 / n..) so the impurity function at the 

parent node will be  

 

Now  for the daughter nodes ôl and ôr , for xj ≤ c, pl=( n11 / n1.) and pr=( n12 / n1.) and for xj > 

c, pl=( n21 / n2.) and pr=( n22 / n2.). Then the impurity function at the daughter nodes will be  

 

 

 

 

and the best split for the single variable xj is the one that has largest value of ∆i(𝑠, τ) over all 

s ª Sj, the set of all possible split for xj . 

Choosing best split at a node 

A tree starts with the root node, which consists of all observation. By using the goodness-of-

fit criterion for a single variable, the best split at the root node for each of the variables x1 to 

.1 .1 .2 .2
e e

.. .. .. ..

n n n n
i( ) log log

n n n n


       
= − −       

       

11 11 12 12
l e e

1. 1. 1. 1.

n n n n
i( ) .log .log

n n n n


       
= − −       

       

21 21 22 22
r e e

2. 2. 2. 2.

n n n n
i( ) .log .log

n n n n


       
= − −       

       

l l r ri( ) i( ) p i( ) p i( )    = − −
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xr can be found. The best split s at the root node is then the one that has the largest value of 

∆i(𝑠, τ) over all r single-variable best splits at that node. 

 

4. Choosing terminal node 

A node can be declared as a terminal node if it fails to be larger than certain predetermined 

size; that is , if n(ô) ≤ nmin , where n(ô) is the number of observations in node ô and nmin is 

some previously assumed minimum size of a node. The terminal node act as a break on the 

tree growth, the larger the value of nmin, the more severe the break. In another way a node can 

be declared as a terminal node if the largest goodness-of-fit value at that node is smaller than 

a certain predetermined limit. However, these stooping rules are not fruitful in reality. A 

better approach is to let the tree grow to saturation and then prune it back (Breiman et al. 

1984). 

 

5. Associating a class with the terminal node 

Suppose at a terminal node ô there are n(ô) observation of which nk(ô) are from class Πk, 

k=1,…,K. then the class which corresponds to the largest of the {nk(ô)} is assigned to ô. This 

is called plurality rule and it can be easily obtained from the Bayes’s rule classifier, where 

the node ô can be assigned to the class Πi if  

 

 Let p(ôª Πi) = pi , (i=1,…,K), be the prior probability of the nod ô belonging to 

different classes i.e., pi = ni(ô)|n(ô)) and let pi(ô) = p(ô|Πi) be the probability distribution 

function of observations in node ô  belonging to class Πi. then the posterior probability of 

that node ô will be assigned the class Πi is given by  

 

 

The Bayes’s rule classifier for K classes assigns ô to that class with the highest posterior 

probability. Since the denominator is fixed for all the classes, the node ô will be assigned to 

the class Πi if                                        

 

  

i i
i K

k k

k 1

p ( ).p
p( )

p ( ).p





=

 =



i k
1 k K

p( ) max p( ) 
 

 = 

i k
1 k K

p( ) max p( ) 
 

 = 
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6. Ensemble of classifiers 

A well-known method of building classification systems is to build multiple classifiers, each 

from a subset of the original training set, such that the final classification decision is 

aggregated from all classifiers' decisions. This method is called the classifier ensemble 

method (Buhlmann et.al. 2004). For example, five classifiers could be built independently 

using five different subsets of the original training set. These five classifiers would produce 

five predictions of the class label for each new record, and the class with a plurality of votes 

would be the prediction of the entire ensemble. It is also possible to extend this simple voting 

scheme so that each individual classifier prediction is given a weight, perhaps based on its 

test accuracy. The overall prediction becomes the plurality of the weighted votes.  

 

Classifiers in an ensemble can all have the same type, or they can be of different types. For 

example, an ensemble with three classifiers can consist of three decision trees, or it can 

consist of a decision tree, a neural network (Kantardzic, 2003), and a Bayesian network 

(Dunham, 2003). Both kinds of ensembles are known to perform better than single 

classifiers. The variance between classifiers is reduced in the case of classifiers of the same 

type, and the bias between classifiers is reduced for ensembles with different types of 

classifiers. The classification models of ensembles for both kinds are, therefore, more 

representative of the data than a single classifier. In other words, having multiple strong 

classifiers each built from a different sample of the dataset leads to a final classification 

decision with higher accuracy than a single classifier. 

 

Generating the datasets used for training the classifiers in an ensemble can be done by 

different methods such as bootstrap sampling (bagging) (Breiman, 1994), and boosting 

(Freund and Schapire, 1996). Suppose that a dataset contains n records, each with m 

attributes. Bootstrap sampling or bagging generates the datasets each of size n by randomly 

sampling the records with replacement. Hence the training dataset for each tree contains 

multiple copies of some of the original records. Boosting maintains weights for records in the 

training set, such that these weights are updated after each classifier is trained according to 

the difficulty of classifying the current set of records. The weights are then used to derive the 

new sampling for the dataset. 
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6.1. Random Forest 

Bagging (Bootstrap aggregating) was the first procedure that successfully combined the 

ensemble of tree classifiers to improve the performance over a single classifier (Breiman, 

1996b). In bagging randomization is introduced only while selecting the data set on which 

each tree is grown. Random forest (Breiman, 2001) is an extension of this bagging procedure 

where another source of randomization is introduced by choosing a subset of m variables at 

each node and node is split on the basis of best split. 

Let  ( , ), 1,2,...,i iL y i n= =x  is the learning data set where yi is the response variable and it 

takes values from K classes and there are p variables in the data set. Random forest consists 

of ensemble of B classifiers 1 1( ), ( ),..., ( )Bh h hx x x , where each classifier is constructed upon a 

bootstrap replica of the learning data set, by selecting randomly selecting a subset of m 

variables out of p variables and the best split is determined on the basis of m selected 

variables using gini index.. Each classifier votes for one of the classes for each test instances 

and test instance is classified by the label of winning class. As the individual trees are 

constructed upon a bootstrap replication, there is on an average 36.8% of instances are not 

playing any role in the construction of the tree. These instances are called out of bag (OOB) 

instances. These OOB instances are the source of data used in the random forest for 

estimating the classification error and to evaluate the performance of the random forest. 

Random forests are computationally very efficient and offer good prediction accuracy and 

are less sensitive to noisy data. 

Some features of RF 

Let (x, y) denote the learning instances having n number of observations where each vector 

of attributes x is labeled with class yj, (j=1,2,…,c). The correct class is denoted by y. p(yj) is 

the probability of class yj . denote the set of OOB instances for classifier hb as Ob. Let 

jQ( , y )x be the OOB proportion of votes for class yj for input vector x. 

B

b j b

b 1
j B

b b

b 1

I(h ( ) y ;( , y) O )

Q( , y )

I(h ( );( , y) O )

=

=

= 

=







x x

x

x x

 

The Margin function, strength and Correlation between classifiers in a RF is defined as 

follow. 
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Margin function- The “margin function” measures the extent to which the average vote for 

right class y exceeds the average vote for any other class. The margin function of the labeled 

observation (x, y) is 
1

( , y) ( ( ) ) max ( ( ) )
c

j
j
j y

m P h y P h y
=


= = − =x x x . If m(x, y)>0, then h(x) 

correctly classifies y. h(x) denote a classifier that predict the label y for an observation x. 

Strength- It is defined as the expected margin, and is computed as the average over the 

training set. 

1
1

1

1

1

1

1
( , ) max ( , ) ,
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where I(.) is the indicator  function 

7. Advantages 

• People could understand and interpret easily after brief explanation  

• Many data analysis techniques require data normalization, creation of dummy 

variable etc. but it requires little data preparation. 

• Generally the techniques are specialized in analyzing data set having only one type of 

variable, but it handles both numerical and categorical data. 

• Performs well with large data in a short time 
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Introduction: 

Particle swarm optimization (PSO) is a nature inspired evolutionary optimization 

technique to solve computationally hard or difficult optimization problems. It is a robust 

stochastic optimization technique based on the movement and intelligence of swarms. It 

was developed by James Knnedy and Russ Eberhart in 1995 based on the social behaviour 

of biological organisms that move in groups (swarms) such as birds and fishes. It has been 

applied successfully in wide variety of search and optimization problems by abstracting the 

working mechanism of natural phenomenon. Since PSO is a population-based (swarm) 

evolutionary algorithms, which has some similarities with GA. However, a fundamental 

difference between these paradigms is that the evolutionary algorithms are based on natural 

evolution concepts i.e. based on a competitive philosophy, it means only the fittest 

individuals tends to survive. Conversely, PSO incorporates a cooperative approach to solve 

a problem, given that all individuals (particles), which can survive, change themselves over 

time and one particle’s successful adaptation is shared and reflected in the performance of 

its neighbours.  

The basic element of PSO is a particle, which can fly throughout search space 

towards an optimum by using its own information as well as the information provided by 

other particles comprising its neighbourhood. In PSO, a swarm of n particles (individuals) 

communicate either directly or indirectly with one another using search directions 

(gradients). The algorithm adopted was a ‘set of particles’ flying over a search space to 

locate global optimum. During an iteration of PSO, each particle updates according to its 

previous experience and experience of its neighbours. 

PSO Vectors:  

X vector: Current location (current position) of the particle in search space, P vector 

(pbest): Location of best solution found so far by the particle and V vector:  Gradient 

mailto:santosha.rathod@icar.gov.in
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(direction) for which particle will travel in, if undisturbed. All these vectors are 

continuously updated. 

 

  

Let, 𝐴 ⊂ 𝑅𝑛be search space and the swarm is defined as a set 𝑆 = {𝑋1, 𝑋2, … , 𝑋𝑀} of 𝑀 

particles (candidate solution), where 𝑀 is a user-defined parameter of the algorithm. Then 

𝑖𝑡ℎ particle dimension of 𝑑 is defined as 𝑋𝑖 = (𝑋𝑖1 , … , 𝑋𝑖𝑑 )
𝑇 , 𝑖 = 1,2, … , 𝑀. Each particle 

is a potential solution to a problem, characterized by three quantities: velocity 𝑉𝑖 =

(𝑉𝑖1 , … , 𝑉𝑖𝑑 )
𝑇, current position        𝑋𝑖 = (𝑋𝑖1 , … , 𝑋𝑖𝑑 )

𝑇and personal best position  𝑝𝑏𝑒𝑠𝑡𝑖 =

(𝑝𝑏𝑒𝑠𝑡𝑖1 , … , 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 )
𝑇 . Let, 𝑡 denote current iteration and 𝑔𝑏𝑒𝑠𝑡  denote its global best 

position achieved so far by any of its particles. Initially, swarm is randomly dispersed 

within search space and random velocity is assigned to each particle. Particles interact with 

one another by sharing information to discover optimal solution. Each particle moves in 

the direction of its personal best position (𝑝𝑏𝑒𝑠𝑡) and its global best position (𝑔𝑏𝑒𝑠𝑡). To 

search optimal solution, each particle changes its velocity according to the cognitive and 

social parts given by: 

𝑉𝑖𝑗(𝑡 + 1) = 𝑤(𝑡)𝑉𝑖𝑗(𝑡) + 𝑐1𝑅1[𝑝𝑏𝑒𝑠𝑡𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)] + 𝑐2𝑅2[𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)] 

Where, 𝑖 = 1,2, … , 𝑀  and 𝑗 = 1,2, … , 𝑑 . However, in case of swarm explosion effect, 

corresponding velocity component is restricted to following closest velocity bound: 

𝑉𝑖𝑗(𝑡 + 1) = −𝑉𝑚𝑎𝑥   if  𝑉𝑖𝑗(𝑡 + 1) < −𝑉𝑚𝑎𝑥 

       =  𝑉𝑚𝑎𝑥 If, 𝑉𝑖𝑗(𝑡 + 1) > 𝑉𝑚𝑎𝑥 
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After updating its velocity, each particle moves to a new potential solution by updating its 

position as follows 

𝑋𝑖𝑗(𝑡 + 1) =  𝑋𝑚𝑖𝑛 if 𝑋𝑖𝑗(𝑡 + 1) < 𝑋𝑚𝑖𝑛 

                  = 𝑋𝑖𝑗(𝑡)+𝛽𝑉𝑖𝑗(𝑡 + 1)  , if  𝑋𝑚𝑖𝑛 ≤ 𝑋𝑖𝑗(𝑡 + 1) ≤ 𝑋𝑚𝑎𝑥 

                = 𝑋𝑚𝑎𝑥,  if 𝑋𝑖𝑗(𝑡 + 1) > 𝑋𝑚𝑎𝑥 

Where, 𝑖 = 1,2, … , 𝑀 ; 𝑗 = 1,2, … , 𝑑 . In the above equations 𝑉𝑖𝑗 , 𝑋𝑖𝑗  and 𝑝𝑏𝑒𝑠𝑡𝑖𝑗  are 

respectively velocity, current position and personal best position of particle 𝑖  on the  

𝑗𝑡ℎdimension, and 𝑔𝑏𝑒𝑠𝑡𝑗 is the 𝑗𝑡ℎdimension global best position achieved so far among 

all particles at iteration  𝑡.  𝑅1 and 𝑅2are random values, which are mutually independent 

and uniformly distributed over [0,1], 𝛽 is a constraint factor used to control velocity weight, 

whose value is usually set equal to 1. Positive constants 𝑐1 and 𝑐2 are usually called 

“acceleration factors”. Factor 𝑐1  is sometimes referred to as “cognitive” parameter, while 

𝑐1  is referred to as “social” parameter. Inertia weight at iteration 𝑡 is 𝑤(𝑡) and is used to 

balance global exploration and local exploitation. This can be determined by:  

𝑤(𝑡) = 𝑤𝑢𝑝 − (𝑤𝑢𝑝 − 𝑤𝑙𝑜𝑤)𝑡/𝑇𝑚𝑎𝑥 

Where,𝑡 is current iteration number, 𝑤𝑢𝑝 and 𝑤𝑙𝑜𝑤 are desirable lower and upper limits of 

𝑤 and  𝑇𝑚𝑎𝑥 is maximum number of iterations. 
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Fig.: Schematic diagram of particles' velocity.  

 

 

Frame work of PSO: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Initialize swarm with random position (X0) and Velocity 

vectors (V0) 

For each Particle 

Evaluate Fitness Next Particle 

IF fitness (Xt) > fitness (gbest) 

gbest = Xt 

Update Position 

Xt+1=Xt+Vt+1 

 

IF fitness (Xt) > fitness (pbest) 

pbest = Xt 

Update Velocity 

𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡)
+ 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡) 

Termina

te 

gbest = Output 

End 

TRUE 

FALSE 

gbest: Global Best Position 

pbest:  Self Best Position 

C1 & C2 : Acceleration Coefficients 

W: Inertial Weight 
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Algorithm Implementation:  

Step 1: Initialize the parameters: initialize the position and speed of the particle to random 

numbers in the search space. 

Step 2. Evaluate the particle’s position: use a fitness function to evaluate each particle’s 

position. 

Step 3. Make a comparison between: (1) compare the fitness value of step 2 with the 

particle’s personal best value pbest, and make the best value become the newest pbest; (2) 

compare the particle’s fitness value with the global best value gbest, and the best one 

becomes gbest. 

Step 4. Update the particle: Update the particle’s speed and position. 

Step 5. The termination conditions of iteration: circulate to step 2 until it satisfies the 

termination conditions, generally when the fitness value is optimal, or reaches the 

maximum iterations. 

The basic concept of PSO lies in accelerating each particle towards the best position found 

by it so far (pbest) and the global best position (gbest) obtained so far by any particle, with 

a random weighted acceleration at each time step.  This is done by simply adding V vector 

to X vector to get another X vector. 𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖 . Once, the particle computes the new 

Xi, it then evaluates its new location. IF X-Fitness is better than P-Fitness, then pbest=Xi 

and P-Fitness = X-Fitness 

Psychosocial compromise:  

Each particle updates its new position by compromising its local best towards the global 

best as depicted schematically in the following diagram. 
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𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑠 𝑉𝑡+1

= 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡) 

User defined parameters: 

Initial parameters such as swarm size, position of particles, velocity of particles and 

maximum number of iterations; and control parameters such as swarm size, inertial weight, 

acceleration coefficients C1 and C2 and number of iterations are very much important to 

begin with optimization algorithm. One has to define them in such a way that obtained 

parameter error should be less then target error.  

Innertial weight (W):  

A large inertia weight (W) facilitates a global search while a small inertia weight facilitates 

a local search. 

 

 

       

 

 

Acceleration coefficients: 

An acceleration coefficient determines the inclination of search, greater the C1, greater will 

be the global search ability, greater the C2, greater will be the local search ability. 
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C2>C1 Greater local search 

ability 

 

C1>C2 Greater global 

search ability 
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Pseudo code of PSO:  

For each particle 

{ 

    Initialize particle 

} 

Do until maximum iterations or minimum error criteria 

{ 

    For each particle 

    { 

        Calculate Data fitness value 

        If the fitness value is better than pBest 

        { 

            Set pBest = current fitness value 

        } 

        If pBest is better than gBest 

        { 

            Set gBest = pBest 

        } 

    } 

        For each particle 

    { 

        Calculate particle Velocity 

        Use gBest and Velocity to update particle Data 

    } 

 } 
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Pseudocode in mathematical representation:

 

Numerical Example 1:  

[Reference: Mohanty, P. (2018). NTPL online certification course on selected topics on 

decision modelling, Particle Swarm Optimization, IIT Khargapur. 
https://www.youtube.com/watch?v=uwXFnzWaCY0 ] 

Consider a maximization problem for maximization of the function 𝑓(𝑥) = 1 + 2𝑥 − 𝑥2 

Let us consider the control parameters W=0.70, C1=0.20, C2=0.60 and n=5 (Swarm 

particle). Consider, random numbers used for updating velocity of particle be  

r1 = [0.4657, 0.8956, 0.3877, 0.4902, 0.5039] 

r2 = [0.5319, 0.8185, 0.8331, 0.7677, 0.1708] 

Note: We keep the random numbers fixed for all the iterations throughout and each 

random number is corresponding to each particle. 

Initialization of swarm particles: We initialize fitness of all the particles as zeros;  

https://www.youtube.com/watch?v=uwXFnzWaCY0
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Current position of all the particles as; 

Cp(0)=10*[r1-0.5] 

Cp(0)=10*{[0.4657, 0.8956, 0.3877, 0.4902, 0.5039]-0.5} 

So, Cp(0)=[-0.3425, 3.9558, -1.128, -0.0981, 0.0385] 

Note: Multiplied by 10 to initialize at least some particles to be >1 and subtracted 0.5 

sides to generate both positive and negative random numbers. 

Initialization of velocity:  

V(0)=r2-0.5 

V(0)={[ 0.5319, 0.8185, 0.8331, 0.7677, 0.1708]-0.5} 

We get, 

V(0)=[0.0319, 0.3185, 0.3331, 0.2677, -0.3292] 

Note: one should see that velocity should not be too high or too low. 

 

Current position and current fitness: 

Iteration 1: 

Current position (Cp) of each particle is what we initialize 

Cp(1)= Cp(0)= [-0.3425, 3.9558, -1.128, -0.0981, 0.0385] 

Current velocity V(1)=V(0) 

                                    =[0.0319, 0.3185, 0.3331, 0.2677, -0.3292] 

Current fitness CF(1)= 𝑓(𝐶𝑝(1)) = 1 + 2𝐶𝑝(1) − 𝐶𝑝(1)2 

                                                       = [0.1976, -6.7368, -2.5061, 0.7942, 1.0755] 

Note: 𝐶𝑝(1)2 is obtained by squaring individual elements of Cp(1). As of now, we 

obtained current velocity, current position and current fitness.  

Local best position (LBP)of each particle up to first iteration is just its current position. 

LBP(1)=Cp(1)=[-0.3425, 3.9558, -1.128, -0.0981, 0.0385] 
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Local Best fitness of each particle up to iteration 1=current fitness of iteration 1 

Local Best Fitness (LBF) 

LBF(1)=CF(1)=[0.1976, -6.7368, -2.5061, 0.7942, 1.0755] 

Global Best Fitness of iteration 1= Max (LBF(1)); 

GBF(1)=1.0755  → for 5th particle 

Global Best Position of iteration 1 

GBP(1)=Corresponding current position of 5th particle in cp(1) 

            =0.0385 

Velocity of iteration 2 

Velocity for next iteration 

 𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝐿𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝐺𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) 

We have from iteration 1 

V(1)=[0.0319, 0.3185, 0.03331, 0.2677, -0.3292] 

For 1st particle: r1=0.4657 ,r2=0.5319, CP(1)=-0.3425, LBP(1)=-0.3425 and  

GBP(1)=0.0385 

So, for the iteration 2, for the particle 1st: 𝑉2 = 0.7𝑉(1) + 0.2 ∗ 𝑟𝑎𝑛𝑑(0,1)(𝐿𝐵𝑃(𝑖) −

𝐶𝑝(𝑖)) + 0.6 ∗ 𝑟𝑎𝑛𝑑(0,1)(𝐺𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) =0.1439 

Thus we have for iteration 2 

V(2)=[0.1439, -1.7008, 0.8136, 0.2503, -0.2304] 

Current position and current fitness 

Current position for next iteration 

𝐶𝑝(𝑖 + 1) = 𝑐𝑝(𝑖) + 𝑉(𝑖 + 1) 

WKT, 

CP(1)=[-0.3425, 3.9558, -1.1228, -0.0981, 0.0385]  & V(2)=[0.1439, -1.7008, 0.8136, 

0.2503, -0.2304] 

Hence, CP(2)=[-0.1986, 2.2550, -0.3092, 0.1522, -0.1919] 

Current fitness for next iteration 

CF(i)= 𝑓(𝐶𝑝(𝑖)) = 1 + 2𝐶𝑝(𝑖) − 𝐶𝑝(𝑖)2 
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Hence, CF(2)=[0.5634, 0.4250, 0.2860, 1.2812, 0.5794] 

We know that Local Best Fitness is LBF(1)=[0.1976, -6.7368, -2.5061, 0.7942, 1.0755] 

Hence, 

LBF(2)=Max[CF(2), LBF(1)]  = [0.5634,0.4250, 0.2860, 1.2812, 1.0755] 

Local Best & Global Best 

We have for iteration 2: 

CP(2)=[-0.1986, 2.2550, -0.3092, 0.1522, -0.1919] and  LBF(2)= [0.5634,0.4250, 0.2860, 

1.2812, 1.0755] 

Hence Global Best Fitness in iteration 2, 

GBF(2)= Max(LBF(2))=1.2812 

So, Global Best Position in iteration 2, GBP(2)= 0.1522(4th particle position in CP(2)) 

Local Best Position of each particle in iteration 2 

CP(1)=[-0.3425, 3.9558, -1.1228, -0.0981, 0.0385] and LBF(1)=[0.1976, 0.4250, 0.2860, 

1.2816, 0.5794] 

So, LBP(2)= position w.r.t. LBF(2)=[-0.1976, 2.2550, -0.3092, 0.1522, 0.0385] 

Current position is best for first 4 particle, but not for 5th last one is better 

 

Summary: Iteration 1 & 2 

Iteration  V(i) & CP (i) CF(i) & LBF (i) GBF(i) LBP(i) & 

GBP(i) 

1 V(1)=[0.0319, 

0.3185, 0.03331, 

0.2677, -0.3292] 

 

CP(1)=[-0.3425, 

3.9558, -1.1228, -

0.0981, 0.0385] 

CF(1)=[0.1976, -

6.7368, -2.5061, 

0.7942, 1.0755] 

 

LBF(1)=[0.1976, -

6.7368, -2.5061, 

0.7942, 1.0755] 

GBF(1) 

=1.0755 

LBP(1)=[-

0.3425, 3.9558, -

1.1228, -0.0981, 

0.0385] 

 

GBF(1)=0.0385 

2 V(2)=[0.1439, -

1.7008, 0.8136, 

0.2503, -0.2304] 

 

CF(2)= 

[0.5634,0.4250, 

0.2860, 1.2812, 

0.5794] 

 

GBF(2) 

=1.2812 

LBP(2)=[-

0.1986, 2.2550, -

0.3092, 0.1522, 

0.0385] 

 

GBP(2)=0.1522 
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CP(2)=[-0.1986, 

2.2550, -0.3092, 

0.1522, -0.1919] 

 

LBF(2)= 

[0.5634,0.4250, 

0.2860, 1.2812, 

1.0755] 

 

 

Summary: Iteration 3 & 4 

 

3 V(3)=[0.02127

, -2.2232, 

0.8001, 

0.1752, -

0.1120] 

 

CP(3)=[0.0141

, 0.0318, 

0.4909, 

0.3274, -

0.2944] 

CF(3)=[1.0279,1.0625,1.741

0, 1.5464, 0.3246] 

 

LBF(3)=[1.0279, 1.0625, 

1.7410, 1.5464, 1.0755] 

GBF(3)=1.741

0 

LBP(3)=[0.0141

, 0.0318, 

0.4909, 0.3274, 

0.0385] 

 

GBP(3)=0.4909 

4 V(4)=[0.3011, 

-1.3308, 

0.5601, 

0.1980, 

0.0420] 

 

CP(4)=[0.3152

, -1.2990, 

1.0510, 

0.5254, -

0.2523] 

CF(4)=[1.5312, -3.2861, 

1.9974, 1.7740, 0.4317] 

 

LBF(4)=[1.5312, 1.0625, 

1.9974, 1.7740, 1.0755] 

GBF(4)=1.997

4 

 

 

(Best fitness) 

LBP(4)=[0.3152

, 0.0318, 

1.0510, 0.5254, 

0.0385] 

 

GBP(4)=1.0510 

 

(Best position) 

 

𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡) 

 

𝐶𝑝(𝑖 + 1) = 𝑐𝑝(𝑖) + 𝑉(𝑖 + 1) 

𝐿𝐵𝐹(𝑖 + 1) = 𝑀𝑎𝑥[𝐶𝐹(𝑖 + 1), 𝐿𝐵𝐹(𝑖)] 

𝐺𝐵𝐹(𝑖) = 𝑀𝑎𝑥[𝐿𝐵𝐹(𝑖)] 

Final solution: 
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From iteration 4, we have, Global Best Position GBP(4)=1.0510 & Global Best Fitness 

GBF(4)=1.9974 Hence the final solution obtained as x*=1.0510 and f(x*)=1.9974 . 

Numerical Example 2 – Robust Regression with Particle Swarm Optimisation 

[Reference:  Enrico Schumann. Robust Regression with Particle Swarm Optimisation. 

https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf ] 

#R code for – Robust Regression with Particle Swarm Optimisation 

install.packages("NMOF") 

install.packages("MASS") 

library("NMOF") 

library("MASS") 

set.seed(11223344) 

createData <- function(n, p, constant = TRUE, 

                       sigma = 2, oFrac = 0.1) { 

  X <- array(rnorm(n * p), dim = c(n, p)) 

  if (constant) 

    X[, 1L] <- 1L 

  b <- rnorm(p) 

  y <- X %*% b + rnorm(n)*0.5 

  nO <- ceiling(oFrac*n) 

  when <- sample.int(n, nO) 

  X[when, -1L] <- X[when, -1L] + rnorm(nO, sd = sigma) 

  list(X = X, y = y, outliers = when) 

} 

n <- 100L ## number of observations 

p <- 10L ## number of regressors 

constant <- TRUE; sigma <- 5; oFrac <- 0.1 

https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
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h <- 75L ## ... or use something like floor((n+1)/2) 

aux <- createData(n, p, constant, sigma, oFrac) 

X <- aux$X; y <- aux$y 

Data <- list(y = as.vector(y), X = X, h = h) 

plot(Data) 

plot(X,y) 

plot(y, type="l") 

par(bty = "n", las = 1, tck = 0.01, mar = c(4,4,1,1)) 

plot(X[ ,2L], type = "h", ylab = "X values", xlab = "observation") 

lines(aux$outliers, X[aux$outliers ,2L], type = "p", pch = 21, 

        col = "blue", bg = "blue") 

OF <- function(param, Data) { 

  X <- Data$X; y <- Data$y 

  aux <- y - X %*% param 

  aux <- aux * aux 

  aux <- apply(aux, 2L, sort, partial = Data$h) 

  colSums(aux[1:Data$h, ]) ## LTS 

} 

popsize <- 100L; generations <- 500L 

ps <- list(min = rep(-10,p), 

             max = rep( 10,p), 

             c1 = 0.9, 

             c2 = 0.9, 

             iner = 0.9, 

             initV = 1, 

             nP = popsize, 

             nG = generations, 

             maxV = 5, 

             loopOF = FALSE, 

             printBar = FALSE, 

             printDetail = FALSE) 

system.time(solPS <- PSopt(OF = OF, algo = ps, Data = Data)) 

solPS <- PSopt(OF = OF, algo = ps, Data = Data) 

solPS 

 

 

 

Suggested Readings: 

Dai, H.-P.; Chen, D.-D.; Zheng, Z.-S. Effects of Random Values for Particle Swarm 

Optimization Algorithm. Algorithms 2018, 11, 23. https://www.mdpi.com/1999-

4893/11/2/23 

Enrico Schumann. Robust Regression with Particle Swarm Optimisation. https://cran.r-

project.org/web/packages/NMOF/vignettes/PSlms.pdf ] 

https://www.mdpi.com/1999-4893/11/2/23
https://www.mdpi.com/1999-4893/11/2/23
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
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Artificial Neural Network approach for Time Series Forecasting 
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Introduction: 

An artificial neural network (ANN), otherwise called neural network (NN), is a computational 

device that is inspired by the structure as well as functional aspects of biological neural 

networks the human brain especially. A neural network made out of various interconnected 

simple processing elements called neurons or nodes. Each node receives an input signal which 

is the aggregate ‘‘information’’ from other nodes or external stimuli, processes it locally 

through an activation or transfer function and produces a transformed output signal to other 

nodes or external outputs. This information processing characteristic makes ANNs an effective 

computational device and able to learn from examples and then to generalize to examples never 

before seen. 

A Time series (TS) is an ordered sequence of observations of a variable at equally spaced time 

intervals (monthly price data of a commodity, yearly crop yield and daily temperature data 

etc.). Time series forecasting is the utilization of a statistical model to predict future values 

based on previously observed values. The most widely used technique for forecasting time-

series data is the Box Jenkins’ Autoregressive integrated moving average (ARIMA) 

methodology. ARIMA model is appropriate if the time series under study is linear. In any case, 

they might be absolutely inappropriate if the time series under investigation is nonlinear in 

nature. There are several nonlinear time series model to deal with nonlinear time series data 

for instance,, bilinear model, Threshold Autoregressive (TAR) model, Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) model. Truth be told, these nonlinear 

models are still limited in that an explicit relationship for the data series at hand has to be 

hypothesized with little knowledge of the underlying law. In fact, the formulation of a 

nonlinear model to a particular data set is a very troublesome since there are too many possible 

nonlinear patterns and a prespecified nonlinear model may not be general enough to capture 

all the important features. Artificial neural networks, which are nonlinear data-driven 

approaches as opposed to the above model-based nonlinear methods, are capable of performing 

nonlinear modeling without a priori knowledge about the relationships between input and 
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output variables. In this way they are a more general and flexible modeling tool for forecasting. 

Thusly, in time series forecasting parlance, the ANN is a nonparametric nonlinear statistical 

model. 

Overview of ANN architecture: 

In general, an ANN can be partitioned into three sections, named layers, which are known as: 

i) Input layers  

These layers are responsible for receiving information (data), signals, features, or 

measurements from the external environment. These inputs (samples or patterns) are usually 

normalized within the limit values produced by activation functions. This normalization 

results in better numerical precision for the mathematical operations performed by the 

network. 

ii)      Hidden, intermediate, or invisible layers 

 These layers are composed of neurons which are responsible for extracting patterns 

associated with the process or system being analyzed. These layers perform most of the 

internal processing from a network. 

iii) Output layers  

These layers are also composed of neurons, and thus are responsible for producing and 

presenting the final network outputs, which result from the processing performed by the 

neurons in the previous layers.  

The main architectures of artificial neural networks, considering the neuron disposition, as 

well as how they are interconnected and how its layers are composed can be divided as 

follows:  

a) Single-layer feedforward network 

b)  Multilayer feedforward networks 

c)  Recurrent networks  

d) Mesh networks. 

For time series forecasting the multilayer feedforward networks are used which is given below 

 

Multilayer feedforward networks 

Figure 1 shows a feedforward network with multiple layers composed of one input layer with 

n 3sample signals, two hidden neural layers consisting of n1 and n2 neurons respectively, and, 
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finally, one output neural layer composed of m neurons representing the respective output 

values of the problem being analyzed. 

 

Fig 1: Architecture of Multilayer feedforward networks 

ANN approach to time series forecasting:    

In the domain of time series analysis, the inputs are typically the past observations series and 

the output is the future value. The ANN performs the following nonlinear function mapping 

between the input and output 

1 2( ,..., , )t t t t p ty f y y y w − − −= + +
 

where, w is a vector of all parameters and f  is a function of network structure and connection 

weights. Therefore, the neural network resembles a nonlinear autoregressive model. 

 

Single hidden layer multilayer feed forward network is the most popular for time series 

modeling and forecasting. This model is characterized by a network of three layers of simple 

processing units. The first layer is input layer, the middle layer is the hidden layer and the last 

layer is output layer. 
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Fig 2: Architecture of ANN for time series forecasting 

The relationship between the output (𝑦𝑡) and the inputs (yt-1, yt-2,…,yt-p) can be 

mathematically represented as follows: 

0 0

q p

t j i j t i

j i

y f g y  −

= =

  
=   

  
 

                                                                                  

 

where, 𝜔𝑗(𝑗 = 0,1,2, … . . , 𝑞) and 𝜔𝑖𝑗(𝑖 = 0,1,2, …… , 𝑝, 𝑗 = 0,1,2, … . . , 𝑞)are the model 

parameters often called the connection weights, p is the number of input nodes and q is the 

number of hidden nodes, g and f denote the activation function at hidden and output layer 

respectively. Activation function defines the relationship between inputs and outputs of a 

network in terms of degree of the non-linearity. Most commonly used activation functions are 

as follows- 

Activation  function Equation 

Identity x  

Sigmoid 1

1 xe−+
 

TanH 
2

2
tanh( ) 1

1 x
x

e−
= −

+
 

ArcTan 1tan ( )x−
 

Sinusoid sin( )x  

Gaussian 2xe−
 

 

Output y(t) 
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For time series forecasting sigmoid activation function is employed in hidden layer and identity 

activation function is employed in the output layer. 

The selection of appropriate number of hidden nodes as well as optimum number of lagged 

observation p for input vector is important in ANN modeling for determination of the 

autocorrelation structure present in a time series. Though there are no established theories 

available for the selection of p and q, hence experiments are often conducted for the 

determination of the optimal values of p and q. The connection weights of ANNs are 

determined by learning method. There are three common learning algorithms for ANN – 

1) Supervised Learning 

The supervised learning strategy consists of having available the desired outputs for a given 

set of input signals; in other words, each training sample is composed of the input signals and 

their corresponding outputs. Henceforth, it requires a table with input/output data, also called 

attribute/value table, which represents the process and its behavior. 

2) Unsupervised Learning 

Different from supervised learning, the application of algorithm based on unsupervised 

learning does not require any knowledge of the respective desired outputs. Thus, the network 

needs to organize itself when there are existing particularities between the elements that 

compose the entire sample set, identifying subsets (or clusters) presenting similarities. The 

learning algorithm adjusts the synaptic weights and thresholds of the network in order to reflect 

these clusters within the network .itself. 

3) Reinforcement Learning 

It is the hybrid of supervised and unsupervised learning.  

For time series forecasting supervised learning approach is utilized. Gradient decent back 

propagation algorithm is one of the popular approach of supervised learning. 

Gradient decent back propagation algorithm 

The objective of training is to minimize the error function that measures the misfit between the 

predicted value and the actual value. The error function which is widely used is mean squared 

error which can be written as: 

2
2

1 1 0 0

1 1
( )

q pN N

i t j i j t i

n n j i

E e y f g y
N N

  −

= = = =

    
= = −   
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Where N is the total number of error terms. The parameters of the neural network are 
j  and 

i j  estimated by iteration. Initial connection weights are taken randomly from uniform 

distribution. In each iteration the connection weights changed by an amount 
j    

( ) ( 1)j j

j

E
t t   




 = − +  −


 

where,   is the learning rate and 
j

E






 is the partial derivative of the function E with respect 

to the weight
j .  is the momentum rate. 

 

The 
j

E






 can be represented as follows- 

( ) ( ) ( )j j

j

E
e n f x y n

w


= −  


 

where ( )je n is the residual at nth  iteration 

( )f x = derivative of the activation function in the output layer. As in time series forecasting 

the activation function in the output layer is identity function hence ( )f x =1. ( )jy n is the 

desired output. Now connection weights in from input to hidden nodes changed by an amount 

ij
 

( ) ( 1)ij i j

ij

E
t t   




 = − +  −


 

where  

0

( ) ( )* ( )
q

j j

jij

E
g x e n w n

w =


= 


  

where ( )g x is the activation function in the hidden layer. For sigmoid activation function 

( )g x = 
2

exp( )

(1 exp( ))

x

x

−

+ −      

Learning rate is user defined parameter known as tuning parameter of neural network which 

determine how slow or fast the optimal weight is obtained. The learning rate must be set small 

enough to avoid divergence. The momentum term prevents the learning process from setting 

in a local minimum. Though there are no established theories available for the selection of 
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learning rate and momentum, hence experiments are often conducted for the determination of 

the learning rate and momentum. 

 

Step by Step Modeling Procedure: 

1. Testing of Nonlinearity: 

As ANNs is suitable for nonlinear time series forecasting. Hence, prior to application of ANN 

the nonlinearity should be check. There are several tests for checking nonlinearity. BDS 

(Brock-Dechert-Scheinkman) test is of the popular approach for checking nonlinearity. This 

test utilizes the concept of spatial correlation from chaos theory. The computational procedure 

is given as follows 

i) Let the considered time series is 

  1 2 3[ , , ,..., ]i Nx x x x x=  

ii) The next step is to specify a value of m (embedding dimension), embed the time 

series into m dimensional vectors, by taking each m successive points in the series. 

This transforms the series of scalars into a series of vectors with overlapping entries 

1 1 2

2 2 3 1

1

( , ,..., )

( , ,..., )

.

.

.

( , ,..., )

m

m

m

m

m

N m N m N m N

x x x x

x x x x

x x x x

+

− − − +

=

=

=

 

 

iii) In the third step correlation integral is computed, which measures the spatial 

correlation among the points, by adding the number of pairs of points ( i, j), where 

1≤ i ≤ N and 1≤ j≤N , in the m-dimensional space which are “close”  in the sense 

that the points are within a radius or tolerance  of each other. 

, , ;

1

( 1)
m i j

i jm m

C I
N N

 


=
−
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where Ii,j;= 1 if m m

i jx x −   

                    = 0 otherwise 

iv) If the time series is i.i.d. then C ,m [C ,1]
m

 

v) The BDS test statistics is as follows 
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,

,

[ ( ) ]m

m

m

m
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The choice of m and  depends on number of data. The null hypothesis is data are 

independently and identically distributed (i.i.d) against the alternative hypothesis the data are 

not i.i.d.; this implies that the time series is non-linearly dependent. BDS test is a two-tailed 

test; the null hypothesis should be rejected if the BDS test statistic is greater than or less than 

the critical values.  

2. Division of the data: 

Data is divided into training and test sets. The training sample is used for ANN for model 

development and the test sample is utilized to evaluate the forecasting performance. Sometimes 

a third one called the validation sample is also utilized to avoid the overfitting problem or to 

determine the stopping point of the training process. It is common to use one test set for both 

validation and testing purposes particularly for small data sets. The literature suggests little 

guidance in selecting the training and testing sets. Most commonly used rule are 90% vs. 10%, 

80% vs. 20% or 70% vs. 30%, etc. 

3. Data Normalization: 
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Nonlinear activation functions such as the sigmoid function typically have the squashing role 

in restricting the possible output from a node to, typically, (0, 1).  Hence, data normalization 

is done prior to training process begins.  

Normalization procedure 

Linear transformation to [0,1]: Xn =(X0-Xmin)/ ( Xmax-Xmin) 

Statistical normalization: Xn =(X0-mean(X))/var(X) 

simple normalization: Xn =X0/ Xmax 

4. Selection of appropriate number of hidden nodes as well as optimum number of 

lagged: 

There are no established theories available for the selection of p and q, hence experiments are 

often conducted for the determination of the optimal values of p and q. 

5. Estimation of connection weights: 

Estimation of connection weights are determined by learning algorithm. For time series 

forecasting most commonly used learning approach is gradient decent back propagation 

algorithm. 

6. Evaluating forecasting Performance 

Forecasting performance can be computed by several approaches. Some of the approaches are 

given below- 

1

1
ˆ / 100
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t t t

t
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t t
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( )
2

1

1
ˆ

n

t t

t

RMSE y y
n =

= −     

where n is the total number of forecast values. ty is the actual value at period  t and ˆ
ty  is the 

corresponding forecast value. The model with less MAPE/MSE/RMSE is preferred for 

forecasting purposes. 

 

Limitations of ANN for time series forecasting: 

i) ANNs are nonlinear time series model hence, for linear time series data the 

approach may not be better than linear statistical model. 
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ii)  ANNs are black-box methods. There is no exact form to describe and analyze the 

relationship between inputs and outputs. This causes troublesome for interpretation 

of results. In addition, no formal statistical test is available. 

iii) ANNs are subjected to have overfitting problems owing to its large number of 

parameters. 

iv) There are no established theories available for the selection of p and q, hence 

experiments are often conducted for the determination of the optimal values of p 

and q which is tedious. 

v) ANNs usually require more data for time series forecasting. 
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1. Introduction: 

Machine learning is a technique which allows the machine to learn by itself. Support Vector 

Machine (SVM) is one of the eminent supervised machine learning technique which was 

developed by Cortex and Vapnik (1995) for binary classification problems. In binary 

classification, the goal of the SVM is to find out a hyperplane that best separates a dataset into 

two classes. After two years of SVM’s invention, support vector regression (SVR) based on 

similar principles as SVM classification was developed by Vapnik et al. (1997) to deal with 

the regression problems. Being a non-parametric method, SVR does not depend on 

assumptions like linear regression. Another benefit of using SVR is that it permits the 

construction of non-linear model. So, SVM is not only popular for the classification but also 

for its modelling and prediction ability. The performance of SVM is based upon proper 

selection of kernel. There are different types of kernel which can be used for the classification 

and prediction purposes. Since the last decade, the application of SVM has been extended to 

time series modelling and forecasting in various areas such as power load forecasting (Niu et 

al., 2010), rainfall forecasting (Ortiz-Garcia et al., 2014), wind power forecasting (De Giorgi 

et al., 2014) and agricultural forecasting (Kumar and Prajneshu, 2015). 

2. Support Vector Machine (SVM) in time series: 

Application of SVM in time series is generally utilized when the series shows non stationarity 

and non-linearity process. A tremendous advantage of SVM is that it is not model dependent 

as well as independent of stationarity and linearity. However, it may be computationally 

expensive  during the training. The training of the data driven prediction process SVM is done 

by a function which is estimated utilizing the observed data. Let, a time series 𝑦(𝑡) which takes 

the data at time 𝑡 {𝑡 = 0,1,2,3, … , 𝑁}. 

Now, the prediction function for linear regression is defined as: 
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   𝑓(𝑦) = (𝑤. 𝑦) + 𝑐                 (1) 

Whereas, for non linear regression, it will be: 

   𝑓(𝑦) = (𝑤. ∅(𝑦)) + 𝑐                       (2)              

Where, 𝑤 dentoes the weights, 𝑐 represents threshold value and ∅(𝑦) is known as kernel 

function. 

If the observed data is linear, then equation (1) will be used. But, for non-linear data, the 

mapping of  𝑦(𝑡) is done to the higher dimension feature space through some function which 

is denoted as ∅(𝑦) and eventually it is transformed into the linear process. Afer that, a linear 

regression will carry out in that feature space.  

The first and foremost objective is to find out the value of 𝑤 and 𝑐 which will be optimal. In 

SVM, there are two things viz., flatness of weights and error after the estimation which are to 

be minimized. The flatness of the weights is denoted by ‖𝑤‖2 which is the eucledian norm. 

Firstly, one has to concentrate on minimization the ‖𝑤‖2. Second important thing is the 

minimization of the error. This is also called as empirical risk. However, the overall aim is to 

minimize the regularized risk which is sum of empirical risk and the half of the product of the 

flatness of weight and a constant term which is known as regularized constant. The regularized 

risk can be written as- 

   𝑅𝑟𝑒𝑔(𝑓) = 𝑅𝑒𝑚𝑝(𝑓) +
𝜏

2
‖𝑤‖2                                 (3) 

Where, 𝑅𝑟𝑒𝑔(𝑓) is the regularized risk, 𝑅𝑒𝑚𝑝(𝑓) denotes the empirical risk, 𝜏 is as constant 

which is called as regularized constant/capacity control term and ‖𝑤‖2 is the flatness of 

weights. 

The regularization constant has a significant impact on a better fitting of the data and it can 

also be useful for the minimization of bad generalization effects. In the other words, this 

constant deals with the problem of over-fitting. The overfitting of the data can be redued by 

the proper selection of this constant value. The empirical risk can be defined as:- 

   𝑅𝑒𝑚𝑝(𝑓) =
1

𝑁
∑ 𝐿(𝑦(𝑖), 𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑁−1

𝑖=0                                            (4) 
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Where, 𝛼(𝑖) denotes the truth data of predicted value, 𝐿(. ) is known as loss function and 𝑖 

represents the index to the time series. 

There are various types of loss function in literature. But, two functions viz., vapnik loss 

function and quadratic loss function are most popular and they are generally used. The 

quadratic programming problem has been made to minimize the regularised risk which is- 

   Minimize,  
1

2
‖𝑤‖2 + 𝐷 ∑ 𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑛

𝑖=1            (5)           

 Where, 

𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))=|𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)|−∈ if |𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)| ≥∈ 

= 0; otherwise. 

Where, 𝐷 is a constant which equals to the summation normalization factor and ∈ represents 

the size of the tube. 

The computation of ∈ and 𝐷 is done empirically because they are user defined. On has to 

choose proper value of 𝐷 and ∈. Now, dual optimization problem is formed using the lagrange 

multiplier which can be written as: 

Maximize, −
1

2
∑ (𝛽𝑖 − 𝛽𝑖

∗)𝑁
𝑖,𝑗=1 (𝛽𝑗 − 𝛽𝑗

∗)〈𝑦(𝑖), 𝑦(𝑗)〉−∈ ∑ (𝛽𝑖 − 𝛽𝑖
∗) + ∑ 𝛼(𝑖) (𝛽𝑖 −𝑁

𝑖=1
𝑁
𝑖=1

𝛽𝑖
∗)                                                                             (6) 

Subject to,  ∑ (𝛽𝑖 − 𝛽𝑖
∗) = 0𝑁

𝑖−1  ; 𝛽𝑖, 𝛽𝑖
∗ ∈ [0, 𝐷] 

The function 𝑓(𝑥) is defined as; 

   𝑓(𝑥) = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝑁

𝑖=1 〈𝑦, 𝑦(𝑖)〉 + 𝐶                      

(7) 

KKT conditions are used to get the solution of the weights. 

The significance of kernel function in non-linear support vector machine (NLSVR) is very 

much imporatnt for mapping the data 𝑦(𝑖) into higher dimension feature space  ∅( 𝑦(𝑖)) in 

which the data becomes linear. Generally notation for kernel function is given as; 

   𝑘(𝑦, 𝑦′) = 〈∅(𝑦), ∅( 𝑦′)〉;                                                                        (8) 
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There are many methods in literature to solve the quadartic programming. However, the most 

used method is sequential minimization optimization (SMO) algorithm.  

3. Kernel function  

SVM is a learning algorithm which is based on kernel. There are different types of kernel 

which can be used for the classification and prediction purpose. However, there is no such rule 

to make inference on which kernel should one use. All the kernels are used separately for the 

given datasets and whichever gives the better result, one should choose that one. Various types 

Kernel are listed below: 

1. Non linear 

2. Linear 

3. Polynomial 

4. Radial basis function: a) Gaussian Radial basis function b) Laplace Radial basis 

function. 

5. Sigmoid kernel  

6. Hyperbolic tangent kernel 

7. Anova radial basis kernel 

8. Multi-layer perceptron 

9. Linear spline kernel. 

Kernel function are used for the transformation of the given data into the required form. Kernel 

function is actually a mathematical function. RBF is mostly used kernel function. Some kernel 

functions are described in the following:  

Polynomial kernel equation: Polynomial kernel is generally used in the image processing. It is 

useful for nonlinear modelling. This kernel function is very simple yet efficient method. 

   𝑘(𝑥, 𝑦) = (𝑥. 𝑦 + 1)𝑝 ; 𝑝= degree of polynomial                                      (9) 

Gaussian kernel function:  

   𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
‖𝑥−𝑦‖2

2𝜎2
)                                     (10) 
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      Or 𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛼‖𝑥 − 𝑦‖2), Where, shape of hyperplane is controlled 

by 𝜎.  

Sigmoid kernel function:  

Sigmoid function is used as the proxy of artificial neural network. 

   𝑘(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ(𝜃𝑥𝑇 . 𝑦 + 𝑎)                                                                   (11) 

Linear kernel function:  

Sometimes, linear kernel gives better results as compared to complex and nonlinear kernels. 

Linear 

classifier can be used to test the non-linearity of the datasets. 

   𝑘(𝑥, 𝑦) = 𝑥. 𝑦                                                 (12) 

4. Advantages of SVM: 

1. It gives global optimum. 

2. Training of SVM is comparatively easier than other machine learning techniques. 

3. Well scaling for data with high dimensionality. 

4. It can give a good prediction. 

5. It is based on statistical learning theory. 

6. Work on structural risk minimization. 

7. Risk of overfitting problem may overcome by SVM. 

8. It has good generalization property. 

9. It is useful when there is no prior information about the data. 

10. It also work on unstructured data. 

5. Illustration: 

Data Description: 

Time series data on Cotton Production (Million Bales) of India from 1950 to 2016 were taken 

from the Ministry of Agriculture & Farmers Welfare, Government of India. The data from 
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1950-2011 have been utilized for model building purpose and the data from 2012 to 2016 were 

used to predict the cotton production for the validation purpose. 

Support Vector Machine: 

The most important part in SVM technique is the selection of parameters and kernel which 

have to be selected with utmost care to improve the performance of the model in order to get 

better accuracy in forecasting. The best parameters and kernel have been selected using 

“e1701” package (David, 2017) in R software. 

The time series plot of cotton production is illustrated in Fig. 1. It can be seen from Table 1 

that the time series show a high value of coefficient variation which reprsents the presence of 

highly heterogenous characteristic of the series.   

 

Fig. 1: Time Series Plot of Cotton Production 

Table 1: Summary Statistics of Cotton Production 

Statistic Value Statistic Value 

Minimum 3.04 Maximum 33.20 

1st Quartile 5.54 Standard Deviation 6.81 

Median 7.20 Skewness 2.05 

Mean 9.60 Kurtosis 4.09 

3rd Quartile 11.26 Coefficient of 

Variation 

70.93 
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Table 2 displays the estimated best parameters of SVR after sufficient tuning of SVR model 

and these best parameters have been utilized to build the SVR model. It has been seen that the 

best SVM-kernel function is Radial basis function for SVR. 

Table 2: Parameter estimation of SVR 

Sampling method 10-fold cross validation 

Epsilon (Best Parameter) 0.1 

Cost (Best Parameter) 4 

Gamma (Best Parameter) 1 

Number of Support Vectors 39 

SVM-Type eps-regression 

SVM-Kernel Radial Basis Function 

Fig. 2 shows the graphical representation of the performance of the models for Cotton 

Production series.  Model performance in terms of MSE, MAE and MAPE has been shown in 

Table 3 and Table 4 for training and testing dataset respectively. Here, ARIMA (2, 2, 1) model 

has been fitted based on the lowest AIC values among various ARIMA models and the data of 

cotton production show the non-linearity pattern which is tested by Brock, Dechert and 

Scheinkman (BDS) test. 

 

Fig. 2: Graphical representation of the performance of ARIMA and SVM models 

Table 3: Model performance in training dataset using ARIMA and SVM 
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Model MSE MAE MAPE 

ARIMA 6.70 1.83 21.28 

SVM 3.08 1.14 12.73 

 

Table 4: Model performance in testing dataset using ARIMA and SVM 

Model MSE MAE MAPE 

ARIMA 82.45 7.35 22.76 

SVM 9.48 2.54 7.83 

 

Table 5 displays the Out-of-Sample forecast values using ARIMA and SVM.  

Table 5: Model performance in testing dataset using ARIMA and SVM 

Year Actual ARIMA SVM 

2012 34.22 34.98 33.85 

2013 35.9 38.21 34.78 

2014 34.81 41.79 32.67 

2015 30.0 43.82 34.33 

2016 33.09 45.99 28.32 

It has been seen from the Fig. 2 that the fitted graph of the SVM model is more close to the 

graph of original data as compare to ARIMA model both in training and forecasting. It is 

observed from Table 3 and Table 4 that the SVM has a lower MSE, MAE and MAPE compared 

to the ARIMA model in both training and testing dataset. It has also been seen from Table 5 

that the forecasted values of the SVM are closer to the observed values compared to ARIMA. 

From the above results and discussion, it can be inferred that performance of the SVM model 

is better than the ARIMA model in terms of forecasting accuracy.   

6. Conclusion 

In reality, most of the time series data are non-linear in nature. In this study, the data of cotton 

production show non-stationary as well as non-linearity structure which were difficult to 

capture for the ARIMA models. However, SVM has shown its’ tremendous performance due 

to the ability of capturing the non-linear pattern. Being a non-linear machine learning 
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technique, SVM has well captured the heterogeneous trend of the given dataset. Based on the 

results, it can be inferred that SVM outperformed the ARIMA model. Therefore, it can be used 

in modeling and forecasting of time series to improve the forecasting accuracy in the presence 

of non-linear pattern. 
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Introduction: 

Spatio-temporal time series are the observations which are recorded over both space and time 

by considering systematic dependencies across space and time. Spatio-temporal modeling 

manages the single variables recorded over a timeframe at various locations. The case of 

spatio-temporal data incorporates; Daily or hourly carbon emission data recorded from 

observatory at many location, daily river flow data recorded from many river basins, hourly 

daily or weekly record of many weather parameters over different locations, and traffic flow 

measurements taken from a set of loop detectors in an exceptionally visit premise are cases of 

spatial time series data. Utilization of the spatio-temporal time series modeling for the cover 

many areas and much of the original impetus for the area was driven by geo-statistics yet as of 

late the applications have been reached out to numerous areas viz., sociology, economics, 

environmental, ecological and agricultural sciences. Many literatures recommend that 

incorporation of both spatial and temporal information will enhance the demonstrating 

effectiveness of phenomenon under thought. In this way, it is sensible to model time and space 

scales at the same time to catch inherent vulnerability over a timeframe over various locations.  

Because of computational difficulties and inaccessibility of simultaneous spatial and temporal 

information, no significant progress is accomplished in spatio-temporal time series modeling 

as contrast with univariate time series modeling. Spatio-temporal models are the models which 

considers concurrent information on both space and time of variables under consideration. In 

univariate time series we observe autocorrelation between the successive observations over a 

timeframe, to model these sorts of series, the Box-Jenkins autoregressive moving average (Box 

and Jenkins (1970)) model is most usually utilized model because of its prominent modeling 

building process. On other hand, the auto correlated spatio-temporal time series phenomenon 

can be modeled using the space time autoregressive moving average (STARMA) model. The 
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autoregressive and moving average components of univariate time series lagged in both space 

and time is alluded as space time autoregressive moving average (STARMA) model.  

1.1.2. STARMA Model 

The space-time models explain the systematic dependencies over both space and time 

is modeled through the class of STARMA models was developed by Pfeifer and Deutsch 

(1980b). The autoregressive and moving average form of space time model represented by 

STARMA model are characterized by single variable Zi(t), observed at N fixed spatial locations 

(i = 1, 2,…, N) on T time periods (t = 1, 2, . . ., T).  The N spatial locations can be a geographical 

location, country, state, etc. The spatial dependencies between N times series is incorporated 

through N*N spatial weight matrices.  Analogous to univariate time series, Z(t) is expressed as 

a linear combination of past observations and errors. The STARMA model (Pfeifer and 

Deutsch, 1980a), denoted by 𝑆𝑇𝐴𝑅𝑀𝐴(𝑝𝜆1 , 𝜆2  ,...,   λ𝑝, 𝑞𝑚1 , 𝑚2  ,...,   m𝑞) can be represented in the 

matrix equation as follows;              

𝑍(𝑡) =  ∑ ∑ 𝜙𝑘𝑙  𝑊𝑙𝜆𝑘
𝑙=0

𝑝
𝐾=1 𝑍(𝑡 − 𝑘) − ∑ ∑ 𝜃𝑘𝑙  𝑊𝑙𝑚𝑘

𝑙=0
𝑞
𝐾=1 𝜀(𝑡 − 𝑘) + 𝜀(𝑡)                       … (1.1) 

                                                                                 

Where, 

 𝒛(𝒕) = [𝒛𝟏(𝑡),  … … , 𝒛𝑵(𝑡)]′is a N × 1 vector of observations at time t = 1,…, T, 

 p is the autoregressive order (AR) with respect to time,  

 q is the moving average order (MA) with respect to time, 

 𝜆𝑘 is the spatial order of the kth AR term, 

 𝑚𝑘 is the spatial order of the kth MA term, 

 𝜙𝑘𝑙 is the AR parameter at temporal lag k and spatial lag l (scalar), 

 𝜃𝑘𝑙  is the MA parameter at temporal lag k and spatial lag l (scalar) and 

 𝑊𝑙is the N*N spatial weight matrix with spatial order l with diagonal elements zero   and non-

diagonal elements is the relation between sites.  

The spatial weight matrix  𝑊(0)= IN  i.e. Identity matrix and each row of 𝑊𝑙 must add up to 

one.  The random error vector 𝜀(𝑡) = [𝜀1(𝑡), 𝜀2(𝑡), … , 𝜀𝑁(𝑡)]′ is normally distributed at time t 
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with 𝐸[𝜀(𝑡)] = 0, 𝐸[𝜀(𝑡)𝜀′(𝑡 + 𝑠)] = {
𝐺 = 𝜎2𝐼𝑁 𝑖𝑠 𝑠 = 0
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 and 𝐸[𝜀(𝑡)𝜀′(𝑡 + 𝑠)] =

0, 𝑓𝑜𝑟 𝑠 > 0.  

There are two subclasses of the STARMA model, in equation (3) when q=0, only 

autoregressive terms remain and consequently the model progresses toward becoming space-

time autoregressive or STAR model which is represented as follows; 

𝒁(𝒕) =  ∑ ∑ 𝜙𝑘𝑙  𝑊𝑙𝜆𝑘
𝑙=0

𝑝
𝐾=1 𝑍(𝑡 − 𝑘) + 𝜀(𝑡)                                                         …(1.2) 

When p becomes 0, only moving average terms remains and hence the model becomes 

space-time moving average or STMA model which is represented as follows; 

𝒁(𝒕) =  𝜀(𝑡) − ∑ ∑ 𝜃𝑘𝑙  𝑊𝑙𝑚𝑘
𝑙=0

𝑞
𝐾=1 𝜀(𝑡 − 𝑘)                                            … (1.3)                         

1.1.3.  Spatial weight matrix 

Building of spatial weight matrix plays a key role in STARMA modeling, the 

hierarchical ordering of neighbors of each site and the selection of an appropriate sequence of 

weighting matrices is a matter left to the model builder since more complex the weight matrix, 

more troublesome is to estimate the parameters of STARMA model. In the vast majority cases, 

the space pattern is assumed to be equal and regularly spaced to ease the model building. In 

the vast majority applications, the uniform spatial weight matrix is only a simplifying 

assumption since typically the sites are irregularly spaced. A weight can be picked in different 

ways, the least difficult of which is the binary scheme, if two areas shared a common border 

then we relegate a weight as one otherwise zero (Griffith (1996) and (2009)). 
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Fig.1: Schematic representation of spatial weight grid 

Be that as it may, in spatial weight matrix, row normalization is a common practice i.e. 

making all rows sum to one is common practice. However, in some studies, column 

normalization has been used, allowing the matrix to represent influence exerted by i rather than 

accepted influence from j. The choice of weighting scheme is nontrivial and can be very 

important because different weight matrices often lead to different inferences being drawn and 

can introduce bias into an analysis. In spatiotemporal data, if the relative contributions of the 
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spatial neighbors of a unit remain the same across all times may not be reasonable. These 

weights, in any case, must reflect a hierarchical ordering of spatial neighbors. First order 

neighbors are those which are closest to the chosen site. Second order neighbors are farther 

away than first order neighbor’s, yet closer than third order neighbors. The schematic 

representation of spatial weight grid is represented (Pfeifer and Deutsch, 1980b) in figure 1.  

1.1.4.  STARMA Modeling Procedure  

As like Box-Jenkins univariate ARIMA methodology the STARMA model is also build 

by three stage procedure of model building viz., identification, estimation and diagnostic 

checking, proposed by Pfeifer and Deutsch (1980b). The STARMA model is said to stationary 

if covariance structure of Z(t) does not change with time and every Z(t) lie inside the unit root 

circle i.e. the STAR model are invertible and STAMA models are stationary. 

1.1.4.1.Model Identification 

The space time autocorrelation function (STACF) and space time partial 

autocorrelation function (STPACF) are used to identify the STAR and STMA order. Like 

univariate ARIMA model, the STAR and STMA model orders are identified in view of 

significant STAR and STMA spikes. The space time autocorrelation function (STACF) 

between lth and kth order neighbor’s s time lag apart (s=1,…,k and h=0,1,…,𝜆) is given 

underneath;  

𝜌𝑙𝑘(𝑠) =
∑ ∑ 𝑊(𝑙)𝑍𝑖(𝑡)𝑊(𝑘)𝑍𝑖(𝑡+𝑠)𝑇−𝑆

𝑡=1
𝑁
𝑖=1

[∑ ∑ (𝑊(𝑙)𝑍𝑖(𝑡))2  .  (𝑊(𝑘)𝑍𝑖(𝑡+𝑠))2]𝑇−𝑆
𝑡=1

𝑁
𝑖=1

1
2

                                                         …(1.4)   

 

The space time partial autocorrelation function (STPACF) is expressed in following 

equation; 

𝜌ℎ0(𝑠) = ∑ ∑ 𝜙𝑗𝑙𝜌ℎ𝑙(𝑠 − 𝑗)𝜆
𝑙=0

𝑘
𝑗=1                                                               …(1.5)                                                                                     

Characteristics of the theoretical space-time autocorrelation and partial autocorrelation 

functions for STAR, STMA and STARMA models (1.1) are depicted in following table. 
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Table 1: STACF and STPACF of STAR, STMA and STARMA models 

Process STACF STPACF 

STAR tails off with both space and 

time 

cuts off after p lags in time 

and λp lags in space 

STMA cuts off after q lags in time 

and mq lags in space 

tails off with both space and 

time 

STARMA tails off tails off 

1.1.4.2.Model Parameter Estimation 

The maximum likelihood estimates of 

   𝚽 = [ϕ10,ϕ11, … , ϕ1𝜆1
, … , ϕp0, ϕp1, … , ϕp𝜆𝑝

]′ and  

  Θ = [θ10,θ11, … , θ1𝜆1
, … , θq0, θq1, … , θp𝜆𝑞

]′ rely on the assumption of errors i.e. which are 

normally distributed with mean zero and variance-covariance matrix equal to 𝜎2𝐼𝑁. The 

likelihood function for the same is defined as follows;  

  𝑓(𝜀|Φ, Θ, 𝜎2)=(2𝜋)
−𝑇𝑁

2 |𝜎2𝐼𝑁𝑇|
−1

2  exp {−
1

2𝜎2 𝜖′𝐼𝜖} 

                          =(2𝜋)
−𝑇𝑁

2 (𝜎2)
−𝑇𝑁

2  exp {−
𝑆(Φ,Θ)

2𝜎2 }                                         …(1.6) 

Where, 

 𝑆(Φ, Θ) = 𝜖′𝐼𝜖 = ∑ ∑ 𝜖𝑖
2(𝑡)𝑇

𝑡=0
𝑁
𝑖=1  is the sum of squares of the errors and                𝜖′ =

[𝜖1(1),…, 𝜖1(𝑇) ,…, 𝜖𝑁(1) ,…, 𝜖𝑁(𝑇) ]. Finding the values of the parameters that maximize 

the likelihood function is equivalent to finding the values of Φ and Θ that minimize the sum of 

squares 𝑆(Φ, Θ). Therefore, the problem is reduced to finding the least squares estimates of Φ 

and Θ . 

 The errors 𝜀(𝑡) need to be recursively calculated using the equation: 

     𝜀(𝑡)=𝑧(𝑡) + ∑ ∑ 𝜙𝑘𝑙
𝜆𝑘
𝑙=0

𝑝
𝑘=1 𝑊(𝑙)𝑧(𝑡 − 𝑘) − ∑ ∑ 𝜃𝑘𝑙

𝑚𝑘
𝑙=0

𝑞
𝑘=1 𝑊(𝑙)𝜀(𝑡 − 𝑘)     …(1.7) 

for t = 1, ..., T and for given values of the parameters (Φ,Θ).  
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Because the values of the observations z and of the errors care unknown for times before time 

1, these initial values need to be calculated. Thus, for any given choice of the parameters (Φ,Θ) 

and starting values (𝑧 ∗, 𝑐 ∗) the set of values 𝑐(𝑐𝐼 >, 𝑒 𝐼 𝑧 ∗, 𝑐 ∗, 𝑊) could be calculated 

successively given a data set z. The log likelihood associated with the parameter values 

(Φ, Θ, 𝜎2) conditional on the choice of (𝑧 ∗, 𝑐 ∗) would be  

    𝑙∗(Φ, Θ, 𝜎2) = −
𝑇𝑁

2
ln(2𝜋) −

𝑇𝑁

2
𝜎2 −

𝑆∗(Φ,Θ)

2𝜎2                                                     …(1.8) 

So, for fixed 𝜎2 , the conditional maximum likelihood estimates of Φ, Θ are the conditional 

least squares estimates obtained by finding the values of Φ, Θ that minimize the conditional 

sum of squares function 

𝑆∗(Φ, Θ) = ∑ ∑ 𝜖𝑖
2(𝑡)𝑇

𝑡=0
𝑁
𝑖=1                                                                         …(1.9) 

 

1.1.4.3.Diagnostic-Checking 

At this stage the objective is to determine if the model does adequately represent the data. If 

the fitted model adequately represents the data, the residuals should be gaussian white noise, 

i.e., should be distributed normally with mean zero and variance-covariance matrix equal to  

𝜎2𝐼𝑁. One way of testing for correlation is to calculate the sample space-time auto correlations 

of the residuals and check for additional significant structure. If the model is adequate then, 

                              𝑣𝑎𝑟(�̂�𝑙0(𝑠)) ≈
1

𝑁(𝑇−𝑠)
                                                   …(1.10) 

Where �̂�𝑙0(𝑠) is the space-time autocorrelation function of the residuals of the fitted model. 

Thus, the residual space-time autocorrelations, since they are approximately normal, can be 

standardized and checked for significance. If the residuals are not independent the pattern is 

identified, and the tentative model updated. 

Case Study: Modeling and Forecasting of monthly mean maximum temperature of nine 

districts of north Karnataka. Rathod et al (2018). 
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In this study monthly mean maximum temperature of nine districts of north Karnataka state of 

India (Fig. 1) are considered to model and forecast using the proposed STARMA 

methodologies. The data from January 2000 to August, 2015 has been utilized   for model 

building and data from September, 2015 to August, 2016 used for model validation 

(Forecasting performance).  

 

Fig. 1. Geographical map of karnataka 

 

Construction of spatial weight matrix: 

As explained in methodology section, the spatial weight matrix has been constructed by 

assigning equal weightage to each neighbor. The map of nine locations under consideration is 

delineated in figure 2.10 and each location are represented by numbers from one to nine.  

Considering the neighboring locations, connectivity spatial weight matrices have been 
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considered. For instance, for location 1, location 2 and location 8 are first order neighbors. 

Again, 3, 6 and 7 are second order neighbors to location one. In a similar manner, first and 

second order neighbors for all nine locations are reported in table 1. Considering the numbers 

of neighbors, the spatial weights have been doled out to each location.  In uniform spatial 

weight matrix equal weights are relegate to each neighbors. To make row normalization i.e. 

making all rows sum to one we divide, one by number of neighbors i.e. 
1

𝑛
 , here n is number of 

neighbors. For example, for first location (Gulbarga) there are two first order neighbors, then 

we divide one by two and assign 0.5 as weight to each locations. As we calculated weight for 

first location, one can proceed in same manner to calculate weights for all nine locations. In 

light of this procedure first order spatial weight matrix has been calculated in table 3. In this 

work attempt has been made to incorporate second order spatial weight matrix in STARMA 

model. For first location 3, 6 and 7 are second order neighbors, then we divide one by three 

and assign 0.33 as weight to each location; in the same manner one can proceed further to 

calculate weights to all nine locations for second order neighbors. The second order spatial 

weight matrix for all nine locations are depicted in table 4. To compute STACF and STPACF, 

zero order (Table 2) first order and second order spatial weight matrix (Table 3 and 4) is 

needing to be incorporate in the model. In first order spatial weight matrix, since we do not 

assign weights to any neighbors, diagonal elements end up noticeably equal to one.  
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Fig. 2.: Map of districts/locations considered 

 

 

 

Table 1: Neighbors of each site for each spatial order 

Location Order 

1 2 

1 2,8 3,6,7 

2 1,3 4,8,7 

3 2,4,5,6 7,8 

4 3,5 2 

5 3,4,6 9 

6 3,5,7,9 2,8 

7 6,8,9 1,2,3 

8 1,7,9 2,3,6 

9 6,7,8 5 

 

Table 2.: Spatial weight matrix of order zero  

 

Location Gulbarga Bijapur Raichur Bagalkot Belgaum Dharwad Gadag Koppal Bellary 

Gulbarga 1 0 0 0 0 0 0 0 0 

Bijapur 0 1 0 0 0 0 0 0 0 

Raichur 0 0 1 0 0 0 0 0 0 

Bagalkot 0 0 0 1 0 0 0 0 0 

Belgaum 0 0 0 0 1 0 0 0 0 

1. Gulbarga 

2. Bijapur 

3. Bagalkot 

4. Belgaum 

5. Dharwad 

6. Gadag 

7. Koppal 

8. Raichur 

9. Bellary 
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Dharwad 0 0 0 0 0 1 0 0 0 

Gadag 0 0 0 0 0 0 1 0 0 

Koppal 0 0 0 0 0 0 0 1 0 

Bellary 0 0 0 0 0 0 0 0 1 

 

Table 3: First order spatial weight matrix for Maximum temperature data 

Location Gulbarga Bijapur Raichur Bagalkot Belgaum Dharwad Gadag Koppal Bellary 

Gulbarga 0 0.5 0 0 0 0 0 0.5 0 

Bijapur 0.5 0 0.5 0 0 0 0 0 0 

Raichur 0 0.25 0 0.25 0.25 0.25 0 0 0 

Bagalkot 0 0 0.5 0 0.5 0 0 0 0 

Belgaum 0 0 0.33 0.33 0 0.33 0 0 0 

Dharwad 0 0 0.25 0 0.25 0 0.25 0 0.25 

Gadag 0 0 0 0 0 0.33 0 0.33 0.33 

Koppal 0.33 0 0 0 0 0 0.33 0 0.33 

Bellary 0 0 0 0 0 0.33 0.33 0.33 0 

 

 

 

 

Table 4: Second order spatial weight matrix 

Location Gulbarga Bijapur Raichur Bagalkot Belgaum Dharwad Gadag Koppal Bellary 

Gulbarga 0 0 0.33 0 0 0.33 0.33 0 0 

Bijapur 0 0 0 0.33 0 0 0.33 0.33 0 

Raichur 0 0 0 0 0 0 0.5 0.5 0 

Bagalkot 0 1 0 0 0 0 0 0 0 

Belgaum 0 0 0 0 0 0 0 0 1 

Dharwad 0 0.5 0 0 0 0 0 0.5 0 

Gadag 0.33 0.33 0.33 0 0 0 0 0 0 

Koppal 0 0.33 0.33 0 0 0.33 0 0 0 

Bellary 0 0 0 0 1 0 0 0 0 

 

STARMA model fitting: 

In this article STARMA model was estimated using the three-stage procedure explained by 

Pfeiffer and Deutsch (Pfeiffer and Deutsch, 1980a). As explained in methodology section, 

STARMA estimation procedure is extension of Box-Jenkins ARIMA methodology in spatio-

temporal set up. As like ARMA It likewise has three stages of model building viz., model 
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identification, estimation and diagnostic checking. Considering the significant spikes in 

STACF and STPACF plots, the model order STARMA (1 0 1), has been identified. Parameters 

of the identified models are estimated using maximum likelihood method and are given in table 

5, alongside their standard errors and probability values. The estimated parameters are then 

consolidated in the model and predicted values were acquired. For diagnostic checking 

Multivariate Box-Pierce Non-Correlation test has been applied and the residuals are observed 

to be non-correlated. Further, performance of models under consideration is depicted in table 

6.  

Table 5: STARMA Model parameters  

Spatial lag Slag 0 Slag 1 Slag 2 

AR MA AR MA AR MA 

Parameters -0.66 

(0.023) 

0.119 

(0.010) 

0.171 

(0.052) 

0.213 

(0.0157) 

0.79 

(0.089) 

0.11 

(0.116) 

Probability <0.001 <0.001 0.013 0.004 <0.001 0.010 

Multivariate Box-Pierce Non-Correlation Test of residuals:  Chi-square=69.86 (p=0.31) 

Values in the parenthesis indicates the standard error 

 

 

The mean absolute percentage error (MAPE) has been computed to compare the forecasting 

performance of ARIMA and STARMA model (Table 6). In view of the lowest MAPE value 

of proposed STARMA model for all the locations, it is affirmed that STARMA model 

outflanked the Box-Jenkins ARIMA model in all the locations.  

Table 6: Modeling Performance in terms of MAPE 

Sl. No Location ARIMA STARMA 

1 Gulbarga 2.54 1.30 

2 Bijapur 2.73 1.29 

3 Raichur 2.36 1.24 

4 Bagalkot 2.80 1.49 

5 Belgaum 3.42 2.07 

6 Dharwad 3.31 1.69 

7 Gadag 2.97 1.56 

8 Koppal 2.89 1.41 

9 Bellary 2.45 1.24 

 

R scripts to implement STARMA and ARIMA model  
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install.packages(starma) 

install.packages(spdep) 

install.packages(lmtest) 

install.packages(forecast) 

install.packages(fNonlinear) 

library(starma) 

library(spdep) 

library(lmtest) 

library(forecast) 

library(fNonlinear) 

w0.mat<-as.matrix(read.table(file.choose(),header=TRUE)) 

w1.mat<-as.matrix(read.table(file.choose(),header=TRUE)) 

W <- list(order0=w0.mat, order1=w1.mat) 

st<-as.matrix(read.table(file.choose(),header=TRUE))  # data read 

st<- stcenter(st) 

stacf(st, W, tlag.max=36) 

stpacf(st, W, tlag.max=36) 

# model fitting 

starma(st, wlist = W, ar = 1, ma = 1) 

summary(st.fit) 

st1=read.table(file.choose(), header = T)  # import again 

st11=st1$EngNE 

st11.fit=auto.arima(st11)     # arima fitting 

accuracy(st11.fit) 

st11.fit 

coeftest(st11.fit) 

res.st=st.fit$residuals  # residuls of STARMA model 

resdata=data.frame(res.st)  # create data frame 

write.csv(as.data.frame(res.st), file="stres.csv") 

st12=st1$EA              # second location arima fitting 

st11f=auto.arima(st12) 

st11f=auto.arima(st11) 

accuracy(st11.fit) 
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Nonlinear Growth Model: Introduction and overview 

1Mrinmoy Ray, 1K N Singh, 1Achal Lama, 1Kanchan Sinha and 2Santosha Rathod 
1ICAR-IASRI, New Delhi 
2ICAR-IIRR, Hyderabad 

 

1. Introduction 

Growth is defined as an “Irreversible increase in size and volume and is the consequence 

of differentiation and distribution occurring in the plant/animal”. A model is a schematic 

representation of the conception of a system or an act of mimicry or a set of equations, 

which represents the behaviour of a system. Also, a model is “A representation of an object, 

system or idea in some for other than that of the entity itself”. Its purpose is usually to aid 

in explaining, understanding or improving performance of a system.  

 

TYPES OF MODELS 

 

Depending upon the purpose for which it is designed the models are classified into different 

groups or types. Of them a few are: 

 

a. Statistical models: These models express the relationship between yield or yield 

components and weather parameters. In these models relationships are measured in a 

system using statistical techniques (Table 1). 

Example: Step down regressions, correlation, etc. 

b. Mechanistic models: These models explain not only the relationship between weather 

parameters and yield, but also the mechanism of these models (explains the relationship of 

influencing dependent variables). These models are based on physical selection. 

c. Deterministic models: These models estimate the exact value of the yield or dependent 

variable. These models also have defined coefficients. 
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d. Stochastic models: A probability element is attached to each output. Foreach set of 

inputs different outputs are given along with probabilities. These models define yield or 

state of dependent variable at a given rate. 

e. Dynamic models: Time is included as a variable. Both dependent and independent 

variables are having values which remain constant over a given period of time. 

f. Static: Time is not included as a variable. Dependent and independent variables having 

values remain constant over a given period of time. 

g. Simulation models: Computer models, in general, are a mathematical representation of 

a real world system. One of the main goals of crop simulation models is to estimate 

agricultural production as a function of weather and soil conditions as well as crop 

management. These models use one or more sets of differential equations, and calculate 

both rate and state variables over time, normally from planting until harvest maturity or 

final harvest. 

Statistical Modelling 

 A fundamental problem in statistics is to develop models based on a sample of 

observations and inferences using the model so developed. In almost all branches of 

agriculture including animal sciences and fisheries, vast amounts of data pertaining to 

production/productivity of various crops, and import-export of various agricultural 

commodities, etc. are being collected sequentially over time. One characteristic of such 

data is that the successive observations are dependent. Each observation of the observed 

data series, Yt, may be considered as a realization of a stochastic process {Yt}, which is a 

family of random variables {Yt, t  T}, where T = { 0, 1, 2, …}, and apply standard time-

series approach to develop an ideal model which will adequately represent the set of 

realizations and also their statistical relationships in a satisfactory manner. Forecasting of 

these types of time-series data is of great importance for planners and policy makers. 

During the last some decades, a new area of “Nonlinear time-series modelling” has rapidly 

been developing. Here, there are basically two possibilities, viz. Parametric or 

Nonparametric approaches. Evidently, if in a particular situation, we are quite sure about 

the functional form, we should use the former, otherwise the latter may be employed. 
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Parametric and Nonparametric Approaches 

Over the last several decades, regression analysis has become increasingly popular as a tool 

for statistical modelling and data analysis. This provides information on relationship 

between a response variable and one or more predictor variables. The main objective is to 

express the mean of response as a function of predictor variables. General regression model 

is of the form 

                                    Y    =   m (X) +   

whereY is the response variable, m(X) = E (Y| X) is the mean response or regression function 

and   is the error. The regression function m(X) is usually unknown and the objective is to 

obtain a suitable estimator of m(X) using a sample of observations. 

 In the linear regression, it is assumed that the mean of the response variable Y is a linear 

function of predictor variable(s) X of the form  

                                    E (Y| X)   =  X 

i.e. m(X) is linear in parameters. The parameter vector  is usually estimated by the Method 

of least squares. In nonlinear regression, it is assumed that the mean of the response variable 

is a nonlinear function of the predictor variable (s) X of the form 

E(Y|X)=m(X,) 

i.e. m(X) is nonlinear in parameters. Generally, there will be no closed form expression for 

the estimates of  and iterative procedures are required for estimation of parameters.  

A parametric regression model (linear or nonlinear) assumes that the form of m is known 

except for some unknown parameters, and shape of the regression function is entirely 

dependent on the parameters. Often, it is difficult to guess the most appropriate functional 

form just from looking at the data. Sometimes there may not be some suitable parametric 

form to express the regression function. In such situations, the nonparametric regression 

approach, which does not require strong assumptions about the shape of the regression 
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function, is very useful. A nonparametric regression model only assumes that m belongs to 

some infinite dimensional collection of functions. One limitation of above approach is that 

it generally relies upon certain assumptions about smoothness of the function being 

estimated, which may not hold in reality. This may result in over smoothing of the data 

under consideration. 

 

LINEAR MODEL 

A mathematical model is an equation or a set of equations which represents the behaviour 

of a system. It can be either ‘linear’ or ‘nonlinear’.  A linear model is one in which all the 

parameters appear linearly.  

NONLINEAR MODELS  

Any type of statistical inquiry in which principles from some body of knowledge enter 

seriously into the analysis is likely to lead to a ‘Nonlinear model’.  Such models play a very 

important role in understanding the complex inter-relationships among variables. A 

‘nonlinear model’ is one in which at least one of the parameters appears nonlinearly. More 

formally, in a ‘nonlinear model’, at least one derivative with respect to a parameter should 

involve that parameter.  

• Examples of a nonlinear model are: 

  Y(t) = exp (at+bt2)                                               (1a)          

  Y(t) = at + exp (−bt)                                           (1b) 

 

 Note. Some authors use the term ‘intrinsically nonlinear’ to   indicate a nonlinear model 

which can be transformed to a linear model by means of some transformation.  

For example, the model given by Eq. (1a) is ‘intrinsically nonlinear’ in view of the 

transformation X(t) = loge Y(t). 

 

a. MALTHUS MODEL:  

In 1798 the Englishman Thomas R. Malthus posited a mathematical model of population 

growth. His model, though simple, has become a basis for most future modeling of 
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biological populations. His essay, "An Essay on the Principle of Population," contains an 

excellent discussion of the caveats of mathematical modeling and should be required 

reading for all serious students of the discipline. Malthus's observation was that, unchecked 

by environmental or social constraints, it appeared that human populations doubled every 

twenty-five years, regardless of the initial population size. Said another way, he posited 

that populations increased by a fixed proportion over a given period of time and that, absent 

constraints, this proportion was not affected by the size of the population. By way of 

example, according to Malthus, if a population of 100 individuals increased to a population 

135 individuals over the course of, say, five years, then a population of 1000 individuals 

would increase to 1350 individuals over the same period of time. Malthus's model is an 

example of a model with one variable and one parameter. A variable is the quantity we are 

interested in observing. They usually change over time. Parameters are quantities which 

are known to the modeller before the model is constructed. Often they are constants, 

although it is possible for a parameter to change over time. In the Malthusian model the 

variable is the population and the parameter is the population growth rate. 

If N(t) denotes the population size or biomass at time t and r is the intrinsic growth rate, 

then the rate of growth of population size is given by 

dN/dt = rN  

Therefore,  N(t) = Noexp (rt) 

Note : Malthus model can be used for describing growth of simplistic organisms, which 

begin to grow by binary splitting of cells. 

 Drawback:N(t)→ as t→, which cannot happen in reality. 

Malthus hypothesized that unchecked population growth would quickly exceed carrying 

capacity, leading to overpopulation and social problems. 

Note. The parameter ris assumed to be positive.  

 

b. MONOMOLECULAR MODEL:  

The monomolecular model assumes a carrying capacity of one, that is, the maximum level 

of disease is one, so disease severity or incidence is measured as a proportion. Diseased 
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plant tissue may only lie between zero (healthy) and one (complete disease). It also assumes 

the absolute rate of change is proportional to the healthy tissue i.e., (1-y). After creating 

the plot mono function and trying the example set of parameter values, try replacing the 

parameter values with others to see how the shape of the relationship changes. 

It describes progress of growth in which it is believed that the rate of growth at any time is 

proportional to the resources yet to be achieved i.e. 

 dN/dt = r(K−N),                     

 where K is the carrying capacity. 

or   N(t) = K− (K−No) exp (−rt) 

Drawback: No point of inflexion.  

c. LOGISTIC MODEL:  

Logistic model was developed by Belgian mathematician Pierre Verhulst (1838) who 

suggested that the rate of population increase may be limited, i.e., it may depend on 

population density. Population growth rate declines with population numbers, N, and 

reaches 0 when N = K. Parameter K is the upper limit of population growth and it is called 

carrying capacity. It is usually interpreted as the amount of resources expressed in the 

number of organisms that can be supported by these resources. If population numbers 

exceed K, then population growth rate becomes negative and population numbers decline. 

This model is represented by the     differential equation: 

dN/dt = rN (1−N/K)                                                        (1) 

Therefore,  N(t) = K/[1+(K/No−1) exp(−rt)]. The graph of N(t) versus t is elongated S-

shaped and the curve is symmetrical about its point of inflexion. 

d. GOMPERTZ MODEL 

This is another model having a sigmoid  type of behaviour and is found to be quite useful 

in biological work.  The Gompertz curve was originally derived to estimate human 

mortality by Benjamin Gompertz (Gompertz, B. "On the Nature of the Function Expressive 

of the Law of Human Mortality, and on a New Mode of Determining the Value of Life 
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Contingencies." Phil. Trans. Roy. Soc. London 123, 513-585, 1832). Charles 

Winsor (1932) presents an early description of the use of this equation to describe growth 

processes. However, unlike the logistic model, this is not symmetric about its point of 

inflexion.   

The differential equation for this model is 

dN/dt = rN loge (K/N)                                               (2) 

or   N(t) = K exp[loge (No / K) exp(−rt)] 

e. RICHARDS MODEL:  

 

The Richards curve or generalized logistic is a widely used growth model that will fit a 

wide range of S-shaped growth curves. There are both 4 and 5 parameter versions in 

common use. The logistic curve is symmetrical about the point of inflection of the curve. 

To deal with situations where the growth curve is asymmetrical, Richards (1959) added an 

additional parameter  

This model is given by  

                    .                               (4)                            

However, unlike the earlier models, this model has four parameters. 

Drawback. Number of parameters is more.  

  

f. MIXED-INFLUENCE MODEL:  

This is a mixture of      ‘Monomolecular’ and ‘Logistic’ Models. It  is  given  by  

 dN/dt = r (K-N) +s N (1-N/K),                       

 

FITTING OF NONLINEAR MODELS 

The above models have been posed deterministically.  Obviously this is unrealistic and so 

we replace these deterministic models by statistical models by adding an error term on the 

right hand side and making appropriate assumptions about them. This results in a 

‘Nonlinear statistical model’. As in linear regression, in non-linear case also, parameter 

estimates can be obtained by the ‘Method of least squares’. However, minimization of 

( ) ( )t m m 1/m

o o oN  = K N / [N +(K -N )exp -rt ]

http://www.pisces-conservation.com/growthhelp/refs.htm
http://www.pisces-conservation.com/growthhelp/refs.htm
http://www.pisces-conservation.com/growthhelp/logistic_curve.htm
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residual sum of squares yield normal equations which are nonlinear in the parameters. Since 

it is not possible to solve nonlinear equations exactly, the next alternative is to obtain 

approximate analytic solutions by employing iterative procedures.   

• Four main methods of this kind are:  

            i) Linearization (or Taylor Series) method 

           ii) Steepest Descent method 

          iii) Levenberg-Marquardt’s method 

iv) Do not use Derivatives method 

The details of these methods along with their merits and demerits are given in Draper and 

Smith (1998). Neither the Linearization method nor the Steepest descent method is ideal. 

The most widely used method of computing nonlinear least squares estimates is the 

Levenberg-Marquardt’s method. This method represents a compromise between the other 

two methods and combines successfully the best features of both and avoids their serious 

disadvantages. It is good in the sense that it almost always converges and does not ‘slow 

down’ at the latter part of the iterative process.  

 

• SPSS package has NLR option, while SAS package has NLIN option to fit 

nonlinear statistical models based on Levenberg-Marquardt algorithm.  

• Most important thing is the ‘Meaningful interpretation’ of parameter estimates. 

CHOICE OF INITIAL VALUES   

All the procedures for nonlinear estimation require initial values of the parameters and the 

choice of good initial values is very crucial. However, there is no standard procedure for 

getting initial estimates. The most obvious method for making initial guesses is by the use 

of prior information. Estimates calculated from previous experiments, known values for 

similar systems, values computed from theoretical considerations all these form ideal initial 

guesses. 

 

 Some other methods are:  

(i) Linearization:  
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After ignoring the error term, check the form of the model to see if it could be transformed 

into a linear form by means of some transformation. In such cases, linear regression can be 

used to obtain initial values.  

 

(ii) Solving a system of equations: 

If there are p parameters, substitute for p sets of observations into the model ignoring the 

error. Solve these equations for the parameters, if possible. Widely separated xi often work 

best. 

 

R code 

Monomolecular growth model 

 z=read.csv(file.choose(), header=TRUE) 

head(z) 

kk=data.frame(z) 

grz1=nls(y~k-(k-y0)*exp(-r*t),data=kk,  start=list(k=1 ,y0=0.03,r=0.1)) 

summary(grz1) 

 fitted=kk$y-resid(grz1) 

kkk=data.frame(fitted) 

MSE.nn <- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors <- c("blue","red") 

plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,1),axes=FALSE, ann=FALSE) 

axis(1, at=1:20, lab=c(0:19)) 

axis(2, las=1, at=0.2*0:5) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, lty=1:2); 

zz=resid(grz1) 

predicted= 0.99651-(0.99651-0.08844)*exp(-0.26727*20) 
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Gompertz model 

z=read.csv(file.choose(), header=TRUE) 

 head(z) 

 kk=data.frame(z) 

gr1=nls(y~k*exp(log(y0/k)* exp(-r*t)),data=kk,  start=list(k=50,y0=11.72,r=0.1)) 

summary(gr1) 

fitted=kk$y-resid(gr1) 

kkk=data.frame(fitted) 

MSE.nn <- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors <- c("blue","red") 

plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,35),axes=FALSE, ann=FALSE) 

axis(1, at=1:38, lab=c(0:37)) 

axis(2, las=1, at=5*0:8) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, lty=1:2); 

 

logistic model 

z=read.csv(file.choose(), header=TRUE) 

 head(z) 

 kk=data.frame(z) 

gr2=nls(y~k/(1+(k/y0-1)* exp(-r*t)), data=kk,  start=list(k=50,y0=11.72,r=0.1)) 

summary(gr2) 

fitted=kk$y-resid(gr2) 

kkk=data.frame(fitted) 

MSE.nn <- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors <- c("blue","red") 

plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,35),axes=FALSE, ann=FALSE) 

axis(1, at=1:38, lab=c(0:37)) 
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axis(2, las=1, at=5*0:8) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, lty=1:2); 
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1. Introduction: 

Time series forecasting is well known method of forecasting in many areas. Time series 

forecasting is popular because of easiness of evaluation of time series data for getting the 

forecast values. Another reason of its’ popularity is that the real world data are mostly time 

series data. In time series forecasting, time series data are taken as a crisp value. However, data 

may not be precise and complete in all the cases, e.g. water level data of river, temperature data 

etc. Fuzzy techniques are appropriate in those cases when vagueness has been seen in the data. 

Fuzzy data can be found in artificial intelligence, quality control, biology, psychometry, 

agriculture, social economy, image recognition etc. Fuzzy time series model can improve the 

utilization of the data. 

2. Situations where fuzzy techniques are useful?  

Fuzzy techniques are applied in those conditions where- 

1. People’s decisions are involved. 

2. When the data are imprecise. 

3. Assumptions of distribution are not satisfied. 

4. The past data are less in which we cannot use the existing time series model. 

3. Fuzzy Set:  

3.1 Fuzzy set theory:   

Zadeh in 1965 defined fuzzy set as “A fuzzy set is a class of objects with a continuum of grades 

of membership”. He discussed the various properties of fuzzy sets. Various operations on fuzzy 

set such as union, intersection and complement were discussed which are different from the 

basic operations of conventional set. In conventional set, an element can be either the member 

or nonmember of a specific set. Our answer will be always in Yes or No in respect to presence 

mailto:amits.csb@gov.in
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or non-presence of a particular element in a set. Let, we take a set of overweight persons, all 

of them are either overweight or not. Nothing is here in the middle of them. This is the main 

drawback of the conventional set. In real world, it is not always possible to describe some 

concepts by their presence or non-presence in a particular set. Suppose, a person can be 

recognized as overweight person if his weight is 100 kg or more and he is not overweight if 

his weight is less than 70kg. But, it does not give the answer whose weight lies in between 

them. So, there is some haziness where someone cannot clearly say either yes or no. But, fuzzy 

set uses some membership function to assign various degrees of membership to the elements. 

So that, the shifting from yes to no is continuing process rather than sudden jump. Generally, 

the degree of membership lies between 0 and 1. The belongings of an element to a specific set 

is high when degree of membership is more. 

Definition: A fuzzy set is defined as the set of ordered pairs in which every single pair (fuzzy 

singleton) contains an element and the value of its belonginess to the fuzzy set. Mathematically, 

fuzzy set can be written as:- 

𝐹 = [(𝑥𝑖,𝜇𝐹(𝑥𝑖,))]                                                (1) 

Where, 𝑖 = 1,2,3…𝑛 , 𝑥𝑖 is the 𝑖𝑡ℎ element which is a member of 𝐹 and 𝜇𝐹(𝑥𝑖,) represents the 

degree of membership of 𝑥𝑖 in 𝐹.  Fuzzy set can also be written as: 

𝐹 = 𝐼1 𝑥1 + 𝐼2 𝑥2 +⁄ … 𝐼𝑛 𝑥𝑛⁄⁄  (Only for discrete  and finite fuzzy set)                    

Where, 𝐼1, 𝐼2,…, 𝐼𝑛 are the intervals of the defined fuzzy set and the above operations are not 

algebric operations.  

3.2 Linguistic variable: Linguistic variables are quantitative variable which are used to 

represent the fuzzy numbers. The values of linguistic variable are sentences or words rather 

than numeric.  
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For example, if we take the height of a person and represent it with linguistics expressions as 

very much tall, very tall, tall, more than medium tall, medium tall, short, very short and very 

much short. These linguistic variables are associated with any one of various types of 

membership function. The range of the different linguistic variables will be defined by the 

selected membership function. Fig. 2 depicts a pictorial representation of fuzzy and linguistic 

variable. 

 

3.3 Membership Function: 

Zadeh first introduced the membership functions in his research paper “Fuzzy Sets” which was 

published in Information and Control journal in the year of 1965. The fuzziness of the data is 

described by the membership function. It means that membership function provides the degree 

of membership to the various element in the fuzzy set. There are many membership functions 

available in literature. The use of a particular type of membership function depends on the 

Production of Rice 
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Figure 1: Illustration of linguistic variables and fuzzy 

variable 
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concept as well as the context to be demonstrated. Membership functions can be depicted 

through the graphical representation. The different graphs of the membership functions have 

different properties along with the diverse shapes. The various membership functions are: 

1. Triangular membership functions. 

2. Trapezoidal membership functions. 

3. S membership functions. 

1. Triangular membership functions: It is defined by three parameters and this function is a 

piecewise linear function. Saha et al. (2019) used the triangular membership functions in 

space-time series modelling and forecasting. Mathematically, it can be written as:- 

𝑤𝐹 = {

𝑥−𝑎

𝑏−𝑎
 ,    𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
,    𝑏 ≤ 𝑥 ≤ 𝑐

0,    𝑥 > 𝑐                

                                    (2) 

2. Trapezoidal membership Function: It is defined by four parameters. Mathematically, this 

function is written as:- 

     𝑤𝐹 =

{
 
 

 
 
𝑥−𝑎

𝑏−𝑎
 , 𝑎 ≤ 𝑥 ≤ 𝑏

1 ,   𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
 ,   𝑐 ≤ 𝑥 ≤ 𝑑

0 ,    𝑥 > 𝑑

                    (3)

         

3. S membership function: It is defined by two parameters and can be written as: 

                                                                   𝑤𝐹(𝑥; 𝑎, 𝑏) =
1

1+𝑒−𝑏(𝑥−𝑎)
                              (4) 

Where, the midpoint and slope value is denoted by 𝑎 and 𝑏 respectively and 𝑏 must have the 

positive value. Another important thing of sigmoidal membership function is that it never goes 

to 0 or 1. 

Other membership functions are G And L open shoulder membership functions, Bell shaped 

Function, Z function etc. A graphical representation has been provided below to explain the 

membership function. 

Example (Fig. 2): Suppose, a person is tall if his height is 180 cm or more. That means, If the 

height of Ratan is ≥180 cm , then he is a tall person, otherwise not. Suppose, the height of 
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Ratan is 178 cm, then he is not a tall person according to the crisp set, albeit his height is very 

close to the 180 cm. Here, a person may either tall or not tall.  No such thing in between tall or 

not tall. But, in reality, should we recognize a person as a tall person if and only if his height 

is exactly 180 cm or more than that? Indeed, the answer is no. One should not go for the crisp 

set representation in this case. However fuzzy set can provide the “in between” information by 

using the membership function. Suppose, the height of Ratan is 175 cm, then tallness of Ratan 

being more or less fulfilled. But, how much it fulfils the tallness? This can be found out by 

using the membership function. Here, the membership grade of tallness of Ratan is 0.8. (Fig. 

2) 

3.4 Fuzzy relation: 

Relationship between events are specified by relation. Fuzzy relation is different from the crisp 

relation. In the following, crisp relation and fuzzy relation are illustrated with examples. 

𝐴 = {𝑋1, 𝑋2, 𝑋3} 

𝐵 = {𝑌1, 𝑌2, 𝑌3} 

Where, 𝐴 and 𝐵 are two universal set. 𝑋 denotes the size of the flower and 𝑌 represents the 

market price.  

𝑋1= Small , 𝑋2= Medium, 𝑋3=Large and 𝑌1=Low, 𝑌2=Medium, 𝑌3=High. 

The crisp relation 𝑋 → 𝑌 is defined as follows (Table 1): 

Table 1: The crisp relation between 𝑿 and 𝒀 

 Low (𝒀𝟏) Medium (𝒀𝟐) High (𝒀𝟑) 

Small (𝑿𝟏) 1 0 0 

Medium (𝑿𝟐) 0 1 0 

Large (𝑿𝟑) 0 0 1 

The above table represents the crisp relationship between 𝐴 and 𝐵. Here, 1 represents an 

association and 0 represents null assosciation. In linguistic term, one can write the above table 

as: 

I. If the size of flower is small then the market price will be low. 
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II. If the size of flower is medium then the market price will be medium. 

III. If the size of flower is large then the market price will be high. 
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               Figure 2: Fuzzy and crisp representation of A set 

The fuzzy relation 𝑋 → 𝑌 is defined as follows (Table 2): 

Table 2: The fuzzy relation between 𝑿 and 𝒀 

 Low (𝒀𝟏) Medium (𝒀𝟐) High (𝒀𝟑) 
Small (𝑿𝟏) 1 0.3 0 

Medium (𝑿𝟐) 0.3 1 0.3 

Large (𝑿𝟑) 0 0.3 1 

 

The above table represents the fuzzy relationship between 𝐴 and 𝐵. Here, the values represent 

the membership grade. In linguistic term, one may write the above table as- 

 

I. If the size of flower is small then the market price will be low with the membership 

grade 1 and medium with 0.3 membership grade. 

II. If the size of flower is medium then the market price will be medium with the 

membership grade 1, low with 0.3 membership grade and high with 0.3 membership 

grade 
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III. If the size of flower is Large then the market price will be large with the membership 

grade 1, medium with 0.3 membership grade. 

Definition: A relation 𝑅 which is a mapping from the cartesian space 𝑋 × 𝑌 to the closed 

interval [0,1]- This relaion is called as fuzzy relation, where 𝑋 and 𝑌are two crisp set. 

Membership function which represents the strength of mapping is denoted by:- 

                        𝐹𝐴(𝑥, 𝑦) = min (𝐹𝐴(𝑥), 𝐹𝐵(𝑦) )                                                                                            (5) 

Where, 𝐴 and 𝐵 are two fuzzy sets. 

Fuzzy cartesian product: 

𝐴 = 0.5 𝑥1 +⁄ 0.6 𝑥2 + 0.2 𝑥3⁄⁄  

𝐵 = 0.3 𝑦1 +⁄ 0.9 𝑦2⁄  

𝐴 × 𝐵 = 𝑅 = [
0.3 0.5
0.3 0.6
0.2 0.2

] 

The above matrix is formed by taking the minimum value of each pair of elements. 

3.5 Max-Min Composition operator: 

There are many ways to combine the relations. Union or intersection operator can be utilized 

to combine the relation. Max-min composition operation is a kind of operator which is used 

for the combination of relation. 

Let, two fuzzy relation 𝐴 and 𝐵; then max-min composition between 𝐴 and 𝐵 is defined as: 

𝑅 = 𝐴𝜊𝐵 = [(𝑥, 𝑧),𝑚𝑎𝑥{𝑚𝑖𝑛(𝐹𝐴(𝑥, 𝑦), 𝐹𝐵(𝑦, 𝑧))}] for all 𝑥 ← 𝑋 ,𝑦 ← 𝑌, 𝑧 ← 𝑍                                  

(6) 

𝐴 is defined on 𝑋 × 𝑌. 

𝐵 is defined on 𝑌 × 𝑍. 

Example: 

Let,  𝐴 = [
0.7 0.6
0.2 0.5
0.3 0.6

] and 𝐵 = [
0.8 0.4
0.4 0.1

] 

𝑅 = 𝐴𝜊𝐵 = [
0.7 0.4
0.4 0.2
0.4 0.3

] 
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1st term of 𝐴𝜊𝐵, 

𝑟11 = 𝑚𝑎𝑥[𝑚𝑖𝑛(𝑎11, 𝑏11),𝑚𝑖𝑛(𝑎12, 𝑏21)] 

= 𝑚𝑎𝑥[𝑚𝑖𝑛(0.7,0.8),𝑚𝑖𝑛(0.6,0.4)] 

= 𝑚𝑎𝑥[0.7,0.4] 

= 0.7 

Last term of 𝐴𝜊𝐵, 

𝑟32 = 𝑚𝑎𝑥[𝑚𝑖𝑛(𝑎31, 𝑏12),𝑚𝑖𝑛(𝑎32, 𝑏22)] 

= 𝑚𝑎𝑥[𝑚𝑖𝑛(0.3,0.4),𝑚𝑖𝑛(0.6,0.1)] 

= 𝑚𝑎𝑥[0.3, 0.1] 

= 0.3 

3.6 Operations on fuzzy sets:  

The basic operations on fuzzy set are union, intersection and complement. These operations 

are also the basic operation of the classical set theory. Though the name of the operations are 

same for both the classical and fuzzy set, but the processes are different.  

Union: Let, two fuzzy sets are 𝐴 and 𝐵 and their membership functions are 𝑚𝐴(𝑥) and 𝑚𝐵(𝑥) 

respectively. Then, the union of 𝐴 and 𝐵 is the maximum value between the 𝑚𝐴(𝑥) and 𝑚𝐵(𝑥). 

If, the union is denoted by 𝐶, then the membership function of 𝐶 is represented as: 

𝑚𝐶(𝑥)=𝑚𝐴⋃𝐵(𝑥) = 𝑚𝑎𝑥[𝑚𝐴(𝑥) ,𝑚𝐵(𝑥)]                                                 

(7)          

Intersection: The intersection of 𝐴 and 𝐵 is the minimum value between the 𝑚𝐴(𝑥) and 

𝑚𝐵(𝑥). If, the intersection is denoted by 𝐶, then the membership function of 𝐶 is represented 

as: 

𝑚𝐶(𝑥)=𝑚𝐴⋂𝐵(𝑥) = 𝑚𝑖𝑛[𝑚𝐴(𝑥) ,𝑚𝐵(𝑥)]                                                                                              (8) 

Complement: Let, 𝐴 is a fuzzy set and its membership function is 𝑚𝐴(𝑥). Then, the 

complement of 𝐴 is denoted as �̅� with its membership function is,  

𝑚�̅�(𝑥) = 1 −𝑚𝐴(𝑥)                                                                                                                                  (9) 

4. Fuzzy time series:  
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Fuzzy time series is the time series with the fuzzy data which is based on fuzzy set theory. 

Song and Chissom (1993) first proposed fuzzy time series models employing max-min 

composition operation. They developed a step by step procedure to get the forecast and 

assessed the proposed model and verified the models’ robustness property. 

4.1 Definition: Let, fuzzy sets 𝑓𝑖(𝑡) are defined on 𝑌(𝑡) and 𝐹(𝑡) is the collection of 𝑓𝑖(𝑡). 

Then, 𝐹(𝑡) is known as a fuzzy time series on 𝑌(𝑡). 

4.2 Fuzzification:  It is the process of conversion from crisp data into fuzzy data. 

4.3 Fuzzy logical relationship: If a fuzzy set A1 is caused only by A2, then fuzzy logical 

relationship is denoted by  A2 → A1. 

4.4 Fuzzy logical relationship group: If some fuzzy logical relationship are A2 → 𝐴1, 𝐴2 →

𝐴3, 𝐴2 → 𝐴2; then fuzzy logical relationship group is denoted by  𝐴2 → 𝐴1, 𝐴2, 𝐴3.  

4.5 Defuzzification: Defuzzification is the process of conversion of fuzzified data into the crisp 

format. Actually, defuzzification is the counterpart of the fuzzification process. In literature, 

there are many methods for the fuzzification process. Some methods of defuzzification are 

described in the following: 

4.5.1 Centroid Method: Centroid method is a method of weighted average in which it 

determines the centroid value of the sets. It is also known as centre of area method. The 

mathematical formula of this method is- 

     𝑌 =
∑ 𝜔𝐹(𝑥𝑖)𝑥𝑖
𝑛
𝑖=1

∑ 𝜔𝐹(𝑥𝑖)
𝑛
𝑖=1

                                    

(10) 

Where, Y is the crisp output. 

𝜔𝐹(𝑥𝑖)  is the fuzzy output value or value of the membership function of 𝑥𝑖   

𝑥𝑖  is the value of the element on the 𝑥 𝑎𝑥𝑖𝑠𝑖 in the fuzzy set 𝐹. 

4.5.2  Maximum membership method: This method gives the crisp output value which is 

 equal to the value of 𝑥 associated with the maximum value of membership. It can be 

 expressed as: 

𝜔𝐹(𝑥$) ≥ 𝜔𝐹(𝑥) for all 𝑥 ∈ 𝐹; 
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Where, 𝑥$ is the value associated with the maximum value of membership. 

4.5.3    Average maximum membership method: It is like the maximum membership method 

but  the only difference is that it may include more point other than the maximum point. It 

may  include points which belong to some range. 

5. General Steps involved in Fuzzy Time Series Forecasting Model  

Most of the fuzzy time series forecasting model follow the following steps in forecasting 

process. 

Step-1: Fixing the universe of discourse which is defined as-  𝑈 = [𝑈𝑚𝑖𝑛 -𝑈1, 𝑈𝑚𝑎𝑥 -𝑈2] , 

where 𝑈𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 are minimum and maximum value of the data and 𝑈1 and 𝑈2 are two 

any two positive values which are selected by the modeler properly. Define the proper universe 

of discourse to accommodate whole time series data.  

Step 2: Division of the universe of discourse or define the intervals.  

Step 3: Define fuzzy sets on the universe of discourse.  

Step 4: Fuzzify the data which are based on the universe of discourse and corresponding fuzzy 

set defined in step-2 and step-3. 

Step 5: Make the fuzzy logical relationship (FLR). 

Step 6: Prepare the fuzzy logical relational groups. 

Step 7: Forecast the time series data.  

Step 8: Defuzzification of the forecasted fuzzified outputs. 
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What is Panel Data 

A data set containing observations on multiple phenomena observed over multiple time 

periods is called panel data.  

Panel data gives more variability, more information, more efficiency and more 

degrees of freedom compared to the time series data or cross-section data.  

The regression models based on such panel data are known as panel data regression 

models 

 

1. Introduction 

There are different types of data that are generally available for empirical analysis, namely, 

time series, cross section, and panel. A data set containing observations on a single 

phenomenon observed over multiple time periods is called time series (e.g., GDP for several 

quarters or years).  

In time series data, both the values and the ordering of the data points have meaning. 

In cross-section data, values of one or more variables are collected for several sample units, 

or entities, at the same point of time (e.g., crime rates for 50 districts in the India for a given 

year).  

A data set containing observations on multiple phenomena observed over multiple 

time periods is called panel data.  In panel data the same cross-sectional units (say a family or 

a firm or a state) is surveyed over time. In short, panel data have space as well as time 

dimensions. 

Let us consider a data set on eggs produced and their prices for 50 districts in India for years 

2015 and 2016. For any given year, the data on eggs and their prices represent a cross-

sectional sample. For any given district, there are two-time series observations on eggs and 

their prices. Thus, we have in all 100)250( =  (panel) observations on eggs produced and 

their prices. 

Some other examples: 

 

➢ Data on yield of rice in 42 villages from 2013 to 2017, for 210 observations total. 

➢ Data on crime rate in 17 Indian states, each state is observed in 6 years, for a total 

of 102 observations. 

➢ Data on income of 1000 individuals, in four different months, for 4000 

observations total. 

 

There are other names for panel data, such as pooled data (pooling of time series and cross-

sectional observations), combination of time series and cross-section data, micro panel data, 

longitudinal data (a study over time of a variable or group of subjects), cohort analysis (e.g., 

following the career path of 2004 graduates of an agricultural university).  The regression 

models based on such panel data are known as panel data regression models. 
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Advantages of panel data 

 

1. Since the panel data relate to individuals, firms, states, countries, etc., over time, there 

is bound to be heterogeneity in these units. The techniques of panel data estimation 

can take such heterogeneity explicitly into account by allowing for individual specific 

variables. 

2. By combining time series of cross section observations, panel data give “more 

informative data, more variability, less collinearity among variables, more degrees of 

freedom and more efficiency”. 

3. By studying the repeated cross section of observations, panel data are better suited to 

study the dynamics of change. Spells of unemployment, job turnover, and labour 

mobility are better suited with panel data. 

4. Panel data can better detect and measure effects that simply cannot be observed in 

pure cross section or time series data. 

5. Panel data enables us to study more complicated behavioral models. For example, 

phenomena such as economies of scale and technological change can be better 

handled by panel data than by pure cross section or time series data. 

6. By making data available for several thousand units, panel data can minimize the bias 

that might result if we aggregate individuals or firms into broad aggregates. 

7. More accurate inference of model parameters. Panel data usually contain more 

degrees of freedom and more sample variability than cross-sectional data which may 

be viewed as a panel with T = 1 (T is the number of time series), or time series data 

which is a panel with N = 1(N is the number of cross section), hence improving the 

efficiency of econometric estimates. 

 

Panel Data: An illustrative example 
 

Table 1.1 

 

Obs                    Y                  X2               X3  

      

_GE-1935  33.10000  1170.600  97.80000   

_GE-1936  45.00000  2015.800  104.4000   

_GE-1937  77.20000  2803.300  118.0000   

_GE-1938  44.60000  2039.700  156.2000   

_GE-1939  48.10000  2256.200  172.6000   

_GE-1940  74.40000  2132.200  186.6000   

_GE-1941  113.0000  1834.100  220.9000   

_GE-1942  91.90000  1588.000  287.8000   

_GE-1943  61.30000  1749.400  319.9000   

_GE-1944  56.80000  1687.200  321.3000   

_GE-1945  93.60000  2007.700  319.6000   

_GE-1946  159.9000  2208.300  346.0000   

_GE-1947  147.2000  1656.700  456.4000   

_GE-1948  146.3000  1604.400  543.4000   

_GE-1949  98.30000  1431.800  618.3000   

_GE-1950  93.50000  1610.500  647.4000   

_GE-1951  135.2000  1819.400  671.3000   

_GE-1952  157.3000  2079.700  726.1000   

_GE-1953  179.5000  2371.600  800.3000   

_GE-1954  189.6000  2759.900  888.9000   

_GM-1935  317.6000  3078.500  2.800000   

_GM-1936  391.8000  4661.700  52.60000   

_GM-1937  410.6000  5387.100  156.9000   

_GM-1938  257.7000  2792.200  209.2000   

_GM-1939  330.8000  4313.200  203.4000   

_GM-1940  461.2000  4643.900  207.2000   

_GM-1941  512.0000  4551.200  255.2000   

_GM-1942  448.0000  3244.100  303.7000   

_GM-1943  499.6000  4053.700  264.1000   

_GM-1944  547.5000  4379.300  201.6000   
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_GM-1945  561.2000  4840.900  265.0000   

_GM-1946  688.1000  4900.000  402.2000   

_GM-1947  568.9000  3526.500  761.5000   

_GM-1948  529.2000  3245.700  922.4000   

_GM-1949  555.1000  3700.200  1020.100   

_GM-1950  642.9000  3755.600  1099.000   

_GM-1951  755.9000  4833.000  1207.700   

_GM-1952  891.2000  4924.900  1430.500   

_GM-1953  1304.400  6241.700  1777.300   

_GM-1954  1486.700  5593.600  2226.300   

_US-1935  209.9000  1362.400  53.80000   

_US-1936  355.3000  1807.100  50.50000   

_US-1937  469.9000  2673.300  118.1000   

_US-1938  262.3000  1801.900  260.2000   

_US-1939  230.4000  1957.300  312.7000   

_US-1940  361.6000  2202.900  254.2000   

_US-1941  472.8000  2380.500  261.4000   

_US-1942  445.6000  2168.600  298.7000   

_US-1943  361.6000  1985.100  301.8000   

_US-1944  288.2000  1813.900  279.1000   

_US-1945  258.7000  1850.200  213.8000   

_US-1946  420.3000  2067.700  232.6000   

_US-1947  420.5000  1796.700  264.8000   

_US-1948  494.5000  1625.800  306.9000   

_US-1949  405.1000  1667.000  351.1000   

_US-1950  418.8000  1677.400  357.8000   

_US-1951  588.2000  2289.500  341.1000   

_US-1952  645.2000  2159.400  444.2000   

_US-1953  641.0000  2031.300  623.6000   

_US-1954  459.3000  2115.500  669.7000   

_WEST-1935  12.93000  191.5000  1.800000   

_WEST-1936  25.90000  516.0000  0.800000   

_WEST-1937  35.05000  729.0000  7.400000   

_WEST-1938  22.89000  560.4000  18.10000   

_WEST-1939  18.84000  519.9000  23.50000   

_WEST-1940  28.57000  628.5000  26.50000   

_WEST-1941  48.51000  537.1000  36.20000   

_WEST-1942  43.34000  561.2000  60.80000   

_WEST-1943  37.02000  617.2000  84.40000   

_WEST-1944  37.81000  626.7000  91.20000   

_WEST-1945  39.27000  737.2000  92.40000   

_WEST-1946  53.46000  760.5000  86.00000   

_WEST-1947  55.56000  581.4000  111.1000   

_WEST-1948  49.56000  662.3000  130.6000   

_WEST-1949  32.04000  583.8000  141.8000   

_WEST-1950  32.24000  635.2000  136.7000   

_WEST-1951  54.38000  732.8000  129.7000   

_WEST-1952  71.78000  864.1000  145.5000   

_WEST-1953  90.08000  1193.500  174.8000   

_WEST-1954  68.60000  1188.900  213.5000 

 

Consider the data given in table 1.1, which are taken from a famous study of investment 

theory proposed by Y. Grunfeld (1958). 

Grunfeld was interested in finding out how real gross investment (Y) depends on the real 

value of the firm )2X(  and real capital stock )3X( . We have data on four companies, 

General electric (GE), General Motor (GM), U.S. Steel (US), and Westinghouse. Data for 

each company on the preceding three variables are available for the period 1935-54. Thus, 

there are four cross-sectional units and 20 time periods. In all, therefore, we have 80 

observations. A prior, Y is expected to be positively related to 2X  and 3X . 

 

 

Pooling, or combining, all the 80 observations, the Grunfeld investment function can be 

written as: 

  itit3X3it2X21itY +++=  

    i = 1, 2, 3, 4      (1.2.1) 

    t = 1, 2, . . . , 20 
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where i stands for the ith cross-sectional unit and t for the tth time period and it is assumed 

that the X’s are nonstochastic and that the error term follows the classical assumptions, 

namely, )2,0(N~)it(E  . 

 

How do we estimate (1.2.1)? The answer follows. 

 

2. Estimation of panel data regression models: 

 

2.1The fixed effects approach. 

 

Estimation of (1.2.1) depends on the assumptions we make about the intercept, the slope 

coefficients, and the error term. There are several possibilities: 

 

1. Assume that the intercept and slope coefficients are constant across time and space 

and the error term captures differences over time and individuals. 

2. The slope coefficients are constant but the intercept varies over individuals. 

3. The slope coefficients are constant but the intercept varies over individuals and time. 

4. All coefficients (the intercept as well as slope coefficients) vary over individuals. 

5. The intercept as well as slope coefficients vay over individuals and time. 

 

2.1.1 All coefficients constant across time and individuals 

 

The simplest, and possibly naïve approach is to disregard the space and time dimensions of 

the pooled data and just estimate the usual OLS regression. That is, stack the 20 observations 

for each company one on top of the other, thus giving in all 80 observations for each of the 

variables in the model. 

 

The OLS results are as follows 

   3X3034.02X1101.03041.63Ŷ ++−=  

    se = (29.6124)   (0.0137)       (0.0493) 

     t =  (2.1376)      (8.0188)       (6.1545)   (1.3.1) 

   7565.02R =    Durbin-Watson = 0.2187 

        n = 80      df = 77 

 

Here all the coefficients are individually statistically significant and the 2R  value is 

reasonably high. But the only problem seems to be the estimated Durbin-Watson statistic 

which is quite low, suggesting that perhaps there is autocorrelation in the data. 

 

 The estimated model assumes that the intercept value of GE, GM, US, and Westinghouse are 

the same. It also assumes that the slope coefficients of two X variables are all identical for all 

the four firms. Obviously, these are very restricted assumptions. Therefore despite its 

simplicity the pooled regression may distort the true picture of the relationship between Y 

and X’s across the four companies. What we need to do is find some way to take into account 

the specific nature of the four companies. How this can be done is explained next. 
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2.1.2    The slope coefficients are constant but the intercept varies over individuals: 

The Fixed Effects or Least-Squares Dummy Variables (LSDV) Regression 

Model 

One way to take into account the individuality of each company or each cross-sectional unit 

is to let the intercept vary for each company but still assume that the slope coefficients are 

constant across firms. We write the model as: 

   itit3X3it2X2i1itY +++=     (1.3.2) 

The difference in the intercept may be due managerial style or managerial philosophy. 

The model (1.3.2)is known as the fixed effects (regression) model (FEM). The term “fixed 

effects” is due to the fact that, although the intercept may differ across individuals, each 

individual’s intercept does not vary over time; that is, it is time invariant. 

How do we actually allow for the (fixed effect) intercept to vary between companies? We can 

easily do that by the dummy variable technique. Therefore we write the model as  

 itititiiiit XXDDDY  ++++++= 33224433221    (1.3.3) 

where 1i2D = if the observation belongs to GM, 0 otherwise; 1i3D =  if the observation 

belongs to US, 0 otherwise; and 1i4D =  if the observation belongs to WEST, 0 otherwise. 

Here 1  represents the intercept of GE and 4and,3,2  , the differential intercept 

coefficients, tell by how much the intercepts of GM, US, and WEST differ from the intercept 

of GE. 

Since we are using dummies to estimate the fixed effects, the model is also known as the 

least-squares dummy variable (LSDV) model. 

 The results based on (1.3.3) are as follows: 

i3X3461.0i2X1079.0i4D5666.186i3D6328.339i2D5722.1617924.245itŶ +++++−=    

se = (35.8112)     (46.4563)          (23.9863)          (31.5068)           (0.0175)       (0.0266) 

     t =  (6.8635)       (3.4779)            (14.1594)          (5.9214)            (6.1653)     (12.9821) 

    9345.02R =   d =1.1076       df = 74  (1.3.4) 

In (1.3.4) all the estimated coefficients are individually highly significant and the intercept 

values of the four companies are statistically different. The differences in the intercepts may 

be due to unique features of each company, such as differences in management style or 

managerial talent. 

Judged by the statistical significance of the estimated coefficients, and the fact that the 2R  

value has increased substantially we can conclude that (1.3.4) is better than (1.3.1). The 

Durbin-Watson d value is much higher, suggesting that model (1.3.1) was mis-specified. 

 

 

We can also provide a formal test of the two models. In relation to (1.3.4), model (1.3.1) is a 

restricted model in that it imposes a common intercept on all the companies. Therefore, we 

can use the restricted F test. Using the formula we get 

    9980.66
74/)2

UR
R1(

3/)2
R

R2
UR

R(
F =

−

−
=     (1.3.5) 

where the restricted value is from (1.3.1) and the unrestricted is from (1.3.4). 
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Clearly, the F value of 66.998 is highly significant and, therefore, the restricted regression 

(1.3.1) seems to be invalid. 

 

The Time Effect. 

 

Just as we used the dummy variables to account for individual effect, we can allow for time 

effect in the sense that the Grunfeld investment function shifts over time. For such a situation 

we introduce time dummies, one for each year. 

 itit3X3it2X253D19...36D235D10itY +++++++=  (1.3.6) 

 

From the regression results, we infer that none of the individual time dummies were 

individual statistically significant. 

We have already seen that the individual company effects were statistically significant, but 

the individual year effects were not. Could it be that our model is mis-specified in that we 

have not taken into account both individual and time effects together? Let us consider this 

possibility. 

 

2.1.3 Slope coefficients constant but the intercept varies over individual as well as time  

 To consider this possibility, we can combine (1.3.4) and the time effect model, as follows: 

iti3X3i2X2

...53DUM19...35DUM10WESTiD4USiD3GMiD21itY

+++

++++++++=

            (1.3.7) 

when we run this regression, we find the company dummies as well as the coefficients of the 

X are individually statistically significant, but none of the time dummies are. Essentially, we 

are back to (1.3.4). 

 

2.1.4 All coefficients vary across individuals 

 Here we assume that the intercepts and the slope coefficients are different for all individual, 

or cross-section, units. This is to say that the investment functions of GE, GM, US, and 

WEST are all different. We can easily extend our LSDV model to take care of this situation. 

Here what we do is multiply each of the company dummies by each of the X variables. 

 

 That is, we estimate the following model: 

 

itit2i3 ...)XD(3

)it3Xi2D(2)it2Xi2D(1it3it2X2i4D4i3D3i2D21itY

++

++++++++=
  

                                                        (1.3.8) 

The s'  are the differential slope coefficients, just as 4and,3,2   are the differential 

intercepts. If one or more of the   coefficients are statistically significant, it will tell us that 

one or more slope coefficients are different from the base group. If all the differential 

intercept and all the differential slope coefficients are statistically significant, we can 

conclude that the investment functions are different for the four companies. 

 

A caution on the use of the Fixed Effects, or LSDV, model. 
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Although easy to use, the LSDV model has some problems that need to be bourne in mind. 

First, if you introduce too many dummy variables we will run up against the degrees of 

freedom problem. 

Second, with so many variables in the model , there is always the possibility of 

multicollinearity, which might make precise estimation of one or more parameters difficult. 

Third, suppose in the FEM if variables such as sex, color, and ethnicity, which are time 

invariant are also included, the LSDV approach may not be able to identify the impact of 

such time-invariant variables. 

 

Estimation of panel data regression models: 

 

2.2 The random effects approach 

 

Although fixed effects or LSDV model can be expensive in terms of degrees of freedom if 

we have several cross-sectional units. 

If the dummy variables do in fact represent a lack of knowledge about the (true) model, why 

not express this ignorance through the disturbance term it ? This is precisely the approach 

suggested by the proponents of the so called error components model (ECM) or random 

effects model (REM). 

The basic idea is to start with (1.3.2): 

   itit3X3it2X2i1itY +++=     (1.4.1) 

Instead of treating i1  as fixed, we assume that it is a random variable with a mean value of 

1 . And the intercept value for an individual company can be expressed as 

    i1i1 +=     i = 1, 2, …,N     (1.4.2) 

where i  is a random error term with a mean value of zero and variance 
2
 . 

What we are essentially saying is that the four firms included in our sample are a drawing 

from a much larger universe of such companies and that they have a common mean value for 

the intercept and the individual differences in the intercept values of each company are 

reflected in the error term. 

 

Substituting (1.4.2) into (1.4.1), we get: 

   itiit3X3it2X21itY ++++=  

   itit3X3it2X21itY +++=     (1.4.3) 

where     itiit +=       (1.4.4) 

The composite error term consist of two components, the cross-section, or individual-

specific, error component and the combined time series and cross-section error component.  

The usual assumption made by ECM are that 
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(1.4.5) 

that is, the individual error components are not correlated with each other and are not 

autocorrelated across both cross-section and time series units. 

As a result it follows that  

   0)it(E =       (1.4.6) 

   22)itvar( +=      (1.4.7) 

As (1.4.7) shows, the error term it  is homoscedastic. However, it can be shown that 

isandit  are correlated; that is, the error terms of a given cross-sectional unit at two 

different points in time are correlated. The correlation coefficient is as follows: 

22

2
)is,it(corr

+

=     (1.4.8) 

If we do not take this correlation structure into account, and estimate (1.4.3) by OLS, the 

resulting estimators will be inefficient. The most appropriate method here is the method of 

Generalized least squares (GLS). 

 

The result of the model is given below 

 

  

9323.02R

)0235.13()4016.6()8699.0(t

)0168.0()0168.0()9495.83(se

3X3457.02X1076.003.73Ŷ

=

=

=

++−=

 

 

3. Fixed Effects (LSDV) versus Random Effects Model 

The challenge facing a researcher is: which model is better, FEM or ECM? The 

answer to this question hinges around the assumption one makes about the likely correlation 

between the individual, or cross-section specific, error components and the X regressors. 

If it is assumed that the error component and the X’s are uncorrelated, ECM may be 

appropriate, whereas if they are correlated, FEM may be appropriate. 

Keeping this fundamental difference in the two approaches in mind, what more can we say 

about the choice between FEM and ECM?  

 

The answer may be: 

1. If T (the number of time series data) is large and N (the number of cross-sectional 

units) is small, there is likely to be little difference in the values of the parameters 

estimated by FEM and ECM. Hence the choice here is based on computational 

convenience. On this score, FEM may be preferable. 
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2. When N is large and T is small, the estimates obtained by the two methods can differ 

significantly. Recall that in ECM i1i1 += , but in FEM we treat i1  as fixed and 

non-random. 

3. If the individual error component i  and one or more regressors are correlated, then 

the ECM estimators are biased, whereas those obtained from FEM are unbiased. 

4. If N is large and T is small, and if the assumptions underlying ECM hold, ECM 

estimators are more efficient than FEM estimators. 

 

Is there a formal test that will help us to choose between FEM and ECM? Yes, a test was 

developed by Hausman in 1978. The null hypothesis underlying the Hausman test is that the 

FEM and ECM estimators do not differ substantially. The test statistic developed by 

Hausman has an asymptotic chi-square distribution. If the null hypothesis is rejected, the 

conclusion is that ECM is not appropriate and that we may be better off using FEM, in which 

case statistical inferences will be conditional on the error component in the sample. 

 

Conclusion 

1. Panel data, by blending the inter-individual differences and intra-individual dynamics 

have advantages over cross-sectional or time-series data. 

2. Greater capacity for capturing the complexity of human behavior than a single cross-

section or time series data. 

3. More accurate inference of model parameters can be obtained through panel data. 

4. Panel data usually contain more degrees of freedom and more sample variability than 

cross-sectional data or time series. 

5. Controlling the impact of omitted variables, i.e., reduces omitted variable bias.  

6. Panel data helps in uncovering dynamic relationships. 

7. Panel regression models are based on panel data. Panel data consist of observations 

on the same cross-sectional, or individual, units over several time periods. 

8. There are several advantage to using panel data. First, they increase the sample size 

considerably. Second, by studying repeated cross-section observations, panel data are 

better suited to study the dynamics of changes. Third, Panel data enable us to study 

more complicated behavioral models. 

9. Despite their substantial advantages, panel data pose several estimation and inference 

problems. Since such data involve both cross-section and time dimensions, problem 

that plague cross-sectional data (eg., heteroscedasticity) and time series data (eg., 

autocorrelation) need to be addressed. There are some additional problems, such as 

cross-correlation in individual units at the same point of time. 

10. There are several estimation techniques to address one or more of these problems. 

The two most prominent are (1) the fixed effect model (FEM) and (2) the random 

effect model (REM) or error component model (ECM). 

11. In FEM, the intercept in the regression model is allowed to differ among individuals, 

or cross-sectional, unit may have some special characteristics of its own. To take in to 

account the differing intercepts, one can use dummy variables. The FEM using 

dummy variables is known as the least-squares dummy variable model (LSDV). FEM 

is appropriate in a situation where the individual-specific intercept may be correlated 

with one or more repressors. A disadvantage of LSDV is that it consumes a lot of 

degree of freedom when the number of the cross sectional units, N, is very large, in 
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which case we will have to introduce N dummies (but suppress the common intercept 

term). 

12. An alternative of FEM is ECM. In ECM it is assumed that the intercept of an 

individual unit is a random drawing from a much larger population with a constant 

mean value. The individual intercept is then expressed as a deviation from this 

constant mean value. One advantage of ECM over FEM is that it is economical in 

degree of freedom, as we do not have to estimate N cross-sectional intercept. We 

need only to estimate the mean value of the intercept and its variance. ECM is 

appropriate in situation where the (random) intercept of each cross-sectional unit is 

uncorrelated with repressors. 

13. The Hausman test can be used to decide between FEM and ECM. 
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1. Introduction 

 In agriculture, one of the most prominent sectors in India, data are usually collected 

over time. Linear Gaussian models are not able to describe changing conditional variance, 

which is present in many such real data sets. To handle such a situation, Engle (1982) 

introduced the Autoregressive conditional heteroscedastic (ARCH) models in which 

significant presence of autocorrelation of squared residual series is considered.  

 The ARCH (q) model for series {𝜀𝑡} is defined by specifying the conditional 

distribution of 𝜀𝑡 given information available up to time t-1. The process {𝜀𝑡} is ARCH (q), 

if the conditional distribution of {𝜀𝑡} given available information 𝜓𝑡−1 is 

                                 𝜀𝑡|𝜓𝑡−1 ∼ 𝑁(0, ℎ𝑡)                                                           (1.1) 

and 

                                 ℎ𝑡 = 𝑎0 + ∑ 𝑎𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1                                                       (1.2) 

 

where 𝑎0 > 0, 𝑎𝑖 ≥ 0 for all 𝑖 and ∑ 𝑎𝑖 < 1𝑞
𝑖=1  

 

Ghosh and Prajneshu (2003) have applied the AR(p)-ARCH(q) model to study the volatility 

present in onion price data. The fitted model provided a significantly good description of 

underlying mechanism in terms of significant ARCH parameters and changing forecast 

interval of hold-out-data. Ghosh et al. (2005, 2006) have also studied various aspects of the 

family of mixtures of ARCH models. The AR-ARCH model has also been used as the basic 

“building blocks” for Markov switching and mixture models (Lanne and Saikkonen, 2003 

and Wong and Li, 2001). Since Engle introduced ARCH model, various extensions of 

ARCH models have been proposed to model volatility. However, ARCH model has some 

drawbacks. Firstly, when the order of ARCH model is very large, estimation of a large 

number of parameters is required which is cumbersome. Secondly, the conditional variance 

of ARCH(q) model has the property that unconditional autocorrelation function (Acf) of 

squared residuals; if it exists, decays very rapidly compared to what is typically observed, 

unless maximum lag q is large. 

 To overcome these difficulties, Bollerslev (1986) proposed the Generalized ARCH 

(GARCH) model in which conditional variance is also a linear function of its own lags. 
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This model is also a weighted average of past squared residuals, but it has declining weights 

that never go completely to zero. It gives parsimonious models that are easy to estimate 

and, even in its simplest form, has proven surprisingly successful in predicting conditional 

variances. The GARCH model focuses on capturing the clustering of volatility in returns 

when the conditional variance  at  time t is modelled as a deterministic function  of  lagged 

values  of conditional variances and  squared returns, given by 

                                 𝜀𝑡 = 𝜉𝑡ℎ𝑡
1 2⁄

                                                                     (1.3) 

and 

                                 ℎ𝑡 = 𝑎0 + ∑ 𝑎𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1 + ∑ 𝑏𝑗ℎ𝑡−𝑗
𝑝
𝑗=1                             (1.4) 

where 𝜉𝑡 ∼ 𝐼𝐼𝐷(0,1), 𝑎0 > 0, 𝑎𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑞.   𝑏𝑗 ≥ 0,   𝑗 = 1,2, … , 𝑝    

Angelidis et al. (2004) evaluated the performance of GARCH models in modelling the 

daily Value-at-Risk (VaR) of perfectly distributed portfolios in five stock indices, using a 

number of distributional assumptions and sample sizes. However, the GARCH model 

cannot capture in a more appropriate way the main empirical properties often observed in 

volatile time-series data.  To this end, Stochastic Volatility (SV) parametric nonlinear 

time-series model was proposed to capture time-varying volatility (Taylor, 1994). SV 

models the variance as an unobserved component that follows a particular stochastic 

process. This way the properties of SV models are more attractive and closer to the 

empirical properties observed in volatile time-series data. Although their estimation is more 

complicated, it gives parsimonious models. In this write up, an attempt is made to study the 

SV model along with its estimation procedure. The novelty of this work is that a new form 

of state-space modelling is proposed to estimate the volatility as well as the parameters of 

SV model. Powerful Kalman filtering technique has been employed to obtain the best linear 

predictors of unobserved volatility. Using the prediction error decomposition form of the 

likelihood, the Quasi-maximum likelihood is maximized with respect to the unknown 

parameters. The consistency of the estimated parameters is also validated. A posterior 

analysis of innovation based on log volatility and its lag value, when the information till 

time t is known, is carried out for validating the consistency of autoregressive coefficient 

of volatility process. The posterior analysis also gives the estimate of variance of log-

volatility process which is compared with the one obtained by prediction error 

decomposition for validation. 

 As an illustration, this model is applied to describe the volatile All-India data of 

monthly export of spices during the period January, 2006 to January, 2012. Based on the 
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residuals, the performance of the SV and GARCH models is assessed for modelling as well 

as forecasting. It is concluded that SV model performs relatively well for the data under 

consideration.   

2. Some Preliminaries 

 In this section, Stochastic Volatility model along with its estimation procedure, the 

Kalman filtering, and ARCH-LM test is briefly described. 

 

2.1 Stochastic Volatility (SV) Model 

 Time-series data of some agricultural commodities show some statistical properties, 

viz. Leptokurtic distributions, Volatility clustering and ARCH effect, meaning the squared 

residuals exhibit serial correlation whereas little or no serial dependence can be detected in 

the residual series itself. Since volatility evolves over time, modelling the volatility plays 

an important role in both parameter estimation and the accuracy in interval forecast. The 

SV model understands the time-varying variance as a stochastic process. It is also able to 

represent excess kurtosis as well as autocorrelations of squares.  

 Consider the univariate discrete time SV model (Taylor, 1994)  

                                 𝑦𝑡 = 𝜀𝑡𝜎𝑡 ,                 t = 1, . . . , T,                      (2.1.1) 

where 𝑦𝑡 are observations, 𝜀𝑡 is a white noise process with unit variance and 𝜎𝑡 is the 

corresponding volatility. 𝑙𝑜𝑔𝜎𝑡
2 follows an AR (1) process with Gaussian noise and is 

unobserved but can be estimated using the observations. Following the convention usually 

considered in literature we write ℎ𝑡
∗ = 𝑙𝑜𝑔𝜎𝑡

2. So, eq. (2.1.1) can be written as 

                                𝑦𝑡 = 𝜀𝑡𝑒𝑥𝑝 (ℎ𝑡
∗/2)                                                            (2.1.2) 

and 

                ℎ𝑡+1
∗ = 𝛼 + 𝜑ℎ𝑡

∗ + 𝜂𝑡,     𝜂𝑡~𝐼𝐼𝐷(0, 𝜎𝜂
2),       |𝜑| < 1                      (2.1.3) 

where |𝜑| < 1 implies stationarity of ℎ𝑡
∗. The parameter 𝜑 measures the persistence of 

shocks to the volatility. When 𝜑 is close to 1 and 𝜎𝜂
2 is close to 0, the evolution of volatility 

over time is very smooth. The variance of the log-volatility process, 𝜎𝜂
2 measures the 

uncertainty about future volatility.  

Now Eq. (2.1.3) can be written as  

                                 (ℎ𝑡+1
∗ − 𝛼∗) = 𝜑(ℎ𝑡

∗ − 𝛼∗) + 𝜂𝑡 

where 𝛼∗ =  𝛼/(1 − 𝜑) 

So, Eq. (2.1.2) becomes 

                                  𝑦𝑡 = 𝑒𝑥𝑝((ℎ𝑡
∗ − 𝛼∗) 2⁄ ) 𝑒𝑥𝑝(𝛼∗ 2⁄ ) 𝜀𝑡 
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which can be written as  

           𝑦𝑡 = 𝜎∗𝑒𝑥𝑝(ℎ𝑡 2⁄ ) 𝜀𝑡 

where ℎ𝑡 = ℎ𝑡
∗ − 𝛼∗, 𝜎∗ = 𝑒𝑥𝑝(𝛼∗ 2⁄ )  

So the SV model can be rewritten as  

                                𝑦𝑡 = 𝜎∗𝑒𝑥𝑝(ℎ𝑡 2⁄ ) 𝜀𝑡 

                               ℎ𝑡+1 = 𝜑ℎ𝑡 + 𝜂𝑡 

The initial distribution of ℎ𝑡 denotes the unconditional distribution of the process {ℎ𝑡} i.e. 

the unconditional distribution of ℎ𝑡 is commonly used as an initial condition. If 𝜀𝑡 has a 

finite variance, the variance of the observation can be written as 

                               𝑉𝑎𝑟(𝑦𝑡) = 𝜎∗
2𝜎𝜀

2𝑒𝑥𝑝(𝜎ℎ
2 2⁄ )                                              (2.1.4) 

If the fourth moment of 𝜀𝑡 exist, the kurtosis of 𝑦𝑡 is given as 𝜅 ∗ 𝑒𝑥𝑝 (𝜎ℎ
2), where 𝜅 is the 

kurtosis of 𝜀𝑡, so it can be seen that 𝑦𝑡 exhibits more kurtosis than 𝜀𝑡 and all the odd 

moments are zero. The square of the coefficient of variation (CV) of 𝜎𝑡
2 is used as a measure 

of the relative strength of the SV. This is given as  

                              𝑉𝑎𝑟(𝜎𝑡
2) [𝐸(𝜎𝑡

2)]2⁄ = 𝑒𝑥𝑝(𝜎ℎ
2) − 1                                  (2.1.5) 

If ηt is assumed to be normal, the ACF of the absolute values of the observations raised to 

the power c is given by 

𝜌𝜏
(𝑐)

=
𝐸(|𝑦𝑡|𝑐|𝑦𝑡−𝜏|𝑐)−{𝐸(|𝑦𝑡|𝑐)}2

𝐸(|𝑦𝑡|2𝑐)− {𝐸(|𝑦𝑡|𝑐)}2
=

𝑒𝑥𝑝(
𝑐2

4
𝜎ℎ

2𝜌ℎ,𝜏)−1

𝜅𝑐𝑒𝑥𝑝(
𝑐2

4
𝜎ℎ

2)−1
  , 𝜏 ≥ 1, 𝑐 > −0.5, 𝑐 ≠ 0       

 

                                                                                                              (2.1.6) 

where  

                                𝜅𝑐 =
𝐸(|𝑦𝑡|2𝑐)

 {𝐸(|𝑦𝑡|𝑐)}2
    

and  𝜌ℎ,𝜏, 𝜏 = 0,1,2, … denotes the ACF of ℎ𝑡. Taylor (1986) derived this expression for c 

equal to one and two and 𝜀𝑡 normally distributed. When c=2, 𝜅𝑐 is the kurtosis and this is 

three for a normal distribution. More generally, 

                𝜅𝑐 = 𝛤(𝑐 + 1 2⁄ )𝛤(1 2⁄ ) {𝛤(𝑐 2⁄ + 1/2}2⁄  , 𝑐 ≠ 0                        (2.1.7) 

The ACF, 𝜌𝜏
(𝑐)

, has the following features. First, if 𝜎ℎ
2 is small and/or 𝜌ℎ,𝜏 is close to one, 

                                  𝜌𝜏
(𝑐)

≅ 𝜌ℎ,𝜏

𝑒𝑥𝑝(
𝑐2

4
𝜎ℎ

2)−1

𝜅𝑐𝑒𝑥𝑝(
𝑐2

4
𝜎ℎ

2)−1
   , 𝜏 ≥ 1                        (2.1.8) 
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Thus the shape of the ACF of ℎ𝑡 is approximately carried over to 𝜌𝜏
(𝑐)

except that it is 

multiplied by a factor of proportionality, which must be less than one for c positive as 𝜅𝑐 

is greater than one. Although the series 𝑦𝑡 is uncorrelated, it is not an independent sequence. 

The dynamics of the series appear in the squared residuals. Their autocorrelation function 

(acf), is given by 

                                  𝜌2(𝜏) =
𝑒𝑥𝑝(𝜎ℎ

2𝜌ℎ(𝜏))−1

𝜅𝜀𝑒𝑥𝑝(𝜎ℎ
2)−1

,       𝜏 ≥ 1                         (2.1.9) 

where 𝜌ℎ(𝜏) is the autocorrelation of order 𝜏 of the underlying log-volatility. 

 

Comparison with ARCH/GARCH models 

 The GARCH (1, 1) model has been applied extensively to volatile time-series data. 

In GARCH the variance is assumed to depend on the variance and squared observation in 

the previous time period. The motivation comes from forecasting; in an AR(1) model with 

independent disturbances, the optimal prediction of the next observation is a fraction of the 

current observation, and in ARCH it is a fraction of the current squared observation.  

 The specification of GARCH (1, 1) means that we can write 

     𝑦𝑡
2 = 𝛾 + 𝛼𝑦𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝜐𝑡 = 𝛾 + (𝛼 + 𝛽)𝑦𝑡−1

2 + 𝜐𝑡 − 𝛽𝜐𝑡−1         (2.1.10) 

 

where 𝜐𝑡 = 𝑦𝑡
2 − 𝜎𝑡

2  is a martingale difference. Thus, 𝑦𝑡
2 has the form of an ARMA (1, 1) 

process and so the ACF can be evaluated. The GARCH (1, 1) displays similar properties to 

the SV model, particularly if φ is close to one. The main difference in the ACFs seems to 

show up most at lag one. Jacquier et al. (1994) presented a graph of the correlogram of the 

squared weekly returns of a portfolio on the New York Stock Exchange together with the 

ACFs of SV and GARCH (1, 1) models. It was seen that the ACF implied by the SV model 

was closer to the sample values.  

 The SV model displays excess kurtosis even if φ is zero since 𝑦𝑡 is a mixture of 

distributions. The 𝜎𝜂
2 parameters govern the degree of mixing independently of the degree 

of smoothness of the variance evolution. This is not the case with a GARCH model where 

the degree of kurtosis is tied to the roots of the variance equation. Moreover, the basic 

GARCH model does not allow for the kind of asymmetry captured by a SV model with 

contemporaneously correlated disturbances.  

 A good description of stochastic volatility models is given in Barndorff-Nielsen et 

al. (2002) and Broto and Ruiz (2004). 
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Linear state space form: 

The dependence between 𝜀𝑡 and 𝜂𝑡 allows the model to capture the kind of asymmetric 

behavior that is often found in commodity prices. Also the assumption of contemporary 

dependence explains conditional variance ℎ𝑡+1 = 𝑙𝑜𝑔𝜎𝑡+1
2  of price innovation in terms of 

past values. The logarithmic transformed observations, the 𝑙𝑜𝑔𝑦𝑡
2′𝑠, can be used to 

construct a linear state space model. Moreover, the linear state space form can be modified 

so as to deal with asymmetric models. Even if 𝜂𝑡 and 𝜀𝑡are not mutually independent, the 

disturbances in the state space form are uncorrelated if the joint distribution of 𝜂𝑡 and 𝜀𝑡 is 

symmetric. But, there is a loss of information by taking logarithm of the squared 

observations. Harvey and Shephard (1993) showed that this information may be recovered 

by conditioning on the signs of the observations denoted by 𝑠𝑡, a variable which takes the 

value +1(-1) when the observation is positive (negative).  

 Denote 𝐸+(𝐸−) as the expectation conditional on 𝜀𝑡 being positive (negative), and 

assign a similar interpretation to variance and covariance operators. The distribution of ξ
t
 

is not affected by conditioning on the signs of the 𝜀𝑡′𝑠, but, it should be kept in mind that 

𝐸(𝜂𝑡|𝜀𝑡) is an odd function of 𝜀𝑡. So, 

                                  𝜇∗ = 𝐸+(𝜂𝑡) = 𝐸+[𝐸(𝜂𝑡|𝜀𝑡)] = −𝐸−(𝜂𝑡),                  (2.1.11) 

and  

            𝛾∗ = 𝐶𝑜𝑣+(𝜂𝑡 , ξ
t
) = 𝐸+(𝜂𝑡ξ

t
) − 𝐸+(𝜂𝑡)𝐸(ξ

t
) = 𝐸+(𝜂𝑡ξ

t
) = −𝐶𝑜𝑣−(𝜂𝑡, ξ

t
)       

 

(2.1.12) 

because the expectation of ξ
t
is zero and  

𝐸+(𝜂𝑡ξ
t
) = 𝐸+[𝐸(𝜂𝑡|𝜀𝑡)𝑙𝑜𝑔𝜀𝑡] − 𝜇∗𝐸(𝑙𝑜𝑔𝜀𝑡) = −𝐸−(𝜂𝑡ξ

t
)                   (2.1.13) 

Finally, 

𝑉𝑎𝑟+(𝜂𝑡) = 𝐸+(𝜂𝑡
2) − [𝐸+(𝜂𝑡)]2 = 𝜎𝜂

2 − 𝜇∗2                                            (2.1.14) 

 The linear state space form is now 

log(𝑦𝑡
2) = 𝜔 + ℎ𝑡 + 𝜉𝑡                                           (2.1.15) 

                      ℎ𝑡+1 = 𝜑ℎ𝑡 + 𝑠𝑡𝜇∗ + 𝜂𝑡
∗                                               (2.1.16) 

where  

 𝜔 = log(𝜎∗
2) + 𝐸(log(εt

2)) , ℎ𝑡 = log(𝜎𝑡
2) and ξ

t
= log(εt

2) − 𝐸(log(εt
2)).  

                                  (
ξ

t

𝜂𝑡
∗) |𝑠𝑡~𝐼𝐷 ((

0
0

) , (
𝜎𝜉

2 𝛾∗𝑠𝑡

𝛾∗𝑠𝑡 𝜎𝜂
2 − 𝜇∗2

))  
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 The above model can be transformed to a more convenient form with uncorrelated 

measurement and transition equation errors. This is 

                                log(𝑦𝑡
2) = 𝜔 + ℎ𝑡 + 𝜉𝑡                                                  (2.1.17) 

    ℎ𝑡+1 = (𝜑 − 𝛾∗𝑠𝑡 𝜎𝜉
2⁄ )ℎ𝑡 + 𝑠𝑡{𝜇∗ + 𝛾∗ 𝜎𝜉

2⁄ (𝑙𝑜𝑔𝑦𝑡
2 − 𝜔)} + 𝜂𝑡

+             (2.1.18)         

                                    (
ξ

t

𝜂𝑡
+) |𝑠𝑡~𝐼𝐷 ((

0
0

) , (
𝜎𝜉

2 0

0 𝜎𝜂
2 − 𝜇∗2 − (𝛾∗2 𝜎𝜉

2⁄ )
))  

The filtered estimate of the log volatility, written as ℎ̂𝑡+1/𝑡 is given by 

      ℎ̂𝑡+1/𝑡 = (𝜑 − 𝛾∗𝑠𝑡 𝜎𝜉
2⁄ )(

𝜎𝜉
2

𝑝𝑡/𝑡−1+𝜎𝜉
2)ℎ̂𝑡/𝑡−1 +

(𝑙𝑜𝑔𝑦𝑡
2−𝜔)

𝑝𝑡/𝑡−1+𝜎𝜉
2 {𝛾∗𝑠𝑡 + 𝜑𝑝𝑡/𝑡−1} + 𝑠𝑡𝜇∗      

                                                                                                                        (2.1.19) 

2.2 Kalman filter and state space model 

 State space modelling includes the State transition equation, eq. (2.2.1), which 

allows the state variable 𝛂t to change through time, and the Measurement equation, eq. 

(2.2.2), which relates the state variable to an observation Yt. 

                                         𝛂t+1 = 𝐅t𝛂t + 𝐆t𝛆t                                               (2.2.1) 

                                          Yt = 𝐇t
′𝛂t + νt                                                     (2.2.2) 

It is assumed that  {𝛆t} of eq. (2.2.1) and {νt} of eq. (2.2.2) are independent, zero mean, 

Gaussian white noise process with 

                                         E[νtνt
′ ] = Rt     and    E[𝛆t𝛆t′] = 𝐐t                      (2.2.3) 

 The Kalman filter (KF) is a recursive algorithm for sequentially updating the state 

vector given past information, 𝛙t. 

 Denote  

                 �̂�t|t−1 = E{𝛂t|ψt−1} and �̂�t|t = E{𝛂t|ψt} for t = 0,1,2, …          (2.2.4) 

and assume �̂�0|−1 =  E{𝛂0} and 𝚺0|−1 = 𝐏0. The state vector  𝛂t and its mean squared error 

𝚺t = E[(𝛂t − �̂�t)(𝛂t − �̂�t)′]  are recursively estimated by: 

       �̂�t|t = �̂�t|t−1 + 𝚺t|t−1𝐇t(𝐇′
t𝚺t|t−1𝐇t + Rt)−1(Xt − 𝐇′

t�̂�t|t−1)             (2.2.5)    

            𝚺t|t = 𝚺t|t−1 − 𝚺t|t−1𝐇t(𝐇′
t𝚺t|t−1𝐇t + Rt)−1𝐇′

t𝚺t|t−1                     (2.2.6) 

 Using the recursive filter equations (2.2.1) and (2.2.2), we can obtain  �̂�t+1|t as 

                                  �̂�t+1|t = 𝐅t�̂�t|t                                                               (2.2.7) 

and 

                                  𝚺t+1|t = 𝐅t𝚺t|t𝐅′
t + 𝐆t𝐐t𝐆′t                                         (2.2.8)       
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Eq. (2.2.7) can also be written as 

   �̂�t+1|t = 𝐅t�̂�t|t−1 + 𝐅t𝚺t|t−1𝐇t(𝐇′
t𝚺t|t−1𝐇t + Rt)−1(Yt − 𝐇′

t�̂�t|t−1)       (2.2.9) 

which implies that the time update rules for each forecast of state are weighted average of 

the previous forecast �̂�t|t−1  and the forecast error  ( Yt − 𝐇′
t�̂�t|t−1 ). After obtaining  

�̂�t|t−1 , one may predict  Yt by the optimal predictor Ŷt|t−1, where 

                             Ŷt|t−1 =  𝐇′
t�̂�t|t−1                                                       (2.2.10) 

and the conditional error variance due to predictor  Ŷt|t−1 is 

                                     𝐇′t𝚺t|t−1𝐇t + Rt                                                       (2.2.11) 

An excellent description of this methodology is given in Durbin and Koopman (2001). 

2.3 Estimation of parameters 

 The parameters of the SV model are estimated using the KF technique in 

conjunction with Quasi-maximum likelihood (QML) principle. The QML estimator is 

based on maximizing the log-likelihood function even if the assumption of normality is 

violated (Harvey et al., 1994). Andersen et al. (2001) also showed that the log-volatility 

process can be well approximated by a Normal distribution. The joint density of the 

observations can be expressed as  

                                        𝑓(𝑦1, … , 𝑦𝑇; 𝜃) = ∏ 𝑓(𝑦𝑡|ψt−1; 𝜃)𝑇
𝑡=1 ,                  (2.3.1) 

where 𝜃 is the vector of unknown parameters and ψt−1 denotes the information available 

at time t-1. If 𝑠𝑡 is the sign of 𝑦𝑡, the joint density may be written as 

                   𝑓(𝑦1, … , 𝑦𝑇; 𝜃) = ∏ 𝑓(𝑦𝑡|𝑠𝑡, ψt−1; 𝜃)𝑇
𝑡=1 𝑓(𝑠𝑡|ψt−1; 𝜃)            (2.3.2) 

As the observation can be obtained from its absolute value and its sign, the distribution of 

|𝑦𝑡| conditional on 𝑠𝑡 is also valid. So the conditional density can be written as  

                                         ∏ 𝑓(|𝑦𝑡||𝑠𝑡, ψt−1; 𝜃)𝑇
𝑡=1                                        (2.3.3) 

In this write up we apply KF in conjunction with QML to estimate the parameters of the 

stochastic volatility model. Using KF, the estimates of states of a model can be continuously 

updated on the basis of currently available information. It has also been proved that under 

standard conditions, the QML estimator is consistent and has a limiting normal distribution.  

 

2.4 Testing for ARCH Effects 

 Let {𝜀𝑡} be the series of residuals. The squared series {𝜀𝑡
2} is considered to check 

for conditional heteroscedasticity, also known as the ARCH effects. The usual Ljung-Box 

statistic Q(m) is applied to the {𝜀𝑡
2} series, where the null hypothesis is that the first m lags 

of autocorrelation functions of the {𝜀𝑡
2} series are zero. The other test for conditional 
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heteroscedasticity is the ARCH-Lagrange multiplier (ARCH-LM) test of Engle (1982). 

This test is equivalent to usual F-statistic for testing 𝐻0: 𝑎𝑖 = 0, 1, 2, . . . 𝑞  in the linear 

regression 

             𝜀𝑡
2 = 𝑎0 + 𝑎1𝜀𝑡−1

2 + ⋯ + 𝑎𝑞𝜀𝑡−𝑞
2 + 𝑒𝑡,       t = q+1, . . . , T         (2.4.1)  

where  𝑒𝑡 denotes the error term, q is the pre-specified positive integer, and T is the sample 

size. 

 Denote 

           𝑆𝑆𝑅0 = ∑ (𝜀𝑡
2 − 𝜛)2𝑇

𝑡=𝑞+1 ,                                                            (2.4.2) 

where 

                                         𝜛 = ∑ 𝜀𝑡
2 𝑇⁄𝑇

𝑡=𝑞+1                                             (2.4.3)  

is the sample mean of {𝜀𝑡
2}, and   

                                          𝑆𝑆𝑅1 = ∑ �̂�𝑡
2𝑇

𝑡=𝑞+1 ,                                         (2.4.4) 

where �̂�𝑡 is the least square residual.  

 Then, under 𝐻0,  

                                          𝐹 =
(𝑆𝑆𝑅0−𝑆𝑆𝑅1) 𝑞⁄

𝑆𝑆𝑅1(𝑇−𝑞−1)
                                           (2.4.5) 

is asymptotically distributed as chi-squared distribution with q degrees of freedom. The 

decision rule is to reject 𝐻0 if 𝐹 > 𝜒𝑞
2(𝛼), where 𝜒𝑞

2(𝛼) is the upper 100(1 − 𝛼)𝑡ℎ 

percentile of  𝜒𝑞
2 or, alternatively, the p-value of F is less than 𝛼. 

3. AN ILLUSTRATION 

 The above discussed model is applied to All-India data of monthly export of spices 

during the period January, 2006 to January, 2012. These are obtained from Indiastat 

(www.indiastat.com) available at I.A.S.R.I., New Delhi and the same are exhibited in Fig. 

1. Out of total 73 data points, first 63 data points corresponding to the period January, 2006 

to March, 2011 are used for model building and the remaining 10 data points, i.e. from 

April, 2011 to January, 2012 are used for validation purpose. A perusal of Fig. 1, appended 

as an annexure 1, indicates presence of volatility at several time-epochs.  

 A high volatility is noticed in March, 2007 where export suddenly jumped almost 

140% to the level of Rs. 402 crores and then an abrupt dip in the very next month to Rs. 

301 crores. Similar type of jump is noticed at time-epochs, like March, 2008. Volatility can 

also be seen in many time-epochs like August, 2007, October, 2009, March, 2010, and 

December, 2010. 

http://www.indiastat.com/
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 Firstly, the appropriate ARIMA model is chosen on the basis of minimum Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) values given as 

                         𝐴𝐼𝐶 = 𝑇𝑙𝑜𝑔(𝜎2) + 2(𝑝 + 𝑞 + 1)                     (3.1) 

                         𝐵𝐼𝐶 = 𝑇𝑙𝑜𝑔(𝜎2) + (𝑝 + 𝑞 + 1)𝑙𝑜𝑔𝑇              (3.2) 

On the basis of aforementioned criteria, the ARIMA(1,1,0) model is selected for modelling 

of the monthly export of spices.  

Table 1.  Estimates of parameters along with their standard errors for fitted ARIMA 

model 

Parameter Estimate Standard error 

Intercept 

AR1 

11.56 

-0.25 

6.51 

0.12 

 The Acf of the squared residuals of the fitted ARIMA(1,1,0) model is found to be 

reasonably high at lag 6, which is -0.22. Consequently, the ARCH-LM test is carried out at 

lag 6 to check for conditional heteroscedasticity. The ARCH-LM test statistic at lag 6 is 

computed using eq. (2.4.5) and found to be significant at 5% level. But it is not reasonable 

to apply ARCH model of order 6 in view of the enormously large number of parameters. 

To this end, a parsimonious model is needed in predicting the conditional variances. 

Consequently, on the basis of minimum AIC and BIC values the AR(1)-GARCH(1,1) 

model is selected for modelling the data under consideration. The AIC and BIC values for 

GARCH model with Gaussian distributed errors can be calculated by 

                     𝐴𝐼𝐶 = ∑ (𝑙𝑜𝑔ℎ𝑡 + 𝜀𝑡
2h𝑡

−1) + 2(𝑝 + 𝑞 + 1)𝑇
𝑡=𝑣                           (3.3) 

and 

            𝐵𝐼𝐶 = ∑ (𝑙𝑜𝑔ℎ𝑡 + 𝜀𝑡
2h𝑡

−1) + 2(𝑝 + 𝑞 + 1)𝑇
𝑡=𝑣 log (𝑇 − 𝑣 + 1)        (3.4) 

 In the present investigation, the Gaussian maximum likelihood estimation 

procedure available in EViews software package, Ver. 4 is used for data analysis. The fitted 

model is given by  

                                    𝑦𝑡 = 593.75 + 0.91𝑦𝑡−1 + 𝜀𝑡                                                           

 

 

where 𝜀𝑡 = ℎ𝑡
1 2⁄

𝜉𝑡, and ℎ𝑡 satisfies the variance equation 

                                     ℎ𝑡 = 14683.53 + 0.31𝜀𝑡−1
2 − 1.02ℎ𝑡−1                                          

  

 

(145.01) (0.06) 

(5345.63) (0.24) (0.06) 
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However, the GARCH assumption that the volatility is driven by past observable variables 

only can become a constraint. So, the SV model is fitted to the data under consideration. 

Using the one-step ahead prediction error and its corresponding mean-squared error 

obtained via KF, the prediction error decomposition form of the likelihood is obtained. 

Subsequently, the unknown parameters 𝜃 is estimated by maximizing the likelihood. 

Applying the steps mentioned, the fitted SV model is given as 

            log(𝑦𝑡
2) = 4.79 + ℎ𝑡 + 𝜉𝑡                                                             

            ℎ𝑡+1 = (0.96 − 0.54 𝑠𝑡 0.53⁄ )ℎ𝑡 + 𝑠𝑡{0.55 + 0.54 0.53⁄ (𝑙𝑜𝑔𝑦𝑡
2 − 2.33)} + 𝜂𝑡

+ 

The parameters 𝜎𝜂
2 and 𝜑 obtained by maximizing the prediction error decomposition form 

of the likelihood are quite close to the 𝜎𝜂
2 obtained by posterior analysis of innovation based 

on  ℎ𝑡+1 and its lag value, when the information till time t is known. This validates the 

estimates of the parameters. 

 To study the appropriateness of the fitted SV model, the autocorrelation function of 

the standardized residuals and squared standardized residuals are computed and reported in 

tables 3 and 4 respectively. It is found that, in both situations, the autocorrelation function 

is not significant at 5% level, thereby confirming that the mean and variance equations are 

correctly specified. The AIC and BIC values computed for fitted SV model are respectively 

522.20 and 526.48, which are much lower than the corresponding values, viz. 536.30 and 

547.01 for the fitted AR(1)-GARCH(1,1) model.  

Also, the performance of fitted SV and GARCH models is evaluated using the Mean Square 

Error (MSE) criterion, defined as 

                   MSE = 1 N⁄  ∑ {YT − ŶT}
2N

T=1                                                   (3.5) 

The MSE values for fitted SV and GARCH models are respectively computed as 3616.36 

and    3905.27. Thus, all this indicates that the fitted SV model has performed better than 

the AR(1)-GARCH(1,1) model for modelling the volatile data under consideration. The 

graph of fitted SV model along with data points is exhibited in Fig. 2, which indicates that 

the fitted SV model is able to capture the volatilities present in the data to a reasonable 

extend. Conditional standard deviation for the fitted model is plotted in Fig. 3. 
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Fig. 2. Fitted Stochastic Volatility Model along with data points 

 
Fig 3. Conditional standard deviation of fitted Stochastic volatility model 

3.2 Forecasting performance 

 In this sub-section, GARCH and SV model is compared on their ability to forecast. 

We take 10 data points corresponding to All-India data of monthly export of Spices from 

April, 2011 to January, 2012 as hold-out-data. One-step ahead forecasts are computed along 

with the corresponding forecast standard errors and reported in Table 2.  

Table 2. One-step ahead forecasts of export data (in Rs. Crore) 

  SV model AR(1) - 

GARCH(1,1) model 

Months Actual Forecast Forecast 

Apr-11 758.45 801.72 (65.94) 733.03 (72.47) 

May-11 890.10 872.83 (67.21) 743.83 (118.21) 

Jun-11 876.86 903.91 (74.88) 863.82 (99.55) 

Jul-11 1007.94 998.92 (77.00) 851.74 (96.89) 

Aug-11 1222.66 1040.95 (84.93) 971.20 (121.62) 

Sep-11 1248.52 1225.94 (99.33) 1166.89 (137.33) 

Oct-11 1266.68 1297.28 (106.30) 1190.44 (23.03) 

Nov-11 1160.27 1229.62 (109.83) 1207.00 (137.53) 

Dec-11 1256.98 1179.96 (105.07) 1110.03 (58.56) 

Jan-12 1071.73 1158.72 (108.84) 1198.15 (137.76) 
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 An inspection of the table indicates that SV model performs comparatively well. 

The performance of fitted models is also compared on the basis of one-step-ahead Mean 

square prediction error (MSPE), Mean absolute prediction error (MAPE) and Relative 

mean absolute prediction error (RMAPE) given as 

              MSPE = 1 N⁄  ∑ {YT+i+1 − ŶT+i+1}
2N−1

i=0                                            (3.2.1)  

             MAPE = 1
N⁄ ∑ {|YT+i+1 − ŶT+i+1|}N−1

i=0                                            (3.2.2) 

           RMAPE = 1
N⁄ ∑ {

|YT+i+1 − ŶT+i+1|
YT+i+1 

⁄ }N−1
i=0 × 100                 (3.2.3) 

The MSPE, MAPE and RMAPE values for fitted SV model are respectively computed as    

5575.31, 56.47 and 5.09, which are found to be lower than the corresponding ones for fitted 

AR(1)-GARCH(1,1) model, viz. 16206.8, 107.02 and 9.73 respectively. This indicates the 

superiority of SV model over GARCH model for forecasting purposes. 

 To sum up, the SV model has performed satisfactorily for modelling as well as 

forecasting of the volatile data under consideration. 

4.  CONCLUSION 

 In this write up, Stochastic volatility (SV) model and its properties is thoroughly 

studied. The methodology for estimation of SV model using Kalman filter in conjunction 

with Quasi-maximum likelihood method is also discussed. As an illustration, modelling 

and forecasting of volatile All-India spices monthly export data is carried out. Superiority 

of SV model over GARCH model for the data under consideration is clearly demonstrated 

for modelling and forecasting. As future work, possibility of application of Monte Carlo 

technique using Particle filtering approach may be explored for parameter estimation and 

volatility forecasting.  

 
Fig. 1. Plots of All-India data of monthly export of spices 

 

Table 3. Autocorrelation functions and partial autocorrelation functions of the 

standardized residuals for the fitted Stochastic volatility model 
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 ACF  PACF  Q-Stat.  Prob. 

1 -0.147 -0.147 1.3841 0.239 

2 -0.100 -0.125 2.0397 0.361 

3 0.166 0.136 3.8729 0.276 

4 0.000 0.037 3.8729 0.423 

5 0.220 0.271 7.1899 0.207 

6 -0.206 -0.172 10.150 0.118 

7 -0.097 -0.123 10.819 0.147 

8 0.134 -0.022 12.120 0.146 

9 0.058 0.129 12.370 0.193 

10 -0.148 -0.131 14.029 0.172 

11 -0.014 0.046 14.045 0.231 

12 0.199 0.176 17.150 0.144 

13 -0.079 -0.067 17.654 0.171 

14 0.037 0.027 17.764 0.218 

15 -0.133 -0.125 19.253 0.202 

16 0.064 0.027 19.603 0.239 

17 0.062 -0.096 19.935 0.278 

18 -0.163 0.010 22.318 0.218 

19 0.033 0.013 22.416 0.264 

20 -0.084 -0.093 23.084 0.285 
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Table 4. Autocorrelation functions and partial autocorrelation functions of the squared 

standardized residuals for the fitted Stochastic volatility model 

 ACF   PACF  Q-Stat.  Prob. 

1 -0.047 -0.047 0.1444 0.704 

2 -0.080 -0.082 0.5612 0.755 

3 -0.146 -0.155 1.9645 0.580 

4 -0.056 -0.083 2.1758 0.703 

5 -0.022 -0.060 2.2092 0.820 

6 -0.054 -0.100 2.4123 0.878 

7 0.040 -0.002 2.5242 0.925 

8 0.214 0.194 5.8398 0.665 

9 0.192 0.221 8.5778 0.477 

10 -0.096 -0.019 9.2664 0.507 

11 -0.264 -0.201 14.617 0.201 

12 -0.051 -0.037 14.825 0.251 

13 -0.047 -0.083 15.002 0.307 

14 -0.100 -0.194 15.823 0.324 

15 -0.072 -0.188 16.251 0.366 

16 0.207 0.086 19.922 0.224 

17 -0.078 -0.239 20.455 0.252 

18 -0.042 -0.153 20.610 0.300 

19 -0.105 -0.010 21.619 0.304 

20 -0.050 0.007 21.855 0.348 
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An Introduction to Genetic Algorithm 

Kanchan Sinha, K.N. Singh, Mrinmoy Ray and Achal Lama  

ICAR-IASRI, New Delhi 

Introduction 

Genetic Algorithm (GA) is a search-based optimization technique based on the principles of 

Genetics and Natural Selection. The algorithm performs a search in providing an optimal 

solution for evaluation (fitness) function of an optimization problem. GAs deal 

simultaneously with multiple solutions and use only the fitness function values. John Holland 

introduced genetic algorithm in 1960 based on the concept of Darwin’s theory of evolution; 

afterwards, his student David E. Goldberg extended GA in 1989. The process of natural 

selection starts with the selection of fittest individuals from a population. They produce 

offspring which inherit the characteristics of the parents and will be added to the next 

generation. If parents have better fitness, their offspring will be better than parents and have a 

better chance at surviving. This process keeps on iterating and at the end, a generation with 

the fittest individuals will be found. 

1. Basic Terminology 

GA works in an iterative manner by generating new populations of strings from old ones. 

Every string is the encoded binary, real, etc. which is known as chromosome. An evaluation 

function associates a fitness measure to every string indicating its fitness for the problem. To 

understand GAs, it is required to keep in mind the basic terminology. 

Individual- Any possible solution. 

Population- Group of all individuals. 

Chromosomes- A chromosome is one such solution for a given problem. 

Gene- A gene is one element position to the given problem. 

Allele- It is the value a gene takes for a particular chromosome. 

Locus- The position of a gene on the chromosome. 
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Genome- Collection of all chromosomes for an individual. 

 

Genotype- The set of genes representing the chromosome. 

Phenotype-The actual physical representation of the chromosome. 

Decoding and Encoding- For simple problems, the phenotype and genotype spaces are the 

same. However, in most of the cases, the phenotype and genotype spaces are different. 

Decoding is a process of transforming a solution from the genotype to the phenotype space, 

while encoding is a process of transforming from the phenotype to the genotype space. 

Decoding should be fast as it is carried out repeatedly in a GA during the fitness value 

calculation. 

2. Basic Principles of a GA-based optimization technique 

Once the problem is encoded in a chromosomal manner and a fitness measure for 

discriminating good solutions from bad ones has been chosen, the process starts to evolve 

solutions to the search problem using the following steps 

i. Initialization: Initial population is randomly selected. Population size is the 

number of chromosomes in each generation and it is an important parameter to 

increase the performance of genetic algorithms. There is no standard to specify 

the size. 

ii. Fitness Function: The fitness function determines how fit an individual is (the 

ability of an individual to compare with other individuals). After representing 

each chromosome, the right way to serve to search space, next is to calculate the 
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fitness value of each individual. The process of calculating the fitness value of a 

chromosome is called evaluation.  

iii. Selection: Selection is a significant part of the evolutionary algorithm to reach the 

best chromosomes. The selection operator chooses chromosomes from mating 

pool according to GAs working principle, “the fittest individuals have a greater 

chance of survival than weaker ones”. 

iv. Crossover: Crossover operator provides new offspring for the next generation 

with exchanging information between randomly selected two parent 

chromosomes. Diversification is very important in GA and crossover provides 

much superiorities to GA in terms of exploration and diversification abilities to 

achieve global optimum point. 

v. Mutation: Mutation operator is utilized to put new genetic information with 

modifying genes of a chromosome selected with a mutation probability. Mutation 

is a divergence operation which provides avoiding local optima in the search 

space. 

vi. Stopping criteria: The stopping criteria is decided according to the improvement 

of the fitness function. The individual with high fitness remain and the ones with 

low fitness are removed. If there is no improvement on the last improved 

solution’s fitness function after a prescribed number of iteration, then the 

algorithm is stopped. 

The genetic algorithm procedure is depicted in the following figure. 
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Fig.: Genetic Algorithm 

 

3. Advantages of GAs 

- Does not require any derivative information (which may not be available for many 

real life problems) 

- Is faster and more efficient as compared to the traditional methods. 

- Has very good parallel capabilities. 

- Optimize both continuous and discrete functions and multi-objective problems. 

- Provides a list of good solutions and not just a single solution. 

- Useful when search space is very large and there are a large number of parameters 

involved. 

4. Limitations of GA 

Like other techniques, GAs also suffer from a few limitations. These include 

Initialization 

Fitness 

Assignment 

Selection 

Crossover 

Mutation 

Stopping Criteria=True 

Stopping Criteria=False 
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- GAs are not suited for all problems, especially problems which are simple and for 

which derivative information is available. 

- Fitness value is calculated repeatedly which might be computationally expensive for 

some problems. 

- Being Stochastic, there are no guarantee on the optimality or the quality of the 

solution. 

- If not implemented properly, the GA may not converge to the optimal solution. 

5. Application of GAs 

Genetic Algorithms are primarily used in optimization problems of various kinds, but 

they are frequently used in various domain as well. The different applications of GAs are 

listed below. 

- Natural Sciences, Mathematics and Computer Science 

- Earth Sciences 

- Finance and Economics 

- Social Sciences 

- Industry, Management and Engineering 

- Biological Sciences and Bioinformatics, etc. 

6. Suggested Readings 

Goldberg, David (1989) Genetic algorithms in search, optimization and machine learning, 

Reading, MA: Addison-Wesley Professional. ISBN 978-0201157673. 

Holland, J. H. (1992) Adaption in natural and artificial systems, MIT press, Cambridge. 

Melanie, Mitchell (1999) An introduction to genetic algorithm, fifth printing, MIT press, 

Cambridge. 

Randy, L. H. and Haupt, S. E. (2004) Practical genetic algorithms, Wiley, Second Edition. 
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Introduction: 

Time series forecasting is an important area of forecasting in which successive 

measurements are made over a period of time for the same variable and analyzed to develop a 

model describing the underlying relationship. This approach is particularly useful when there 

is little or no satisfactory knowledge about the explanatory or prediction variable is available. 

One of the most important and widely used time series model is the autoregressive integrated 

moving average (ARIMA) model. The popularity of the Auto Regressive Integrated Moving 

Average (ARIMA) model is due to its statistical properties as well as the well-known Box–

Jenkins methodology (Box and Jenkins 1970) in the model building process.  

The autocorrelation of the time series is expected to be decrease or vanish as the 

observations are distance apart in time for example in ARIMA model the autocorrelation 

decreases exponentially as the time lag increases and in some series the decay can occur at 

much slower hyperbolic rate. Such series are said to have long memory and are commonly 

prevail in stock market prices and in economic time series such as stock price, economic 

growth rate, inflation rate, oil price, agricultural commodity price and GDP figures etc., the 

time series showed a characteristic of “long memory faculty’ (Xu 2010 and Paul 2014). Long 

memory shows that time series exists a continuous long-term dependency among the distant 

time interval measurement. When the delay order number k was larger, time series has a 

correlation in the time value and t-k time value, and this is often measured by the 

autocorrelation coefficient of the series, and the memory extend of the series can be judged by 

reduction in the autocorrelation coefficient curve.  

 A popular class of models for time series with long memory behavior is the ARFIMA 

model. This kind of models extended classical ARIMA models by assuming the differencing 

parameter d as a real value. It is well known that ARFIMA models are linear time series model. 

mailto:achal.lama@icar.gov.in
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Since some long memory time series have both linear and non-linear structures, ARFIMA 

models can be inadequate for this type of series.  

Long memory process:  

Natural phenomenon and social economic phenomenon are both regular dialectical 

development courses. All movement has certain inertia, and it shows a kind of dynamic of the 

system, namely memory (Hurst 1951). After Hurst found long memory of hydrological time 

series from the tidal data, the research of long memory has been caused widely public concern 

such as fluid science meteorology and geophysics and so on. Long memory in time-series can 

be defined as autocorrelation at long lags (Robinson 1995).  

Definition:  we assume that the time series 𝑋𝑡 has autocorrelation function 𝜌𝑡 and t is the lag 

number. If  𝜌𝑡  satisfies the condition:    

 lim
𝑇→∞

∑ |𝜌𝑡|𝑛
𝑡=−𝑛 → ∞                                                                                                                    (1) 

Then is 𝑋𝑡 called long memory time series. 

For checking the presence of long memory of the data the statistical methods commonly used 

are correlation coefficient method, the classical R/S test (or heavy rescaled range test), the 

modified R/S test (MR/S), KPSS method, logarithmic diagram method (GPH), and Gauss 

semi-parametric estimation method (GSP) (Aarthi 2012).  

R/S analysis method:   

Let us consider the time series 𝑋𝑡 of the sample length T is divided into k son intervals of length 

n(n´k = T) , and the average of n series observed values is �̅�n =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  The range of each 

subinterval is defined R(n) , and the standard deviation S(n). 

   𝑄𝑛 =  
𝑅(𝑛)

𝑆(𝑛)
                                                                                                                                           (2) 

The range R(n) and Standard Deviation S(n) are respectively, 

𝑅(𝑛) = max
1≤𝑘≤𝑛

∑ (𝑥𝑗 
𝑘
𝑗=1 − 𝑥𝑛̅̅ ̅ ) min

1≤𝑘≤𝑛
∑ (𝑥𝑗 

𝑘
𝑗=1 − 𝑥𝑛̅̅ ̅ )                                                                  (3)                                                      

𝑆(𝑛) = |
1

𝑛
 max
1≤𝑘≤𝑛

∑ (𝑥𝑗 − 𝑥𝑛̅̅ ̅ )2𝑘
𝑗=1 | 1/2                                                                                                        (4) 
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We can prove that  lim
𝑛→∞

𝑛−𝐻 𝑄𝑛 = 𝐶 is a constant, and H is Hurst index, so we can get 

approximate estimate of 𝐻 = ln 𝑄𝑛 / ln 𝑛.  In general, the R/S analysis method is described as 

follows. 

   (𝑅/𝑆)𝑛 = 𝐶. 𝑛𝐻                                                                         (5) 

In eqn. (5), R is rescaled range, S is the standard deviation, H is Hurst index, C is a constant, 

and n is sample observation number. On the (5) eqn. of logarithmic, we get 

   𝑙𝑜𝑔(𝑅/𝑆)𝑛 = log(𝐶) +  𝐻 log (𝑛)                                                                                 (6) 

Hurst index is in [0, 1] value, according to its value the time series can be divided into three 

different types: 

1. H=0.5 indicating the correlation coefficient between past and future increment of series 

is zero, and namely it does not affect the future, and the incremental process is an 

independent random process, the series is the random walk and it is gradual process.  

2. 0<H<0.5 indicating a reverse persistent series (mean reversion) then the 

autocorrelation coefficient is between 0.5 and 1 and When H is closer to 0 this process 

has more frequent reversible. 

3. 0.5<H<1 indicating persistent or trend enhanced series. Then the autocorrelation 

coefficient is between 0 and 1. This indicates that if the past has the trend of growth, it 

means that this trend will continue in the future. H is closer to 1, and the trend is more 

obvious; H is closer to 0.5, the trend is gradually becoming random.  

The ARFIMA model:  

ARFIMA models are used to model long range dependent time series. ARFIMA models were 

introduced by Granger and Joyeux (Granger and Joyeux 1980).  ARFIMA model is expressed 

as follows;  

𝜑(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵)𝑒𝑡 , -0.5<d<0.5                                                                                    (7) 

Where, B is the back-shift operator such that   BXt=Xt-1 and et  is a white noise process with 

E(ei)=0 and variance 𝜎𝑒
2 . The polynomials 𝜑(𝐵) = (1 − 𝜑1 𝐵 − ⋯ . . −𝜑𝑝𝐵𝑝and  𝜃(𝐵) =

(1 − 𝜃1 𝐵 − ⋯ . . −𝜃𝑞𝐵𝑞  have orders p and q respectively with all their roots outside the unit 
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circle., Beran extended the estimation of ARFIMA models by considering the following 

variation of the ARFIMA model (Beran 1995) 

𝜑(𝐵)(1 − 𝐵)𝑑(1 − 𝐵)𝑚𝑋𝑡 = 𝜃(𝐵)𝑒𝑡 , -0.5<d<0.5                                                                   (8) 

The integer m is the number of times that must be differenced to achieve stationary, and thus 

differencing parameter is given by d=d+m. 

Studies about the parameter estimation of ARFIMA models still continue. Many maximum 

likelihood (ML) methods for ARFIMA are proposed in literature such as approximate ML 

methods (AML) by Beran; exact ML method (EML) (Sowell 1992), conditional sum of square 

(CSS) method by Chung and Baillie (Chung and Baillie 1993). Note that CSS method is as 

efficient as EML method and it is identical with AML method by Beran, that is based on 

infinity autoregressive presentation. 

Beran, has given some properties of a long memory stationary series as follows (Beran 1995): 

1. Certain persistence exists. The observations tend to stay at high levels in some periods, 

and at low levels in some other periods. 

2. During short-time periods, there seems to be periodic cycles. However, looking through 

the whole process, no apparent periodic cycles could be identified. 

3. Overall, the process looks stationary. 

Quantitatively, for a stationary process, these features could be described as 

1. When adding more observations, the variance of the sample mean and variance  

2. decays to zero at a slower rate than 𝑛−1 which is the rate at which a white noise decays, 

and is asymptotically equal to a constant g times 𝑛−𝑐 for some 0 < c < 1. 

3. The correlation 𝑟𝑗decays to zero slowly and is asymptotically equal to a constant time 

𝑗𝑐𝑎for some 0 < c < 1. 

The ARFIMA model building has same procedure of model building as Box-Jenkins ARIMA 

methodology.  

Illustration (Rathod et al, 2016):   

For the present study, the daily spot price (Rupees/Quintal) of agricultural commodity; mustard 

in Mumbai market for the period 1st January, 2009 to 14th February, 2012 are used. The data is 

collected form Ministry of Consumer’s Affairs, Government of India. Out of 1140 total 
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observations, 1080 have been used for model estimation and remaining 60 observations are 

used for validation. Summary statistics of mustard spot price is given in Table 1 and time series 

plot of above dataset has been exhibited in Fig. 3. Graphically, the plot indicates that the dataset 

is stationary. Further to validate the stationarity of the series, two tests namely Augmented 

Dickey-Fuller test and Philips-Peron test are used. Results of the stationarity tests are reported 

in table 2. The result indicates that spot price time series data of mustard in Mumbai is 

stationary.  

Table 1: Summary statistics of mustard spot price 

Statistic Series Statistic Series 

Observation 1140 Standard Deviation 320.41 

Mean 2849.89 Kurtosis 1.60 

Median 2900.00 Skewness -0.75 

Mode 2750.00 Coefficient of Variation (%) 11.24 

 

Table 2: Testing for stationarity 

ADF test statistic PP test statistic 

Single 

mean 

With 

trend 

Probability 
Single 

mean 

With 

trend 

Probability 

Single 

mean 

With 

trend 

Single 

mean 

With 

trend 

-6.24 -8.44 <0.001 <0.001 -7.65 -7.81 <0.001 <0.001 

  

 

Fig. 3: Time series plot of actual series. 
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Fig. 4: Plot of ACF of actual series. 

 

Fig. 5: Plot of PACF of actual series. 

Figures 4 and 5 depicts the plot of autocorrelation function (ACF) and partial autocorrelation 

function (PACF) for the actual price series. Though the stationarity tests validated that the 

series is stationary, but plot of ACF shows a slow decay towards zero indicating the possible 

presence of long memory. Therefore, presence of long memory is tested and parameter d has 

been estimated using GPH method and it was obtained as 0.40 (0.13) have been used to 

estimate the long memory parameter.  

 



215 
 

 

Fig. 6: Plot of ACF of fractional differenced series 

 

Fig. 7: Plot of ACF of fractional differenced series 

The fractional differenced series with parameter (d) as 0.40 is computed. Based on 

graphical representation of ACF and PACF of fractionally differenced series, one can say, the 

decay rate of ACF has improved as compared to the decay of ACF in actual series (Fig. 6 and 

7). Here we estimated different ARFIMA specifications for the data under consideration.  

Table 4: ARFIMA model parameters 

Parameters  Estimates  Std. Error z-value  Pr(>∣z∣) 

AR1 0.980 0.008 115.86 <0.001 

MA1 -0.128 0.055 -2.30   0.020 
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The MAPE (Mean Absolute Percentage Error) obtained for training and testing data set is 3.58 

and 5.41). Long memory time series has been analyzed by using ARFIMA models which are 

based on linear structure. However, it is not absolutely certain that the over difference is the 

only reason which degrade the performance of the ARIMA model in case of long memory time 

series data 
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1. Introduction 

Artificial neural networks (ANNs) are computational methods that mimic the behaviour of 

the human brain’s central nervous system that are made from layers of connected units 

called artificial neurons. Neural network is a class of generalized non-linear, 

nonparametric, data driven approach can be viewed as a powerful learning models that 

achieve state-of-the-art results in a wide range of supervised and unsupervised machine 

learning tasks. A general neural networks architecture consists of an input layer that accepts 

external information, one or more hidden or middle layer that provide non-linearity to the 

model and an output layer that provides the target value. Each layer contains one or more 

nodes. All the layers in a multi-layer neural network are connected through an acyclic arc. 

A neural network model with p number of input nodes and q number of hidden nodes 

consists of 𝑞(𝑝 + 2) + 1 number of parameters. As the number of layers increases, the 

complexity of networks (number of parameters) increases too. More number of layers or 

recurrent connections generally increases the depth of the network and empowers it to 

provide various levels of data representation and feature extraction referred to as “deep 

learning”. An artificial neural network with recurrent connection is called as recurrent 

neural networks (RNNs) which are capable of learning features, modelling sequential data 

for sequence recognition and prediction. Recurrent neural networks (RNNs) are a kind of 

neural network that specialize in processing sequences. They are often used in Natural 

Language Processing (NLP) tasks because of their effectiveness in handling text. Recurrent 

neural networks are made of high dimensional hidden states with non-linear dynamics. The 

structure of hidden states works as the memory of the network and state of the hidden layer 

at a time is conditioned on its previous state. The type of structure enables the RNNs to 

store, remember, and process past complex signals for long time periods. RNNs can map 

an input sequence to the output sequence at the current time step and predict the sequence 

in the next time step. 
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2. Artificial Neural Network 

Single hidden layer feed forward network is the most popular for time series modelling and 

forecasting. This model is characterized by a network of three layers of simple processing 

units, and thus termed as multilayer ANNs. The first layer is input layer, the middle layer 

is the hidden layer and the last layer is output layer. 

 

Fig. 1: Three layers feed forward networks 

In this network the information moves in only one direction, forward, from the input nodes, 

through the hidden nodes and to the output nodes. There are no cycles or loops in the 

network. The relationship between the output ( ty ) and the inputs (
1 2, ,...,t t t py y y− − −

) can be 

mathematically represented as follows: 

0 0

q p

t j ij t i

j i

y f g y  −

= =

  
=   

  
                                                                                              (i) 

where,  
j (j = 0,1,2,…. . , q) and 

ij (i= 0,1,2,…, p, j= 0,1,2,...q) are the model parameters 

often called the connection weights, p is the number of input nodes and q is the number of 

hidden nodes, g and f denote the activation function at hidden and output layer respectively. 

Activation function defines the relationship between inputs and outputs of a network in 

terms of degree of the non-linearity. Training of a neural network involves the following 

steps: 

i. Input a dataset. 

ii. The network will take the dataset and apply some complex computations to 

it using randomly initialized variables (called weights and biases). 

iii. A predicted result will be produced. 

iv. An error will be obtained after comparing the result to the actual value. 
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v. Propagating the error back through the same path will adjust the variables. 

vi. Steps i-v are repeated until it is confident to say that the variables are well 

defined. 

vii. A prediction is made by applying these variables to a new unseen input. 

3. Recurrent neural networks 

Recurrent neural networks are networks with loops in them, allowing information to persist. 

It is able to ‘memorize’ parts of the inputs and use them to make accurate predictions. These 

networks are the heart of speech recognition, language modelling, translation, image 

captioning and more. A chunk of neural network, looks at some input and outputs a value. 

A loop allows information to be passed from one step of the network to the next. 

 

 

Fig. 2: Recurrent Neural Networks have loops 

In traditional neural network, inputs and outputs are considered as independent of each 

other. As the sequential pattern exist in time series data, such a neural network does not 

give efficient results for the time series forecasting. A recurrent neural network can be 

thought of as multiple copies of the same network, each passing a message to a successor. 

They’re the natural architecture of neural network to use for such data. As an alternative 

network, RNN is more efficient to learn the dependency between observations. The 

simple architecture and unrolled version of RNNs is shown in figure 3. The simple RNN 

is a network with loops which allows persisting information to be passed from one step of 

the network to the next. In the diagram for the time steps 0,1,2, … , 𝑡;  𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡 are 

the inputs, A is the hidden state and ℎ0, ℎ1, ℎ2, … , ℎ𝑡 are the outputs. 𝐴𝑡 hidden state is an 

activation function (normally tanh) which takes its input from the hidden state of the 
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previous step 𝐴𝑡−1 and the output of the current step 𝑥𝑡.

 
 

Fig. 3: An unrolled recurrent neural networks 

This process is described by the following equation 

𝐴𝑡 = 𝑓(𝐴𝑡−1, 𝑥𝑡)                                                                                                                       (ii) 

RNNs use backpropagation through time (BPTT) to optimize weights during training by 

using the chain rule to go back from the latest time step to the previous steps. Figure 4 

presents a typical RNN looks like which is being unfolded or unrolled into a full network. 

By unrolling, it means to write out the network for the complete sequence. For example, if 

the sequence is a sentence of five words, the network would be unrolled into five-layer 

neural network, one layer for each word. The formulas that govern the computation 

happening in a RNN are as follows: 

 

Fig. 4: A recurrent neural network and the unfolding in time of the computation involves in 

its forward computation 

𝑥𝑡 is the input at time step 𝑡. 𝑠𝑡 is the hidden state at time step 𝑡. It is the “memory” of the network.  

𝑠𝑡 is calculated based on the previous hidden state and the input at the current step as 

𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1)                                                                                                                                     (iii) 
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The function 𝑓 is usually nonlinear such as 𝑡𝑎𝑛ℎ or 𝑅𝑒𝐿𝑈. 𝑠−1 which is required to calculate the 

first hidden state, is typically initialized to all zeroes. 𝑜𝑡 is the output at time step 𝑡. For example, 

to predict the next word in a sentence it would be a vector of probabilities across our vocabulary. 

𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡)                                                                                                                               (iv) 

3.1 Salient points to remember for RNNs 

- Hidden state 𝑠𝑡 as the memory of the network, captures information about what happened 

in all the previous time steps. The output 𝑜𝑡 is calculated solely based on the memory at 

time. 

- Unlike a traditional deep neural network, which uses different parameters at each layer, a 

RNN shares the same parameters (𝑈, 𝑉, 𝑊) across all steps as mentioned in the figure 4. 

This reflects the performing of same task at each steps just with different inputs which 

reduces the total number of parameters need to learn. 

- In the figure 4, there is output at each time step which may not be necessary depending 

on the task. Similarly inputs at each time step is not necessary. The main features of RNNs 

is its hidden state, which captures some information about a sequence. 

3.2 Application of RNNs 

3.2.1 Language modelling and prediction 

In this method, the likelihood of a word in a sentence is considered. The probability of the 

output of a particular time-step is used to sample the words in the next iteration (memory). 

In language modelling, input is usually a sequence of words from the data and output will 

be a sequence of predicted word by the model. While training the output of the previous 

time step will be the input of the present time step. 

3.2.2 Speech Recognition 

A set of inputs containing phoneme (acoustic signals) from an audio is used as an input. 

This network will compute the phonemes and produce a phonetic segments with the 

likelihood of output. 

3.2.3 Machine Translation 

In machine translation, the input will be the source language (e.g. Hindi) and the output 

will be in the target language (e.g. English). The main difference between machine 
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translation and language modelling is that the output starts only after the complete input 

has been fed into the network. 

3.2.4 Image Recognition and Characterization 

Recurrent neural network along with a Convolutional Neural Network work together to 

recognize an image and give a description about it if is unnamed. This combination of 

neural network works in a beautiful manner and it produces fascinating results. 

4. Recurrent Neural Networks Extension 

Over the years’ researchers have developed more sophisticated types of RNNs to deal with 

some of the shortcomings of RNNs. 

4.1 Bidirectional RNNs 

This type of RNNs are based on the idea that the output at time 𝑡 may not only depend on 

the previous elements in the sequence, but also future elements. For example, to predict a 

missing word in a sequence, we need to look at both the left and the right context. 

Bidirectional RNNs are quite simple. They are just two RNNs stacked on top of each other. 

The output is then computed based on the hidden state of both RNNs. 

4.2 Deep (Bidirectional) RNNs 

This type of RNNs are similar to Bidirectional RNNs, only that there are multiple layers 

per time step. In practice this gives a higher learning capacity but a lot of training data is 

required. 

4.3 Long-Short-Term-Memory (LSTM) 

LSTM is a special kind of RNNs that are designed to learn long term dependencies i.e., to 

memorize the sequence of data. The memory in LSTMs are called cells that are connected 

through layers. The cells resemble a transport line (the upper line in each cell) that connects 

out of one module to another one conveying data from past and gathering them for the 

present one. Each memory cell contains gates which handle information flow into and out 

of the cell. Internally these cells decide what to keep in (and what to erase from) memory. 

They then combine the previous state, the current memory and the input. Hence the gates 

which are based on sigmoidal neural network layer, enable the cells to optionally let data 

pass through or disposed. Each sigmoid layer yields numbers between 0 and 1, depicting 

every segment of data ought to be let through in each cell. More precisely, an estimation of 
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0 value implies that “let nothing pass through”; whereas; an estimation of one indicates that 

“let everything pass through”. There are three types of gates in the LSTM unit with the aim 

of controlling the state of each cell: 

- Forget Gate outputs a number between 0 and 1, where 1 shows “completely 

keep this”; whereas, 0 implies “completely ignore this”. 

- Memory Gate chooses which new data need to be stored in the cell. First, a 

sigmoid layer, called the “input door layer” chooses which values will be 

modified. Next a tanh layer makes a vector of new candidate values that 

could be added to the state. 

- Output Gate decides what will be yield out of each cell. The yielded value 

will be passed on the cell state along with the filtered and newly added data. 

The structure of the LSTM unit is shown in figure 5.  

 

Fig. 5: LSTM unit 

As seen from figure 5, Eq. v-vii, the LSTM unit gets the information from the previous 

state ℎ𝑡−1 and the input 𝑥𝑡, and uses the activation function (sigmoid) in the “input layer 

gate” to decide which part of the information to pass to the output and next LSTM unit. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                                                                (v) 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                                                                (vi) 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                                                             (vii) 

𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                                                                     (viii) 
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𝐶𝑡 = 𝑓𝑡⨂𝐶𝑡−1 + 𝑖𝑡⨂𝐶�̃�                                                                                                      (ix) 

ℎ𝑡 = 𝑜𝑡⨂𝑡𝑎𝑛ℎ(𝐶𝑡)                                                                                                            (x) 

Eq. v-vii describes the sigmoid function (𝜎(𝑥) = 1
1 + 𝑒−𝑥⁄ ) where W’s and b’s are the 

parameters (weights and biases) for forget, input and output gates. 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 are forget, 

input and output gates respectively. In Eq. viii, the tanh layer creates the vector of new 

candidate values 𝐶�̃� that could be added to the cell state. LSTM unit has two kinds of hidden 

state: “slow” state 𝐶𝑡 and a “fast” state ℎ𝑡. The slow state 𝐶𝑡 is updated by summing the 

multiplication the forget gate 𝑓𝑡 by the previous cell state 𝐶𝑡−1 and the multiplication the 

input gate 𝑖𝑡 by the new candidate value 𝐶�̃�. The ℎ𝑡 state is updated using the hyperbolic 

tangent function (tanh) of 𝐶𝑡 state and 𝑜𝑡 output gate. The calculation in the step is pretty 

much straightforward and eventually leads to the output. However, the outputs consist of 

only the outputs those were decided to be carry forwarded in the previous steps and not all 

the outputs at once. The main feature of LSTM unit is that its cell state accumulates 

activities over time. As derivatives of the error are summed over time, they do not vanish 

quickly. In this way, LSTMs can implement tasks over long term dependencies. 

5. Conclusion 

Artificial Intelligence (AI) has gained considerable prominence over the last decades 

fuelled by numerous applications in the field of image and speech recognition, automatic 

translation, modelling and forecasting, and many more areas. An artificial neural network 

is the field of artificial intelligence approach in which it tries to mimic the network of 

neurons that make up a human brain so that the computer will be able to learn things and 

make decisions in a human like manner. A recurrent neural networks (RNNs) is a class of 

neural networks that can use their internal state (memory) to process sequences of inputs 

and Long Short Term Memory (LSTM) networks are a kind of RNNs with its architecture 

for predicting sequence containing longer term patterns of unknown length, due to their 

ability to maintain long term memory. 

6. Suggested Readings 
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Impact Assessment using Instrumental Variable and Propensity Score 

Matching Techniques 

Anuja A R, Shivaswamy G P, K N Singh, Rajesh T and Harish Kumar HV 

ICAR-IASRI, New Delhi 

 Research projects are designed with certain objectives. Projects might appear 

potentially promising before implementation yet fail to generate expected impacts or benefits. 

The obvious need for impact evaluation is to help researchers and policy makers decide 

whether projects or programs are generating intended effects; to promote accountability in the 

allocation of resources; and to fill gaps in understanding what works, what does not, and how 

measured changes in well-being are attributable to a particular project or policy intervention. 

 

What Are Inputs?  

The resources used in a research are called inputs. 

Example: Seeds, Fertilisers   

What Are Outputs?  

Outputs are the immediate results of the project/intervention. We usually describe outputs with 

numbers (example: Percentage increase in yield) and these are measurable and readily 

determined. 

How Is an Outcome Different?  

Inputs Outputs Outcomes Impact

Fig 1: Monitoring and evaluation 

framework 
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An outcome is an effect your research produces on the people or issues you serve or address. 

An outcome is a change that occurred because of your research. It is measurable and time-

limited, although it may take a while to determine its full effect. Example: Farmers’ income: 

Percentage increase in income. 

Why Does Impact Matter? 

Impacts are the long-term or indirect effects of your outcomes. Impacts are hard to measure 

since they may or may not happen. Example: Nutritional security 

Impact evaluation 

Impact can be defined as the “the attainment of development goals of the project or program, 

or rather the contributions to their attainment.” Impact evaluation is an assessment of how the 

intervention being evaluated affects outcomes, whether these effects are intended or 

unintended. Impact evaluation spans qualitative and quantitative methods, as well as ex ante 

and ex post methods. Figure 1 portrays the different levels of impact evaluation.   

When to do an impact evaluation 

It is not feasible to conduct impact evaluations for all interventions. The following are 

examples of the types of intervention when impact evaluation would be useful: 

 • Innovative schemes 

 • Pilot programs which are due to be substantially scaled up 

 • Interventions for which there is scant solid evidence of impact in the given context  

• A selection of other interventions across an agency’s portfolio on an occasional basis 

How to do an impact evaluation 

Quantitative versus Qualitative Impact Assessments 

Impact evaluation can be done through qualitative and quantitative techniques. Qualitative 

analysis seeks to measure potential impacts that the program may generate, the mechanisms of 

such impacts, and the extent of benefits to recipients from in-depth and group-based interviews. 

Whereas quantitative results can be generalizable, the qualitative results may not be. 
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Nonetheless, qualitative methods generate information that may be critical for understanding 

the mechanisms through which the program helps beneficiaries. Qualitative information such 

as understanding the local socio-cultural and institutional context, as well as program and 

participant details is, however, essential to a sound quantitative assessment. For example, 

qualitative information can help identify mechanisms through which projects might be having 

an impact; thereby aiding operational evaluation. But a qualitative assessment on its own 

cannot assess outcomes against relevant alternatives or counterfactual outcomes. That is, it 

cannot really indicate what might happen in the absence of the program. Quantitative analysis 

is also important in addressing potential statistical bias in program impacts. A mixture of 

qualitative and quantitative methods (a mixed-methods approach) might therefore be useful in 

gaining a comprehensive view of the program’s effectiveness. 

Quantitative Impact Assessment 

Quantitative methods span ex-ante and ex-post approaches.  

The ex-ante design determines the possible benefits or pitfalls of an intervention through 

simulation or economic models. This approach attempts to predict the outcomes of intended 

policy changes, given assumptions on individual behavior and markets. Ex-ante analysis can 

help in refining projects before they are implemented, as well as in forecasting the potential 

effects of programs in different economic environments.  

The Ex post impact evaluation, in contrast, is based on actual data gathered either after 

program intervention or before and after program implementation. Ex post evaluations 

measure actual impacts accrued by the beneficiaries because of the program. These 

evaluations, however, sometimes miss the mechanisms underlying the program’s impact on 

the population, which structural models aim to capture. These mechanisms can be very 

important in understanding program effectiveness (particularly in future settings).Ex post 

evaluations can also be much more costly than ex ante evaluations because they require 

collecting data on actual outcomes for participant and nonparticipant groups, as well as on 

other accompanying social and economic factors that may have determined the course of the 

intervention. An added cost in the ex post setting is the failure of the intervention, which might 

have been predicted through ex ante analysis. There are attempts to combine both these 

approaches. 
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Evaluation Design 

The following are the key elements in designing an impact evaluation 

• Deciding whether to proceed with the evaluation  

• Identifying key evaluation questions 

• The evaluation design should be embedded in the program theory 

• The comparison group must serve as the basis for a credible counterfactual, addressing 

issues of selection bias (the comparison group is drawn from a different population than 

the treatment group) and contagion (the comparison group is affected by the intervention 

or a similar intervention by another agency). 

• Findings should be triangulated  

• The evaluation must be well contextualized 

Impact evaluation: Major issues 

The Problem of the Counterfactual 

The main challenge of an impact evaluation is to determine what would have happened to the 

beneficiaries if the program had not existed. A beneficiary’s outcome in the absence of the 

intervention would be its counterfactual. The problem of evaluation is that while the program’s 

impact (independent of other factors) can truly be assessed only by comparing actual and 

counterfactual outcomes, the counterfactual is not observed. So the challenge of an impact 

assessment is to create a convincing and reasonable comparison group for beneficiaries in light 

of this missing data. Two methods that can be used include 

• Before-and-After Comparisons 

• With-and-Without Comparisons 

The Problem of Selection Bias 

Without information on the counterfactual, the next best alternative is to compare outcomes of 

treated individuals or households with those of a comparison group that has not been treated. 

In doing so, one attempts to pick a comparison group that is very similar to the treated group, 

such that those who received treatment would have had outcomes similar to those in the 

comparison group in absence of treatment. 
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Different Evaluation Approaches to Ex Post Impact Evaluation 

A number of different methods can be used in impact evaluation theory to address the 

fundamental question of the missing counterfactual. Each of these methods carries its own 

assumptions about the nature of potential selection bias in program targeting and participation, 

and the assumptions are crucial for developing the appropriate model to determine program 

impacts.  

These methods include 

1.Randomized evaluations 

2. Matching methods, specifically propensity score matching (PSM) 

3. Double-difference (DD) methods 

4. Instrumental variable (IV) methods 

5.Regression discontinuity (RD) design and pipeline methods 

6. Distributional impacts 

7. Structural and other modeling approaches 

These methods vary by their underlying assumptions regarding how to resolve selection bias 

in estimating the program treatment effect.  

Randomized evaluations involve a randomly allocated initiative across a sample of subjects 

(communities or individuals, for example); the progress of treatment and control subjects 

exhibiting similar preprogram characteristics is then tracked over time. Randomized 

experiments have the advantage of avoiding selection bias at the level of randomization. 

In the absence of an experiment, PSM methods compare treatment effects across participant 

and matched nonparticipant units, with the matching conducted on a range of observed 

characteristics. PSM methods therefore assume that selection bias is based only on observed 

characteristics; they cannot account for unobserved factors affecting participation. 

DD methods assume that unobserved selection is present and that it is time invariant—the 

treatment effect is determined by taking the difference in outcomes across treatment and 

control units before and after the program intervention. DD methods can be used in both 

experimental and non-experimental settings. 
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 IV models can be used with cross-section or panel data and in the latter case allow for 

selection bias on unobserved characteristics to vary with time. In the IV approach, selection 

bias on unobserved characteristics is corrected by finding a variable (or instrument) that is 

correlated with participation but not correlated with unobserved characteristics affecting the 

outcome; this instrument is used to predict participation. 

RD and pipeline methods are extensions of IV and experimental methods; they exploit 

exogenous program rules (such as eligibility requirements) to compare participants and 

nonparticipants in a close neighborhood around the eligibility cutoff. Pipeline methods, in 

particular, construct a comparison group from subjects who are eligible for the program but 

have not yet received it. 

1. Instrumental Variable Technique 

In general, research issues in the social sciences are casual. Impact assessment studies 

focus on the influence of treatment on outcome. For example, while assessing the impact of a 

welfare initiative on poverty reduction, the welfare program is the treatment and poverty 

reduction is the intended outcome. Here, allotting treatment randomly to the experimental units 

is not feasible. Estimation of a causal relationship under such circumstances is problematic as 

it is difficult to establish that the treatments are exogenous to the investigated system.  

One of the basic assumptions of Ordinary Least Square (OLS) is that there is no 

correlation between independent variables and residuals. When the predictor variable X is 

correlated with the error term U, the estimation of the causal effect using observational data 

will be biased. The problem can be addressed by adding additional exogenous variables to the 

model. In social science, Instrumental Variable (IV) technique is helpful to estimate the causal 

effect when there exists endogeneity. The Wu-Hausman test can be used to check endogeneity 

of treatment variable. IV can be used to solve the problem of omitted variable bias and the 

classic errors-in-variables problem. 

Endogeneity occurs when there exists a correlation between independent variables and 

the error term. Let us take an example to explain the situation. Suppose we want to assess the 

impact of years of schooling on the earning of individuals. We observe correlation between 

years of schooling and the outcome variable i.e. earnings of individuals. But this correlation 
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not necessarily indicates a causal relationship. Suppose, there is some unobservable variable 

that influences the outcome here such as IQ of the individual. There is a possibility that a better 

IQ of the individual is positively influencing both the treatment (years of schooling) and 

outcome variables (earnings of the individual). Figure 1 depicts the situations where causal 

inference in observational studies will be valid. The instrumental variable technique is an 

important tool used in the impact assessment studies in agriculture.  

 

Fig 2 Examples of a situation where the modeling of causal relationships using observational data 

will be biased (a) and a situation where it will be valid (b) (Pokrope, 2016) 

What are the instrumental variables? 

Instrumental variable (IV) methods allow for endogeneity. An instrumental variable Z 

is an exogenous variable employed to assess the causal effect of variable X on Y (Figure 2). 

A variable Z is an instrumental (relative to the pair (X, Y)) if  

(i) Z is independent of all variables (including error terms) that have an influence 

on Y that is not mediated by X and  

(ii)  Z is not independent of X (Pearl 2000). 

The first clause is referred to as the ‘exclusion’ and the second as the ‘relevance’. 
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Fig.3 Situation where Z is a valid instrument (Pokrope, 2016) 

 

Illustrating the application of instrumental variable technique in the agriculture 

Birthal et al. (2015) employed IV technique to assess the impact of crop diversification on farm 

poverty in India. Unobserved features such a skill, motivation, etc. may lead to bias in the 

estimated coefficient.  Using OLS regression to assess the impact may capture this unobserved 

heterogeneity and hence the estimates can suffer from bias. An instrumental variable was 

introduced into the model to mask unobserved heterogeneity at household level. As explained 

earlier, an ideal IV will not influence the outcome but will influence the treatment variable. In 

the study, the neighborhood effect based on geographical and social proximity was the IV. The 

logic of choosing the IV was that if the number of farmers growing high-value crops in the 

neighborhood is high it would positively influence the treatment variable i.e. area share of 

high-value crops. At the same time, the said IV would not affect the outcome variable of the 

model (farm poverty).          

Selection of the instrumental variable 

The selection of IV is of at most importance for the proper estimation of the causal effect. 

Finding a suitable instrumental variable for a large-scale database is a difficult task. 

Knowledge, experience and thorough understanding of the research issue can guide the 

researcher in finding proper IV for a situation. Weak instruments may worsen the bias in 
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estimation (Khandker et al., 2010). A value greater than 10 for the first stage F statistic 

indicates a strong instrument. This does not necessarily rule out a weak instrument issue. 

Disadvantages of instrumental variable 

There are many challenges associated with the application of IV variables in impact 

assessment.  The very difficulty in finding a suitable IV following all the assumptions is a 

major challenge.  The poor performance of IV in small samples is another issue (Baum, 2008). 

The strength of the IV determines the precision. In comparison with the OLS estimates, IV 

estimates suffer from severe precision loss, if the instrument is weak.  IV approaches are not 

immune from selection bias and the issue can be addressed by using the inverse probability of 

selection weights (Canan et al., 2017) 

 IV technique using Two-Stage Least Squares (2SLS) regression  

In the OLS regression, there is a basic assumption that all independent variables are 

uncorrelated with the error term. Two-Stage least squares (2SLS) regression analysis is 

employed when there exists problem of endogeneity (Gujarati et al., 2012) 

Problematic causal variable: This is the independent variable that is correlated with the error 

term or it is the variable that is influenced by other variables in the model. This endogenous 

causal variable is replaced with an instrumental variable in the first stage of the analysis. 

Instrument variable: An instrumental variable is a new variable used in 2SLS to account for 

unobserved behavior between variables. 

Estimation stages  

First stage: A new variable is created using the instrument variable 

Second stage: Instead of actual values of the problematic predictors, estimated values from the 

earlier stage is used in an OLS model to estimate the impact of the treatment variable 

First stage regression:- 

𝒙𝒊 =  𝑰𝜶 +  𝒁 𝒗 +  𝜹𝒊 (1) 

𝑥𝑖 – Vector of the endogenous variable i (where i = 1,…, N) 

𝐼- Matrix for Instrumental variables 
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Z- Matrix of the covariates 

𝛿𝑖- Error term 

The role of the instrumental variables finishes at the first stage of 2SLS. Covariates are 

included in the first stage of the estimation to ensure that there is no direct influence of IV on 

the outcome. More than one IV can be employed in the first stage considering the 

appropriateness of the variables.  

Second stage regression: - 

𝒚 =  𝒙�̂�𝛽𝑖 + 𝒁𝜷 + 𝒆 (2) 

y- Vector of the outcome variable 

𝑥�̂�- Vector of predicted values of x based on first stage regression 

βi - Parameter estimate of the causal effect of X on Y 

Z- Matrix of the covariates 

β - Vector of slope parameters for the covariates from Z 

e - Error term. 

 Interpretation 

The IV estimates indicate the local average treatment effect (LATE) instead of the average 

treatment effect (ATE). The ATE is the expected average effect of the treatment on outcome. 

The LATE provides information about the units that are likely to get the treatment if it is in the 

treatment group, but otherwise not take the treatment. The estimated LATE can be generalized 

for the population if there is no striking difference between the individuals influenced by the 

instrument and the population (Pokrope, 2016). 

ILLUSTRATATION 

Suppose we want to study the impact of having health insurance on medical expenses. 

In the given example, the dependent variable is ‘medical expenses’ (y1), the endogenous 

regressor is ‘having health insurance’ (y2) and exogenous regressors are illness, age, and 

income (x1) of the individuals. In this example, social security income (ssi) ratio of the 

individual is used as an instrument (x2). The IV represents variables assumed to affect ‘the 

choice of having health insurance or not’ but to have no direct effect on the outcome i.e. 

medical expenses. Table 1 indicates the sample data. 
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Table 1: Sample data 

Number Medical expenses Health insurance Age Female Income Illnesses ssi ratio 

1 595 1 74 1 95 0 0.15 

2 1783 1 73 0 36 3 0.40 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

n-1 720 0 69 1 29 1 0.15 

n 809 1 90 1 21 1 0.36 

Note: The data used in the illustrative example is a modified data from Katchova, A. (2013). 

Instrumental Variables in STATA. 

https://sites.google.com/site/econometricsacademy/econometrics-models/instrumental-

variables.   

OLS regression in STATA: -  

First, define the dependent variable, independent variables, endogenous variable and 

instrumental variable. Command used for OLS regression in STATA – ‘regress’. Here the 

dependent variable is medical expenses (y1). The endogenous regressor is ‘having health 

insurance’ (y2) and exogenous regressors are illness, age, and income (x1) of the individuals. 

Table 2 illustrates the results of OLS regression. The results indicate that for individuals with 

health insurance, the medical expenses are 7.5% higher than those for individuals without 

health insurance.  

Command: regress y1 y2 x1list 

Table 2: Result of OLS regression 

y1: log of medical expenses Coef. SE t P>t [95% Conf. Interval] 

Health insurance (y2) 0.075* 0.026 2.880 0.004 0.024 0.126 

Illnesses (x1) 0.441* 0.010 46.040 0.000 0.422 0.459 

Age (x1) -0.003 0.002 -1.380 0.167 -0.006 0.001 

Log of income (x1) 0.017 0.014 1.250 0.211 -0.010 0.044 

Constant 5.780* 0.151 38.310 0.000 5.484 6.076 

* p < 0.01 

2SLS estimation: - Command used for 2SLS regression using IV in STATA: ‘ivregress’ 
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Command: ivregress 2sls y1 (y2= x2) x1list 

Table 3: Result of 2 SLS estimation  

y1: log of medical expenses Coef. SE t P>t [95% Conf. Interval] 

Health insurance (y2) -0.852* 0.198 -4.300 0.000 -1.241 -0.463 

Illnesses (x1) 0.449* 0.010 43.590 0.000 0.428 0.469 

Age (x1) -0.012* 0.003 -4.230 0.000 -0.017 -0.006 

Log of income (x1) 0.098* 0.022 4.350 0.000 0.054 0.142 

SS incomer ratio (instrument x2 ) -      

Constant 6.590* 0.235 28.090 0.000 6.130 7.050 

* p < 0.01  

 X1list – Indicates list of exogenous variables 

Table 3 explains the results of 2SLS with IV model. After instrumentation, for 

individuals with health insurance, their medical expenses are 85.2% lower than those for 

individuals without health insurance. It is evident from the results that the 2SLS coefficient 

turned out quite different from the OLS coefficient.  

The following tests can be employed to ascertain the strength and suitability of the 

instruments. 

Durbin-Wu-Hausman test for endogeneity 

The endogeneity in the model can be tested using the Durbin-Wu-Hausman test for 

endogeneity. The Null hypothesis of the Durbin-Wu-Hausman test is that the independent 

variables are exogenous in nature. Rejection of null-hypothesis indicates the presence of 

endogeneity. The presence of endogeneity necessitates the usage of IV approach.  

In the given example test for endogeneity was performed using the following command 

in STATA.   

quietly ivregress 2sls y1 (y2= x2) x1list, first 

estat endogenous 

quietly regress  y2  x2 x1list 

quietly predict vhat, resid 

quietly regress  y1 y2  x1list vhat 

testvhat 
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The rejection of null hypothesis confirmed the presence of endogeneity. 

Correlation  

The correlation between ‘having health insurance’ (endogenous variable) and ssi (IV) 

was tested and there was a negative correlation of -0.21. Here the correlation is weak and this 

may lead to biased estimates. 

Weak instrument test -F statistics 

As a thumb rule, if the value of F statistics of the model is greater than 10, instruments 

are not weak. Following commands were used to estimate the F statistics. 

quietly ivregress 2sls y1 (y2= x2) x1list,  vce (robust) 

estat first stage, forcenonrobust 

As the value is 69 (which is greater than 10 as per thumb rule), the given instrument is not 

weak. 

 

Validity of multiple instruments. 

The test for over-identifying restriction can be used to check the validity of multiple 

instruments. In the given example we have employed a single instrument. 
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2.Propensity Score Matching Technique  

Propensity score matching (PSM) constructs a statistical comparison group that is based on a 

model of the probability of participating in the treatment, using observed characteristics. 

Participants are then matched on the basis of this probability, or propensity score, to 

nonparticipants. The average treatment effect of the program is then calculated as the mean 

difference in outcomes across these two groups. The validity of PSM depends on two 

conditions: (a) conditional Independence (namely, that unobserved factors do not affect 

participation) and (b) sizable common support or overlap in propensity scores across the 

participant and nonparticipant samples. Different approaches are used to match participants 

and nonparticipants on the basis of the propensity score. They include nearest-neighbor (NN) 

matching, caliper and radius matching, stratification and interval matching, and kernel 

matching and local linear matching (LLM). Regression-based methods on the sample of 

participants and nonparticipants, using the propensity score as weights, can lead to more 

efficient estimates.  

On its own, PSM is a useful approach when only observed characteristics are believed to affect 

program participation. Whether this belief is actually the case depends on the unique features 

of the program itself, in terms of targeting as well as individual take up of the program. 

Assuming selection on observed characteristics is sufficiently strong to determine program 

participation, baseline data on a wide range of preprogram characteristics will allow the 

probability of participation based on observed characteristics to be specified more precisely. 

Some tests can be conducted to assess the degree of selection bias or participation on 

unobserved characteristics. 

Given concerns with the implementation of randomized evaluations, the approach is still a 

perfect impact evaluation method in theory. Thus, when a treatment cannot be randomized, the 

next best thing to do is to try to mimic randomization—that is, try to have an observational 

analogue of a randomized experiment. With matching methods, one tries to develop a 

counterfactual or control group that is as similar to the treatment group as possible in terms of 

observed characteristics. The idea is to find, from a large group of nonparticipants, individuals 

who are observationally similar to participants in terms of characteristics not affected by the 

program. Each participant is matched with an observationally similar nonparticipant, and then 
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the average difference in outcomes across the two groups is compared to get the program 

treatment effect. If one assumes that differences in participation are based solely on differences 

in observed characteristics, and if enough nonparticipants are available to match with 

participants, the corresponding treatment effect can be measured even if treatment is not 

random. The problem is to credibly identify groups that look alike. Identification is a problem 

because even if households are matched along a vector, X, of different characteristics, one 

would rarely find two households that are exactly similar to each other in terms of many 

characteristics. Because many possible characteristics exist, a common way of matching 

households is propensity score matching (PSM). In this technique, each participant is matched 

to a nonparticipant on the basis of a single propensity score, reflecting the probability of 

participating conditional on their different observed characteristics X.  

What Does PSM Do?  

PSM constructs a statistical comparison group by modeling the probability of participating in 

the program on the basis of observed characteristics unaffected by the program. Participants 

are then matched on the basis of this probability, or propensity score, to nonparticipants, using 

different methods outlined later in the chapter. The average Treatment effect of the program is 

then calculated as the mean difference in outcomes across these two groups. On its own, PSM 

is useful when only observed Characteristics are believed to affect program participation. This 

assumption hinges on the rules governing the targeting of the program, as well as any factors 

driving self-selection of individuals or households into the program. Ideally, if available, pre-

program baseline data on participants and nonparticipants can be used to calculate the 

propensity score and to match the two groups on the basis of the propensity score. Selection 

on observed characteristics can also help in designing multi-wave experiments. Hahn, Hirano, 

and Karlan (2008) show that available data on covariates for individuals targeted by an 

experiment, say in the first stage of a two-stage intervention, can be used to choose a treatment 

assignment rule for the second stage—conditioned on observed characteristics. This equates to 

choosing the propensity score in the second stage and allows more efficient estimation of 

causal effects. 
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PSM Method in theory 

The PSM approach tries to capture the effects of different observed covariates X on 

participation in a single propensity score or index. Then, outcomes of participating and 

nonparticipating households with similar propensity scores are compared to obtain the program 

effect. Households for which no match is found are dropped because no basis exists for 

comparison. PSM constructs a statistical comparison group that is based on a model of the 

probability of participating in the treatment T conditional on observed characteristics X, or the 

propensity score: P(X ) = Pr(T = 1|X ). The necessary assumptions for Identification of the 

program effect are (a) conditional independence and (b) presence of a common support. The 

treatment effect of the program using these methods can either be represented as the average 

treatment effect (ATE) or the treatment effect on the treated (TOT). 

Assumption of conditional independence 

Conditional independence states that given a set of observable covariates X that are not affected 

by treatment, potential outcomes Y are independent of treatment assignment T. If Yi
T represent 

outcomes for participants and Yi
C outcomes for nonparticipants, conditional independence 

implies 

(Yi
T, Yi

C) ⊥| Ti|Xi 

This assumption is also called un-confoundedness, and it implies that uptake of the program is 

based entirely on observed characteristics. To estimate the TOT as opposed to the ATE, a 

weaker assumption is needed:  

Yi
C ⊥| Ti|Xi 

Conditional independence is a strong assumption and is not a directly testable criterion; it 

depends on specific features of the program itself. If unobserved characteristics determine 

program participation, conditional independence will be violated, and PSM is not an 

appropriate method. Having a rich set of preprogram data will help support the conditional 

independence assumption by allowing one to control for as many observed characteristics as 

might be affecting program participation.  
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Assumptions of common support 

A second assumption is the common support or overlap condition: 0 < P(Ti = 1|Xi ). This 

condition ensures that treatment observations have comparison observations nearby in the 

propensity score distribution. Specifically, the effectiveness of PSM also depends on having a 

large and roughly equal number of participant and nonparticipant observations so that a 

substantial region of common support can be found. For estimating the TOT, this assumption 

can be relaxed to P (Ti= 1|Xi) < 1 

Treatment units will therefore have to be similar to non-treatment units in terms of I observed 

characteristics unaffected by participation; thus, some non-treatment units may have to be 

dropped to ensure comparability. However, sometimes a nonrandom subset of the treatment 

sample may have to be dropped if similar comparison units do not exist. This situation is more 

problematic because it creates a possible sampling bias in the treatment effect. Examining the 

characteristics of dropped units may be useful in interpreting potential bias in the estimated 

treatment effects. Treatment observations with weak common support can be dropped out. 

Only in the area of common support can inferences be made about causality, as reflected in 

figure 1. Figure 2 reflects a scenario where the common support is weak. 

If conditional independence holds, and if there is a sizable overlap in P(X ) across participants 

and nonparticipants, the PSM estimator for the TOT can be specified as the mean difference 

in Y over the common support, weighting the comparison units by the propensity score 

distribution of participants. A typical cross-section estimator can be specified as follows: 

TOTPSM = EP(X) | T = 1 {E[YT| T=1, P(X)]-E[YC |T=0, P(X)]} 

Application of PSM method 

To calculate the program treatment effect, one must first calculate the propensity score P(X) 

on the basis all observed covariates X that jointly affect participation and the outcome of 

interest. The aim of matching is to find the closest comparison group from a sample of 

nonparticipants to the sample of program participants. “Closest” is measured in terms of 

observable characteristics not affected by program participation. 

First, the samples of participants and nonparticipants should be pooled, and then participation 

T should be estimated on all the observed covariates X in the data that are likely to determine 
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participation. When one is interested only in comparing outcomes for those participating (T 

= 1) with those not participating (T = 0), this estimate can be constructed from a probit or 

logit model of program participation.  

After the participation equation is estimated, the predicted values of T from the participation 

equation can be derived. The predicted outcome represents the estimated probability of 

participation or propensity score. Every sampled participant and non- participant will have 

an estimated propensity score, P̂(X |T = 1) = P̂(X). Note that the participation equation is not 

a determinants model, so estimation outputs such as t-statistics and the adjusted R2 are not 

very informative and may be misleading. For this stage of PSM, causality is not of as much 

interest as the correlation of X with T. 

As for the relevant covariates X, PSM will be biased if covariates that determine participation 

are not included in the participation equation for other reasons. These reasons could include, 

for example, poor-quality data or poor understanding of the local context in which the program 

is being introduced. As a result, limited guidance exists on how to select X variables using 

statistical tests, because the observed characteristics that are more likely to determine 

participation are likely to be data driven and context specific. Bias in PSM program estimates 

can be low, given three broad provisions. First, if possible, the same survey instrument or 

source of data should be used for participants and non- participants. Using the same data 

source helps ensure that the observed characteristics entering the logit or probit model of 

participation are measured similarly across the two groups and thereby reflect the same 

concepts. Second, a representative sample survey of eligible nonparticipants as well as 

participants can greatly improve the precision of the propensity score. Also, the larger the 

sample of eligible nonparticipants is, the better matching will be facilitated. If the two samples 

come from different surveys, then they should be highly comparable surveys (same 

questionnaire, same interviewers or interviewer training, same survey period, and so on). A 

related point is that participants and nonparticipants should be facing the same economic 

incentives that might drive choices such as program participation. One could account for this 

factor by choosing participants and nonparticipants from the same geographic area. 

Nevertheless, including too many X variables in the participation equation should also be 

avoided; over specification of the model can result in higher standard errors for the estimated 
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propensity score P̂(X) and may also result in perfectly predicting participation for many 

households (P̂(X) = 1). In the latter case, such observations would drop out of the common 

support (as discussed later). As mentioned previously, determining participation is less of an 

issue in the participating equation than obtaining a distribution of participation probabilities. 

Defining the region of common support and balancing tests 

Next, the region of common support needs to be defined where distributions of the 

propensity score for treatment and comparison group overlap. As mentioned earlier, some of 

the nonparticipant observations may have to be dropped because they fall outside the common 

support. Sampling bias may still occur, however, if the dropped nonparticipant observations 

are systematically different in terms of observed characteristics from the retained 

nonparticipant sample; these differences should be monitored carefully to help interpret the 

treatment effect. 

Balancing tests can also be conducted to check whether, within each quantile of the 

propensity score distribution, the average propensity score and mean of X are the same. For 

PSM to work, the treatment and comparison groups must be balanced in that similar 

propensity scores are based on similar observed X. Although a treated group and its matched 

non-treated comparator might have the same propensity scores, they are not necessarily 

observationally similar if misspecification exists in the participation equation. The 

distributions of the treated group and the comparator must be similar, which is what balance 

implies. Formally, one needs to check if P̂(X |T = 1) = P̂(X|T = 0). 

Matching participants to nonparticipants 

Different matching criteria can be used to assign participants to non-participants on the basis 

of the propensity score. Doing so entails calculating a weight for each matched participant-

nonparticipant set. As discussed below, the choice of a particular matching technique may 

therefore affect the resulting program estimate through the weights assigned: 

 Nearest-neighbor matching: One of the most frequently used matching techniques is nearest 

neighbor (NN) matching, where each treatment unit is matched to the comparison unit with 

the closest propensity score. One can also choose n nearest neighbors and do matching 
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(usually n = 5 is used). Matching can be done with or without replacement. Matching with 

replacement, for example, means that the same non- participant can be used as a match 

for different participants. 

Caliper or radius matching: One problem with NN matching is that the difference in 

propensity scores for a participant and its closest nonparticipant neighbor may still be 

very high. This situation results in poor matches and can be avoided by imposing a 

threshold or “tolerance” on the maximum propensity score distance (caliper). This 

procedure therefore involves matching with replacement, only among propensity scores 

within a certain range. A higher number of dropped non- participants is likely, however, 

potentially increasing the chance of sampling bias. 

Stratification or interval matching: This procedure partitions the common support into 

different strata (or intervals) and calculates the program’s impact within each interval. 

Specifically, within each interval, the program effect is the mean difference in outcomes 

between treated and control observations. A weighted average of these interval impact 

estimates yields the overall program impact, taking the share of participants in each 

interval as the weights. 

Kernel and local linear matching: One risk with the methods just described is that only 

a small subset of nonparticipants will ultimately satisfy the criteria to fall within the 

common support and thus construct the counterfactual outcome. Nonparametric matching 

estimators such as kernel matching use a weighted average of all nonparticipants to 

construct the counterfactual match for each participant.  

Calculating the average treatment effect 

As discussed previously, if conditional independence and a sizable overlap in propensity 

scores between participants and matched nonparticipants can be assumed, the PSM 

average treatment effect is equal to the mean difference in outcomes over the common 

support, weighting the comparison units by the propensity score distribution of 

participants. To understand the potential observed mechanisms driving the estimated 

program effect, one can examine the treatment impact across different observable 

characteristics, such as position in the sample distribution of income, age, and so on. 
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Estimating Standard Errors with PSM: Use of the Bootstrap 

Compared to traditional regression methods, the estimated variance of the treatment effect 

in PSM should include the variance attributable to the derivation of the propensity score, 

the determination of the common support, and (if matching is done without replacement) 

the order in which treated individuals are matched. Failing to account for this additional 

variation beyond the normal sampling variation will cause the standard errors to be 

estimated incorrectly. 

One solution is to use bootstrapping, where repeated samples are drawn from the original 

sample, and properties of the estimates (such as standard error and bias) are estimated 

with each sample. Each bootstrap sample estimate includes the first steps of the estimation 

that derive the propensity score, common support, and so on. Formal justification for 

boot- strap estimators is limited; however, because the estimators are asymptotically 

linear, bootstrapping will likely lead to valid standard errors and confidence intervals. 

Advantages and disadvantages of PSM 

The main advantage and drawback of PSM relies on the degree to which observed 

characteristics drive program participation. If selection bias from unobserved 

characteristics is likely to be negligible, then PSM may provide a good comparison with 

randomized estimates. To the degree participation variables are incomplete, the PSM 

results can be suspect. This condition is not a directly testable criteria; it requires careful 

examination of the factors driving program participation. 

Another advantage of PSM is that it does not necessarily require a baseline or 

panel survey, although in the resulting cross-section, the observed covariates entering the 

logit model for the propensity score would have to satisfy the conditional independence 

assumption by reflecting observed characteristics X that are not affected by participation. 

A preprogram baseline is more helpful in this regard, because it covers observed X 

variables that are independent of treatment status.  
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