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AN OVERVIEW OF VARIOUS ACTIVITIES IN 
SAMPLE SURVEY DIVISION 

 

U.C. Sud 
 

Indian Agricultural Statistics Research Institute, New Delhi-110012 

 

1.1 MANDATE 

The Division of Sample Survey is mainly involved in the development of sample 
survey techniques for estimation of various parameters of interest relating to crops, 
livestock, fishery and allied fields. 

 

1.2 MAIN ACTIVITIES 

• Research 
• Teaching 
• Research Guidance 
• Training 
• Advisory & Consultancy 

1.3 THRUST AREAS 

• Application of Remote Sensing and Geographical  Information System 
• Small Area Estimation 
• Area & Production Estimation 
• Cost of Production Studies 
• Assessment and Evaluation Studies 
• Harvest and Post Harvest Losses 
• Analysis of Complex Surveys 
• Development of Data Bases 

1.4  IMPORTANT FEATURES 

1.4.1 APPLIED RESEARCH – USER ORIENTED 
• Some Important Methodologies Developed 

I. Crop production estimation through crop cutting approach which      
formed a sound objective method of estimating crop production in the 
country. 

II. Estimation of livestock numbers, products and attendant practices. 
III. Extent of cultivation and production of fruits and vegetables. 
IV. Estimation of plantation crops like arecanut, coconut, cashewnut. 
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V.  Estimation of fish catch both from marine and inland resources. 
VI.  Estimation of cost of production of crops as well as livestock products. 

VII. Evaluation studies such as assessment of development programmes   like 
IADP, HYVP, dairy improvement programmes, etAssessment of harvest 
and post harvest losses 

1.4.2 BASIC RESEARCH  

i) Successive Sampling 
ii) Systematic Sampling 
iii) Cluster Sampling 
iv) Varying Probability Sampling 
v) Controlled Selection  
vi) Non – Sampling Errors 
vii) Various Methods of Estimation- ratio, regression etc. 
viii)       Analysis of Survey Data 

 
1.4.3 RESEARCH PROJECTS 

• COMPLETED DURING 1996-2000 

1 Pilot sample survey for estimating the energy utilisation for different levels of 
adoption of modern technology in agriculture. 

2 A sampling study on utilization of crossbred working animal vis- a-vis non-
descripts.      

3 Pilot sample survey for estimation of yield of pepper and study of cultivation 
practices using successive sampling.  

4 Statistical modeling for projection of bovine populations and prediction of milk 
availability.  

5 Survey methodology to study economics of keeping goats.  
6 Sampling methodology for estimation of fish catch from a lake. 
7 Pilot sample survey for evolving a sampling methodology for estimation of area 

and yield of cultivated fodder crops other than berseem and jowar crop, cost of 
production and cultivation practices thereof Ghaziabad Distt. (U.P) 

8 Sample survey to evolve suitable sampling methodology to study impact of 
command area irrigation project on agricultural production. 

9 A methodological investigation in estimating seasonal fluctuations of post-
harvest food-grains losses (wheat).  

10 Pilot sample survey for developing a sampling methodology for estimation of 
post- production losses of milk in rural areas.    

11 Estimation of crop yield for  small  areas.  
12 Pilot sample survey to study the economics of Angora rabbits.  
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13 Pilot sample survey for estimating the area under waste-land.  
14 Sample survey for estimation of cashewnut and cashew apple yield and study of 

its cultivation practices.            
15 Development of estimation procedures for Agricultural by-products. 
16 Chi-square tests in survey data. 
17 Pilot studies for estimation of birth and death rates in ovines.  
18 Sample survey for study of constraints in transfer of new agricultural technology 

under field conditions. 
19 Studies on feed intake by bovines through stall feeding and grazing  
20 A study of variability of different components of cost of production of fruits at 

different stages of sampling and estimation of sample sizes at given levels of 
precision.  

21 Estimation of Regression co-efficients from Sample Survey Data. 
22 An analysis of yield gap for buffaloes milk 
23 Small Area Estimation of Milk Production  
24 Development of data base relating to basic and current agricultural and allied 

statistics over time and space  
 

• PROJECTS completed in 2001 onwards 
1. A study for estimation of area and production of important vegetable crops on 

the basis of partial harvest. Use of Remote Sensing Technology in Crop Yield 
Estimation Surveys 

2. A study of variance estimation in complex surveys 
3. Estimation of flow and change in dynamic populations 
4. To study the effect of various input components on the yield of important 

vegetable crops.     
5. Use of Remote Sensing technology in crop yield estimation surveys . 
6. Sample survey to evolve methodology for estimation of fish catch from rivers or 

streams specially of the hilly areas. 
7. Pilot sample survey to develop a sampling methodology for estimation of 

poultry meat production. 
8. Pilot sample survey for estimating the area and yield rates of ginger and potato 

in hilly areas. 
9. Sampling procedure for selection of representative sample of fertilizer from ship 

(Funded through A.P. Cess  Fund) 
10. State of the Indian Farmer: a millennium study. (Min. of Agriculture, Govt. 

of India.)  
11. A pilot study on cost of production of Coconut in Kerala  

(Funded from Coconut Development Board, Kochi, Kerala) 
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12. Study relating to formulating long term mechanisation strategy for each agro-
climetic zone/ state. (funded from DOAC, Ministry of Agriculture, Govt. of 
India).  

13. Study of Land Use Statistics through integrated modelling using Geographic 
Information System (Funded through A.P. Cess  Fund) 

14. Development of GIS based techniques for identification of potential agro-
forestry area 

15. Estimation of wool production - emerging data needs and a methodological 
reappraisal – Funded through A.P. Cess Fund (Collaborative with Central Sheep 
& Wool Research Institute (ICAR), Avikanager (Raj)  

16. Assessment of Harvest and Post Harvest Losses (Mission Mode project under 
NATP Funding) 

17. Crop Yield Estimation at Small Area Level Using Farmers’s Estimates 
(Ministry of Statistics & Programme Implementation.) 

18. Pilot sample survey to develop sampling methodology for estimation of area, 
production and productivity of important flowers on the basis of market arrivals. 
(Min. of Stats. & Programme Implementation, CSO, Sadar Patel Bhawan, 
R.K.Puram, New Delhi). 

19. Developing Remote Sensing Based Methodology for Collecting Agricultural 
Statistics in Meghalaya. 

20. A pilot study to develop an alternate methodology for estimation of area and 
production of horticultural crops - Funded by CSO, MOS & PI, New Delhi. 

21. To assess the survey capabilities of private sector - Funded by CSO, MOS & 
PI, New Delhi. 

22. Pilot study on small area crop estimation approach for crop yield estimates at the 
Gram Panchayat level - Funded by DES, DOAC, MOA, GOI, New Delhi. 

23. Pilot study to develop sampling methodology for estimation of production of 
mushroom.  

24. Developing Remote Sensing Based Methodology for Collecting Agricultural 
Statistics in North-East hilly region. 

25. Study to investigate the causes of variation between official and trade estimates 
of cotton production- Funded by DES, MOA, GOI 

26. Estimation of extent of farming practices, resources and activities with energy 
use. 

27. Study on status and projection estimates of agricultural implements and 
machinery. 

28. Evaluation of Rationalization of Minor Irrigation Statistics Scheme 
29. Small area estimation for zero-inflated data 
30. Consultancy Project on “Determination of optimum sample size for crop yield 

estimation at the gram panchayat level”  
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31. Sampling Methodology for Estimation of Meat Production in Meghalaya- 
Funded by Department of Animal Husbandry, Dairying and Fisheries, Ministry 
of Agriculture, Govt of India. 

32. Consultancy Project on “Evaluation of Agricultural Census Scheme” 

33. Consultancy project entitled “Study to develop an alternative methodology for 
estimation of Cotton production”- Funded by Directorate of Economics and 
Statistics (DES), Ministry of Agriculture, Govt of India.  

34. District-level Poverty Incidence Estimation from NSSO data using Small Area 
Estimation Technique- Funded by CSO, MOS&PI, GOI. 

35. National Initiative on Climate Resilient Agriculture (NICRA)-Agroforestry 
Component 

36. Study of Sample Sizes for Estimation of Area and Production of Food Grain 
Crops 

37. Study to develop methodology for crop acreage estimation under cloud cover in 
the satellite imageries 

38. A study on calibration estimators of finite population total for two stage 
sampling design 

39. On Small Area Inference using Survey Weights 

40. Spatial Nonstationarity in Small Area Estimation under Area Level Model 

41. Impact assessment of agroforestry model in Vaishali district of Bihar State 

42. Farm power machinery use protocol and management for sustainable crop 

1.4.4  ON-GOING RESEARCH PROJECTS 

1. Small area estimation under skewed data. 

2. Pilot Study for Estimation of Seed, Feed and Wastage Ratios of Major Food 
grains 

3. Development of Innovative Approaches for Small Area Estimation of Crop 
Yield, Socio-   economic and Food Insecurity Parameters  

4. Assessment of quantitative harvest and post harvest losses of major 
crops/commodities in India 

5. Calibration Estimators under Two Stage Sampling Design when Study 
Variable is Inversely Related to Auxiliary Variable 

6. Study to test the developed alternative methodology for estimation of area and 
production of horticultural crops 

1.4.5 CONSULTANCY PROJECTS FOR PREPARATION OF MANUALS - 
FUNDED BY CSO, MOS & PI, NEW DELHI 

• Area and Crop Production Statistics 

• Animal Husbandry Statistics 

• Agricultural Prices and Marketing 
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• Cost of Cultivation Surveys  

• Horticulture and Spices Statistics 

• Fishery Statistics 

 

1.4.6 COLLABORATIVE RESEARCH PROJECTS  

• Survey of Agricultural Accidents for the year 2004-05 in a large 
sample of villages selected on the basis of statistical consideration, 
with AICRP on ESA (Ergonomics & Safety in Agriculture) (Old 
Name- AICRP on HESA (Human Engineering & Safety in 
Agriculture) 

• Assessment of post harvest losses of crops/commodities with AICRP 
on PHT. 

1.4.6 SOME OTHER STUDIES 

1. Equines in the household economy of the poor (Study was undertaken in 
1998 in collaboration with NRC Equines, Hissar and NCAP, New Delhi) 

2. A pilot study of agro-forestry/social forestry in Chhachhroli block of 
Yamunanagar District in Haryana (Study was undertaken in 1998 in 
collaboration with forest department of Haryana State) 

3. A study for estimation of crop yield at block level using crop-cut and 
farmer’s estimate ( being conducted in Haryana State during rabi season 
1998-99)  

1.4.7 LINKAGES 

 Ministry of Agriculture 
• Directorate of Economics & Statistics 
 Expert Committee on Crop Forecast 
 Working Group on Improvement of Agricultural Statistics 
 Steering Committee on Agricultural Census and Input Survey 
 Causes of Variation between Official & Trade estimates of Cotton 

Production 
 Meeting with Major Trade & Industry Associations dealing with 

Oilseeds Processing and Marketing / Trading 
 Technical Committee for Reviewing the Sampling Design and 

Estimation Procedure followed in respect of Crop Estimation Surveys 
on Fruits, Vegetables and Minor Crops in different States 

 Department of Animal Husbandry and Dairying  
 Technical Committee of Direction for improvement of Animal 

Husbandry and Dairying Statistics 
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 Sub-Committee for Identification of Methodology for Estimation and 
Requirement of Fodder, Fodder Seeds 

 Ministry of Rural Development 
• Directorate of Marketing and Inspection 
• Technical Committee for Estimation of Marketable Surplus and Post-

harvest Losses of Foodgrains 
 Central Statistical Organization /National Sample Survey Organization 

 Expert Committee on Small Area Statistics 
 Expert Group on Examination of the Extent of Underestimation of 

GDP in Agriculture 
 Other Research Institutes 

 National Remote Sensing Agency   
 Space Application Centre  
 Indian Institute of Remote Sensing 
 All-India Soil & Land Use Survey 

 
 
 

1.4.8 FUTURE PROGRAMMES (EFC BASED) 
 
a) Statistical applications of GIS and Remote Sensing Techniques in 

agricultural systems. 
Application of remotely sensed data for improvement of area and production 
statistics and development of yield models. 
 

b) Development of techniques for planning and analysis of survey data 
related to agricultural systems. 
 
i) Development of model based small area techniques for estimation of 

parameters from agricultural and allied surveys. 
ii) Studies on enquiry based farmers estimate with a view to improve the 

present method of crop estimation surveys. 
iii) Re-appraisal of the sampling methodologies for estimation of crops 

livestock products, fisheries, horticulture crops and cotton. 
iv) Studies of estimation and marketing of crops, livestocks and fisheries 

and other data gaps in agricultural sector needed for speeding up the 
planning process. 

v) Evaluation studies for measuring the impact of development of 
programmes such as Krishi Vigyan Kendra agro-forestry, various rural 
developments programmes etc. 

Collaboration in the project 
on Integrated Approach for 
Land use Statistics  

Regarding Remote 
Sensing and GIS 
Applications  
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vi) Studies relating to theoretical aspects on analysis from survey data and 
applications to agricultural surveys such as regression analysis of survey 
data, categorical data analysis, variance estimation of non-linear 
statistics from complex survey, multivariate analysis. 

vii) Studies on assessment and control of various non-sampling errors such 
as coverage errors, response and non-response errors as well as errors 
due to sensitive questions will be carried out. 

viii) Studies on estimation of high value minor crops. 

1.4.9 AGRICULTURAL RESEARCH DATA BOOKS 

Agricultural research is a vital input for planned growth and sustainable development 
of agriculture in the country. Indian Council of Agricultural Research, being an apex 
scientific organization at national level, plays a crucial role in promoting and 
accelerating the use of science and technology programmes relating to agricultural 
research and education. It also provides assistance and support in demonstrating the 
use of new technologies in agriculture. 
Information pertaining to agricultural research, education and related aspects available 
from different sources is scattered over various types of published and unpublished 
records. The Agricultural Research Data Book 2012, which is the fifteenth in the 
series, is an attempt to put together main components/indicators of such information.  
The Data Book comprising 172 Tables is organized, for the purpose of convenience of 
the users, into ten sections namely, Natural Resources; Agricultural Inputs; Animal 
Husbandry, Dairying and Fisheries; Horticulture; Production and Productivity; 
Agricultural Engineering & Produce Management; Export & Import; India’s Position 
in World Agriculture; Investment in Agricultural Research & Education; and Human 
Resources under National Agricultural Research System (NARS). This edition 
contains the latest information / data as available in the country at the end of May, 
2012. In ARDB 2012, some value editions like predicting the future year production 
of food grain crops etc., based on previous years data using statistical models, 
pictorial/graphical representations of data have been done. For depicting state-wise 
data, thematic maps have been prepared using Geographical Information System 
(GIS). Efforts have been made to incorporate the comments and suggestions received 
from various users. The first Agricultural Research Data Book was brought out in the 
year 1996. Subsequently, this was updated and brought out in the years 1997, 1998, 
1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 and 2011 (fourteenth 
edition) 
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1.4.10 TRAINING PROGRAMMES ORGANISED 

1.4.10.1 INTERNATIONAL 

Training Course Title  Year Target group 
International Training Programme on 
“Techniques of Estimation of Output of Food 
Crops”  

1989 
1991 
1992 
1993 
1994 
1995 
1996 

Participants from Afro-
Asian Countries 

Commonwealth Training Programme on 
“Agricultural Sample Surveys, crop Yield 
Modelling and Computer Programming” 

1992 Participants from 
Commonwealth Countries 

Remote Sensing and GIS Applications 1999 Officials from Nigerian 
Government 

Training Programme/Study Tour (Funded by 
FAO) 

2001 Participants from Eritrea, 
Asmara 

Workshop on “Economic Accounts for 
Agriculture" jointly conducted by the Food and 
Agriculture Organization (FAO) of the United 
Nations and the United Nations Statistical 
Institute for Asia and the Pacific (SIAP) 

2001 Participants from 
Bangladesh, Bhutan, 
Cambodia, Islamic Republic 
of Iran, Laos, Nepal, 
Pakistan, Sri Lanka and 
India 

An International study tour/Training 
Programme on "Development of Agricultural 
Statistics System”- sponsored by Food & 
Agriculture Organisation  

2006 Participants from Timor 
Leste 

International Training Programme for Malasian 
Delegates  

2006 Malasian Delegates 

Study Visit on “Indian Agricultural Statistics 
System” for Afghanistan nationals sponsored 
by the Food and Agriculture Organization 
(FAO)  

2008 Afghanistan nationals 

An International training programme on 
“Agricultural Statistics System in India”,  
funded by Central Statistical Organization 
(CSO), Ministry of Statistics and Programme 
Implementation (MOS&PI), Govt. of India 
(GOI). 

2010 Officials of SAARC 
countries 

An International training programme on 
“Applications of Remote Sensing and GIS in 
Agricultural Surveys” 

2011 Officers of Census and 
Statistics Department 
Colombo, Srilanka 
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Assisted in organizing one week module of an 
International training programme on 
“Sampling Techniques and Survey Methods” 
organized by National Academy of Statistical 
Administration (NASA), MOS & PI, GOI at 
IASRI, New Delhi 

2011 Officers of Srilanka 
Government 

An International training programme on 
“Application of Remote Sensing and GIS in 
Agricultural Surveys”, sponsored by Afro 
Asian Rural Development Organization 
(AARDO) 

2012 Afro-Asian Rural 
Development Organizations 
(AARDO) member 
countries 

An International Training programme on 
“Techniques of Estimation and Forecasting of 
Crop Production in India”, funded by the Food 
and Agriculture Organization (FAO) 

2012 Officials of the Ethiopian 
Central Statistical Agency 

An International training programme on 
‘Applications of Remote Sensing and GIS in 
Agricultural Surveys’ for African -Asian Rural 
Development Organization (AARDO)  

2013 Afro-Asian Rural 
Development Organizations 
(AARDO) member 
countries 

A study visit on "Agricultural statistics system 
and food security policy analysis in India" 
under the Project “Strengthening Food and 
Agriculture Information System” funded by 
UNDP. 

2013 Officials of DPR Korea 

 
1.4.10.1 NATIONAL 

S. 
No. 

Training Course Title Year Target group 

1. Models in Survey Sampling  1993 Associate/Asstt. Professor from 
SAU’s/Scientists from ICAR 
Institutes  

2. Modern Sampling Techniques 1997 Senior/Middle level ISS Officers from 
CSO/NSSO 

3. Recent Advances in Survey 
Sampling in Relation to 
Agriculture 

1998 Associate/Asstt. Professor from 
SAU’s/Scientists from ICAR 
Institutes  

4. Recent Advances in the 
Analysis of Survey Data 

1998 Senior/Middle level ISS Officers from 
CSO/NSSO 

5. Methodological Aspects in 
Sample Surveys 

1999 Senior/Middle level ISS Officers from 
CSO/NSSO 

6. Small Area Estimation-Theory 
and Applications 

1999 Senior/Middle level ISS Officers from 
CSO/NSSO 
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7. Qualitative Aspects in 
Collection and Analysis of 
Survey Data 

1999 Senior/Middle level ISS Officers from 
CSO/NSSO 

8. Winter School on "Recent 
Developments in  Survey 
Sampling in Relation to 
Agricultural Research" 

1999 Associate/ Asstt. Professors from 
SAU’s/ Scientists from ICAR 
Institutes 

9. Computer Intensive 
Techniques in Agricultural 
Surveys 

2000 Associate/ Asstt. Professors from 
SAU’s/ Scientists from ICAR 
Institutes 

10. Recent Advances in the 
Analysis of Survey Data 

2001 Scientists / Faculty Members of 
National Agricultural Research 
System 

11. Sample Surveys related to the 
estimation of area and 
production of fruits and 
vegetables 

2001 Officials from Department of 
Horticulture, Govt. of Haryana 

12. Small Area Estimation 
Techniques in Agriculture 

2002 Associate/ Asstt. Professors from 
SAU’s/ Scientists from ICAR 
Institutes 

13. Summer school on 
“Application of Remote 
Sensing and GIS in 
Agricultural Statistics” 

2003 Scientists/Assistant/Associate 
Professors from ICAR Institutes and 
State Agricultural Universities 

14. A winter school on Recent 
advances in survey sampling 
with special emphasis on 
computer intensive data 
analysis techniques 

2003 Scientists/Assistant/Associate 
Professors from ICAR Institutes and 
State Agricultural Universities 

15. A training programme on 
“Sampling Techniques, Sample 
Surveys and Methodological 
Aspects relating to Cost of 
Cultivation Studies” 

2004 Senior level Officers of Tariff 
Commission, Ministry of Commerce 
& Industry, Govt. of India 

16. A Winter School on "Sample 
Survey Techniques in 
Agricultural Research" 

2005 Assistant / Associate Professors from 
SAUs and Scientists from ICAR 
Institutes 

17. A Refresher training 
programme on “Small Area 
Estimation Techniques” 
sponsored by CSO, Ministry of 
Statistics and Programme 
Implementation 

2005 Indian Statistical Services (ISS) 
Officers 

18. A CAS sponsored Training 
Programme on “Recent 
Advances in the Analysis of 
Survey Data” 

2005 Scientists / Asstt. / Assoc. Prof. of 
various SAUs under National 
Agricultural Research System 
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19. A training programme on 
“Small Area Estimation 
Techniques”  

2006 Senior level Officers of Tariff 
Commission, Ministry of Commerce 
& Industry, Govt. of India 

20. Summer school on “Sample 
Survey Techniques in 
Agricultural Research”  

2006 Scientists/Assistant/Associate 
Professors from ICAR Institutes and 
State Agricultural Universities 

21. Winter School on “Sample 
Survey Techniques in 
Agricultural Research” 
 

2008 Scientists/Assistant/Associate 
Professors from ICAR Institutes and 
State Agricultural Universities 

22. A CAS training programme on 
“Recent advances in sample 
survey and analysis of survey 
data”  

2009 Scientists / Asstt. / Assoc. Prof. of 
various SAUs under National 
Agricultural Research System 

23. A refresher training 
programme on “Small Area 
Estimation” sponsored by 
Central Statistical Organization 
(CSO), Ministry of Statistics 
and Programme 
Implementation (MOS&PI), 
Govt. of India (GOI). 

2010 Indian Statistical Services and other 
senior officers of States/UTs 

24. A refresher training course on 
“Research Methodology for 
Official Statistics” sponsored 
by CSO, MOS&PI, GOI. 

2010 Indian Statistical Service (ISS) 
officers and statistical personnel 

25. A Refresher Training 
Programme on "Agricultural 
Statistical System in India" 
sponsored by MOSPI, GOI  

2010 Statistical Personnel of 
States/UTs/PSUs of MOSPI, GOI 

26. A refresher training 
programme on “Small Area 
Estimation”, funded by CSO, 
MOS&PI, GOI. 

2010 In-service ISS officers and senior 
officers of State Govts./UTs 

27. A refresher training 
programme on “Agricultural 
Statistics”, funded by CSO, 
MOS&PI, GOI. 

2011 Officers of Directorate of Economics 
& Statistics of different States 

28. CAFT Training Programme on 
“Recent Advances in Sample 
Survey and analysis of Survey 
Data using Statistical 
Softwares” 

2012 Scientists of ICAR Institutes/Asstt-
Associate Professors of SAUs 

29. Referesher training programme 
on “Agricultural Statistics” 

2012 Officers from the Department of 
Agriculture, Government of Andhra 
Pradesh State 
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30. Refresher Course on “Small 
Area Estimation” was 
organized  

2012 In- Service Officers of Indian 
Statistical Service at IASRI, New 
Delhi 

31 Refresher training programme 
on “Agricultural Statistics”  

2012 Officers of the Department of 
Agriculture, Government of Andhra 
Pradesh 

32 Refresher training programme 
on “Small Area Estimation”  

2012 Officers  of Ministry of Agriculture, 
Govt. of India 

33 CAFT Training Programme on 
Recent Advances in Sample 
Survey and Analysis of Survey 
Data using Statistical 
Softwares  

2013 Scientists of ICAR Institutes/Asstt-
Associate Professors of SAUs 

34 Refresher training programme 
on “Integrated Sample Survey 
Methodology   

Jan., 
2014 

Department of Animal husbandry, 
Dairying & Fisheries, Ministry of 
Agriculture, Govt. of India. 

35 Refresher training programme 
on “Integrated Sample Survey 
Methodology   

Mar., 
2014 

Department of Animal husbandry, 
Dairying & Fisheries, Ministry of 
Agriculture, Govt. of India. 

36 Referesher training programme 
on “Agricultural Statistics” 

2014 Officers from the Department of 
Animal and Husbandry, Government 
of Chhattisgarh 

 
Scientists are also involved in teaching and research guidance for M.Sc/Ph.D. 
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BASIC STATISTICAL METHODS 
A K Gupta 

Indian Agricultural Statistics Research Institute, New Delhi-110012 
 

2.1 Introduction  
Statistics is a very broad subject, with applications in a vast number of different fields. 

Generally, one can say that statistics is the methodology for collecting, analyzing, 

interpreting and drawing conclusions from the data.  

Statistics has been defined differently by the authors from time to time. Some authors 

define it as Statistical Data i.e. numerical statements of the facts while others define it 

as Statistical Methods i.e. principles and techniques used in collecting and analyzing 

the data. 

But the Statistics defined as Statistical Data is inadequate because Statistics is not 

merely confined to the collection of data only but other aspects like presentation, 

analysis and interpretation etc. are also the parts of Statistics. 

The best definition of Statistics was given by Croxton and Cowden according to 

whom the Statistics is the science which deals with the collection, analysis and 

interpretation of numerical data/facts. 

The theoretical developments in modern statistics came during mid-seventeenth 

century with the introduction of ‘Theory of Probability’ by Pascal (1623-1662), P. 

Fermat (1601-1665) with the Development of Properties of Coefficient of Binomial 

Expansion, James Bernoulli (1654-1705), De-Movire (1667-1754), Laplace (1749-

1827) with the Development of Theory of Probability, Gauss (1777-1855) with the 

Development of Principle of Least Square and Normal Laws of Error.  

But the Modern Developments in Statistics are due to Galton (1822-1921) with the 

Development of regression Theory, Karl Pearson (1857-1936) with the Development 

of Correlation analysis and Chi-square Test and Test of Significance, W S Gosset 

(1908) with the discovery of t-distribution applicable in small sample test. Sir Ronald 

A. Fisher (1890-1962) known as Father of Statistics, placed Statistics in a very sound 

footing by applying it to various diversified fields such as Genetics, Biometrics, 

Education, Agriculture etc. and by discovery of Point Estimation (Efficiency 

sufficiency principle of Maximum Likelihood), Exact Sampling Distribution, 

ANOVA, Design of Experiment etc. His contribution made the Statistics a very 

responsible position among various sciences. 
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2.2 Classification 
The process of arranging data into homogenous group or classes according to some 

common characteristics of the data is called Classification. 

(1) Qualitative Base: 

When the data are classified according to some quality or attributes such as sex, 

religion, literacy, intelligence etc. 

(2) Quantitative Base: 

When the data are classified by quantitative characteristics like heights, weights, ages, 

income etc. 

(3) Geographical Base: 

When the data are classified by geographical regions or location, like states, 

provinces, cities, countries etc. 

(4) Chronological or Temporal Base: 

When the data are classified or arranged by their time of occurrence, such as years, 

months, weeks, days etc. 

Tabulation of Data 

The process of placing classified data into tabular form is known as Tabulation. A 

table is a symmetric arrangement of statistical data in rows and columns.  

Diagrams and Graphs of Statistical Data 

One of the most effective way of representation of statistical data may is through 

diagrams and graphs. The commonly used diagrams and graphs are as below: 

Types of Diagrams/Charts: 

1. Simple Bar Chart  

2. Multiple Bar Chart  

3. Component Bar Chart or Sub-Divided Bar Chart 

4. Simple Component Bar Chart  

5. Percentage Component Bar Chart  

6. Sub-Divided Rectangular Bar Chart  

7. Pie Chart  
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Simple Bar Chart 

In simple bar chart, we make bars of equal width but variable length, i.e. the 

magnitude of a quantity is represented by the height or length of the bars. Following 

steps are undertaken in drawing a simple bar diagram: 

 

Simple Bar Chart showing the Milk Production  

 

 
 

Multiple Bar Charts 

 

By multiple bars diagram, two or more sets of inter-related data are represented. 

 
 

Component Bar Chart 

Component bar chart is used to represent data in which the total magnitude is divided 

into different components.  
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Percentage Component Bar Chart 

 

Component Bar Charts/Sub-divided Bar Charts may be drawn on percentage basis. To 

draw sub-divided bar chart on percentage basis, we express each component as the 

percentage of its respective total. 

  

 

 

 

 

 

 

 

 

 

Pie Chart 

 

Pie chart is used to compare the relation between the whole and its components. To 

construct a pie chart (sector diagram), we draw a circle with radius (square root of the 

total). The total angle of the circle is 3600
1T. The angles of each component are 

calculated by the formula. 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
× 3600 

These angles are made in the circle by mean of a protractor to show different 

components. The arrangement of the sectors is usually anti-clock wise. 

Example: 

The following table gives the details of monthly budget of a family. Represent these 

figures by a suitable diagram. 

Item of Expenditure Family Budget 

Food Rs. 600 

Clothing Rs.100 

House Rent Rs.400 

Fuel and Lighting  Rs.100 

Miscellaneous Rs.300 

Total Rs.1500 

 

Solution: 

The necessary computations are given below: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
× 3600 

 

Items 
Family Budget 

Expenditure (Rs.) Angle of Sectors Cumulative Angle 

Food 600 1440 1440 

Clothing 100 240 1680 

House Rent 400 960 2640 

Fuel and Lighting 100 240 2880 

Miscellaneous 300 720 3600 

Total 1500 3600 
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Most common graphs: 

1. Histogram, 
2. Frequency polygon, 
3. Cumulative frequency graph or Ogive. 

 

1. Histogram 

The histogram is a graph that uses contiguous vertical bars to display the frequency of 

the data (unless the frequency equals 0) contained in each class. The heights of the 

bars equal the frequency (after certain scale has been chosen) and the bases of the bars 

lie on the corresponding class. 

 
2. Frequency Polygon 

A frequency polygon is a graph that displays the data by using lines that connect 

points plotted for the frequencies at the midpoints of the classes. In the Cartesian 

0
2
4
6
8

10
12
14
16
18
20

100-104 105-109 110-114 115-119 120-124 125-129 130-134

Histogram of total rainfall

Frequency



BASIC STATISTICAL METHODS 

 

2.7 
 

system OXY the midpoints are the first coordinates of the vertices of the polygon and 

the frequencies are the second coordinates. 

 

 
3. OGIVE 

An OGIVE is a graph that represents the cumulative frequencies for the classes in a 

frequency distribution. It shows how many of values of the data are below certain 

boundary. 

2.3 MEASURES OF CENTRAL TENDENCY 

Measures of central tendency are the statistical constants which enable us to 

comprehend the whole of the distribution/data in to a single value or it is the value of 

the variable under study which is representative of the entire distribution. 

Ideal measures of central tendency: 
An average possesses all or most of the following qualities (characteristics) is 

considered a good average: 

(1) It should be rigidly defined. 

(2) It should be easy to calculate and easy to understand.  

(3) It should be based on all the observations. 

(4) It should be suitable for further mathematical/algebraic treatment. 

(5) It should not be affected by extreme values. 

(6) It should be affected at least as possible by the fluctuations of the sample 

values. 

Types of measures of central tendency: 
1. Arithmetic Mean  

2. Median 
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3. Mode 

4. Geometric Mean  

5. Harmonic Mean 

Arithmetic mean 
Arithmetic mean of a variable or set of given observations is quotient of sum of the 

given observations and the number of the observations. 

The arithmetic mean can be computed for both ungroup data (raw data: a data without 

any statistical treatment) and grouped data (a data arranged in tabular form containing 

different groups). If x is a variable having n observations, arithmetic mean 

abbreviated as A M and denoted by 𝑋𝑋� 1T can be computed by using any of the following 

formula; 

For ungrouped Data: 

𝑋𝑋� =  1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖  𝑛𝑛
𝑖𝑖=1  ,   𝑋𝑋� = 1

𝑛𝑛
∑ (𝑥𝑥𝑖𝑖 −  𝑋𝑋�)𝑛𝑛
𝑖𝑖=1  and  𝑋𝑋� = 𝐴𝐴 +  1

𝑛𝑛
∑ (𝑥𝑥𝑖𝑖 −  𝐴𝐴)𝑛𝑛
𝑖𝑖=1     

For grouped Data: 

𝑋𝑋� =  1
𝑛𝑛
∑ 𝑓𝑓𝑖𝑖  𝑥𝑥𝑖𝑖 𝑛𝑛
𝑖𝑖=1 ,  𝑋𝑋� = 1

𝑛𝑛
∑  𝑓𝑓𝑖𝑖  (𝑥𝑥𝑖𝑖 −  𝑋𝑋�)𝑛𝑛
𝑖𝑖=1    and 𝑋𝑋� = 𝐴𝐴 +  1

𝑛𝑛
∑  𝑓𝑓𝑖𝑖  (𝑥𝑥𝑖𝑖 −  𝐴𝐴)𝑛𝑛
𝑖𝑖=1    

Short Cut Method:  

 𝑋𝑋� = 𝐴𝐴 +  ∑ 𝑑𝑑𝑖𝑖 𝑛𝑛
𝑖𝑖=1
𝑛𝑛

   (For ungrouped data),  𝑋𝑋� = 𝐴𝐴 +  ∑  𝑓𝑓𝑖𝑖 𝑑𝑑𝑖𝑖 𝑛𝑛
𝑖𝑖=1
∑ 𝑓𝑓𝑖𝑖 𝑛𝑛
𝑖𝑖=1

 × ℎ  (For grouped data) 

Where  
xi – different observations of the variable under study 

fi –  frequencies of different class intervals/groups 

A – Assumed mean 

di – deviations of the observations from assumed mean A 

n  – number of observations and  

h  – class interval in case of grouped data 

Median 
Median of a given distribution is the value of the variable which divides the 

distribution in to two equal parts. It is the value such that number of observations 

preceding as well as succeeding from the median is equal or which exceeds and 

exceeded by the same number of observations. Median is thus a Positional Average 

only. 
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First of all, the given observations of the distribution are arranged in 

ascending/descending order in case of ungrouped data. Median is calculated as 

follows; 

(i) If number of observations is odd 

Median = Value of  �𝑛𝑛+1
2
�
𝑡𝑡ℎ

1T  item 

(ii) If the number of observations is even 

Median = Average of �𝑛𝑛
2
�
𝑡𝑡ℎ

 1Tand �𝑛𝑛+1
2
�
𝑡𝑡ℎ

1Titems 

 
Median for grouped data: 

In case of grouped data (discrete frequency distribution), a separate column of 

cumulative frequencies is made. Find the number n/2. See the cumulative frequency 

in which this number n/2 falls. The corresponding xi value will be the median of the 

grouped distribution. 

In case of the grouped data (continuous frequency distribution), a separate column of 

cumulative frequencies is also made. Find the number n/2. See the cumulative 

frequency in which this number n/2 falls. The corresponding class interval is called 

the Median Class. After locating the Median Class, following formula is used for 

calculation of median. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑙𝑙 +
ℎ
𝑓𝑓

(
𝑛𝑛
2
− 𝑐𝑐) 

Where, 
𝑙𝑙 = 1T Lower class limit of the Median Class  

𝑓𝑓 = 1T Frequency of the Median Class  

𝑛𝑛 = Σ𝑓𝑓 = 1T Sum of the frequencies of various class intervals 

𝑐𝑐 = 1T Cumulative frequency of the class preceding the Median Class  

ℎ = 1T Class interval size of the Median Class 

Mode 

Mode is the value which occurs most frequently in the given set of observations i.e. it 

is the value of the variable which is predominant in the given set of observations. If 

the data having only one mode the distribution is said to be uni-model and is said to 

be bi-model, if data have two modes. 
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For ungrouped data, mode is calculated by inspecting the given data. The value which 

occurs maximum number of times in the distribution is called the Mode of the given 

distribution. 

For grouped data, locate the Modal Class/Group. The class/group which has the 

maximum frequency is called the Modal Class/Group. After locating the Modal 

Class/Group, the following formula is applied for calculation of Mode of the given 

frequency distribution. 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑙𝑙 + 𝑓𝑓𝑚𝑚−𝑓𝑓1
(𝑓𝑓𝑚𝑚−𝑓𝑓1)+(𝑓𝑓𝑚𝑚−𝑓𝑓2) × ℎ 

Where,  

l  is the lower class limit of the model group,  

fm is the frequency of the model group 

f1 is the frequency of the class interval preceding the model group 

f2 is the frequency of the class interval preceding the model group 

h is the class interval of the modal group 

 
Geometric Mean 
 
Geometric mean of a set of n observations is the nth root of the multiplication of all 

the n observations. Hence the geometric mean denoted by G; of n observations xi, i = 

1, 2, .., n is given by the formula 

 
G = (x1. x2 . …………. . xn)1/n 
 
G = Antilog [1

𝑛𝑛
 ∑ log 𝑥𝑥𝑖𝑖 ]𝑛𝑛

𝑖𝑖=1  

 In case of grouped frequency distribution, geometric mean is given by the formula 

 
G = Antilog [1

𝑛𝑛
 ∑  𝑓𝑓𝑖𝑖  log 𝑥𝑥𝑖𝑖 ]𝑛𝑛

𝑖𝑖=1    where   𝑛𝑛 =  ∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=1  

The Geometric Mean of the values 10, 5, 15, 8, 12 is given by 

𝐺𝐺 = √10 × 5 × 15 × 8 × 125  

              = √720005 = (72000)
1
5 = 9.36 
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By log method 

𝑥𝑥 log 𝑥𝑥𝑥𝑥 
10 1.0000 
5 0.6990 
15 1.1761 
8 0.9031 
12 1.0792 

Total Σ log 𝑥𝑥𝑥𝑥 = 4.8573 

𝐺𝐺 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴log �
Σ log 𝑥𝑥𝑥𝑥

𝑛𝑛
� 

 

𝐺𝐺 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴log �
4.8573

5
� 

               𝐺𝐺 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴log(0.9715)      = 9.36   

Harmonic mean 

Harmonic mean is defined as the quotient of “number of the given values” and 

“sum of the reciprocals of the given values”. 

Harmonic mean in mathematical terms is defined as follows:  

For ungrouped data:              𝐻𝐻𝐻𝐻 = 𝑛𝑛

Σ�1
𝑥𝑥�

    

For grouped data:               𝐻𝐻𝐻𝐻 = Σ𝑓𝑓

Σ�𝑓𝑓𝑥𝑥�
 

The Harmonic Mean of the numbers: 13.5, 14.5, 14.8, 15.2 and 16.1 is given by 

𝑥𝑥 1
𝑥𝑥

 
13.2 0.0758 
14.2 0.0704 
14.8 0.0676 
15.2 0.0658 
16.1 0.0621 
Total 

Σ �
1
𝑥𝑥
� = 0.3417 

𝐻𝐻𝐻𝐻 =
5

0.3417
= 14.63 
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2.4 MEASURES OF DISPERSION 

Measures of central tendency give us single figure which represent the entire 

distribution or set of observations or around which the observations of the set of data 

concentrated. But they are inadequate to give us the complete idea of the distribution 

because they do not tell us the extent to which the observations of the distribution 

vary from the central value. There may be more than one distributions having the 

same central value but there may be the vide variation in the different observations of 

the distribution. The observation may be close to the central value or they may be 

spread away from the central value. If the observations are close to the central value, 

we say that dispersion or variation is small. If the observations are spread away from 

the central value, we say dispersion is more.  

Suppose we have three groups of students who have obtained the following marks in a 

test. The arithmetic means of the three groups are also given below; 

Group A:      46, 48, 50, 52, 54        𝑋𝑋�𝐴𝐴 = 50     

Group B:      30, 40, 50, 60, 70        𝑋𝑋�𝐵𝐵 = 50 

Group C:      10, 30, 50, 70, 90        𝑋𝑋�𝐶𝐶 = 50            

All the three sets of observations have the same arithmetic mean i.e. 50. But we see 

that the variation/dispersion of the other values to the central value is less in Group A 

in comparison of group B and Group C or we may also say that the 

variation/dispersion in the observations are more in Group C in comparison of the 

other two groups.  

Thus in order to give a proper idea about the overall nature of the given values of a 

distribution or set of data, it is necessary to state how are the values of the distribution 

scattered/dispersed from the measures of central tendency? Therefore, the measures of 

dispersion may be defined as a statistics signifying the extent of the variations of 

items of the given set of observations around the measure of central tendency.  

Measures of Dispersion 

For the study of dispersion, there are some measures which show whether the 

dispersion is small or large. There are two types of measure of dispersion;  
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(a) Absolute Measure of Dispersion 

(b)  Relative Measure of Dispersion 

Absolute Measures of Dispersion: 

These measures give us an idea about the amount of dispersion in a set of 
observations.  

1. Range  

2. Quartile Deviation or Semi Inter Quartile Range  

3. Mean Deviation  

4. Variance and Standard deviation  

Relative Measure of Dispersion: 

These measures are calculated for the comparison of dispersion in two or more than 

two sets of observations. These measures are free of the units in which the original 

data is measured. The relative measures of dispersion are: 

1. Coefficient of Range 

2. Coefficient of Quartile Deviation  

3. Coefficient of Mean Deviation  

4. Coefficient of Variation  

Range 

Range is defined as the difference between the maximum and the minimum values of 

the given observations. If 𝑥𝑥𝑚𝑚 1T denotes the maximum value and x0 denotes the 

minimum value, range is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑥𝑥𝑚𝑚 − 𝑥𝑥0 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑥𝑥𝑚𝑚 − 𝑥𝑥0

𝑥𝑥𝑚𝑚 + 𝑥𝑥0
1T 

Quartile Deviation/Semi Inter Quartile Range 

It is based on the lower quartile 𝑄𝑄1 1T and the upper quartile 𝑄𝑄3 1T.  

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑄𝑄3 − 𝑄𝑄1

2
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =   
𝑄𝑄3 − 𝑄𝑄1

𝑄𝑄3 + 𝑄𝑄1
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Mean Deviation 

The mean deviation is defined as the arithmetic mean of the absolute deviations of all 

the values taken from some suitable average which may be the arithmetic mean, the 

median or the mode.  

The mean deviation of a set of sample data in which the suitable average (AM) is 𝑋𝑋� 1T, 

is given by the relation: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
Σ|𝑋𝑋 − 𝑋𝑋�|

𝑛𝑛
1T 

For frequency distribution 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
Σ𝑓𝑓|𝑋𝑋 − 𝑋𝑋�|

Σ𝑓𝑓
1T 

Mean deviation is a better measure of dispersion than Range and Quartile Deviation. 

Coefficient of Mean Deviation 

Coefficient of Mean Deviation is given by 

Coefficeient of Mean Deviation =
Mean deviation 

AM
 

Variance and Standard Deviation 

The standard deviation is defined as the positive square root of the mean of the 

squares of all the deviations taken from arithmetic mean of the data. The standard 

deviation is denoted by 𝜎𝜎1T and is given by 

 Population Standard Deviation is given as 

 

Sample Standard Deviation is given as 

 

The unit of standard deviation is same as the units of the original observations. 
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The Variance is the square of the standard deviation. The standard deviation plays a 

dominating role for the study of variation in the data. It is widely used for the analysis 

of measure of dispersion.  

As far as the important statistical tools are concerned, the first important tool is the 

arithmetic mean 𝑋𝑋� 1T and the second important tool is the standard deviation. Both are 

based on all the observations and are subject to mathematical treatment.  

However some alternative methods are also available to compute standard deviation. 

The alternative methods simplify the computation.  

Assumed Mean Method 

                        𝜎𝜎 = �∑𝑓𝑓𝑓𝑓 2

∑𝑓𝑓
−  �(∑𝑓𝑓𝑓𝑓 )

∑𝑓𝑓
�

2
             (d = X – A) 

Coefficient of Standard Deviation and Coefficient of Variation 

The standard deviation is the absolute measure of dispersion. Its relative measure is 

called standard coefficient of dispersion or coefficient of standard deviation. It is 

given as 

Coefficient of Standard Deviation =
𝜎𝜎
𝑋𝑋�

 

The coefficient of variation (CV) is given by the formula 

Coefficient of Variation =
𝜎𝜎
𝑋𝑋�

× 100 

Coefficient of variation is a pure number and the unit of observations cannot be 

mentioned with its value. It is written in percentage. When its value is 20%, it means 

that when the mean of the observations is assumed equal to 100, their standard 

deviation will be 20.  

Coefficient of variation is used to compare the degree of dispersion/variation in 

different sets of data particularly the data which differ in their means or differ in the 

units of measurement. The wages of workers may be in dollars and the consumption 

of meat in their families may be in kilograms. The standard deviation of wages in 

dollars cannot be compared with the standard deviation of the quantity of meat in 

kilograms. Both the standard deviations need to be converted into coefficient of 
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variation for comparison. Suppose the value of coefficient of variation of wages is 

10% and the value of coefficient of variation of meat is 25%. This means that the 

wages of workers are consistent in comparison of their consumption of meat. We say 

that there is greater variation in their consumption of meat. The observations about the 

quantity of meat are more dispersed than their wages. 
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3.1 BASIC CONCEPTS OF SAMPLING 

The purpose of a statistical survey is to obtain information about populations. By 
‘population’ we mean, a group of units defined according to the objective(s) of a 
survey. Thus, the population may comprise of all the fields under a specified crop as in 
area and yield surveys, or all the agricultural holdings above a specified size as in 
agricultural surveys. Of course, the population may also refer to persons either of the 
whole population of a country or a particular sector thereof. The information that we seek 
about the population is normally the total number of units, aggregate values of the 
various characteristics, averages of these characteristics per unit, proportions of 
units possessing specified attributes, etc. 

In the collection of data there are basically two different approaches. The first is called 
complete enumeration. It consists of the collection of data on the survey items from 
each unit of the population. This procedure is used in censuses of population, agriculture, 
livestock, retail stores, industrial establishments, etc. The other approach, which is more 
general since the first approach can be considered as its special case, is based on the use 
of sampling methods and consists of collecting data on survey items from selected units 
of the population. A sampling method is a scientific and objective procedure of 
selecting units from the population and provides a sample that is expected to be 
representative of the population as a whole. It also provides procedures for the 
estimation of results that would be obtained if a comparable survey were taken on all the 
units in the population. In other words, a sampling method makes it possible to 
estimate the population totals, averages or proportions while reducing at the same 
time the size of survey operations. 

A distinctive feature of surveys based on the use of sampling methods called for brevity 
sample surveys is sampling errors. The feature refers to the discrepancies between the 
sample estimates and the population values that would be obtained from enumerating all 
the units in the population in the same way in which the sample is enumerated. These 
discrepancies are unavoidable because sample estimates are based on data for only a 
sample of units. The employment of sampling methods, however, enables estimates of 
the average magnitude of these discrepancies to be made. Sampling methods also provide 
the means of fixing in advance the details of survey design, such as the size of the 
sample, in such a way that the average magnitude of the sampling errors does not exceed 
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the amount allowed with a pre-assigned probability. In other words, sampling methods 
enable us to control the precision of sample estimates within limits fixed in advance. 

Sampling methods are based on laws of chance and the application of the theory of 
probability. There are other methods of sampling referred to under the name of purposive 
selection or judgement sampling. In these methods, units are selected in the sample 
according to how typical they are of the population according to the judgment of 
specialists in the subject matter. The composition of the sample resulting from the 
application of such a selection procedure is influenced by the personal judgment of those 
responsible for selection. The procedure is not objective; neither is it based on the 
principles of the theory of probability. Consequently, it does not provide the possibility of 
estimating and controlling the magnitude of sampling errors. Here, we shall concern 
ourselves only with probability sampling. 

A simple way of obtaining a probability sample is to draw the units one by one with a 
known probability of selection assigned to each unit of the population at the first and 
each subsequent draw. The successive draws may be made with or without replacing the 
units selected in the preceding draws. The former is called the procedure of sampling 
with replacement, the latter sampling without replacement. 

The application of the probability sampling method assumes that the population can be 
sub-divided into a finite number of distinct and identifiable units called sampling units. It 
is irrelevant for the sampling procedure what the sampling units are. They may be natural 
units such as individuals in a human population or fields in a crop survey or natural 
aggregates of such units like families or villages, or they may be artificial units such as a 
single plant, a row of plants or a plot of specified size, in sampling a field. For sampling 
purposes, it is essential to be able to list all of the sampling unit in the population. Such a 
list is called the frame and provides the basis for the selection and identification of 
the units in the sample. Examples of a frame are a list of agricultural fields, list of 
households in a village, list of villages in a district, list of districts in a State, list of States 
in India etc. The village forms the sampling unit and provides the means for further 
selecting a sample of household, fields and plots. The frame also often contains 
information about the size and structure of the population. That information is used in 
sample surveys in a number of ways as will be explained subsequently. 

3.2 NEED FOR STATISTICAL DATA 

The need to gather information arises in almost every conceivable sphere of human 
activity. Many of the questions that are subject to common conversation and controversy 
require numerical data for their resolution. Data resulting from the physical, chemical, 
and biological experiments in the form of observations are used to test different theories 
and hypotheses. Various social and economic investigations are carried out through the 
use and analysis of relevant data. The data collected and analyzed in an objective manner 
and presented suitably serve as basis for taking policy decisions in different fields of 
daily life. 
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The important users of statistical data, among others, include Government, Industry, 
Business, Research Institution, Public Organizations, and International  Organizations. 
To discharge its various responsibilities, the Government needs variety of information 
regarding different sectors of economy, trade, industrial production, health and mortality, 
population, livestock, agriculture, forestry, environment, metrology, and available 
resources. The inferences drawn from the data help in determining future needs of the 
nation and also in tackling social and economic problems of people. For instance, the 
information on cost of living for different categories of people, living in various parts of 
the country, is of importance in shaping its policies in respect of wages and price levels. 
Data on health, mortality, and population could be used for formulating policies for 
checking population growth. Similarly, information on forestry and environment is 
needed to plan strategies for a cleaner and healthier life. Agricultural production data are 
of immense use to the State for planning to feed the nation. In case of industry and 
business, the information is to be collected on labour, cost and quality of production, 
stock and demand supply positions for proper planning of production levels and sales 
campaigns. 

The research institutions need data to verify the earlier findings or to draw new 
inferences. The data are used by public organizations to assess the State policies, and to 
point it out to the administration if these are not up to the expectations of the people. The 
international organizations collect data to present comparative positions of different 
countries in respect of economy, education, health, culture, etc. Besides, they also use it 
to frame their policies at the international level for the welfare of people. 

3.3 TYPES OF DATA 

The collection of required information depends on the nature, object, and scope of study 
on the one hand and availability of financial resources, time, and man power on the other. 
The statistical data are of two types: (i) primary data, and (ii) secondary data. 

Definition 3.1: The data collected by the Investigator from the original source are called 
primary data. 

Definition 3.2: If the required data had already been collected by some agencies or 
individuals and are now available in the published or unpublished records, these are 
known as secondary data. 

Thus, the primary data when used by some other Investigator/Agency become secondary 
data. There could be large number of publications presenting secondary data. Some of the 
important ones are given below: 

• Official publications of the Federal, State, and Local Governments. 

• Reports of Committees and Commissions. 

• Publications and reports of business organizations, trade associations, and 
chambers of commerce. 

• Data released by magazines, journals, and newspapers. 
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• Publications of different international organizations like United Nations 
Organization, World Bank, International Monetary Fund, United Nations 
Conference on Trade and Development, International Labor Organization, Food 
and Agricultural Organization, etc. 

Caution must be exercised in using secondary data as they may contain errors of 
transcription from the primary source. 

3.4  SOME TECHNICAL TERMS 

Definition 4.1: An element is a unit for which information is sought. 

Definition 4.2: The population or universe is an aggregate of elements, about 
which the inference is to be made. 

Populations are called finite or infinite, depending on the number 
of units constituting it.  

Definition 4.3: Sampling units are non-overlapping collections of elements of the 
population. 

Definition 4.4: A list of all the sampling units in the population to be sampled is 
termed frame or sampling frame. 

Definition 4.5: A sub-set of population selected from a frame to draw inferences 
about a population characteristic is called a sample. 

In practice, number of units selected in a sample is much less than the number in the 
population. Inferences about the entire population are drawn from the observations made 
on the study variable for the units selected in the sample.  

3.5 NEED FOR A SAMPLE 

Collection of information on every unit in the population for the characteristics of interest 
is known as complete enumeration or census. The money and time required for 
carrying out a census will generally be large, and there are many situations where with 
limited means complete enumeration is not possible. There are also instances where it is 
not feasible to enumerate all units due to their perishable nature. In all such cases, the 
Investigator has no alternative except resorting to a sample survey. 

The number of units (not necessarily distinct) included in the sample is known as the 
sample size and is usually denoted by ‘n’, whereas the number of units in the population 
is called population size and is denoted by ‘N’. The ratio n/N is termed as sampling 
fraction. 

There are certain advantages of a sample survey over complete enumeration, which are as 
follows: 

3. 5.1:       Greater Speed 

The time taken for collecting and analyzing the data for a sample is much less than that 
for a complete enumeration. Often, we come across situations where the information is to 
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be collected within a specified period. In such cases, where time available is short or the 
population is large, sampling is the only alternative. 

3.5.2: Greater Accuracy 

A census usually involves a huge and unwieldy organization and, therefore, many types 
of errors may creep in. Sometimes, it may not be possible to control these errors 
adequately. In sample surveys, the volume of work is considerably reduced. On account 
of this, the services of better trained and efficient staff can be obtained without much 
difficulty. This will help in producing more accurate results than those for complete 
enumeration. 

3.5.3:  Greater scope 

There can be investigations where highly trained investigators or sophisticated equipment 
are needed. In the event of limited availability of trained investigators and sophisticated 
equipment, the census investigation may become difficult to carry out. Furthermore, since 
data are obtained by observing limited number of items, their detailed investigation, if 
necessary, is also possible. Thus, the investigations that are based on samples have more 
scope. 

3.5.4: Reduced Cost 

Because of lesser number of units in the sample in comparison to the population, 
considerable time, money, and energy are saved in observing the sample units in relation 
to the situation where all units in the population are to be covered. 

3.5.5: More detailed Information 

As the number of units in a sample are much less than those in census, detailed 
information, therefore, can be obtained on more number of variables. However, in 
complete enumeration, such an effort becomes comparatively difficult. 

From the above, it may be seen that the sample survey is more economical, provides 
more accurate information, and has greater scope in subject coverage as compared to a 
complete enumeration. It may, however, be pointed out here that sampling errors are 
present in the results of the sample surveys. This is due to the fact that only a part of the 
whole population is surveyed. On the other hand, non-sampling errors are likely to be 
more in case of a census study than these are in a sample survey.  

3.6 SAMPLING PROCEDURES 

Definition 6.1:  If the units in the sample are selected using some probability mechanism, 
such a procedure is called probability sampling. 

This type of survey assigns to each unit in the population a definite probability of being 
selected in the sample. Alternatively, it enables us to define a set of distinct samples 
which the procedure is capable of selecting if applied to a specific population. The 
sampling procedure assigns to each possible sample a known probability of being 
selected. One can build suitable estimators for different population characteristics for 
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probability samples. For any sampling procedure of this type, one is in a position to 
develop theory by using probability apparatus. It is also possible to obtain frequency 
distribution of the estimator values it generates if repeatedly applied to the same 
population. The measure of the sampling variation can also be obtained for such 
procedures, and the proportion of estimates that will fall in a specified interval around the 
true value can be worked out.  

Definition 6.2: The procedure of selecting a sample without using any probability 
mechanism is termed as non-probability sampling. 

Purposive sampling (also termed as Judgment sampling) is common when special skills 
are required to form a representative subset of population. For instance, auditors often use 
judgment samples to select items for study to determine whether a complete audit of 
items may be necessary. Sometimes, quotas are fixed for different categories of 
population based on considerations relevant to the study being conducted, and selections 
within the categories are based on personal judgment. This type of sampling procedure is 
also termed quota sampling. 

Obviously, these methods are subject to human bias. In appropriate conditions, these 
methods can provide useful results. They are, however, not amenable to the development 
of relevant theory and statistical analysis. In such methods, the sampling error can not be 
objectively determined. Hence, they are not comparable with the available probability 
sampling methods. 

Definition 6.3:  In with replacement (WR) sampling, the units are drawn one by one from 
the population, replacing the unit selected at any particular draw before executing the 
next draw. 

As the constitution of population remains same at each draw, some units in the with 
replacement sample may get selected more than once. This procedure gives rise to Nn 

possible samples when order of selection of units in the sample is taken into account, 
where N and n denote the population and sample sizes respectively. 

Example 6.1 

Given below are the weights (in kgs) of 4 participants of a training programme: 

Participant  : A  B  C  D 

Weight (in kgs) : 55  80  65  70 

Enumerate all possible WR samples of size 2. Also, write values of the study variable 
(weight) for the sample units. 

Solution:  Here, N=4 and n=2. There will, therefore, be 42 = 16 possible samples. These 
have been enumerated below along with the weight values for the units included in the 
sample. 
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Table 6.1: Possible samples along with their variable values 

Sample Participants 
in the sample 

Weight for the 
sampled 

Participants 

Sample Participants 
in the sample 

Weight for the 
sampled 

Participants 

1 A, A 55, 55 9 C, A 65, 55 

2 A, B 55, 80 10 C, B 65, 80 

3 A, C 55, 65 11 C, C 65, 65 

4 A, D 55, 70 12 C, D 65, 70 

5 B, A 80, 55 13 D, A 70, 55 

6 B, B 80, 80 14 D, B, 70, 80 

7 B, C 80, 65 15 D, C 70, 65 

8 B, D 80, 70 16 D, D 70, 70 

Definition 6.4: In without replacement (WOR) sampling, the units are selected one by 
one from the population, and the unit selected at any particular draw is not replaced back 
to the population before selecting a unit at the next draw. 

Obviously, no unit is selected more than once in a WOR sample. If the order of selection 

of units in the sample is ignored, then there are 







n
N

 possible samples for this selection 

procedure. 

Example 6.2 

Using data of Example 6.1, enumerate all possible WOR samples of size 2, and also list 
the weight values for the respective sample units. 

Solution: In this case, number of possible samples will be 







2
4

 = 6. These have been 

enumerated below. Note that no samples like AA or BB appear in the list of possible 
sample, and also the ordered samples like AB and BA are treated as the same sample. 
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Table 6.2: Possible samples along with their variable values 

Sample Participants 
in the sample 

Weight for the 
sampled 

Participants 

Sample Participants 
in the sample 

Weight for the 
sampled 

Participants 

1 A, B 55, 80 4 B, C 80, 65 

2 A, C 55, 65 5 B, D 80, 70 

3 A, D 55, 70 6 C, D 65, 70 

 

3.7 NEED FOR SAMPLING 

Considering that some margin of error is permissible in the data needed for practical 
purposes, an effective alternative to a complete enumeration survey can be a sample 
survey where only some of the units selected in a suitable manner from the population are 
surveyed and an inference is drawn about the population on the basis of observations 
made on the selected units. It can be easily seen that compared to a sample survey, a 
complete enumeration survey is time-consuming, expensive, has less scope in the sense 
of restricted subject coverage and is subject to greater coverage, observational and 
tabulation errors. In certain investigations, it may be essential to use specialized 
equipment or highly trained field staff for data collection making it almost impossible to 
carry out such investigations except on a sampling basis. Besides, in case of descriptive 
surveys, a complete enumeration survey is just not practicable. Thus, if the interest is to 
obtain the average weight per student in a batch, then one will have to confine the 
observations, of necessity, to a part (or a sample) of the population or universe and to 
infer about the population as a whole on the basis of the observations on the sample. 
However, since an inference is made about the whole population from a part in a sample 
survey, the results are likely to be different from the population values and the 
differences would depend on the selected part or sample. Thus the information provided 
by a sample is subject to a kind of error which is known as sampling error. On the other 
hand, as only a part of the population is to be surveyed, there is greater scope for 
eliminating the ascertainment or observational errors by proper controls and by 
employing trained personnel than is possible in a complete enumeration survey. It is of 
interest to note that if a sample survey is carried out according to certain specified 
statistical principles, it is possible not only to estimate the value of the characteristic for 
the population as a whole on the basis of the sample data, but also to get a valid estimate 
of the sampling error of the estimate. There are various steps involved in the planning and 
execution of a sample survey. One of the principal steps in a sample survey relate to 
methods of primary data collection.  
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3.8 METHODS OF COLLECTING PRIMARY DATA  

The different methods of collecting data are: 

• Physical observation or measurement 

• Personal interview 

• Mail enquiry 

• Telephonic enquiry 

• Web-based enquiry 

• Method of Registration  

• Transcription from records 

The first six methods relate to collection of primary data from the units/ respondents 
directly, while the last one relates to the extraction of secondary data, collected earlier 
generally by one or more of the first six methods. These methods have their respective 
merits and demerits and therefore sufficient thought should be given in selection of an 
appropriate method(s) of data collection in any survey. The choice of the method of data 
collection should be arrived at after careful consideration of accuracy, practicability and 
cost from among the alternative methods. 

3.9 VARIOUS CONCEPTS AND DEFINITIONS 
a) Population  

The collection of all units of a specified type in a given region at a particular point or 
period of time is termed as a population or universe. Thus, we may consider a population 
of persons, families, farms, cattle in a region or a population of trees or birds in a forest 
or a population of fish in a tank etc. depending on the nature of data required. 
b) Sampling Unit  

Elementary units or group of such units which besides being clearly defined, identifiable 
and observable, are convenient for the purpose of sampling are called sampling units. For 
instance, in a family budget enquiry, usually a family is considered as the sampling unit 
since it is found to be convenient for sampling and for ascertaining the required 
information. In a crop survey, a farm or a group of farms owned or operated by a 
household may be considered as the sampling unit. 
c) Sampling Frame  

A list of all the sampling units belonging to the population to be studied with their 
identification particulars or a map showing the boundaries of the sampling units is known 
as sampling frame. Examples of a frame are a list of farms and a list of suitable area 
segments like villages in India or districts in a particular State in India. The frame should 
be up to date and free from errors of omission and duplication of sampling units.  
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d) Random Sample  

One or more sampling units selected from a population according to some specified 
procedures are said to constitute a sample. The sample will be considered as random or 
probability sample, if its selection is governed by ascertainable laws of chance. In other 
words, a random or probability sample is a sample drawn in such a manner that each unit 
in the population has a predetermined probability of selection. For example, if a 
population consists of the N sampling units  U1, U2,…,Ui,…,UN

 then we may select a 
sample of n units by selecting them unit by unit with equal probability for every unit at 
each draw with or without replacing the sampling units selected in the previous draws. 
e) Non-random sample  

A sample selected by a non-random process is termed as non-random sample. A Non-
random sample, which is drawn using certain amount of judgment with a view to getting 
a representative sample is termed as judgment or purposive sample. In purposive 
sampling, units are selected by considering the available auxiliary information more or 
less subjectively with a view to ensuring a reflection of the population in the sample. This 
type of sampling is seldom used in large-scale surveys mainly because it is not generally 
possible to get strictly valid estimates of the population parameters under consideration 
and of their sampling errors due to the risk of bias in subjective selection and the lack of 
information on the probabilities of selection of the units. 
f) Population parameters  

Suppose a finite population consists of the N units U1, U2,…,UN and let Yi be the value 
of the variable y, the characteristic under study, for the i-th unit Ui, (i=1,2,…,N). For 
instance, the unit may be a farm and the characteristic under study may be the area under 
a particular crop. Any function of the values of all the population units (or of all the 
observations constituting a population) is known as a population parameter or simply a 
parameter. Some of the important parameters usually required to be estimated in surveys 

are population total ∑
=

=
N

i
iYY

1

 and population mean NYY
N

i
i /

1
∑
=

=  .  

g) Statistic, Estimator and Estimate 

Suppose a sample of n units is selected from a population of N units according to some 
probability scheme and let the sample observations be denoted by .,...,, 21 nyyy  Any 
function of these values which is free from unknown population parameters is called a 
statistic. 

An estimator is a statistic obtained by a specified procedure for estimating a population 
parameter. The estimator is a random variable and its value differs from sample to sample 
and the samples are selected with specified probabilities. The particular value, which the 
estimator takes for a given sample, is known as an estimate. 
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h) Sample design  

A clear specification of all possible samples of a given type with their corresponding 
probabilities is said to constitute a sample design. For example, suppose we select a 
sample of n units with equal probability with replacement, the sample design consists of 
Nn possible samples (taking into account the orders of selection and repetitions of units in 
the sample) with 1/Nn as the probability of selection for each of them, since in each of the 
n draws any one of the N units may get selected. Similarly, in sampling n units with equal 
probability without replacement, the number of possible samples (ignoring orders of 

selection of units) is 







n
N

 and the probability of selecting each of the sample is









n
N

1 . 

 i) Unbiased Estimator  

Let the probability of getting the i-th sample be Pi and let ti be the estimate, i.e., the value 
of an estimator t of the population parameter θ  based on this sample (i=1,2,…,Mo), Mo 
being the total number of possible samples for the specified probability scheme. The 

expected value or the average of the estimator t is given by ( ) ∑
=

=
oM

i
ii PttE

1
.  

An estimator t is said to be an unbiased estimator of the population parameter θ  if its 
expected value is equal to θ  irrespective of the y-values. In case expected value of the 
estimator is not equal to population parameter, the estimator t is said to be a biased 
estimator of θ . The estimator t is said to be positively or negatively biased for population 
parameter according as the value of the bias is positive or negative. 

j) Measures of error 

Since a sample design usually gives rise to different samples, the estimates based on the 
sample observations will, in general, differ from sample to sample and also from the 
value of the parameter under consideration. The difference between the estimate ti based 
on the i-th sample and the parameter, namely (ti -θ ), may be called the error of the 
estimate and this error varies from sample to sample. An average measure of the 
divergence of the different estimates from the true value is given by the expected value of 

the squared error, which is ( ) ( ) ∑
=

−=−=
0

1

22 .)(
M

i
ii PttEtM θθ  

and this is know as mean square error (MSE) of the estimator. The MSE may be 
considered to be a measure of the accuracy with which the estimator t estimates the 
parameter. 

The expected value of the squared deviation of the estimator from its expected value is 
termed sampling variance. It is a measure of the divergence of the estimator from its 
expected value and is given by  

 { } { }2222 )()()()()( tEtEtEtEttV −=−== σ  
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This measure of variability may be termed as the precision of the estimator t. 

The MSE of t can be expressed as the sum of the sampling variance and the square of the 
bias. In case of unbiased estimator, the MSE and the sampling variance are same. The 
square root of the sampling variance i.e. σ (t) is termed as the standard error (SE) of the 
estimator t. In practice, the actual value of σ (t) is not generally known and hence it is 
usually estimated from the sample itself. 

k) Confidence interval 

The frequency distribution of the samples according to the values of the estimator t based 
on the sample estimates is termed as the sampling distribution of the estimator t. It is 
important to mention that though the population distribution may not be normal, the 
sampling distribution of the estimator t is usually close to normal, provided the sample 
size is sufficiently large. If the estimator t is unbiased and is normally distributed, the 

interval 






 ± )(. tSEKt  is expected to include the parameter θ  in P% of the cases where 

P is the proportion of the area between –K and +K of the distribution of standard normal 
variate. The interval considered is said to be a confidence interval for the parameter θ   
with a confidence coefficient of P% with the confidence limit t – K.SE(t) and  
t + K.SE(t).  For example, if a random sample of the records of batteries in routine use in 
a large factory shows an average life t = 394 days, with a standard error SE(t) = 4.6 days, 
the chances are 99 in 100 that the average life in the population of batteries lies between 

tL  = 394 - (2.58)(4.6)  = 382 days 

tU = 394 + (2.58)(4.6) = 406 days 

The limits, 382 days and 406 days are called lower and upper confidence limits of 99% 
confidence interval for t. With a single estimate from a single survey, the statement “θ  
lies between 382 and 406 days” is not certain to be correct. The “99% confidence” figure 
implies that if the same sampling plan were used many times in a population, a 
confidence statement being made from each sample, about 99% of these statements 
would be correct and 1% wrong. 

l) Sampling and Non-sampling error 

The error arising due to drawing inferences about the population on the basis of 
observations on a part (sample) of it is termed sampling error. The sampling error is non-
existent in a complete enumeration survey since the whole population is surveyed. 

The errors other than sampling errors such as those arising through non-response,  
incompleteness and inaccuracy of response are termed non-sampling errors and are likely 
to be more wide-spread and important in a complete enumeration survey than in a sample 
survey. Non-sampling errors arise due to various causes right from the beginning stage 
when the survey is planned and designed to the final stage when the data are processed 
and analyzed. 
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The sampling error usually decreases with increase in sample size (number of units 
selected in the sample) while the non-sampling error is likely to increase with increase in 
sample size. 

As regards the non-sampling error, it is likely to be more in the case of a complete 
enumeration survey than in the case of a sample survey since it is possible to reduce the 
non-sampling error to a great extent by using better organization and suitably trained 
personnel at the field and tabulation stages in the latter than in the former. 

3.10     PROCEDURE OF SELECTING A RANDOM SAMPLE   

Since probability sampling theory is based on the assumption of random sampling, the 
technique of random sampling is of basic significance.  Some of the procedures used for 
selecting a random sample are as follows:  

• Lottery Method, and 

• Use of Random Number Tables. 

3.10.1:  Lottery Method: Each  unit  in  the  population may  be  associated  with  a   
chit / ticket  such that each sampling unit has its  identification mark  from  1  to  N.  All 
the  chits / tickets  are  placed  in  a container, drum or metallic spherical device, in which 
a thorough   mixing is possible before each draw.  Chits / tickets may be drawn  one  by 
one and may be continued until a sample of  the  required size  is  obtained.  When the 
size of population is large, this  procedure of numbering units on chits / tickets  and 
selecting  one  after  reshuffling becomes cumbersome.  In practice, it may  be  too  
difficult to achieve a thorough shuffling.  Human bias  and  prejudice  may  also creep in 
this method.         

3.10.2:  Use of  Random  Number Tables: A random number Table is an arrangement 
of digits 0 to 9, in  either  a linear or rectangular pattern, where each  position  is filled 
with one of these digits.  A Table of random numbers is so constructed  that all numbers  
0, 1, 2,...,9  appear  independent of each other.  Some random number Tables in common 
use are: 

• Tippett's random number Tables,       
• Fisher and Yates Tables, 
• Kendall and Smith Tables, and 
• A million random digits Table. 

A practical method of selecting a random sample is to choose units one-by-one with the 
help of a Table of random numbers.   By considering two-digits numbers, we can obtain 
numbers from 00  to 99,  all  having the same frequency.  Similarly,  three  or  more  digit 
numbers may be obtained by combining three or more rows  or  columns of these Tables. 
The simplest way of selecting a sample of the required  size is  by selecting a random 
number from 1 to N and then taking  the unit  bearing that number.  This procedure 
involves a  number  of rejections  since  all numbers greater than  N  appearing  in  the  
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Table  are  not  considered for selection. The  used  numbers  is,  therefore,  modified and  
some  of  these  modified procedures are: 

• Remainder Approach,  
• Quotient Approach, and 
• Independent Choice of Digits 

3.10.3:  Remainder Approach: Let  N  be  a  r-digit number and let  its  r-digit  highest  
multiple be N'. A random number k is chosen from 1 to N' and  the unit  with the serial 
number equal to the remainder  obtained  on dividing k by N is selected.  If the remainder 
is zero, the last unit  is selected.  As an illustration, let N = 123, the  highest  three-digit  
multiple of 123 is 984.  For selecting a unit, one  random number from 001 to 984 has to 
be selected.  Let the random number selected be 287.  Dividing 287 by 123, the  
remainder  is 41.   Hence, the unit with serial number 41 is selected  in  the  sample. 

3.10.4:  Quotient Approach:  Let N be a r-digit number and let its r-digit highest  
multiple  be  N' such that N' / N = d.  A random number k is chosen from  0  to   (N'-1).  
Dividing  k  by d,  the quotient q is obtained and the  unit  bearing the serial number  (q + 
1) is selected in the sample. As an illustration, let N=16 and hence N'=96 and  
d = 96 / 16 = 6.   Let  the   two-digit random number chosen be 65 which lies between 0 
and 95.  Dividing  65  by  6, the quotient is 10 and hence the unit  bearing serial number 
(10+1) = 11 is selected in the sample.  

It may be mentioned here that while using the Random Number Table, any starting point 
can be used, and one can move in any pre-determined direction along the rows or 
columns. If in any problem, more than one sample is to be selected, each should have its 
independent starting point. 

3.11  SIMPLE  RANDOM  SAMPLING  

Simple random sampling (SRS) is a method of selecting 'n' units out of 'N' units such that 
each one of the possible non-distinct samples has an equal chance of its being chosen. In 
practice, a simple random sample is drawn unit by unit.  The units in the population are 
numbered from 1 to N.  A series of random numbers between 1 and N are then drawn 
either by means of a Table of random numbers or by means of a computer program that 
produces such a Table. Sampling where each member of a population may be chosen 
more than once is called sampling with replacement (WR). Similarly a method of 
sampling in which each member cannot be chosen more than once is called sampling 
without replacement (WOR). Population is either finite or infinite.  It can be seen that in 
SRSWOR, the probability of selecting the units in the sample is equal for all the units. 
Let Y be the characteristic of interest. The N units that comprise the population are 
denoted by   .,...,, 21 Nyyy  Let the population mean, NY , the parameter of interest, be 

denoted by ∑
=

=
N

i
iN y

N
Y

1

1 .        
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We denote by ny  the sample mean, where ∑
=

=
n

i
in y

n
y

1

1 is an unbiased estimator of the 

population mean.  In other words, the average value of ny  over all possible samples  
( n

NC  in this case) is equal to NY . 

Also, the sampling variance of ny  is given by 

2)11()( S
Nn

yV n −=                                                                                                    (11.1) 

where ∑
=

−
−

=
N

i
Ni Yy

N
S

1

22 )(
1

1 is the population mean square. 

An unbiased estimator of this sampling variance is given by  
2)11()(ˆ s

Nn
yV n −=                                                                                                     (11.2) 

where ∑
=

−
−

=
n

i
ni yy

n
s

1

22 )(
1

1  is the sample mean square. 

A similar approach applies when sampling is with replacement. In this case, there are Nn 
possible samples. The estimator, sampling variance of the estimator and estimator of the 
sampling variance are given as 

∑
=

=
n

i
in y

n
y

1

1      

n
yV n

2

)( σ
=    and                                                                                                      (11.3) 

n
syV n

2

)(ˆ =                                                                                                               (11.4) 

where ∑
=

−=
N

i
Ni Yy

N 1

22 )(1σ is the population variance and 2s  is the sample mean square. 

Consider all possible samples of size N which can be drawn from a given population. For 

a without replacement sampling scheme, there will be in all 







n
N  possible samples. For 

each sample, one can compute a statistic, such as the mean, standard deviation etc., which 
will vary from sample to sample.  In this manner, one can obtain a distribution of the 
statistic which is called its sampling distribution. 

For estimating the population total ∑
=

=
N

i
iYY

1

, we have an estimator 

n

n

i
i yNnyNY ./ˆ

1
== ∑

=

                                              (11.5) 

i.e. the sample mean ny  multiplied by the population size N. 
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This estimator can be expressed as ( )∑∑
==

==
n

i
i

n

i
ii ynNywY

11
/ˆ  where nNwi /=  . 

The constant nN /  is the sampling weight and is the inverse of the sampling fraction 
./ Nn   

The estimate of sampling variance of Ŷ is given by  ( ) ( ) ( )nn yVNyNVYV ˆ..ˆˆˆ 2==  and the 

standard error of Ŷ  is given by ( ) ( ) ( )nn yESNyNESYES ˆ..ˆˆˆ == . 

From the above, it is evident that under Simple Random Sampling With Replacement 
(SRSWR), 
i) the sample mean  ( )ny  is unbiased for the population mean ( )NY   

ii) sample mean square (s2) is unbiased for the population variance  ( )2σ  

iii) V ( )ny  =  σ
2
n

. 

Like-wise, under Simple Random Sampling Without Replacement (SRSWOR),  

i)  the  sample mean  ( )ny    is unbiased for the population mean ( )NY , 

ii) sample mean square (s2) is unbiased for the population mean square )( 2S ,  and 

iii) V ( )ny  = 1 1
n N
−





S2 

3.12       EXAMPLE 

The data given below pertains to the average yield of wheat crop (in quintals) pertaining 
to 108 Villages in a Block of a District: 

Village Sl. Nos. Yield (in quintals) 

1-10 20 21 32 41 55 22 64 42 28 35 

11-20 25 25 24 32 75 28 29 38 19 19 

21-30 16 28 30 29 29 19 37 34 31 35 

31-40 29 19 27 42 39 11 26 21 45 61 

41-50 16 29 32 40 63 30 21 35 28 18 

51-60 24 32 23 8 35 27 35 25 29 29 

61-70 25 31 38 31 43 21 36 30 37 47 

71-80 15 19 32 19 50 10 27 36 28 43 

81-90 28 25 31 6 4 22 24 39 71 44 

91-100 24 34 18 28 10 70 20 32 42 47 

101-108 16 28 30 29 29 19 37 34   
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 (i) 

 
Select a random sample of size 10 by simple random sampling without replacement 
(SRSWOR) and estimate the average yield along with its standard error on the basis of 
selected sample units. 
 

(ii) Set up 95% confidence interval for the population mean.                                  
 

SOLUTION: 

As the population size N=108 is a three digit number, so for selecting a simple random 
sample of size n=10, we shall select three-digit random numbers from the Random 
Number Table (from 000 to 972, which is the highest multiple of 108 up to 999) as 
follows: 

 

SAMPLE-I 

Random Number Sampling Unit Sl. No. 
(Remainder of 

Random Number/108) 

Yield  
(q) 

120 12 25 

572 32 19 

649 01 20 

211 103 30 

327 03 32 

673 25 29 

153 45 63 

317 101 16 

586 46 30 

943 79 28 
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Estimate of Population Average yield = 2.29
10
292ˆ 1 ====

∑
=

n

y
yY

n

i
i

nN q 

qxyxNYTotalPopulationofEstimate n 6.31532.29108ˆ ====  

The estimate of standard error of Ŷ  is given by  

( ) ( ) ( )nn yESNyNESYES ˆ..ˆˆˆ ==    

where ( ) s
Nn

yES n 





 −=

11ˆ                                                                                   

( )∑ −
−

= 22

1
1

ni yy
n

swhere 24.1706.1533
110

1 q=×
−

=  

qsSo 0537.134.170, ==
 

( ) 9322.30537.133012.00537.13
108

1
10
1ˆ, ==






 −= xxyESHence n  

 

ii) The 95% confidence interval for population mean is given by 

( )ndfn yESty ˆ
)9110/(05.0 ×± =− 9322.3262.22.29 ×±= 89.82.29 ±=  

So, the 95% confidence interval for population mean is (29.2-8.89 to 29.2+8.89) i.e. 

(20.31, 38.09). It can be seen clearly that the population mean qYN 74.30
108
3320

== is 

contained in this confidence interval. It may be mentioned here that out of total number 
of possible samples i.e. 10

108C , the population mean will be contained in such like 
confidence intervals corresponding to 95% of the total number of samples. 
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SAMPLE-II 

Random Number Sampling Unit Sl. No. 
(Remainder of 

Random Number/108) 

Yield  
(q) 

798 42 29 

831 75 60 

074 74 19 

005 5 55 

423 99 42 

138 30 35 

971                        107 37 

166 58 25 

455 23 30 

201 93 18 

Estimate of Population Average yield = 0.34
10
340ˆ 1 ====

∑
=

n

y
yY

n

i
i

nN q 

qxyxNYTotalPopulationofEstimate n 36720.34108ˆ ====  

The estimate of standard error of Ŷ  is given by  

( ) ( ) ( )nn yESNyNESYES ˆ..ˆˆˆ ==    

where ( ) s
Nn

yES n 





 −=

11ˆ                                                                                   

( )∑ −
−

= 22

1
1

ni yy
n

swhere 24.1706.1533(
110

1 q=×
−

=  

qsSo 0537.134.170, ==
 

( ) 9322.30537.133012.00537.13
108

1
10
1ˆ, ==






 −= xxyESHence n  
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ii) The 95% confidence interval for population mean is given by 

( )ndfn yESty ˆ
)9110/(05.0 ×± =− 9322.3262.22.29 ×±= 89.82.29 ±=  

So, the 95% confidence interval for population mean is (29.2 - 8.89 to 29.2 + 8.89) i.e. 

(20.31, 38.09). It can be seen clearly that the population mean qYN 74.30
108
3320

==  

is contained in this confidence interval. It may be mentioned here that out of total number 
of possible samples i.e. 10

108C , the population mean will be contained in such like 
confidence intervals corresponding to 95% of the total number of samples. 

SAMPLE-III 

Random Number Sampling Unit Sl. No. 
(Remainder of 

Random Number/108) 

Yield  
(q) 

034 34 42 

977 rejected  

167 59 29 

125 17 29 

555 15 75 

162 54 08 

844 88 39 

630 90 44 

332 8 42 

576 36 11 

181 73 32 

Estimate of Population Average yield = 1.35
10
351ˆ 1 ====

∑
=

n

y
yY

n

i
i

nN q 

qxyxNYTotalPopulationofEstimate n 8.37901.35108ˆ ====  

The estimate of standard error of Ŷ  is given by  

( ) ( ) ( )nn yESNyNESYES ˆ..ˆˆˆ ==    
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where ( ) s
Nn

yES n 





 −=

11ˆ                                                                                   

( )∑ −
−

= 22

1
1

ni yy
n

swhere 22 43.35390.3180
9
1)1.351090.3180(

110
1 qx =×=−
−

=  

qsSo 80.1843.353, ==
 

( ) 6588.580.183012.080.18
108

1
10
1ˆ, ==






 −= xxyESHence n  

ii) The 95% confidence interval for population mean is given by 

( )ndfn yESty ˆ
)9110/(05.0 ×± =− 6588.5262.21.35 ×±= 80.121.35 ±=  

So, the 95% confidence interval for population mean is (35.1 - 12.80 to 35.1 + 12.80) i.e. 

(22.30, 47.90). It can be seen clearly that the population mean qYN 74.30
108
3320

== is 

contained in this confidence interval. It may be mentioned here that out of total number 
of possible samples i.e. 10

108C , the population mean will be contained in such like 
confidence intervals corresponding to 95% of the total number of samples. 

SAMPLE_VII 
Random Number Sampling Unit Sl. No. 

(Remainder of 
Random Number/108) 

Yield  
(q) 

601 61 25 
245 29 31 
889 25 29 
882 18 38 
238 22 28 
842 86 22 
839 83 32 
443 11 25 
996 rejected  
802 46 30 
552 12 25 

Total 285 

Estimate of Population Average yield = 5.28
10
285ˆ 1 ====

∑
=

n

y
yY

n

i
i

nN q 

qxyxNYTotalPopulationofEstimate n 8.37901.35108ˆ ====  

The estimate of standard error of Ŷ  is given by  

( ) ( ) ( )nn yESNyNESYES ˆ..ˆˆˆ ==    
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Where 

               ( ) s
Nn

yES n 





 −=

11ˆ                                                                                   

( )∑ −
−

= 22

1
1

ni yy
n

swhere 22 67.2400.220
9
1)1.351090.3180(

110
1 qx =×=−
−

=  

qsSo 97.467.24, ==
 

( ) 4971.197.43012.097.4
108

1
10
1ˆ, ==






 −= xxyESHence n  

ii) The 95% confidence interval for population mean is given by 

( )ndfn yESty ˆ
)9110/(05.0 ×± =− 3864.35.284971.1262.25.28 ±=×±=  

So, the 95% confidence interval for population mean is (28.5 - 3.3864 to  
28.5 + 3.3864) i.e. (25.1136, 31.8864). It can be seen clearly that the population mean 

qYN 74.30
108
3320

== is contained in this confidence interval. It may be mentioned here 

that out of total number of possible samples i.e. 10
108C , the population mean will be 

contained in such like confidence intervals corresponding to 95% of the total number of 
samples. 
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4.1 INTRODUCTION  

In the planning of a sample survey, determination of sample size is an important decision 
which a survey statistician has to take while deciding the sampling plan. One has to be 
careful while deciding the sample size, because too large a sample implies waste of 
resources, and too small a sample diminishes the utility of the results. An efficient 
sampling plan should enable an optimum utilisation of budgetary resources to provide the 
best estimators of the population parameters. As is well known, efficiency of an estimator 
is normally measured by inverse of mean square error (or variance in case of unbiased 
estimators). A desirable proposition would be to minimize the cost as well as variance 
simultaneously. But, unfortunately, it is not possible. With an increase in the sample size, 
normally the cost of the survey increases while the variance decreases, thereby increasing 
the efficiency. Thus for determination of sample size, a balance is required to be struck 
which is reasonable with respect to cost as well as efficiency. Sampling theory provides a 
framework within which the problem of determining sample size may be tackled 
reasonably.  

We first consider the estimation of sample size in case of simple random sampling. The 
problem has been analysed in a very elegant way by considering hypothetical example by 
Cochran (1977). We quote the example:  

“An Anthropologist is preparing to study the inhabitants of some island. Among other 
things, he wishes to estimate the percentage of inhabitants belonging to blood group ‘O’. 
Co-operation has been secured so that it is feasible to take a simple random sample. How 
large should the sample be?”  

This is just a typical example. In fact, in almost all the sampling investigations, one has to 
face such problems. An answer to the question is not straight forward. First of all, one 
must be very clear about the objective of the study. Or at least, the user must know to 
what use their results are going to be put, so that he should be able to answer as to what is 
the margin of error he is going to tolerate in the results. In the above example, the 
Anthropologist should be able to answer as to how accurately does he wish to know the 
percentage of people with blood group O? In this case he is reported to be content with a 
5% margin in the sense that if the sample shows 43% to have blood group O, the 
percentage for the whole island is sure to be between 38 and 48. Since a random 
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sampling procedure has been used, every sample has got some chance of selection and 
the possibility of getting the estimates lying outside the above specified range can not be 
ruled out. Aware of this fact, the Anthropologist is prepared to take a 1 in 20 chance of 
getting an unlucky sample with the estimate lying outside the above margin.  

With the above information, ignoring finite population correction (fpc) and assuming that 
the sample proportion p is assumed to be normally distributed, a rough estimate of n may 
be obtained. In technical terms, p is to lie in the range (P ±  5), except for a 1 in 20 
chance. Since p is assumed to be normally distributed about the population proportion P, 
it will lie in the range (P ±  2 . pσ ) apart from a 1 in 20 chance (in 95% cases). 

Further, since the standard error of p is approximately given by  

pσ   ≅ ( )n/Q.P                                                                                                   (1.1)                                                                                        

where  Q  = (1 - P).  

Equating half width of the confidence interval to the permissible error, we get 

2 . pσ       =     5                                                                                                               (1.2)                         

or    2 ( )n/Q.P  =  5   

or     n  = 4  P . Q  / 25                                                                                                    (1.3) 

At this point a difficulty appears that is common to all problems in the estimation of 
sample size. A formula for n has been obtained, but n depends on some property of the 
population that is to be sampled. Here, it is the quantity P that we would like to measure. 
We therefore ask the anthropologist if he can give us some idea of the likely value of P. 
He replies that from previous data on other ethnic groups, and from his speculations 
about the racial history of this island, he will be surprised if P lies outside the range 30 to 
60%. This information is sufficient to provide a usable answer. For any value of P 
between 30 and 60, the product P.Q lies between 2100 and a maximum of 2500 at P=50. 
The corresponding n lies between 336 and 400. To be on the safe side, 400 is taken as the 
initial estimate of n.  

4.2 PRINCIPAL STEPS INVOLVED IN THE CHOICE OF A SAMPLE SIZE 

• A statement about the margin of error to be tolerated in the results. 
• Choice of desired confidence level. 
• Some equation that connects n with the desired precision of the sample should be 

found.  
• This equation will contain, as parameters, certain unknown properties of the 

population. This must be estimated in order to give specific results.  
• Usually in a sample survey, more than one characteristic is measured. Sometimes, 

the number of characteristics is large. If a desired degree of precision is prescribed 
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for each characteristic, the calculation leads to a conflicting values of n, one for 
each characteristic. Some method must be found for reconciling these values.  

• Finally, the chosen value of n must be appraised to see whether it is consistent 
with the resources available to take the sample. This demands an estimation of the 
cost, labour, time and material required to obtain the proposed size of sample. It 
sometimes becomes apparent that n will have to be drastically reduced. One has to 
choose whether to proceed with a much smaller sample size, thus reducing 
precision, or to abandon efforts until more resources can be found. Regarding the 
choice of a level for tolerable margin of error and the confidence level, the user 
normally has only a vague idea and it is only through the discussions and 
clarifications that a quantitative specific measures are obtained. It may be 
remarked that these measures are mainly subjective and depend largely on the 
judgment of the user regarding the importance, applicability and vulnerability of 
the results.  

Regarding the sample sizes in case of simple random sampling, the cases for qualitative 
and quantitative data are presented below: 

4.3 QUALITATIVE DATA: ESTIMATION OF PROPORTIONS 
The units are classified into two classes, C and ′C . Some margin of error d in the 
estimated proportion p of units in class C has been agreed on, and there is a small risk α 
that we are willing to incur that the actual error is larger than d; i.e., we want 

Pr ( p - P  ≥ d ) = α                                                                                                    (3.1) 

Simple random sampling is assumed, and p is taken as normally distributed. Now we 
know that, 

n
QP

N
nN

p
.

1 








−
−

=σ                                                                                                   (3.2) 

Hence  the formula  that connects  n  with the desired degree of  precision  is 

n
QP

N
nNtd .
1 








−
−

=                                                                                                     (3.3) 

where t  is the abscissa of the normal curve that cuts off an area  of α  at the tails. Solving 
for n, we find 









−+

=
111 2

2

2

2

d
QPt

N

d
QPt

n                                         (3.4) 
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For practical use, an advance estimate p of P is substituted in this formula. If N is  large, a 
first  approximation  is 

2

2

0 d
qptn =                                     (3.5) 

In practice, we first calculate n0. If n0/N is negligible, n0 is a satisfactory approximation 
to the n of (3.4).  If not, it is apparent on comparison of (3.4) and (3.5) that n is obtained 
as 

)/(1/)1(1 0

0

0

0

Nn
n

Nn
n

n
+

≅
−+

=                      (3.6) 

4.4 EXERCISE  

In the hypothetical blood groups example, d = 0.05,  p = 0.5, α  =  0.05, t = 2. 

Thus, q = 1 – p = 0.5, and from (3.5), we have 

400
)0025.0(

)5.0)(5.0)(4(
0 ==n                                                                                                 (4.1) 

Let us assume that there are only 3200 people on the island. The fpc is needed, and  we 
find 

356

3200
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The formula for n0 holds also if d, p and q are all expressed as percentages instead of 
proportions. Since the product p.q increases as p moves towards 1/2, or 50%, a 
conservative estimate of n is obtained by choosing for p the value nearest to 1/2 in the 
range in which p is thought likely to lie. If p seems likely to lie between 5 and 9%, for 
instance, we assume 9% for the estimation of n. 

4.5 QUANTITATIVE DATA: ESTIMATION OF POPULATION MEAN 

Consider a population of size N from which a simple random sample is to be selected for 
estimating the population mean Y . Suppose, we wish to control the relative error ‘r’ in 
the estimated population total or mean. As the sample mean y  estimates the population 
mean Y , the margin of error and confidence level are specified as  

( ) ( ) ( ) α=≥−=≥
−

=≥
− YrYyPr

YN
YNyNPr

y
YyP                                               (5.1) 

where α   is a  small  probability. We assume  that y  is normally distributed. Its standard 
error is given by 
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Hence 
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Solving for n gives 
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Note  that  the population characteristic on  which  n  depends is its  coefficient of 
variation YS / . This is often a more stable quantity and easier to guess in  advance than 
S itself. 

As a first approximation, we take   
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by substituting for an advance estimate of ( YS / ). 

If  n0 / N  is appreciable, we compute n as in (3.6) as 
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0

0
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=                                                      (5.6)  

If  instead  of  the  relative error  r, we wish to control  the  absolute error  d  in Y , we 
take  n0 = t2S2/ d2 .   

Sometimes the specification error to be tolerated is only given in terms of desired  per 
cent S.E. of the estimator e.g. the estimate is desired with a maximum of say 5% S.E.  In 
such cases, n is obtained from the corresponding formulae. In simple random sampling, if 
the desired % S.E. is d, then n is given by 
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where C is the % coefficient of variation of the population.  

4.6 METHODOLOGICAL ISSUES RELATING TO DETERMINATION OF 
SAMPLE SIZE 

The determination of sample size is generally based on  

• the available financial and manpower resources, and  
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• the required level of reliability in the estimates expected from the sample.  

Generally, it would be preferable to start with the second consideration, and if the budget 
is a constraint to assess the precision that can be achieved under that constraint in order to 
decide whether the achievable precision would be acceptable, and if not, whether the 
budget should be increased. 

In a sample survey, the sampling error associated with a given sample size varies from 
item to item. For major items of frequent occurrence, such as area under a crop, generally 
the sampling error is less that than the minor items of infrequent occurrence such as use 
of pesticides/ insecticides. Similarly, for items which have greater variability, the 
sampling error would be larger than that for items having lesser variability. To decide on 
the sample size for the survey, it would be necessary to calculate the sample size required 
for estimating with the requisite precision a few major items of interest and take the 
largest of the indicated size requirements as the sample size for the survey. 

4.7 OVERALL SAMPLE SIZE 

If a pilot survey is undertaken for testing questions and survey procedure before the main 
survey is launched, it may be possible to estimate roughly the parameters (population 
mean and standard deviation) required for the determination of sample size for the 
various items of interest. However, that may not be always possible, unless the pilot 
survey is taken well in advance, because estimates of financial resource required are to be 
made available to the government quite in advance to make the requisite budget. Thus the 
determination of the sample size in most cases may have to be done in advance without 
any pilot survey. 

In such cases the survey Statistician has to make use of the information which is readily 
available. He may often have to depend on the results of similar survey conducted in the 
past, preferably in the same country or elsewhere in the neighbouring countries. If no 
such results are available, the Statistician has to make reasonable guesses of the different 
parameters which enter the formula for determination of the sample size. 

If a stratified multi-stage random sampling design is used, which is usually the case, the 
problems are further compounded because information is required not merely on the 
population mean and standard deviation (SD), but also its components of variance 
between primary stage sampling units (PSUs) and within PSUs. What one can do in such 
circumstances is to proceed in stages by working out the sample size required for a 
simple random sample (SRS) and to make adjustments to the sample size to take into 
account the effects of multi-stage sampling and possible stratification as illustrated 
below. 

Generally the level of precision desired of an estimate is expressed as a percentage of 
itself or, strictly speaking of the population parameter. But the subtle difference is usually 
ignored. 
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Let Y be the characteristic under study, Y  be the population mean and y  be the sample 
mean. Clearly, y  is an estimate of Y . 

The required sampling precision is prescribed as a percentage of Y . For example, 
sampling precision of y  should be E per cent of Y  i.e., the population average should lie 
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Taking 95% confidence interval, which is the usual case, this implies that 
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Hence, percentage relative SE = 
2
E  

If the sampling precision is set at 5% relative SE, we know that in simple random 
sampling    
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If E = 5,              ( ) 2
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If E = 10,            2
2

)(400
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Thus to determine the sample sizes, we require the value of coefficient of variation, 
which generally being a stable quantity can be estimated on the basis of a previous survey 
on the subject or a closely related subject. 
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5.1 INTRODUCTION 
Sample surveys are widely used as a cost effective instrument of data collection and 
for making valid inferences about population parameters.  Most of the steps involved 
while planning a sample survey are common to those for a complete enumeration.  
Three major stages of a survey are planning, data collection and tabulation of data.  
Some of the important aspects requiring attention at the planning stage are as follows: 

• Formulation of data requirements - objectives of the survey 
• Ad-hoc or repetitive survey 
• Method of data collection 
• Questionnaire versus schedules 
• Survey, reference and reporting periods 
• Problems of sampling frames 
• Choice of  sampling design 
• Planning of pilot survey 
• Field work 
• Processing of data, and 
• Preparation of report. 
The different aspects listed above are inter-dependent. 

i) Formulation of Data Requirements 
The users i.e. the persons or organisations requiring the statistical information, are 
expected to formulate the objectives of the survey.  The user’s formulation of data 
requirements is not likely to be adequately precise from the statistical point of view. It 
is for the survey statistician to give a clear formulation of the objectives of the survey 
and to check up whether his formulation faithfully reflects the requirements of the 
users. The survey statistician’s formulation of data requirements should include the 
following: 

• A clear statement of the desired information in statistical terms 
• Specification of the domain of study 
• The form in which the data should be tabulated 
• The accuracy aimed at in the final results and 
• Cost of survey 

Besides, these aspects, one may accommodate some additional items of information, 
directly or indirectly related to the objectives of the survey, which would provide 
checks on the accuracy of data or assist in interpreting the results. 

ii) Survey: Adhoc or Repetitive 
An adhoc survey is one which is conducted without any intention of or provision for 
repeating it, whereas a repetitive survey is one, in which data are collected 
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periodically for the same, partially replaced or freshly selected sample units. If the 
aim is to study only the current situation, the survey can be an adhoc one.  But when 
changes or trends in some characteristics over time are of interest, it is necessary to 
carry out the survey repetitively. 

iii)  Methods of Collecting Primary Data 
There are a variety of methods that may be used to collect information. The method to 
be followed has to be decided keeping in view the cost involved and the precision 
aimed at.  The methods usually adopted for collecting primary data are:  

• Direct Personal Interview,   
• Questionnaires Sent Through Mail,  
• Interview by Enumerators and  
• Telephone Interview. 

Direct Personal Interview 
The method of personal interview is widely used in social and economic surveys.  In 
these surveys, the investigator personally contacts the respondents and can obtain the 
required data fairly accurately. The interviewer asks the questions pertaining to the 
objective(s) of survey and the information, so obtained, is recorded on a schedule 
prepared for the purpose. This method is mostly suitable for collecting data on 
conceptually difficult items from respondents. Under this method, the response rate is 
usually good and the information is more reliable and correct. However, more 
expenses and time is required to contact the respondents. 

Questionnaires Sent Through Mail 
In this method, also known as mail inquiry, the investigator prepares a questionnaire 
and sends it by mail to the respondents.  The respondents are requested to complete 
the questionnaires and return them to the investigator by a specified date.  The method 
is suitable where respondents are spread over a wide area.  Though the method is less 
expensive, normally it has a poor response rate.  Usually, the response rate in mail 
surveys has been found to be about 40 per cent.  The other problem with this method 
is that it can be adopted only where the respondents are literate and can understand 
the questions.  They should also be able to send back their responses in writing.  The 
success of the method depends on the skill with which the questionnaire is drafted, 
and the extent to which willing cooperation of the respondents is secured.  For rural 
areas, this method has got its obvious limitation and is seldom used. 

Interviews by Enumerators 
This method involves the appointment of enumerators by the surveying agency.  
Enumerators go to the respondents, ask them the questions contained in the schedule, 
and then fill up the responses in the schedule themselves. For example, this method is 
used in collecting information during population census.  For success of this method, 
the enumerators should be given proper training for soliciting co-operation of the 
respondents.  The enumerators should be asked to carry with them their identity cards, 
so that, the respondents are satisfied of their authenticity. They should also be 
instructed to be patient, polite, and tactful.  This method can be usefully employed 
where the respondents to be covered are illiterate. 
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Telephone Interview 
In case the respondents in the population to be covered can be approached by phone, 
their responses to various questions, included in the schedule, can be obtained over 
phone.  If long distance calls are not involved and only local calls are to be made, this 
mode of collecting data may also prove quite economical.  It is, however, desirable 
that interviews conducted over the phone are kept short so as to maintain the interest 
of the respondent. 

iv)  Questionnaire vs.  Schedule  
In the questionnaire approach, the informants or respondents are asked pre-specified 
questions and their replies to these questions are recorded by themselves or by 
investigators.  In this case, the investigator is not supposed to influence the 
respondents.  This approach is widely used in main enquiries. In the schedule 
approach, the exact form of the questions to be asked are not given and the task of 
questioning and soliciting information is left to the investigator, who backed by the 
training and instructions has to use his ingenuity in explaining the concepts and 
definitions to the informant for obtaining reliable information.   

While planning a survey, preparation of questionnaire or schedules with suitable 
instructions needs to be given careful consideration.  Respondent’s bias and 
Investigator’s bias are likely to be different in the two methods.  Simple, 
unambiguous suitable wordings as well as proper sequence of questions are some 
considerations which contribute substantially towards reducing the respondents bias.  
Proper training, skill of the Investigators, suitable instructions and motivation of 
investigators contribute towards reducing Investigator’s bias. 

v) Survey, Reference and Reporting Periods  
Another aspect requiring special attention is the determination of survey period, 
reference period and reporting periods. 

• Survey period:  The time period during which the required data is collected. 

• Reference period: The time period to which the collective data for all the units 
should refer. 

• Reporting period: The time period for which the required statistical information is 
collected for a unit at a time (reporting period is a part or whole of the reference 
period).                          

The reporting period should be decided after conducting suitable studies to examine 
recall errors and other non-sampling errors. For items of information subject to 
seasonal fluctuations, it is desirable to have one complete year as the survey and 
reference period, the data being collected every month or season with suitable 
reporting periods for the same or different sets of sample units. 

vi)  Sampling Frames 
One of the main requirements for efficiently designing sample survey is a well 
constructed sampling frame.  In actual practice, quite often frames are not always 
perfect.  Various types of imperfection such as omission, duplication etc. exist in the 
available frame. In multi-stage sampling, the problems of securing a good sampling 
frame arises for each of the stages.  Usually a frame for higher stage units, such as 
towns, urban blocks and villages is more stable than one for lower stage units such as 
farms and households, which are more subject to changes. In agricultural surveys, 
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normally the frames of first few stages of units upto village level are used from 
records while the frame of households, fields etc.  within the villages are prepared 
afresh. This approach reduces the chances of imperfection in sampling frames. 

vii) Choice of Sampling Design 
The choice of a suitable sampling design for a given survey situation is one of the 
most important step in the process of planning sample surveys.  The principle 
generally adopted in the choice of a design is either reduction of overall cost for a pre-
specified permissible error or reduction of margin of error of the estimates for given 
fixed cost. Generally a stratified uni-stage or multi-stage design is adopted for large 
scale surveys. For efficient planning, various auxillary information which are 
normally available are utilised at various stages e.g.  the area under particular crop as 
available for previous years is normally used for size stratification of villages.  If the 
information is available for each and every unit of the population and there is wide 
variability in the information then it may be used for selecting the sample through 
probability proportional to size methods.  The choice of sample units, method of 
selecting sample and determination of sample size are some of the important aspects 
in the choice of proper sample design. 

viii) Pilot Surveys 
Where some prior information about the nature of population under study, and the 
operational and cost aspects of data collection and analysis is not available from part 
surveys.  It is desirable to design and carry out a pilot survey.  It will be useful for 

• Testing out provisional schedules and related instructions, 
• Evolving suitable procedure for field and tabulation work, and  
• Training field and tabulation staff. 

ix)  Field Work 
While planning the field work of the survey, a careful consideration is needed 
regarding choice of the field agency.  For adhoc surveys, one may plan for adhoc staff 
but if survey is going to be a regular activity, the field agency should also be on a 
regular basis.  Normally for regular surveys, the available field agencies are utilized.  
A regular plan of work by the Enumerators along with proper supervision is an 
important consideration for getting a good quality of data. 

x) Processing of Survey Data 
The analysis of data collected in a survey has broadly two facets: 

• Tabulation and summary of data and  
• Subject analysis.  

The first task which is of primary importance, is the reduction of collected data into 
meaningful tables. The tables should be presented along with the background 
information such as the objective(s) of the survey, the sampling design adopted, 
method used for data collection and tabulation, and margin of error applicable to the 
results.  These margins of error provide the idea about the precision of estimates. 
Subject analysis to be taken up after preparing summary tables, should include cross 
tabulation of data by the meaningful, geographical, economy, demographic or other 
breakdowns to study their relationship and trends among various characteristics.  This 
is a detailed technical analysis and is likely to be time consuming.  Hence this part 
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should not be tied up with the first part as otherwise the publication of the survey 
results might get delayed. 

xi)  Preparation of Report 
Although there are no set guidelines for presentation of results and preparation of 
report, however some points which serve as guidelines in the preparation of sample 
survey reports are given below: 

• Introduction & review of literature 
• Objective(s) 
• Scope 
• Subject coverage 
• Method of data collection 
• Survey references and recording 
• Sampling design and estimation procedure 
• Tabulation procedure 
• Presentation of results 
• Activity of results 
• Cost structure of the survey 
• Agency for conducting the survey 
• References. 

5.2 QUESTIONNAIRE DESIGNING  
Questionnaires and schedules are forms for recording the information as envisaged 
under the survey.  Designing of these is one of the most important aspects of the 
survey.  The words ‘questionnaire’ and ‘schedule’ as per the current practice are 
generally used synonymously.  However, a technical distinction is sometimes made.  
The term questionnaire applies to forms distributed through mails or given to 
informants to be filled in, by and large, without the assistance or supervision of the 
interviewer, while a schedule is the form carried and filled in by the investigator or 
filled in his presence. 

The question as to whether the questionnaire or schedule approach is to be used in a 
survey for collecting the required information needs consideration.  In the former 
approach the respondents are asked pre-specified questions and their replies to these 
questions are recorded by themselves or by the investigators. This approach presumes 
that the respondents are capable of understanding and answering the questions, since 
in this case the investigator is not supposed to influence the responses in any way by 
his interpretation of the terms used in the form. This method is widely used in mail 
inquiries in the schedule approach, the exact form of the questions to be asked are not 
given and the task of questioning and eliciting information is left to the investigator, 
who backed by his training, experience and instructions has to use his ingenuity in 
explaining the concepts and definitions to the informants for obtaining reliable 
information. Detailed instructions are, however, given to the investigator about 
concepts, definitions and procedures to be used in collecting data for the survey.  In 
various socio-economic surveys, the method of collecting data after meeting the 
respondents and obtaining information of various characters by inquiry is commonly 
used. 
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From the above it may appear that the schedule approach is subject to more 
investigator bias than the questionnaire approach, as there is added scope in it for the 
investigator to influence the responses of the informants.  This will not be so, if well-
trained and skilled investigators are employed for the purpose.  On the other hand the 
respondent bias may be substantial in questionnaire approach, if the survey items are 
complicated and involve conceptual difficulties.  In such a situation, it would be 
desirable to train investigators for explaining the terms involved rather than to burden 
the respondent with elaborate instructions and clarifications.  As the cost of 
questionnaire approach is generally less than that of schedule approach, a decision as 
to which of the two methods should be followed in a particular survey needs to be 
arrived at after carefully examining the possible effects of investigator and respondent 
biases and the cost involved. 

Designing of schedules / questionnaires with suitable instructions needs to be given 
careful consideration in planning a survey as utility of the results of the survey 
depends to a large extent on this.  The framing of schedules or items should be done 
in a simple, unambiguous, interesting and tactful manner and they should be so 
worded as not to influence the answers of the respondents.  The sequence of items is 
equally important.  Those likely to help the investigator in establishing a good rapport 
with the respondents should be put first and item relating to a particular aspect of the 
survey should come together in a schedule / questionnaire.  As far as possible the 
items should be such that the answers can be recorded in numbers or specific codes. 

To reduce the non-sampling errors arising from ambiguous definitions and 
misunderstanding of the questions by investigators/respondents it is desirable to give 
some typical examples, detailed explanatory notes and instructions for the items of 
information included in the schedule/questionnaire. Clarifications of doubts raised by 
the investigators are to be done in such a manner that there is uniformity in the 
procedures followed by different investigators. 

From what has been discussed above it will appear that there are several 
considerations which have to be kept in mind while designing the schedules.  It is 
difficult to list out all of them.  There may be some which are specific to a particular 
survey and may require special consideration.  In the following paragraphs the main 
important considerations which should be borne in mind while designing the schedule 
/ questionnaire are given. 

5.3 THREE KINDS OF SCHEDULE ITEMS 
The information included in the schedule may be classified under three headings: 

5.3.1 Identification Information 
This ensures that the schedule will not be misplaced or mixed-up, lost or duplicated; 
that the information on it pertains to the particular sample case, and the interviewer 
and respondent can be identified e.g. year, season, crop, name of the district, block, 
village, name of cultivator and his father’s name etc. are entered against identification 
particulars. 
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5.3.2 Social Background or Census Type Factual Data 
This information about respondent provides the variables by which the survey data are 
to be classified and also the basis for evaluating the sample viz. cultivator’s total 
holding and holding size group, category namely SC, ST, or General, monthly 
income, total number of family members tenancy status, educational qualifications 
etc. 

5.3.3 Questions on the Subject of the Survey 
These questions may be directed towards obtaining more or less objective facts or 
toward revealing attitudes and opinions on matters of current interest. 

Considerations to be borne in mind while designing schedules/ questionnaires 
The first step in designing a schedule / questionnaire is to define the problem to be 
tackled by the survey and hence to decide on what questions to be asked.  The 
temptation is always to cover too much, to ask everything that might turn out to be 
interesting. This must be resisted.  Lengthy questionnaires are as demoralizing for the 
interviewer as for the respondent, and the questionnaire should be no longer than is 
absolutely necessary for the purpose. 

Agency Which Will Make the Entries in the Schedules 
If a highly trained investigator is to ask the questions and enter the replies, the form 
should be different from the one drawn for informant to fill out himself since the 
interviewer can be instructed regarding details which will ensure uniform definitions, 
entries and interpretations. 

The terminology and questions should be adopted to the type of people who will give 
the information.  For example, a questionnaire addressed to specialist familiar with 
the subject matter of the survey can be much more technical than the one directed to a 
cross section of the population.  In designing schedules that are to be filled up by 
farmers, housewives, employers etc.,  the level of education should be taken into 
consideration. 

Physical Appearance of the Schedule and Cooperation Received for the Survey 
In surveys by mail, there is no doubt that an attractive looking questionnaire is a 
selling point for cooperation.  Consequently, an unattractive one may cause the 
recipient to put it aside or even throw it.  The fact that the form looks 'short', however, 
often contributes to securing individual's consent to be interviewed.  Informants will 
tolerate a short interruption of only to get rid of the interviewer, but they may flatly 
refuse to answer a long list of questions. 

How are the Questions to be worded 
The choice of the language used in expressing a question is of the greatest 
importance.  It is too often presumed that the respondents must be aware of the 
concepts and definitions used in the questionnaire since these are obvious to the 
survey team.  If the terminology is ambiguous, the respondents will have to use their 
own judgment and different persons will judge differently.  This causes confusion and 
errors.  Ambiguity arises with double barrelled questions, such as, the following 
question to a public transport "Do you like travelling on trains and buses?".  
Respondent liking a one and disliking other would be in a dilemma in answering this 
question.  Clearly it needs to be divided into two questions. 
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5.4  SUGGESTIONS FOR WORDING QUESTIONS 

5.4.1 Use simple words which are familiar to all potential informants 
The basic principle in good question wording is to use the simplest words that will 
convey the exact meaning.  Meaning of the questions becomes clear when the words 
used are well known and mean the same thing to everyone.  The question 'Do you 
operate land?' used in agricultural surveys is poor.  It is not clear whether the person is 
an owner cultivator or a tenant cultivator. 

5.4.2 Make the questions as concise as possible  
A question that contains long dependent or conditional clauses may confuse the 
informants.  In trying to comprehend the question as a whole he may over-look or 
forget clause and hence his answer may be wrong. However, in opinion or attitude 
survey, it may be important to have the complete question printed on the schedule. 

5.4.3 Formulate the question to yield exactly the information desired 
The question should be self-explanatory.  If the questions call for an answer in terms 
of units, these units must be clearly defined.  Suppose we want to ask the cultivator 
the seed rate used for a specific crop.  We should clearly mention whether the seed 
rate is to be reported in kg/ha or in kg for the entire field. 

5.4.4 Avoid multiple meaning questions 
Unless each question covers only one point, there will be confusion as to which one, 
the answer applies to.  Such items should be formulated as two or more questions so 
that separate answer can be secured. 

5.4.5 Avoid ambiguous questions  
A question which means different things to different people is ambiguous.  The best 
course is to pre-test the questions through a pilot survey and thus detect ambiguities, 
e.g., in a survey on consumption of milk and ghee, suppose the question is milk and 
ghee consumed during the month.  It should be clearly mentioned whether it is during 
last calendar month or one month prior to Investigator's visit. 

5.4.6 Avoid leading questions 
A leading question is one which, by its content, structure or wording leads the 
respondent in the direction of a certain answer.  In other words, all questions which 
produce biased answers may be regarded as leading questions.  Such questions should 
be avoided. 

5.4.7 Keep to a minimum the amount of writing required on the schedule 
When feasible, use symbols for the replies.  Explain these symbols somewhere on the 
schedule.  If the possible responses can be foreseen by pre-testing, the questions can 
be answered as Yes or No, by writing a number, by putting a cross, by putting a 
symbol or by encircling the correct answer. 

5.4.8 Include a few questions that will serve as checks on the accuracy and 
consistency of the questions as a whole 

Two questions that bring out the same facts though worded differently and placed in 
different sections of the schedule, serve to check the internal consistency of the 
replies, e.g., in a socio-economic survey, suppose we are asking the total holding of 
the farmer. It would be better if we include the area owned, leased-in and leased-out 
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separately in some block of the proforma.  This serves as a check to tally the total 
holding size. 

5.5 HANDBOOK OF INSTRUCTIONS FOR THE FIELD STAFF 
It would be desirable to prepare a comprehensive Handbook of Instructions 
explaining concepts and definitions of various items etc. for filling in the 
questionnaire/ schedule under the survey and a copy of the same should be provided 
to each Field Investigator. 

5.6  SEQUENCE OF QUESTIONS 
Careful consideration should be given to the problem of the order in which questions 
should appear.  In order to guard against confusion and misunderstanding, questions 
should be arranged logically, one question leading to the next.  Specific questions 
should always follow general questions.  The opening question should be very 
interesting, this will ensure that the respondents cooperate in parting with the desired 
information for the survey.  Questions which might embarrass the respondents should 
be placed towards the middle or end of the questionnaires.  Questions with an 
emotional tinge may be interspersed between items which elicit more neutral 
reactions. 

5.7 CONCLUDING REMARKS 
The problem of designing of questionnaires/ schedules is not an easy task.  Even if 
one follows all the accepted principles, there usually remains a choice of several 
question forms, each of which seems satisfactory.  Every surveyor tries to phrase his 
questions in simple, everyday language, to avoid vagueness and ambiguity and to use 
neutral wording.  His difficulty lies in judging whether, with any particular question, 
he has succeeded in these aims. He may appreciate perfectly that leading questions are 
to be avoided but how can he know which words will be 'leading' with the particular 
question, survey and population that confront him, perhaps for the first time? 

The answer to this question lies in detailed pre-tests and pilot studies, more than 
anything else, they are the essence of a good questionnaire. However experienced the 
questionnaire designer, any attempt to shortcut these preparatory stages will seriously 
jeopardize the quality of the questionnaire; past experience is a considerable asset, but 
in a fresh survey, there are always new aspects which may perhaps not be 
immediately recognized, but which exist and must be investigated  through pre-tests 
and pilot studies.  
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6.1  INTRODUCTION 
The reliability of the estimates from a survey depends on the errors that are affecting 
the survey. Groves (1989, Chapter 1) gives an excellent review of the potential 
sources of survey errors. Total survey error is sum of sampling error and non-
sampling error. The former is as a result of selecting a sample instead of canvassing 
the whole population, while the latter is mainly due to adopting wrong procedures in 
the system of data collection and/or processing. In other words, sampling errors arise 
solely as a result of drawing a probability sample rather than conducting a complete 
enumeration. Non-sampling errors, on the other hand, are mainly associated to data 
collection and processing procedures. The quality of a sample estimator of a 
population parameter is therefore a function of total survey error, comprising both 
sampling and non-sampling errors. Both sampling and non-sampling errors need to be 
controlled and reduced to a level at which their presence does not defeat or obliterate 
the usefulness of the final sample results. This chapter will focus of non-sampling 
error in surveys.  

 
6.2 DEFINITION, CONCEPT AND SOURCE OF NON-SAMPLING 
ERRORS 
Non-sampling error is an error in sample estimates which cannot be attributed to 
sampling fluctuations. Non-sampling errors may arise from many different sources 
such as defects in the frame, faulty demarcation of sample units, defects in the 
selection of sample units, mistakes in the collection of data due to personal variations 
or misunderstanding or bias or negligence or dishonesty on the part of the investigator 
or of the interviewer, mistakes at the stage of the processing of the data, etc. It may 
also arise from poorly designed survey questionnaires, improper sample allocation 
and selection procedures, and/or errors in estimation methodology. These errors are 
unpredictable and not easily controlled. Unlike in the control of sampling error this 
error may increase with increases in sample size. If not properly controlled non-
sampling error can be more damaging than sampling error. It is noteworthy that 
increasing the sample size will not reduce this type of error.   

 
These errors are caused by the mistakes in data processing. It includes: 

– Over coverage: Inclusion of data from outside of the population. 
– Under coverage: Sampling frame does not include elements in the population. 
– Measurement error: The respondents misunderstand the question. 
– Processing error: Mistakes in data coding. 
– Non-response: errors because some selected units could not be contacted or 

refused to provide the information 
 
Acquisition errors arise from the recording of incorrect responses, due to:  

– incorrect measurements being taken because of faulty equipment, 
– mistakes made during transcription from primary sources, 
– inaccurate recording of data due to misinterpretation of terms, or 
– inaccurate responses to questions concerning sensitive issues 

http://www.investorwords.com/10654/poorly.html
http://www.businessdictionary.com/definition/survey.html
http://www.businessdictionary.com/definition/questionnaire.html
http://www.businessdictionary.com/definition/sample.html
http://www.businessdictionary.com/definition/allocation.html
http://www.businessdictionary.com/definition/selection.html
http://www.businessdictionary.com/definition/procedure.html
http://www.businessdictionary.com/definition/error.html
http://www.businessdictionary.com/definition/methodology.html
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Note that non-sampling errors can be generally defined as any source of bias or error 
in the estimation of a population characteristic in which the uncertainty about the 
resulting estimate is NOT due to the fact that we’re sampling. We can think of them 
as errors for which increasing the sample size will not aid us in our estimation. 

6.3  TYPES OF NON-SAMPLING ERRORS 
Brieumer and Lyberg (2003) identify five components of non sampling error, namely 
specification, frame, non-response, measurement and processing error. We may add 
that estimation error is another error, which should be considered. However, non-
response and measurement errors are two main non-sampling errors that we generally 
talk. These types of error are briefly discussed below.   
 
i. Specification error 
This occurs when the concept implied by the question is different from the underlying 
construct that should be measured. A simple question such as how many children 
does a person have can be subject to different interpretations in some cultures. In 
households with extended family member’s biological children may not be 
distinguished from children of brothers or sisters living in the same household. In a 
disability survey, a general question asking people whether or not they have a 
disability can be subject to different interpretations depending on the severity of the 
impairment or the respondent’s perception of disability. People with minor disabilities 
may perceive themselves to have no disability. Unless the right screening and filter 
questions are included in the questionnaire, the answers may not fully bring out the 
total number of people with disabilities. 
 
ii. Coverage or frame error 
In most area surveys primary sampling units comprise clusters of geographic units 
generally called enumeration areas (EAs). It is not uncommon that the demarcation of 
EAs is not properly carried out during census mapping. Thus households may be 
omitted or duplicated in the second stage frame. Frame imperfections can bias the 
estimates in the following ways: If units are not represented in the frame but should 
have been part of the frame, these results in zero probability of selection for those 
units omitted from the frame. On the other hand if some units are duplicated, this 
results in over coverage with such units having larger probabilities of selection.  
Errors associated with the frame may, therefore, result in both over coverage and 
under coverage.  Non-coverage denotes failure to include some sample units of a 
defined survey population in the sampling frame. Because such units have zero 
probability of selection, they are effectively excluded from the survey results. 
 
It is important to note that we are not referring here to deliberate and explicit 
exclusion of sections of a larger population from survey population. Survey objectives 
and practical difficulties determine such deliberate exclusions. For example attitudinal 
surveys on marriage may exclude persons under the minimum legal age for marriage. 
Residents of institutions are  often excluded because of practical survey difficulties. 
Areas in a country infested with landmines may be excluded from a household survey 
to safeguard the safety of field workers. When computing non-coverage rates, 
members of the group deliberately and explicitly excluded should not be counted 
either in the survey population or under non-coverage. In this regard defining the 
survey population should be part of the clearly stated essential survey conditions. 
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Non-coverage is often associated with problems of incomplete frames. Examples are 
to omissions in preparing the frame but also missed units, implying omissions due to 
faulty execution of survey procedures. Thus non-coverage refers to the negative errors 
resulting from failure to include elements that would, under normal circumstances, 
belong in the sample. Positive errors of over coverage also occur due to inclusion in 
the sample of elements that do not belong there. 
 
The term gross coverage error refers to the sum of the absolute values of non-
coverage and over coverage error rates. The net non-coverage refers to the excess of 
non-coverage over coverage. It is, therefore, their algebraic sum. The net coverage 
measures the gross coverage only if over coverage is absent. Most household surveys 
in developing countries suffer mainly from under coverage errors. Most survey 
research practitioners agree that in most social surveys non-coverage is a much more 
common problem than over coverage. Corrections and weighting for non-coverage 
are much more difficult than for non-responses, because coverage rates cannot be 
obtained from the sample itself, but only from outside sources.  
 
The non-coverage errors may be caused by the use of faulty frames of sampling units. 
If the frames are not updated or old frames are used as a device to save time or 
money, it may lead to serious bias. For example, in a household survey if an old list of 
housing units is not updated from the time of its original preparation say 10 years 
prior the current survey, newly added housing units in the selected enumeration area 
will not be part of the second stage frame of housing units. Similarly, some disbanded 
housing units will remain in the frame as blanks. In such a situation, there may be 
both omission of units belonging to the population and inclusion of units not 
belonging to the population. 
 
At times there is also failure to locate or visit some units in the sample. This is a 
problem with area sampling units in which the enumerator must identify and list the 
households according to some definition. This problem arises also from use of 
incomplete lists. Some times weather or poor transportation facilitates make it 
impossible to reach certain units during the designated period of the survey. Survey 
results can, therefore, be distorted if the extent of non-coverage differs between 
geographical regions, sub groups, the population such as sex, age groups, ethnic and 
socio-economic classes. In general good frames should provide a list of sampling 
units from which a sample can be selected and sufficient information on the basis of 
which the sample units can be uniquely identified in the field. 
 
Non-coverage errors differ from non-response. The latter, results from failure to 
obtain observations on some sample units, due to refusals, failure to locate addresses 
or find respondents at home and losses of questionnaires. The extent of non-response 
can be measured from the sample results by comparing the selected sample with that 
achieved. By contrast the extent of non-coverage can only be estimated by some kind 
of check external to the survey operation. 
 
Sample selection and implementation errors 
This strictly refers to losses and distortions within then sampling frame. Example, the 
wrong application of the selection procedures and selection probabilities. One glaring 
example is the inappropriate substitution of the selected units by others especially 
when systematic sampling is used in the field. 
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Reducing coverage error 
The most effective way to reduce coverage error is to improve the frame by excluding 
erroneous units and duplicates and updating the frame through filed work to identify 
units missing from the frame. It is also important to undertake a good mapping 
exercise during the preparatory stages of a population and housing census. However, 
the frame prepared during the census should be updated periodically. It is also 
imperative to put in place procedures that will ensure the coverage of all selected 
sample units. 
 
iii. Non-response errors  
Non-response is error due to not all selected elements yield their information (i.e., 
failure to measure some of the sample units), which usually means that the population 
of interest is not the population from which the sample is drawn. It is a problem 
usually associated with surveys or interviews – any situation in which the human 
element is involved. People can and will refuse information for a wide variety of 
reasons – they could be busy, uninterested, suspicious of the surveyor’s intentions, 
afraid they won’t be anonymous, or simply uncooperative. The problem with non-
response is that it changes our sampling frame – if some elements will not give us 
their information, then effectively we are sampling from the population of potential 
responders, not the population of interest.  For example, let: 

N = total population size, and µ = population mean 
N1 = total potential responders, and µ1 = population mean of responders 
N2 = total potential non-responders, and µ2 = population mean of non-responders 

Suppose we conduct a simple random sampling (SRS) from this population, with 
estimation via the usual sample mean (which is unbiased under SRS when all unit 
respond). Is the sample mean unbiased when there is non-response?  No, because all 
of our data is drawn from the population of responders, and thus we are really 
estimating is µ1, not µ. Let y denote the variable of interest. The bias in this case can 
be shown to be ( )( )2 1 2/  –N N y y , where 1y  and 2y   are the averages of y for 
responders and non-responders respectively. We can think of this situation as a 
stratified sample where the population is broken into two strata, and we only have 
data from one stratum. Remember that the simple estimator used on data from a 
stratified sample is biased for µ - the same thing applies here.   
 
Notice that if µ1 = µ2, in other words, if the populations of responders and non-
responders are the same, then µ1 = µ, and we are out of the woods – we can do 
everything in the same manner as we have all along.  Evaluating whether or not the 
responders and non-responders are the same involves making an assumption, and that 
assumption is more or less reasonable depending on each specific situation. So what if 
we can’t reasonably assume that the groups of responders and non-responders are 
similar, or if we prefer not to let our analysis ride on a subjective assessment?  There 
are some alternatives.  
 
In most cases non-response is not evenly spread across the sample units but is heavily 
concentrated among subgroups. As a result of differential non-response, the 
distribution of the achieved sample across the subgroups will deviate from that of the 
selected sample. This deviation is likely to give rise to non-response bias if the survey 
variables are also related to the subgroups. 
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The most obvious method of reducing non-response bias is to convert non-responders 
into responders. Recall the equation for non-response bias: ( )( )2 1 2/  – .N N y y  One 
way to reduce the absolute value of this quantity is to reduce 2 /N N , i.e., reduce the 
proportion of non-responders in the population. The ways to do this are numerous. 
Here is a medium-sized list, with short discussions of pros and cons. Some are 
specific, some are general, some are practical and some are psychological. They 
appear in no particular order. 
 
Ways to Convert Non-responders into responders 

i. If you are conducting a telephone or face-to-face interview, make sure you 
call/visit at times when the person to be interviewed is likely to be home.   

ii. If you intend to send a mail survey, confirm that the people you wish to survey 
still live at the address you have on file.  If a particular individual does not 
respond, you may want to send a representative to the address to find out if they 
are there, or perhaps to find out to where they have moved.  If you want to 
sample whoever is currently living in the address you’ve selected, label the 
envelope, for example, “Mr. and Mrs. XYZ or current resident.” 

iii. For mailed surveys in particular, studies have shown that using attractive, high 
quality, official-looking envelopes and letterhead can improve response 
significantly. Include a carefully typed cover letter explaining your intentions, 
and guaranteeing their confidentiality.  Get a big-wig from your company or 
organization to sign it (personally, if possible). Always send materials through 
first-class mail, and include a return envelope with first-class postage. 

iv. Keep surveys and interviews as short as possible.  As a general rule, the more 
questions you ask, the less likely you are to get accurate (or any) information. 

v. Use the guilt angle whenever possible (but do it implicitly, don’t beg).  What I 
mean by this is simply to increase the amount and quality of personal contact 
with your population.  Psychologically speaking, for most people it’s easy to 
throw away a mailed survey, considerably harder to hang-up on an interviewer, 
and harder yet to walk away.  Therefore, choose a face-to-face interview over a 
phone interview, and choose a phone interview over a mailed survey, whenever 
it is practical to do so. 

vi. Publicizing or advertising your survey often helps with non-response. This lets 
people know they are not the only one being surveyed and helps with credibility. 
Use endorsements by celebrities, important individuals, or respected institutions 
if you are able. 

vii. Offer an incentive.  Money is by far the best, because it has the most universal 
appeal.  Be careful when using other incentives, because you do not want to 
elicit responses from some specific subgroup of the population who happens to 
want or like what you’re offering.   Whether to offer the incentive up-front or 
upon return of the survey is basically a toss up in terms of effectiveness – but 
the former will be considerably more expensive. 

 
In addition to the above, there is one more method that requires a bit more attention, 
called ‘double sampling.’ At the core, it is really just a two-stage sample. In the first 
stage, try to elicit responses through a cheap and easy method, such as a mailed 
survey. In the second stage, go after a random sample of the non-responders from 
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stage 1 with the big guns – telephone or face-to-face interviewing. This is a fairly well 
studied method, with suggested estimators.  
 
Non-response rate 
The non-response rate can be accurately measured if accounts are kept of all eligible 
elements that fall into the sample. Response rate for a survey is defined as the ratio of 
the number of questionnaires completed for sample units to the total number of 
sample units. 
 
Reporting of non-response is good practice in surveys. Non-response can be due to 
respondents not being -at-home, refusing to participate in the survey, being 
incapacitated to answer questions and to lost schedules/ questionnaires. All categories 
of non-response refer to eligible respondents and should exclude ineligibles.  
 
There are two types of non-responses: unit non-response and item non-response. Unit 
non-response implies that no information is obtained from certain sample units. This 
may be because respondents refuse to participate in the survey when contacted or they 
cannot be contacted. Item non-response refers to a situation where for some units the 
information collected is incomplete. Item non-response is therefore, evidenced by 
gaps in the data records for responding sample units. Reasons may be due to refusals, 
omissions by enumerators and incapacity. 
 
The magnitude of unit (total) non-response, among other reasons, is indicative of the 
general receptivity, complexity, organisation and management of the survey. The 
extent of item non-response is indicative of the complexity, clarity and acceptability 
of particular items sought in a questionnaire and the quality of the interviewer work in 
handling those items. 
 
Non-response errors can introduce bias in the survey results especially in situations in 
which the non-responding units are not representative of those that responded. Non-
response increases both the sampling error, by decreasing the sample size, and non-
sampling errors. 
 
The basics assumption in the previous sections dealing with basic theory of sampling 
is that the probability of the sample unit being available for interview is one. In 
practice non-response occurs with varying degrees in different surveys. In general, 
follow ups can increase the number of responses. 
 
In summary the types of non respondents include: 

1. Not-at-homes: prospective respondents who may not be at home when 
enumerators visit their households.  

2. Refusals: respondents who refuse to give information for whatever reasons. 
3. Not identifiable respondents. 
 

Causes of non-response 
Respondents to provide information can cause non-response error, they are being not 
at home or by sample units not being accessible. This introduces errors in the survey 
results because sample units excluded may have different characteristics from the 
sample units for which information was collected. Refusal by a prospective 
respondent to take part in a survey may be influenced by many factors, among them, 
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lack of motivation, shortage of time, sensitivities of the study to certain questions, etc. 
Groves and Couper (1995) suggest a number of causes of refusals, which include 
social context of the study, characteristics of the respondent, survey design (including 
respondent burden), interviewer characteristics and the interaction between 
interviewer and respondent.  
 
Errors arise from the exclusion of some of the units in the sample. This may not be a 
serious problem if the characteristics of the non-responding units are similar to those 
of the responding units, serve for large sampling errors. But such similarity is not 
common in practice.   
 
With specific reference to item non-response, questions in the survey may be 
perceived by the respondent as being embarrassing, sensitive or/and irrelevant to the 
stated objective. The enumerator may skip a question or ignore recording an answer. 
In addition, a response may be rejected during editing. Non-response cannot be 
completely eliminated in practice, however it can be minimized by persuasion 
through repeated visits or other methods.  
 
Reducing non-response 
A number of procedures can be used in survey design in an attempt to reduce the 
number of refusals. For example in face-to-face interviews, interviewers are supposed 
to be carefully trained in strategies to avoid refusals, and they are to return to conduct 
an interview at the convenience of the respondent. The objectives and value of the 
surveys should generally and carefully be explained to respondents so that they can 
appreciate and cooperate. Assurance of confidentiality can help to alleviate fear 
respondents may have about the use of their responses for purposes other than those 
stipulated for the survey. The following are some of the steps that can be undertaken 
to reduce non-response on household surveys: 
 
Good frames 
In many developing countries there are problems of locating sample units. This results 
in some form of non-response error. In such cases it would be helpful to have good 
frames of both area units and housing listings, to facilitate easy identification of all 
respondents. In addition, the workloads of enumeration staff should be manageable 
within the allotted time frame for the survey. This enables them to reach all sample 
units within the assigned cluster or enumeration area. During listing of households, 
for example, enough auxiliary information should be collected to facilitate distinction 
and easy location of the sample unit. Whenever, possible enumerators should know 
the area they work in very well and should preferably be stationed in the assigned 
work areas. 
 
Interview training, selection and supervision 
In personal interview surveys, the enumerator can play an important role in 
maximising response from respondents. The way interviewers introduce themselves, 
what they say about the survey, the identity they carry, and the courtesy they show to 
respondents matter. In most household surveys the enumerator is the only link 
between the survey organisation and respondent. It is for this reason that enumerators 
and their supervisors should be carefully selected, well trained and motivated. Close 
supervision of enumerator’s work and feedback on achieved response rate is of 
paramount importance. 
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Follow up of non-responding units 
There should be follow up of non-respondents or make all effort to collect 
information from a sub-sample of the units who did not respond in the first place. 
This can be treated as a different stratum, from the responding stratum, in which 
better enumerators or supervisors may be assigned to interview respondents. The 
extent of refusals will depend on the subject matter of the survey (sensitive subjects 
are prone to high refusals), length of and complexity of the questionnaire and skills of 
the survey team. The not-at-home respondents should be followed up. Depending on 
the resources and duration of the survey in face-to-face interviews at least four 
callbacks are recommended. These should be made during different days and different 
times of the day (villages give example of farming period). 
 
iv. Measurement errors  
These errors arise from the fact that what is observed or measured departs from the 
actual values of sample units. These errors centre on the sustentative content of the 
survey such as definition of survey objectives, their transformation into usable 
questions, and the obtaining, recording, coding and processing of responses. These 
errors concern the accuracy of measurement at the level of individual units. 
 
For example at the initial stage wrong or misleading definitions and concepts on 
frame construction and questionnaire design lead to incomplete coverage and varied 
interpretations by different enumerators leading to inaccuracies in the collected data.  
 
Inadequate instructions to field staff are another source of error. For some surveys 
instructions are vague and unclear leaving enumerators to use their own judgement in 
carrying out fieldwork. At times sample units in the population lack precise 
definition, thereby resulting in defective and unsatisfactory frames. The enumerators 
themselves can be a source of error. At times the information on items for all units 
may be wrong, this is mainly due to inadequate training of field workers. Depending 
on the type and nature of enquiry or information collected, these errors may be 
assigned to respondents or enumerators or both. At times there may be interaction 
between the two, which may contribute to inflating such errors. Likewise, the 
measurement device or technique may be defective and may cause observational 
errors. Reasons for such errors are: 

- Inadequate supervision of enumerators. 
- Inadequately trained and experienced field staff. 
- Problems involved in data collection and other type of errors on the part of 

respondents. 
Non-sampling errors occur because procedures of observation or data collection are 
not perfect and their contribution to the total error of the survey may be substantially 
large thereby affecting the survey results adversely. At times respondents may 
introduce errors because of the following reasons: 

- Failure to understand the question. 
- Careless and incorrect answers from respondent due to, for example, lack of 

adequate understanding of the objective(s) of the survey. The respondent may 
not give sufficient time to think over the questions. 

-  Respondents answering questions even when they do not know the correct 
answer. 
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-  Deliberate inclination to give wrong answers, for example, in surveys dealing 
with sensitive issues, such as income and stigmatised diseases. 

-  Memory lapses if there is along reference period, a case in point is the 
collection information on non-durable commodities in expenditure surveys. 

The cumulative effect of various errors from different sources may be considerable 
since errors from different sources may not cancel. The net effect of such errors can 
be a large bias. 
 
v. Processing errors 
Processing errors comprise: 

- Editing errors. 
- Coding errors. 
- Data entry errors. 
- Programming errors etc. 

The above errors arise during the data processing stage. For example in coding open 
ended answers related to economic characteristics, coders may deviate from the laid 
out procedures in coding manuals, and therefore assign wrong codes to occupations. 
In addition, the weighting procedures may be wrongly applied during the processing 
stage, etc.  
 
vi. Errors of estimation 
These arise in the process of extrapolation of results from the observed sample units 
to the entire target population. These include errors of coverage, sample selection and 
implementation, non-response, as well as sampling variability and estimation bias. 
This group of errors centres on the process of sample design, implementation and 
estimation. Biases of the estimating procedure may either be deliberate, due to the 
uses of a biased estimation procedure or it may be due to inadvertent use of wrong 
formula. 
 
Bias and variable error 
The main types of survey errors are generally divided into two main kinds: 

- Survey biases due to definitions, measurement and responses. 
- Sampling variable errors. 

However, we should also take note that there are sampling biases and variable non-
sampling errors. Bias refers to systematic errors that affect any sample taken under a 
specified survey design with the same constant error. Ordinarily, sampling errors 
account for most of the variable errors of a survey, and biases arise mainly from non-
sampling sources. In this connection, bias arises from the flaws in the basic survey 
design and procedures. While variable error occurs because of the failure to 
consistently apply survey designs and procedures. A widely accepted model combines 
the variable error and the bias into total error, which is a sum of variable error, and 
bias. 
 
The mean square error (MSE) for an estimate is equal to the variance plus the squared 
bias (MSE = Variance + Squared bias). If for arguments sake the bias were zero, the 
MSE would therefore be the variance of the estimate. In most cases bias is not zero. 
As earlier indicated measuring bias in surveys may not be easy, partly because its 
computation requires the knowledge of the true population value which in most cases 
is not a practical proposition.  
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In practice non-sampling errors can decompose into variable component and 
systematic errors. According to Biemer and Lyberg (2003) there are two types of non-
sampling error, namely systematic and variable error, the latter are generally non 
compensating errors and therefore tend to agree ( in most cases, mostly in the same 
direction e.g. positive), while the latter are compensating errors that tend to disagree ( 
cancelling each other). 
 
Variable component 
The variable component of an error arises from chance (random) factors affecting 
different samples and repetition of the survey. In the case of the measurement process 
we can imagine that the whole range of procedures from enumerator selection, data 
collection to data processing can be repeated using the same specified procedures, 
under the same given conditions, and independently without one repetition affecting 
another. The results of repetitions are affected by random factors, as well as 
systematic factors, which arise from conditions under which repetitions are 
undertaken and affect the results of the repetition the same way.  When the variable 
errors (VE) are caused only by sampling errors, VE squared equals sampling variance. 
The deviation of the average survey value from the true population value is the bias. 
Both variable errors and biases can arise either from sampling or non-sampling 
operations. The variable error will measure the divergence of the estimator from its 
expected value and it comprises both sampling variance and non-sampling variance. 
The difference of the expected value of the estimator from its true value is total bias 
and comprises both sampling bias and non-sampling bias. 
 
Systematic error 
This occurs when there is a tendency either to consistently underreport or over report 
in a survey. For example in some societies where there are no birth certificates, there 
is a tendency among men to exaggerate. This will result in systematic bias of the 
average age in the male population, producing a higher average than what the true 
average age should be. Variable errors can be assessed on the basis of appropriately 
designed comparisons between repetitions (replications) of survey operation under the 
same conditions. Reduction in variable errors depends on doing more of something 
e.g. larger sample size, more interviewers etc. on the other hand bias can be reduced 
only by improving survey procedures by doing something more, e.g. additional 
quality control measures at various stages of the survey operation. 
 
 
 
Sampling bias 
Sampling biases may arise from inadequate or faulty conduct of the specified 
probability sample or from faulty methods of estimation of the universe values. The 
former includes defects in frames, wrong selection procedures, and partial or 
incomplete enumeration of selected units. In general, biases are difficult to measure, 
that is why we emphasize their rigorous control. Their assessment can only be done 
by comparing the survey results with external reliable data sources. On the other hand 
variable error can be assessed through comparisons between sub-divisions of the 
sample or repetition of the survey under the same conditions. Bias can be reduced by 
improving survey procedures. As earlier stated biases can be negative or positive. 
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In summary, bias arises from factors, which are a part of essential conditions and 
affect all repetitions in more or less the same way. Biases arise from shortcomings in 
the basic survey design and procedures. In general, biases are harder to measure and 
can only be assessed on the basis of comparison with more reliable sources outside 
the normal survey or with information obtained by using improved procedures. Some 
sources of error appear mainly in the form of bias, among them coverage, non-
response, and sample selection. On the other hand errors in coding and data entry may 
appear largely as variable error. Although both systematic and variable error reduces 
accuracy, bias is more damaging in estimates such as population means, proportions 
and totals. These linear estimates are sums of observations in the sample. It should be 
noted that variable non-sampling errors like sampling errors could be reduced by 
increasing the sample size. For nonlinear estimates such as correlation coefficients, 
standard errors and regression estimates both variable and systematic error can lead to 
serious bias (Biemer and Lyberg, 2003).  
 
Precision and accuracy 
These terms are widely used to separate the effects of bias. Precision generally refers 
to small variable errors; at times it denotes only the inverse of the sampling variance, 
i.e. it excludes bias. Accuracy refers to small total errors and includes the effect of 
bias. A precise design must have small variable errors while an accurate design must 
be precise and have zero or small bias. A survey design is still precise if it has a large 
bias but with small variable errors. Such a design is however, not accurate. Note that 
reliability refers mainly to precision of measurements whereas validity to lack of bias 
in the measurements. 
 
6.4 ASSESSING NON-SAMPLING ERRORS 
 
Consistency check 
In designing the survey instruments (questionnaires), special care has to be taken to 
include certain items of information that will serve as a check on the quality of the 
data to be collected. If the additional items of information are easy to obtain, they may 
be canvassed for all units covered in the survey, otherwise, they may be canvassed 
only for a sub-sample of units. For example, in a post census enumeration survey 
(PES), where the de jure method is followed it may be helpful to also collect 
information on de facto basis, so that it will be possible to work out the number of 
persons temporarily present and the number of persons temporarily absent. A 
comparison of these two figures will give an idea of the quality of data. Similarly, 
inclusion of items leading to certain relatively stable ratios such as sex ratios may be 
useful in assessing the quality of survey data. 
 
 
 
Sample check/verification 
One way of assessing and controlling non-sampling errors in surveys is to 
independently duplicate the work at the different stages of operation with a view to 
facilitating the detection and rectification of errors. For practical reasons the duplicate 
checking can only be carried out on a sample of the work by using a smaller group of 
well- trained and experienced staff. If the sample is properly designed and if the 
checking operation is efficiently carried out, it would be possible, not only to detect 
the presence of non-sampling errors, but also to get an idea of their magnitude. If it 
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were possible to completely check the survey work, the quality of the final results 
could be considerably improved. With the sample check, rectification work can only 
be carried out on the sample checked. This difficulty can be overcome by dividing the 
output at different stages of the survey, e.g. filled in schedules, coded schedules, 
computation sheets, etc., into lots and checking samples from each lot. In this case, 
when the error rate in a particular lot is more than the specified level, the whole lot 
may check and corrected for the errors, thereby improving the quality of the final 
results. 
 
Post-survey checks 
An important sample check, which may be used to assess non-sampling errors 
consists of selecting a sub-sample, or a sample in the case of a census, and re-
enumerating it by using better trained and more experienced staff than those 
employed for the main investigation. For this approach to be effective, it is necessary 
to ensure that;  
-  The re-enumeration is taken up immediately after the main survey to avoid any 

possible recall error. 
- Steps are taken to minimize the conditioning effect that the main survey may have 

on the work of the post survey check.  
Usually the check-survey is designed to facilitate the assessment of both coverage and 
content errors. For this purpose, it is first desirable to re-enumerate all the units in the 
sample at the high stages, e.g. EAs and villages, with the view of detecting coverage 
errors and then to resurvey only a sample of ultimate units ensuring proper 
representation for different parts of the population which have special significance 
from the point of view of non-sampling errors. A special advantage of the check-
survey is that it facilitates a unitary check, which consists first, of matching the data 
obtained in the two enumerations for the units covered by the check-sample and then 
analyzing the observed individual differences. When discrepancies are found, efforts 
are made to identify the cause of their presence and gain insight into the nature and 
types of non-sampling errors. If the unitary check is a problem due to time and 
financial constraints, an alternative but less effective procedure called aggregate 
check, may be used. This method consists in comparing estimates of parameters given 
by check-survey data with those from the main survey. The aggregate check gives 
only an idea of net error, which is the resultant of positive and negative errors. The 
unitary check provides information on both net and gross error.  
 
In post survey check, the same concepts and definitions, as those used in the original 
survey should be followed. 
 
Quality control techniques 
There is ample scope for applying statistical quality control techniques to survey work 
because of the large scale and repetitive nature of the operations involved in such 
work. Control charts and acceptance-sampling techniques could be used in assessing 
the quality of data and improving the reliability of the final results in large-scale 
surveys. Just for illustration, work of each data entry clerk could be checked 100 
percent for an initial period of time, but if the error rate falls below a specified level, 
only a sample of the work may be verified.  
 
Study of recall errors 
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Response errors, as earlier mentioned in this chapter, arise due to various factors such 
as: 

-  The attitude of the respondent towards the survey. 
-  Method of interview. 
-  Skill of the enumerator. 
-  Recall error. 

Of these, recall error needs particular attention as it presents special problems often 
beyond the control of the respondent. It depends on the length of reporting period and 
on the interval between the reporting period and the date of the survey. The latter may 
be taken care of by choosing for the reporting period a suitable interval preceding the 
date of survey or as near a period as possible. One way of studying recall error is to 
collect and analyse data relating to more than one reporting period in a sample or sub-
sample of units covered in a survey. The main problem with this approach is the 
effect of certain amount of conditioning effect possibly due to the data reported for 
one reporting period influencing those reported for the other period. To avoid the 
conditioning effect, data for the different periods under consideration may be 
collected from different sample units. Note tha t large samples are necessary for this 
comparison. Another approach is to collect some additional information, which will 
permit estimates for different reporting periods to be obtained. For example in a 
demographic survey one may collect not only age of respondent, but also date month 
and year of birth. The discrepancy will reveal any recall error that may be present in 
the reported age. 
 
Interpenetrating sub-sampling 
This method involves drawing from the overall sample two or more sub-samples, 
which should be selected in an identical manner and each capable of providing a 
valid, estimate of the population parameter. This technique helps in providing an 
appraisal of the quality of the information, as the interpenetrating sub-samples can be 
used to secure information on non-sampling errors such as differences arising from 
differential enumerator bias, different methods of eliciting information, etc. After the 
sub-samples have been surveyed by different groups of enumerators and processed by 
different teams of workers at the tabulation stage, a comparison of the estimates based 
on sub-samples provides a broad check on the quality of the survey results. For 
example, in comparing the estimates based on four sub-samples surveyed and 
processed by different groups of survey personnel, if three estimates are close to each 
other and the other estimate differs widely from them despite the sample size being 
large enough, then normally one would suspect the quality of work in the discrepant 
sub-sample. 
 
6.5 CONCLUSION 
Non-sampling errors should be given due attention in household sample surveys 
because they can cause huge biases in the survey results if not controlled. In most 
surveys very little attention is given to the control of such errors at the expense of 
producing results that may be unreliable. The best way to control non-sampling errors 
is to follow the right procedures of all survey activities from planning, sample 
selection up to the analysis of results. 
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7.1 Introduction 

The need for statistical information seems endless in the modern society. In particular 

data are regularly collected to satisfy the need for information about specified sets of 

elements, called as finite population. One of the most important modes of data collection 

for satisfying such needs is a sample survey, that is, a partial investigation of the finite 

population. By ‘population’ we mean a group of units defined according to the aims and 

objective of the survey. The information that we seek about the population is usually the 

total number of units, aggregate values of the various characteristics, averages of various 

characteristics etc. A sample survey costs less than a complete enumeration, is usually 

less time consuming, and may even more accurate than the complete enumeration. The 

term sample is used for the set of units or portion of the aggregate of material which has 

been selected with the belief that it will be representative of the whole aggregate. The 

sample will be considered as random or probability sample if its selection is governed by 

ascertainable laws of chance. In other words, a random or probability sample is drawn in 

such a manner that each unit in the population has a predetermined probability of 

selection. The sampling theory deals with scientific and objective procedure of choosing 

an appropriate sampling design, i.e. selecting a sample from the population which is 

representative of the population as a whole and also provides suitable estimation 

procedure to estimate the population parameters. Sometimes the principal goal of 

sampling design is to achieve a stated degree of precision for minimum cost or 

maximizing precision for fixed cost. A basic requirement of good survey practice is that a 

measure of precision be provided for each estimate derived from survey data.  

For each sampling design, it is assumed that the true values of the variables of interest 

could be made available for the elements of the population under consideration. 

However, this may not be true particularly for large scale surveys. Errors can occur at 

almost every stage of planning and execution of a large scale survey. These errors may be 

attributed to various causes right from the beginning stage, when the survey is planned 
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and designed, to the final stage when the data are processed and analysed. Two kinds of 

errors are distinguishable, i.e., sampling error and non-sampling error. The error which 

arises due to only a sample being used to estimate the population parameters is termed as 

sampling error because sample surveys use only a part of the population where estimators 

based on a sample are different from the corresponding population parameter. This 

difference between the estimator and the population parameter is called as sampling error 

whereas the errors arising due to mainly misleading definitions and concepts, inadequate 

frames, unsatisfactory questionnaire, defective methods of data collection, tabulation, 

coding, decoding, incomplete coverage of sample units, etc., are called non-sampling 

errors. 

For the choice of a suitable sampling design one has to rely upon accurate, unambiguous 

and unduplicated sampling frame, which is the list of all sampling units with reference to 

which the relevant data are collected and recorded. The sampling frame is keystone 

around which selection process must be designed. Appraisal of the available or 

obtainable frame must dominate the search for good selection procedure and choice 

among several alternatives. But, many a times, the sampling frames are either not 

available or are not in the form as desired by the sampler and suffer from various 

imperfections resulting incomplete, inaccurate and duplicated access to all the units in 

target population. Consequently, the precision of statistical results for the target 

population is affected by the error component which arises from the fact that the 

population to which results are needed does not conform to each other due to 

imperfection of the frame. The imperfection of the frame is attributable to various non-

sampling errors like deviation in the content, incorrect frame of auxiliary information, 

non-coverage, measurement errors etc. Items such as interviewer bias, coding errors, 

false or erroneous replies and simple mistakes also fall into this class. In the simpler types 

of surveys in which the measuring devices are accurate and the quality of work is high, 

the assumption that the error of estimate arises solely from the random sampling variation 

that is present when a part of the population is measured instead of the whole population, 

holds reasonably well whereas in complex surveys, when difficult problems of 



 
NON-RESPONSE IN LARGE SCALE SURVEY  

7.3 
 

measurements are involved the estimators may also suffer from another source called as 

non-sampling error. In specification, three additional sources of error may be present 

which are as follows, 

1. Failure to measure some of the units in the chosen sample. This may be attributed 

to oversight or, with human populations or, failure to locate some individuals or 

their refusal to answer the question when located. 

2. Errors of measurement on a unit. The measuring device may not be perfect. When 

the survey involves human populations the respondents may not possess accurate 

information or they may give biased or misleading answers. 

3. Errors introduced in editing, coding and tabulating the results. 

These sources of error necessitate a modification of the standard theory of sampling. The 

principal aim of such modification is to provide guidance about the allocation of 

resources for the reduction of random sampling errors and other errors and to develop 

methods for computing standard errors and the confidence limits that remain valid when 

the other errors are present. 

There are many kinds of non-sampling errors, which is present in the survey. Those are, 

a. Specification error: this occurs when the concept implied by the question is 

different from the underlying construct that should be measured. A simple 

question such as how many children do a person have can be subject to different 

interpretations in some cultures. 

b. Coverage or frame error: thisoccurs mostly due to imperfect frames or non-

coverage during the survey. 

c. Measurement error: These errors arise from the fact that what is observed or 

measured departs from the actual values of sample units. 

d.   Processing errors: Processing errors comprise: 

• Editing errors. 

• Coding errors. 

• Data entry errors. 

• Programming errors etc. 
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e. Errors of estimation: These arise in the process of estimation of the population 

parameters from the sample. These include errors of sample selection and 

implementation, nonresponse, as well as sampling variability and estimation of bias. This 

group of errors centres on the process of selecting sample design, implementation and 

estimation. 

f. Nonresponse: The incomplete coverage of units, mentioned above, occurs due to non-

availability of information from some units included in the sample. It happens if a 

questionnaire is mailed to a sample of units, and some respondents fail to return the 

completed questionnaire. If the visits are made to a sample of households, some 

respondents maybe not-at-home, and others may refuse to cooperate. The inability to 

collect relevant information for some of the sample units due to refusal by respondents to 

divulge information, their being not-at-home, sample units being inaccessible, or due to 

any other such reason, is termed nonresponse. Nonresponse produces error in survey 

estimates in two ways. First, there may be decrease in sample size or in the amount of 

information collected in response to a particular question resulting in larger standard 

errors. Second, and perhaps more important, a bias is introduced to the extent that non-

respondents differ from respondents within a selected sample.  

7.2 Sources of Nonresponse Error 

There are three primary sources of nonresponse and they can be represented as a 

hierarchy. First, a sampled company may not be contacted, in which case the 

establishment does not have an opportunity to respond. This is referred to as a non-

contact. Second, a sampled unit that is contacted may fail to respond. This represents unit 

nonresponse. Third, the unit may respond to the questionnaire incompletely. This level is 

referred to as item nonresponse. Failure to contact could occur in establishment surveys 

due to seasonal closings.  For example, during vacation the leisure industry, seashore 

resorts close during the winter while ski resorts and ski equipment shops close during the 

summer. Similarly, the food processing industry is also affected both by seasonality and 

disturbances in the weather. An attempted contact may also fail because of a temporary 
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closing due to a strike or work stoppage, a possible event in industries with strong and 

radical labor unions. Attempted contacts may not succeed due to a failure to locate the 

company. The firm may have moved or changed telephone number, or an incorrect 

address may have been inserted on the universe file. In the case of mail surveys, the 

survey form might be sent to the wrong location, the form misplaced prior to mailing, or 

lost during the mailing process. Non attempted contacts may result from negligence or 

sabotage on the part of the interviewer or in the mailing operation. Also, there may not be 

enough time in the collection period to reach to all sampled units. The end result is that 

the sampled company is never contacted in the first place. 

There are roughly four types of nonresponse present in the survey which are, 

i. Non-coverage: this is failure to visit some units in the sample. This is a 

problem with the areal sampling units in which the interviewer must find and 

list all dwellings (according to some definition) in a city block. It arises also 

from the use of incomplete lists. Sometimes weather or poor transportation 

make it impossible to reach certain units during the period of the survey. 

ii. Not-at-homes: this may occur due to temporary movement of residents to 

some other  places.  

iii. Unable to answer: the respondent may not have the required information or 

he may deliberately choose not to answer.  

iv. The hard core: this groupcomprisepersons with negative mindset and they 

may refuse to be interviewed, or persons who are incapacitated, or others who 

are far from home during the whole time available for field work.  

7.3 Estimation In The Presence Of Nonresponse: 

Nonresponse is a common problem in surveys. The presence of nonresponse may not 

only render the estimates biased but there may also be increase in the standard errors of 

the estimates. Different techniques have been suggested to tackle the problem of non-

response in the context of estimation of finite population mean. Most of the proposed 

techniques deal with the situation of non-response for single stage sampling designs. 

However, multi-stage sampling designs are commonly used in surveys. It is a common 

situation in surveys that information in some cases is not obtained at the first attempt. 

Callbacks and follow-ups aim to eliminate or at least greatly reduce the problem of 
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nonresponse in surveys to overcome the problem of non-availability of sampling frame of 

the ultimate sampling units. In theory, these techniques are commendable, but in practice 

they are not without problems. A long series of callbacks or follow-ups may prove costly 

and time consuming. Nonresponse may still be unacceptably high after the ultimate call 

or follow-up later, this is especially a common problem in mail surveys.  An estimate 

obtained from such incomplete data may be misleading. One approach to overcome the 

problem of nonresponse is to re-contact the non-respondents and obtain the information 

through personal interview.  

Pioneering the work in this context, Hansen and Hurwitz (1946) were the first to deal 

with the problem of incomplete samples in mail surveys which are commonly used for 

data collection in advanced countries due to their low cost. The Hansen and Hurwitz 

(1946) technique consists in selecting sub-sample of initial non-respondents of 

subsequent data collection with a more expensive method. The technique is, generally, 

applicable to mail surveys. The problem of nonresponse is common in mail surveys. The 

approach consist in taking a random sub-sample of the persons who have not been 

reached and make a major effort to interview everyone in the sub-sample. It was shown 

that unbiased estimation is possible despite the non-observation of certain elements in 

initial sample.The summery of the proposed technique is given bellow: 

1. Select a sample of the respondents and mail the questionnaire to all of them. 

2. After the deadline is over, identify the non-respondents and select a sub-sample of 

the non-respondents. 

3. Collect data from the non-respondents in the subsample through interview. 

4. Combine data from the two parts of the survey to estimate the population 

parameters. 

It is important to note that the approach used by Hansen and Hurwitz (1946) was based 

on a deterministic response mechanism. Let the population of size Nbe divided into two 

classes i.e. those who will respond at the first attempt belong to the response class and 

those who will not respond will be termed as representing the nonresponse class. Let N1 

and N2be the number of units that belongs to the response and the nonresponse classes 
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respectively such that N1+N2=N. Let yi be the value of the i-th response variable, i=1, 2, 

..., N. The population meanY can be written as, 

1 1 2 2
1 1 2 2

N Y N YY W Y W Y
N
+

= = +  

where 1W and 2W are the proportions of units in the response and nonresponse classes such 

that 1 2 1W W+ = , and 1Y and 2Y are the population means in these classes. Thus 

1 2
1 2

1 11 2

1 1and
N N

i i
i i

Y Y Y Y
N N= =

= =∑ ∑  

Let n be the size of the simple random sample drawn from Nunits. Let n1out of n denote 

the number of units responding in the sample and n2units denote the nonresponding units. 

Let h2 be the size of subsample from the n2 non-respondents to be interviewed so that 

n2=h2f. Unbiased estimators of N1 and N2are given by,  

 𝑁𝑁�1 = 𝑛𝑛1𝑁𝑁
𝑛𝑛

,𝑁𝑁�2 = 𝑛𝑛2𝑁𝑁
𝑛𝑛

 

Let
2hy denote the mean of h2 observationsin the subsample and define,  
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The estimator wy is an unbiased estimator of Y .  

An interesting plan dealing with the problem of not-at-home was devised by Politz and 

Simmons (1949, 1950). The aim of this technique was to adjust the biases, without call-

backs, which cropped up due to incomplete sample that did not distribute proportionately 

over the response class. The plan runs as follows: respondents to be included in the 

sample were visited only once by enumerators during a specific time on five week days 

(excluding Saturdays & Sundays). The respondent found at home was asked how many 

times in previous five days he was at home at the specific time of interview. If the 

respondent said that he was at home j (j=1, 2,..,m)number of days, the ratio (j+1)/6was 

considered as an estimate of the probability of availability of respondent in the sample. If 

the respondent was found not-at-home, no information was collected. Let the population 

consists of N units and n respondents be selected by simple random sampling with 



 

 

 
NON-RESPONSE IN LARGE SCALE SURVEY  

7.8 
 

replacement. Assuming that ip denotes the probability that the i-th respondent is available 

at the time of call, an estimator of population mean is defined as 

    
1

1 n
i

i i

yy
n p=

= ∑  

where ip is the probability of availability of the i-th respondent at the time of call. Of 

course, iy is zero if the respondent is not available at the time of call. It may be seen that 

𝑦𝑦� is biased. 

Hendricks (1949) discussed the method of extrapolation in mail surveys. He fitted a log 

linear model to estimate the population parameters. Scott (1961), Filion (1976) and Jones 

(1979) used linear model instead of log-linear model to estimate the population 

parameters.  Another procedure suggested by Birnbaum and Sirken (1950) wasto fix the 

number of “call-backs”, say, k, in advance for the enumeration of the selected sample. All 

nonresponding units were called back, up to a maximum number of k calls, till they 

responded. However sub-sampling of the non-respondents was not considered. It was 

assumed that all units in the population had the same probability of being available at 

exactly the j-th attempt, where1 j k≤ ≤ . On the basis of available information on the 

different probabilities and the various cost components, the sampling error S, the bias b 

and the expected cost C can be calculated. A solution was obtained for surveys in which 

the interview consisted of only one question and the answer to which was either ‘yes’ or 

‘no’. The optimum values of k and the sample size n were obtained by minimizing C, for 

a fixed precision δ  at a given probability levelα , defined by, 

    ( ) 1P S b δ α+ ≤ ≥ −  

A different procedure was suggested by Deming (1953). In this procedure the number of 

attempts k were fixed in advance to enumerate the selected sample. At each attempt all 

the available units were enumerated and a fraction of the remaining units were selected 

for the next attempt. The estimate was obtained as the simple average of the units which 
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were enumerated. The estimate was biased since the method of sampling did not ensure 

that all the selected units were enumerated. The bias however decreased with each 

subsequent attempt. To calculate the bias and the variance of the estimate, it was assumed 

that the population can be considered as consisting of a number of classes according to 

the average number of successful enumerations that can be made out of a fixed number of 

attempts. This was taken as the probability of a unit being available for enumeration at 

any attempt. For a fixed k, the bias, variance and expected cost of the survey could be 

calculated provided the relative size, mean and variance of each class were known. 

Large scale surveys usually employ two stage or multistage sampling designs. Aditya et 

al. (2012, 2013) and Sud et al. (2012) extended the Hansen and Hurwitz (1946) technique 

under two stage sampling design. 
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8.1  INTRODUCTION 

In sampling theory the auxiliary information is being utilized in following ways: 

• Utilization of information at pre-selection stage i.e. for stratifying the 
population. 

• Utilization of information at selection stage i.e. in selecting the units with 
probabilities proportional to some suitable measure of size (size being based 
on some auxiliary variables). 

• Utilization of information at estimation stage i.e. in formulation of the  
ratio-type, regression, difference and product estimators etc. 

• Auxiliary information may also be utilized in mixed ways. 

Usually the information available is in the form that: 

• The values of the auxiliary character(s) are known in advance for each and 
every sampling unit of the population. 

• The population total(s) or mean(s) of auxiliary character(s) are known in 
advance. 

• If it is desired to stratify the population according to the values of some variate 
x, their frequency distribution must be known. 

The use of auxiliary information at estimation stage in the formation of ratio-type and 
regression estimators and sampling scheme providing unbiased regression estimator 
has been discussed in the following sections. 

In sample surveys, many a time the characteristic y under study is closely related to an 
auxiliary characteristic x, and data on x are either readily available or can be easily 
collected for all the units in the population. In such situations, it is customary to 
consider estimators of population mean NY  of survey variable y that use the data on x 
and are more efficient than the estimators which use data on the characteristic y alone. 
The fact that the data on the auxiliary variable can be used even at a later stage after 
selecting the sample, encourages such procedures. Two types of these commonly used 
methods are as follows: 

• the ratio-type method of estimation 

• the regression method of estimation 
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8.2  RATIO-TYPE METHOD OF ESTIMATION 

Let a sample of size n be drawn by SRSWOR (Simple random sampling without 
replacement) from a population of size N. Denote by 

iy  = the value of the characteristic under study for the ith unit of the population, 

ix   =   the value of the auxiliary characteristic on the ith unit of the population, 

Y   = the total of the y values in the population, 

X   = the total of the x values in the population, 

i

i
i x

yr = , the ratio of y to x for the ith unit, 

i

N

i
N r

N
r ∑

=

=
1

 1
 , the simple arithmetic mean of the ratio for all the units in the population, 

∑
=

=
n

i
in r

n
r

1

1
 , the simple arithmetic mean of the ratios for all the units in the sample, 

X
Y

X
YR

N

N
N == , the ratio of the population mean of y to the population mean of x, and 

∑

∑

=

== n

i
i

n

i
i

n

n
n

x

y

x
yR

1

1 =  ,the corresponding ratio for the sample.   

With this, an estimator of the population mean NY  is given by  

n
R n N N

n

y
y R X X

x
= = . 

This estimator is known as the ratio-type estimator and pre-supposes the knowledge 
of NX . Here, nR  provide an estimator of the population ratio NR .  For example, if y is 
the number of bullocks on a holding and x its area in acres, the ratio nR  is an 
estimator of the number of bullocks per acre of holding in the population. The product 
of nR   with NX


, the average size of a holding in acres would provide an estimator of 

NY


, the average number of bullocks per holding in the population. 

8.2.1 Expected value of the ratio estimator 

Note that nR  is a biased estimator of NR  and the bias in nR  is given by 
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Bias in nR  = 
N

nn

x
xRCov ),( − . 

Expected value of the ratio estimator to the first approximation is given by 

=)(1 RyE 



 −

− ) )(( + 1 2
xyxN CCC

Nn
nNy ρ , 

where, 
N

x
x X

SC = , 
N

y
y Y

S
C = and ρ  = population correlation coefficient between x 

and y. It may be noted here that the bias to the first approximation vanishes when the 
regression of y on x is a straight line passing through the origin. 

 

8.2.2 Variance of the Ratio Estimator 

The variance of the ratio estimator to a first approximation is given by 

( ) 2 2 2
1 y =  ( )(  - 2  C )n N y x x

N nV R R C C C
Nn

ρ−
+ , 

and the variance of the ratio estimator of population mean to a first approximation is 
given by 

)(1 RyV  = ( )yxN SR
Nn

nN 2S R + S  2
x 

2
N

2
y −

−   . 

 

8.2.3 Estimator of the variance of the ratio estimator  

A consistent estimator of the relative variance of a ratio estimator is given by 

2 2

1 2 2

2ˆ  =   -  y yxn x

N n n n n

s sR sN nV
R Nn y x y x

   −
+   

   
 

and the estimator of variance of the ratio estimator of population mean to a first 
approximation is given by 

2 2 2
1 y  
ˆ ( )  s  + 2R n x n yx

N nV y R s R s
Nn
−  = −        

where 2 2
 ,  and y x yxs s s are the corresponding sample values. 
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8.2.4 Efficiency of the Ratio Estimator 

In large samples, the ratio estimator will be more efficient than the corresponding 
sample estimator based on the simple arithmetic mean if  

2
1>  

x

y

C
C

ρ      or    
y

x

C
C

2
1> ρ . 

If yx CC = , as may be expected, for example, when y and x denote values of the same 
variate, in two consecutive periods,  ρ will be larger than one-half in order that the 
ratio estimator may be more efficient than the one based on the simple arithmetic 
mean. 

 

8.3   RATIO ESTIMATOR IN STRATIFIED SAMPLING 
Let there be K stratum in the population. Let Nt denotes the number of units in the tth 
stratum and tn  the size of the sample to be selected there from, so that 

1 1
and

K K

t t
t t

N N n n
= =

= =∑ ∑ . 

Denote by 
tnR the estimate of the population ratio 

ttt NNN XYR /= and by Rty the ratio 

estimate of the population mean 
tNY for the tth stratum. Then clearly, the ratio 

estimator of the population mean 
tN

i

t
N Y

N
NY ∑

=

=
1

 has been discussed in the next 

section. 

 

8.3.1 Separate Ratio Estimator )( Rsy  

1 1
 

t t

K K
t

Rs R t R
t t

N
y y p y

N= =

= =∑ ∑ ,  where ).,...,1( Kt
N
Np t

t ==  

This is a biased but consistent estimator of population mean NY . The bias to the first 
approximation is given by 

Bias in )( Rsy = ))(()( 2

1
1 tytxttx

K

t tt

tt
NtNRs CCC

nN
nNYpYyE

t
ρ−−

=− ∑
=

, 

where  
t

tx
tx

N

S
C

X
=  and 

t

ty
ty

N

S
C

Y
= . The variance of yRS

 to a first approximation is given 

by 
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( ) ( )txyNtxNty
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K

t
tRs SRSRS

Nn
pyV

tt
211 222

1

2
1 −+








−= ∑

=

, 

=)(1 RsyV  t

K

t
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N ∑=1

1   )2)(( 222
txyNtxNty

t

tt SRSRS
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nN
tt
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− , 

=)(1 RsyV  t

K

t
p

N ∑=1

1   )2)(( 222
tytxtNtxNty

t

tt SSRSRS
n

nN
tt
ρ−+

− . 

The above formula is based on the assumption that tn  is large.  A consistent estimator 
of ( )RsyV1

 is given by 

 ( ) 2 2 2
1

1

1ˆ ( )( 2 )
K

t t
Rs t ty n tx n tyxt t

t t

N nV y p s R s R s
N n=

−
= + −∑ . 

In practice, the assumption that nt is large is not always true. To get over this 
difficulty, a combined ratio estimator has been suggested as below: 

 

8.3.2  Combined Ratio Estimator )( Rcy  

NK

t
t

K

t
t

X
p

p
y

Rc

t

t

n
1

n
1

x 

y 

∑

∑

=

== . 

This is again a biased estimator, however, it is a consistent estimator. The relative bias 
to the first approximation is given by 

Relative Bias in )( Rcy = 2 2
1

1
(( ( ) ) / ( )( )

K
t t

Rc N N t tx t tx ty
t t t

N nE y Y Y p C ρC C
N n=

−
− = −∑ . 

The variance of Rcy to a first approximation is given by 

   2 2 2
1

1

1( ) ( 2 )
K

t t
Rc t ty N tx N t ty tx

t t

N nV y p S R S R ρ S S
N n=

−
= + −∑ , 

and an estimator of the variance is given by 

)s 2( 1)(ˆ 222

1
1 tyxntxnty

t

tt
K

t
tRc RsRs

n
nNp

N
yV −+

−
= ∑

=
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where,     Rnt  = 
t

t

n

n

x
y

    and   Rn  = 

t

t

nt

K

t

nt

K

t

xp

yp

∑

∑

=

=

1

1  

8.4  REGRESSION METHOD OF ESTIMATION  
We have seen that the ratio estimate provides on efficient estimate of the population 
mean if the regression of y, the variable under study, on x, the auxiliary variable is 
linear and the regression line passes through the origin. It happens frequently that 
even though the regression of y on x is linear, the regression line does not pass 
through the origin. Under such conditions, it is more appropriate to use the regression 
method of estimation rather than ratio method of estimation. 

8.4.1 Simple Regression Estimate 

Since the regression coefficient β  is generally not known, the usual practice is to use 
estimate 

2
ˆ xy

x

s
β

s
= ,  

where   xys = ))((
1

1
nini

n

yyxx
n

−−
− ∑   and   2

xs = 2)(
1

1
ni

n

xx
n

−
− ∑  giving the 

simple regression estimate, 

)(ˆ
nNnlr xxyy −+= β . 

Note:  The general form of the estimator is 

)Xk( + y =ˆ
N nxY − . 

(i) If k = ˆˆ ˆ, then ( )n N nβ Y y β X x= + −  i.e. Ŷ  is regression estimator 

(ii) If k = ( )  
ˆ then     -  = n n

n N n N
n n

y yy Y y X x X
x x x

= +  i.e. Y  is a ratio estimator. 

 

8.4.2 Expected value of the Simple Regression Estimator 

 E ),ˆ(y = )( N nlr xCovy β−  

showing that the simple regression estimate is biased by an amount - ),ˆ( nxCov β . 
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8.4.3 Variance of the Simple Regression Estimate 

To  a first approximation, 

 )1(S )1
n
1( =~ )( 22

y ρ−−
N

yV lr  

where  ρ  is the correlation coefficient between y and x in the population. 

 

8.4.4 Estimator of the variance 

 )1(s )1
n
1( = )(ˆ 22

y r
N

yV lr −−  

where  r = 
yx

xy

ss
s

 is the sample correlation coefficient. 

 

8.5 REGRESSION ESTIMATORS IN STRATIFIED SAMPLING 
At first, we shall consider two difference estimates, namely  

(i) Separate difference estimator  

(ii)  Combined difference estimate 

 

8.5.1 Separate Regression Estimate 

When si ,β  are not known in case of separate difference estimator, we estimate these 
from the sample and in that case the estimator is known as separate regression 
estimator.  

[ ]∑
=

−+=
K

i
nNinilrs iii

xxypy
1

)(β̂       where    2
ˆ

ix

ixy
i s

s
=β  

This estimator is biased and the variance of the estimator to the first approximation, is 
given by 

V )1()11()( 222

1
iiy

ii
i

K

i
lrs S

Nn
py ρ−−≅ ∑

=

 

where  ρ i   is the correlation coefficient between y and x for the i-th stratum and 

)ˆ2ˆ)(11()( ˆ 2222

1
ixyiixiiy

ii
i

K

i
lrs sss

Nn
pyV ββ −+−=∑

=
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8.5.2 Combined Regression Estimator 

When the pooled regression coefficient β   is not known then we replace it by β   and 
get the combined regression estimator, 

∑ ∑
= =

−+=
K

i

K

i
niNnilrc ii

xpXypy
1 1

)(β̂ , 

where  
2

1

2

1

2

)11(

)11(
ˆ

ix
ii

K

i
i

K

i
ixy

ii
i

s
Nn

p

s
Nn

p

−

−
=

∑

∑

=

=β . 

The variance of the estimator along with its estimator, to the first approximation are 
given by 

)2)(11()( 2

1

222
ixyix

K

i
iy

ii
ilrc SSS

Nn
pyV ββ −+−≅∑

=

, 

and    

)ˆ2ˆ)(11()(ˆ 2

1

222
ixyix

K

i
iy

ii
ilrc sss

Nn
pyV ββ −+−=∑

=

. 

 

8.6   PRACTICAL EXAMPLES 

Let ),...,1( Niyi = be the variate under study, and ),...,1( Nixi = be the auxiliary 
variate. Let N be the population size out of which a sample of size n is drawn. Let 

NX  be the population total of the auxiliary variate. 

STEP-I:   Calculate: ∑
=

n

i
iy

1

 ,   ∑
=

n

i
ix

1

 ,    ∑
=

n

i
iy

1

2 ,   ∑
=

n

i
ix

1

2  and  i

n

i
i yx∑

=1

 . 

STEP-II:  Calculate:    

 s 2
y = 1

( 1)n −
( )2

2 i
i

y
y

n

 
− 

  

∑∑  

 ( )2

2 21
( 1)

i
x i

x
s x

n n

 
= − 

−   

∑∑  

xys = 
)1(

1
−n

 
( )( )












−∑ ∑∑

n
yx

yx ii
ii  
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 2
x

xy

s
s

b =    
yx

xy

ss
s

r
.

=  

 ny = ∑ iy
n
1    nx = ∑ ix

n
1   

 
n

n
n x

yR =    X  = 
N

X N  

 
STEP-III: Calculate: 
(a) Ratio estimate . 

      Ry = 
n

n

x
y

NX . 

       Estimate of its variance   

       )( RyV


 = 1 1
n N

 − 
 

 [ ]xynxny sRsRs 2222 −+ .  

(b) Regression estimate )( lry  

     lry  = ( )nNn xXby −+ . 

     Estimate of its variance    

      )( lryV


) = [ ] ( ) 22222 111211
yxyxy sr

Nn
bssbs

Nn
−










 −=−+






 −   

(c) Simple Mean estimate .   

      nsrs yy =  . 

      Estimate of its variance . 

      )( SRSyV


= 211
ys

Nn






 − . 

 
STEP-IV:  Calculate Estimate of Relative Efficiency  
 (a) Estimate of Relative Efficiency of Ratio estimate over Simple Mean estimate 

=  
( )
( )R

SRS

yV
yV

ˆ
ˆ

x 100 

(b) Estimate of Relative Efficiency of Regression estimate over Simple Mean estimate 

       =  
( )
( )lr

SRS

yV
yV

ˆ
ˆ

 x100 

(c) Estimate of Relative Efficiency of Regression estimate over Ratio estimate 



 
RATIO AND REGRESSION METHODS OF ESTIMATION IN SAMPLE SURVEYS 

8.10 

             =   
( )
( )lr

R

yV
yV

ˆ
ˆ

 x 100 

Note: Estimate of Standard Error (SE) of the estimate can be worked out by taking 
square root of the corresponding value of the estimate of the variance. 

 

Practical Exercise 1 
A sample survey for the study of yield and cultivation practices of guava was 
conducted in Allahabad district. Out of a total of 146 guava growing villages in 
Phulpur-Saran tehsil, 13 villages were selected by method of simple random 
sampling. The Table below presents total number of guava trees and area under guava 
orchards for the selected 13 villages. It is also given that the total area under guava 
orchards of 146 villages is 354.78 acres.  

Using area under guava orchards as auxiliary variate, estimate the total number of 
guava trees in the tehsil along with its standard error, by using  

(i)  Ratio method of estimation, and 

(ii)  Regression method of estimation.  

(iii)      Discuss the efficiency of these estimates with the one which does not   
make use of the information on the auxiliary variate. 

Sl. No. of Village Total number of guava trees )( iy  Area under guava orchards (in acres) )( ix  

1. 492 4.80 
2. 1008 5.99 
3. 714 4.27 
4. 1265 8.43 
5. 1889 14.39 
6. 784 6.53 
7. 294 1.88 
8. 798 6.35 
9. 780 6.58 

10. 619 9.18 
11. 403 2.00 
12. 467 2.20 
13. 197 1.00 

 
SOLUTION: 

∑
=

n

i
iy

1

= 9710 

 ∑
=

n

i
ix

1

= 73.60 

 ∑
=

n

i
iy

1

2 = 9685234 
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 ∑
=

n

i
ix

1

2 = 579.20   

 

∑
=

n

i
ii yx

1

= 72879.72  

2
ys = 202717.60      

2
xs = 13.54     

xys = 1492.18    

 b = 110.19        

 r = 0.90  

 

ny = 746.92            

nx = 5.66       

nR = 131.93       

NX = 2.43 

Ry = 320.59                 V̂ ( Ry ) = 3132.35            (Estimate of Standard Error = 55.97)       

lry = 390.85                 V̂ ( lry ) = 2683.74            (Estimate of Standard Error = 51.80) 

ny = 746.92                  V̂ ( ny ) = 14205.18         (Estimate of Standard Error = 119.19) 

(a) Estimate of Relative Efficiency of Ratio estimate over 
Simple Mean estimate 

453.50 

(b) Estimate of Relative Efficiency of Regression estimate 
over Simple Mean estimate 

529.31 

(c) Estimate of Relative Efficiency of Regression estimate 
over Ratio estimate 

116.72 
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Practical Exercise 2 
A sample survey was conducted for studying milk yield, feeding and management 
practices of cattle and buffaloes in the eastern districts of U.P. The whole of the 
eastern districts of U.P. were divided into four Zones (strata). The Table below 
present total number of milch cows in 17 randomly selected villages of Zone-I as 
enumerated in winter season and as per Livestock Census. 

Sl. No. of Village Number of Milch Cows 
Winter Season )( iy  Livestock Census )( ix  

1. 29 41 
2. 44 44 
3. 25 27 
4. 38 53 
5. 37 17 
6. 27 40 
7. 63 53 
8. 53 46 
9. 64 89 

10. 30 37 
11. 53 70 
12. 25 15 
13. 16 30 
14. 15 18 
15. 12 22 
16. 12 13 
17. 23 66 

 

Estimate the number of milch cows per village with its standard error for the rural 
area of Zone-I in winter season by using (i) Ratio method of estimation, and  
(ii) Regression method of estimation. It is given that total number of milch cows in  
Zone-I as per Livestock Census was 10,87,004 and number of villages in Zone-I was 
22,654. Also compare the efficiency of these estimates with Simple Mean estimate.  

 
SOLUTION: 

∑
=

n

i
iy

1

= 566     

 ∑
=

n

i
ix

1

= 681 

   ∑
=

n

i
iy

1

2 = 23450 

    ∑
=

n

i
ix

1

2 = 34617 
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    ∑
=

n

i
ii yx

1

= 26879 

 
2
ys = 287.85  

2
xs = 458.56 

xys = 262.86 

b = 0.57 

r = 0.72  

ny = 33.29 

nx = 40.06 

nR = 0.83 

NX = 47.98 

 

Rŷ = 39.88          V̂ ( Rŷ ) = 9.86     ( ) 14.3=RySE  (Estimate of Standard Error = 3.14)       

 

lrŷ = 37.84           V̂ ( lrŷ ) = 8.06           (Estimate of Standard Error = 2.84) 

 

nŷ = 33.29               V̂ ( nŷ ) = 16.92      (Estimate of Standard Error = 4.11) 

(a) Estimate of Relative Efficiency of Ratio estimate over Simple Mean 
estimate 

171.67 

(b) Estimate of Relative Efficiency of Regression estimate over Simple 
Mean estimate 

 209.85 

(c) Estimate of Relative Efficiency of Regression estimate over Ratio 
estimate 

122.24 
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Practical Exercise 3 
A pilot sample survey for estimating the extent of cultivation and production of fresh 
fruits was conducted in three districts of Uttar Pradesh State during the agricultural 
year 1976-77. The following data were collected 

Stratum 
Number 

Total 
number 

of 
villages  
( mN ) 

Total area  
under 

orchards 

(ha.) 
(X m ) 

Number 
of 

villages 
in 

Sample 
(n m ) 

Area under orchards  

(ha.) 
(x m ) 

Total number of trees 
(y m ) 

1 985 11253 6 10.63 9.90 1.45 747 719 78 

3.38 5.17 10.35 201 311 448 

2 2196 25115 8 14.66 2.61 4.35 580 103 316 

9.87 2.42 5.60 739 196 235 

4.70 36.75  212 1646  

3 1020 18870 11 11.60 5.29 7.94 488 227 374 

7.29 8.00 1.20 491 499 50 

11.50 1.70 2.01 455 47 879 

7.96 23.15  115 115  

Estimate the total number of trees in the three districts by different methods and compare their 
precision.  

 
SOLUTION 
The calculations have been shown in the Table given below: 

Stratum W m  








−

mm Nn
11

 

mx  my  
mR̂  
 

W m mx  W m my  2
xm

s  2
ym

s  
mxys  

1 0.2345 0.16598 6.81 417.33 61.28 1.60 97.66 16.03 74778.80 1008.75 

2 0.5227 0.12454 10.07 503.38 49.99 5.26 263.12 129.64 259107.98 5643.81 

3 0.2428 0.08902 7.97 340.00 42.66 1.94 82.55 38.39 65885.60 1403.69 

           W m = ∑ mm NN   , mR̂ = mm xy                               

             

 



 
RATIO AND REGRESSION METHODS OF ESTIMATION IN SAMPLE SURVEYS 

8.15 
 

 
(A)   RATIO ESTIMATORS 

(i) Separate Ratio Estimate  ( Rsy ) 

Rsy    =  m

K

m
m XR∑

=1


=  2750077   

Estimate of its variance )( RsyV


             

( )RsyV


=∑ 







−

mm
m Nn

N 112 ( )
mmm xymxmy sRsRs .ˆ.2.ˆ 222 −+ = 2441137855.48 

(ii) Combine Ratio Estimate ( Rcy ) 

Rcy = X
xW

yW

mm

mm

∑
∑

 = (2783995)     

Estimate of its variance )( RcyV


                   

( )RcyV


=∑ 2
mN ( )

mmm xyxy
mm

sRsRs
Nn

.ˆ.2.ˆ11 22 −+







−                       

where   =R̂ ∑∑ mmmm xWyW  

(iii) Efficiency of Separate Ratio Estimate ( Rsy ) over the Combined Ratio Estimate ( Rcy ) 

Estimate of Relative Precision Efficiency (R.P.)= ( )
( )Rs

Rc

yV
yV





x 100   (246.58%)                                          

(B)     Regression estimators 

(i)  Separate Regression Estimate ( lsy ) 

 ( )[ ]∑ −+=
K

m
mmmmmls xXbyNy  = 2672911    

 Estimate of its variance )( lsyV


    

 ( ) ( )∑ −







−=

K

m
xmy

mm
mls mm

sbs
Nn

NyV 2222 .11
 =  1870633332                                    

 (ii)  Combine Regression Estimate   ( )lcy  

lcy = N ( )[ ]stcst xXby −+  where 
( )( )

( )∑∑

∑∑

−

−−
=

K

m

n

j
mmj

K

m

n

j
mmjmmj

c m

m

xx

xxyy
b

2
 = 2643949 

 ∑=
K

m
mmst yNy    and    ∑=

K

m
mmst xNx  
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Estimate of its variance )( lcyV


    

( ) =lcyV
 ( )

( ) ( ) ( )[ ]∑ ∑ −−−
−

−K

m

n

j
mmjcmmj

mm

mm
m

xxbyy
nn

fW 2
2

1
1 = 2020917640    where

m

m
m N

n
f =

  

a) Estimate of Efficiency of Separate Regression Estimate ( )lsy  over the 
Separate  Ratio Estimate ( )Rsy  is given by 

Relative Precision (R.P.) =  ( )
( )ls

Rs

yV
yV





 . 100 = 130.50% 

b) Estimate of Efficiency of Combine Regression Estimate ( lcy ) over the 
Combined Ratio Estimate ( Rcy ) is given by 

Relative Precision (R.P.) =  ( )
( )lc

Rc

yV
yV





 . 100 =  297.86% 

c) Estimate of Efficiency of Separate Regression Estimate ( lsy ) over the 
Combined Regression Estimate ( lcy ) is given by 

Relative Precision (R.P.) =  ( )
( )ls

lc

yV
yV





 . 100 = 108.03% 

 

REFERENCES 

Cochran, William G. (1977). Sampling Techniques. Third Edition. John Wiley and 
Sons. 

Des Raj (1968). Sampling Theory. TATA McGRAW-HILL Publishing Co. Ltd. 

Des Raj and Promod Chandok (1998). Sample Survey Theory. Narosa Publishing 
House. 

Murthy, M.N. (1977). Sampling Theory and Methods. Statistical Publishing Society, 
Calcutta. 

Singh, Daroga and Chaudhary, F.S. (1986). Theory and Analysis of Sample Survey 
Designs. Wiley Eastern Limited. 

Singh, Daroga, Singh, Padam and Pranesh Kumar (1978). Handbook of Sampling 
Methods. I.A.S.R.I., New Delhi. 

Singh Ravindra and Mangat N.S. (1996). Elements of Survey Sampling. Kluwer 
Academic Publishers. 

Sukhatme, P.V. and Sukhatme, B.V. (1970). Sampling Theory of Surveys with 
Application. Second Edition. Iowa State University Press, USA. 

Sukhatme, P. V., Sukhatme, B.V., Sukhatme, S. and Asok, C. (1984). Sampling 
Theory of Surveys with Applications. Third Revised Edition, Iowa State University 
Press, USA. 

 

 



 
VARIANCE ESTIMATION USING RESAMPLING TECHNIQUES 

9.1 
 

VARIANCE ESTIMATION USING RESAMPLING TECHNIQUES 
 

Tauqueer Ahmad 

Indian Agricultural Statistics Research Institute, New Delhi-110012 
 
 
9.1   INTRODUCTION 

 
The theory and applications of sample surveys have grown considerably in the last 50 
years.  As the number and uses of sample surveys have increased, so has the need for 
methods of analyzing and interpreting the resulting data. It is often designed to 
analyse and interpret the resulting voluminous data by swifter methods.  A basic 
requirement of a good survey is that a measure of precision be provided for each 
estimate computed from survey data collected on the basis of the survey design.  The 
most commonly used measure of precision is the variance of the survey estimator. 
 
There are several methods of variance estimation available in the literature. An 
important question now is, how to choose an appropriate variance estimator? The 
choice in general is a very difficult one. Factors like efficiency of the variance 
estimator, timeliness, cost, simplicity and other administrative conveniences must be 
considered.  Estimate of variance should be computed in accordance with the 
complexity of the sample design:  neglect of that complexity is a common source of 
serious mistakes (Kish and Frankel, 1970). On the other hand, trying to obtain more 
exact and complicated statistics like measure of variation (variance, standard error, 
mean square error) of first order statistics would become too difficult with non-linear 
statistics from complex surveys. 
 
In case of complex surveys, the most commonly used methods for estimation of 
variance are: 
 

i) Taylor Series Method 
ii) The Method of Random Groups 
iii) The Jackknife Method 
iv) Balanced Repeated Replication Method and 
v) Bootstrap Method. 
 

Of these, the first method also known as Delta method or Linearization method, tries 
to derive linear approximation of the survey estimator and then the variance formula 
specific to the sampling design is obtained. The second method consists in dividing 
the population into several random groups using the same sample design and then 
computing the variance using the estimates obtained from each random group. The 
last three methods are based on sample reuse technique. The sample reuse approach 
for variance estimation involves taking replicated sub-samples from the total sample 
and forming survey estimates from the sub-samples. The variability of the sub-sample 
estimates is then used to estimate the variance of the total sample estimate. All the 
above stated methods are used for estimating the variance in the situation, when more 
complex designs and non-linear estimators are involved. Among these jackknife and 
bootstrap methods are the most commonly used methods for estimation of variance  
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The details of these two methods are given in sub-sequent sections. 
 
 
9.2  JACKKNIFE METHOD 

 
A sample reuse technique called the jackknife method has been suggested as a useful 
method of variance estimation. The method derives estimates of the parameter of 
interest from each of several sub-samples of the parent sample and then estimates the 
variance of the parent sample estimator from the variability between the sub-sample 
estimates. 
 
Research on the jackknife method has proceeded along two distinct lines: 
 
(1) Its use in bias reduction (Quenouille, 1949, 56) and 
(2) Its use for variance estimation (Tukey, 1958) 

 
Use of the jackknife technique in finite population estimation has been made by 
Durbin (1959) in ratio estimation. McCarthy (1966) discussed the application of 
jackknife as a method of variance estimation in complex surveys. Frankel (1971) 
termed the technique for the paired selection design as Jackknife Repeated 
Replication (JRR) method. Extensive discussion on jackknife method is given in Gray 
and Schucany (1972) and in a recent monograph by Efron (1982). The method briefly 
is as follows: 
 
Assume, a random sample x1, x2,…,xn from a population with unknown parameter
  θ. Let θ be the mean or median. Now, if θ is the mean, the sample average x  
and the sample standard deviation s, provide its measure of precision. However, if θ is 
the median, then the precision of the sample median is not so obvious from the 
sample. The delete one jackknife procedure is to obtain value of the statistic from 
various sub-samples, deleting one observation at a time. 
 
Let nθ̂  be the estimate of θ and let i

1n
ˆ

−θ be estimate of θ after xi is deleted from the 
sample. 
Let  i

1nn
i

sp
ˆ)1n(ˆnˆ

−θ−−θ=θ be the "pseudo sample value (PS)" 
The average of P.S. values is the delete one jackknife estimate of θ, 

∑θ=θ i
spj n

1ˆ and estimate of its precision is given by 

( ) ( )∑ θ−θ
−

=θ
2

j
i
spj

ˆˆ
)1n(n

1ˆV̂                                                                 ………(2.1) 

Extension to deleting more than one observation as well as deleting a group of 
observations at a time when the sample has been divided into several groups are 
available. Using robust methods such as the trimmed mean of the P.S. values in place 
of the average sometimes improves the behaviour of the jackknife estimate (Rustogi, 
1990). The methodology of JRR has been demonstrated for its application in the case 
of several basic and non-linear estimators in Wolter’s (1985). 
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9.3 BOOTSTRAP TECHNIQUES 
 

Bootstrap method was proposed by Efron in 1979, who showed that bootstrap method 
correctly estimates the variance of a sample median, a case where jackknife is known 
to fail. Bootstrap methods are basically simulation methods conducted on high speed 
computers and aimed at generating new data sets from the observed original data set.  
The term ‘bootstrap’ - derived from the old saying about pulling yourself up by your 
own bootstrap-reflects the fact that one available sample gives rise to a large number 
of other samples.  It is essentially a highly computer-intensive resampling technique 
to extract as much information as possible from the data on hand. It substitutes 
considerable amount of computation in place of theoretical analysis. The bootstrap 
method needs no prior assumptions about the distribution of observations as well as 
the estimators. It provides estimates of bias and standard error apart from estimates of 
other distributional properties of the estimators, however, complex it may be. 
In complex survey data, often the sampling design induces a non-iid structure to the 
data such as without replacement sampling, stratification, multistage or unequal 
probability of selection. Though the techniques for variance estimation do exist, they 
often are cumbersome to implement or do not extend to complex designs.  It would be 
desirable to have resampling methods that reuse the existing estimation system 
repeatedly, using computer power to avoid theoretical work and that can be applied to 
such data. In recognition of this need, various bootstrap techniques for variances 
estimation for complex survey data have been developed. The existing bootstrap 
techniques are as follows: 
 
 
1. Naive bootstrap technique (BWR M1) 

2. Bootstrap with replacement technique (BWR M2) 

3. Rescaling bootstrap with replacement technique (RS BWR) 

4. Bootstrap without replacement (Gross) technique (GS BWO) 

5. Bootstrap without replacement (Sitter) technique (SR BWO) 

6. Rescaling bootstrap without replacement technique (RS BWO) 

 
 

Let us consider stratified random sampling in case of finite population, consisting of 
N units, which is partitioned into L non-overlapping strata of N1, N2, …, NL units; 
thus N1+N2+…+NL=N.  A simple random sample without replacement is taken 
independently from each stratum. The sample size within each stratum are denoted by 
n1,n2,…,nL and the total sample sizes is n=n1+n2+…+nL. The parameter of interest θ is 
non-linear function of the population mean vector )Y,,YY(Y p2,1 =  say θ = g ( Y ).   
This form includes ratios, regression and correlation coefficients. In this case, the 
unbiased estimator of Y  is 

( )p21
L

1h
hh y,,y,yyWy =∑=

=
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where  

∑ ==
=

hn

1i
phh2h1hi

h
h )y,,y,y(y

n
1y   and 

N
NW h

h =  

For p = 1, an unbiased estimate of Var( y ) is 

var( y ) = 2
h

h

hL

1h

2
h s

n
f1W 







 −
∑
=

                     ………(3.1) 

Where 
h

h
h N

nf =  and ∑
=

−
−

=
hn

1i

2
hhi

h

2
h )yy(

1n
1s  

 
 
9.3.1   The Naive Bootstrap Technique (BWR M1) 

 
The Naive bootstrap technique first introduced by Efron (1979) is denoted by BWR 
M1.  This technique is based on the i.i.d. property of the s'yhi within each stratum. If 

the standard i.i.d. bootstrap is applied to the sample data { }hiy hn
1i=  in each stratum, then 

the resulting resampling algorithm would take the following form: 
 
(i) Draw a simple random sample{ }hi

n
1i*y h
=  with replacement from the original 

sample { }hiy hn
1i=  in stratum h, independently for each stratum.  Calculate 

 ∑=
=

hn

1i

*
hi

h

*
h y

n
1y ,  ∑= *

hh yW*y   and   *)y(gˆ * =θ  

(ii) Repeat step (i), a large number of times, say B, to get 1*θ̂ , 2*θ̂ , . . ., B*θ̂ . 
(iii) Estimate Var ( θ̂ ) with 

( )2*
*

*
*b

ˆEˆEv θ−θ=      ……... (3.1.1) 
or its Monte Carlo approximation 

∑ θ−θ
−

=
=

B

1b

2*
(.)

b*
b )ˆˆ(

1B
1)a(v       ……... (3.1.2) 

where, ∑θ=θ
=

B

1b

b**
(.)

ˆ
B
1ˆ and *E  refers to the expectation with respect to bootstrap 

sampling. 
In the linear case with p = 1, ∑ ==θ **

hh
* yyWˆ , bv reduces to 

bv = 2
h

h

hL

1h h

2
h*

* s
n

1n
n
W)y(var 







 −
∑=
=

     ……... (3.1.4) 

Comparing (4) with the standard unbiased variance estimate var )y(  given in   
equation (1), it is seen that bv  is not a consistent estimator for Var )y( . This can be 
avoided by using a correction factor only if knh = and 1fh =  for all h, in which case 

)ˆ(var)f1(
1k

k *
* θ−

−
 is consistent. 

 
 
 



 
VARIANCE ESTIMATION USING RESAMPLING TECHNIQUES 

9.5 
 

9.3.2   Bootstrap with Replacement Technique (BWR M2) 
 

Recognizing the above mentioned scaling problem in the Naive bootstrap technique, 
Efron (1982) developed Bootstrap with replacement technique denoted by BWR M2. 
He suggested to draw bootstrap sample of size ( 1nh − ) with simple random sampling 
with replacement sampling designs instead of hn  independently from each stratum. 
Rest of the procedure is same as in the case of naive bootstrap technique. 
 
 
9.3.3 Rescaling Bootstrap with Replacement Technique  (RS BWR) 

 
Rao and Wu (1988) proposed a rescaling of the standard bootstrap when )y(gˆ =θ , a 
non-linear function of means.  In this method, one applies the previously stated 
algorithm, with a general resample size hm not necessarily equal to hn , but rescales 
the resampled values appropriately so that the resulting variance estimator is the same 
as the usual unbiased variance estimator in the linear case. They have extended the 
method to unequal probability sampling without replacement and two stage cluster 
sampling without replacement with the use of some correction factor at the 
bootstrapping stage. 
 
 
9.3.4 Bootstrap Without Replacement (Gross) Technique (GS BWO) 

 
In addition to the above with replacement resampling schemes, a without-replacement 
bootstrap (BWO) was proposed by Gross (1980) in the case of a single stratum.  
Suppressing the h-th subscript, this method assumes N = kn for some integer k and 
creates a pseudo population of size N by replicating the data k times. The resample is 
then obtained by drawing n units without replacement from the pseudo population. 
Although, the BWO method is intuitively appealing, it does not yield the usual 
unbiased estimate of variance in the linear case. 
 
 
9.3.5 Bootstrap Without Replacement (Sitter) Technique (SR BWO) 

 
Sitter (1992) developed a method of bootstrapping denoted here by SR BWO which 
retains the desirable properties of BWR and BWO but extends to more complexes 
without replacement sampling designs.  In general the method entails: 
 
 (a) Selecting a subsample without replacement from the original sample to mirror   

the original sampling scheme. 
(b)   Replacing this subsample in the original sample and 
(c)   Repeating this a specified number of times kh. 
 
This bootstrapping procedure is repeated a large number of times. The value of kh is 
chosen such that the bootstrap estimate of variance matches the usual one in the linear 
case. 
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9.3.6 Rescaling Bootstrap without Replacement Technique (RS BWO) 
 
It seems reasonable to design a resampling scheme that parallels the original sampling 
scheme as closely as possible. This is what so appealing about the BWO method as 
compared to the BWR methods and the rescaling method. Therefore, Ahmad (1997) 
developed a new BWO technique known as "Rescaling Bootstrap without 
Replacement” denoted here by RS BWO. The technique is as follows: 
 
(i) Draw a simple random sample of size   of size mh without replacement from the 

given sample{ }yhi i

nh

=1
 of size nh  in stratum h, independently for each stratum. 

 
Calculate 

      ~yhi  =  yh  + (1- fh ) 1 2/ m
n m

h

h h−
( yhi

*  - yh )    ……... (3.6.1) 

~yh  = 
1

mh

 
i

mh

=
∑

1

~yhi  ,     where fh = 
n
N

h

h

  ,  yh
*  and yh  are the bootstrap sample 

mean and original sample mean for the h-th stratum. 
 
Obviously, one of the basic assumption of this technique is that nh is sufficiently 
large as compared to mh. 

 ∑=
=

L

1h
hh y~Wy~ ,  )y~(g~

=θ  

 
(ii) Replace the sample in the original sample and independently replicate step (i). 
Repeat this process a large number, say B, of times and calculate the corresponding 
estimates B21 ~,...,~,~

θθθ . 

(iii) The bootstrap variance estimator of  θ~  = g ( y~ ) is given by 

  bv~  = *E ( 2
* )~E~
θ−θ            ……...  (3.6.2) 

where, *E  denotes the expectation with  respect to bootstrap sampling from a given 
sample. 
The Monte-Carlo estimator  )a(v~b  as an approximation to bv~ is given by 

 )a(v~b = ∑ θ−θ
− =

B

1b

2
a

b )~~(
1B

1       ……... (3.6.3) 

 
where 

 ∑θ=θ
=

B

1b

b
a

~
B
1~  

In the linear case, Y=θ and p=1, bv~  reduces to the usual unbiased variance 
estimator var( y )  for any choice of  mh,  noting that 
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h

2
h

hh* n
s

)f1()y~(var −=  

Hence,   

bv~ = ∑ −=
=

L

1h h

2
h

h
2
h* n

s)f1(W)y~(var    = var ( y ) 

 
 
9.4 OPTIMUM CHOICE OF BOOTSTRAP SAMPLE SIZES (mh) 
 
The optimum choice of bootstrap sample size (mh) has been obtained using the 
rescaling factor of the pseudo value.  The rescaling factor is  

 








−
−

hh

h
h mn

m
)f1( 2

1
  and 

h

h

h

h

h
h f2

n

N
n2

nm
−

=









−

=  

It can be seen that for optimum choice mh, *
hihi yy~ =  and the RS BWO method 

reduces to the  naive bootstrap method, however, in the latter method's step (i) a 

simple random sample of size   (
h

h

f2
n
−

)  is selected from { }hiy hn
1i=   in stratum h. 

Ahmad (1997) extended the RS BWO technique to two stage cluster sampling with 
equal probabilities and without replacement. The technique is justified by showing 
that in the linear case the variance estimator reduces to the usual variance estimator 
for the two stage sampling designs. It can be extended to other complex survey 
designs also, with appropriate modifications.  
 
Ahmad (1997) has compared the RS BWO technique with the existing bootstrap 
techniques and jackknife method of variance estimation for stratified random 
sampling without replacement through a simulation study.  It has been observed that 
the RS BWO technique performs better than the other similar bootstrap variance 
estimation techniques in terms of percentage relative bias and relative stability.  Also 
its performance is almost comparable with the jackknife variance estimator. 
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10.1 MULTI-PHASE SAMPLING  
 
The procedure called double sampling or two-phase sampling is typically employed in 
the following situation. There exists a procedure, relatively cheap to implement, that 
produces a vector of observations denoted by x. The vector x is correlated with the 
characteristics of interest, where the vector of interest is denoted by y. It is very 
expensive to make determinations on y. In the most popular form of two-phase 
sampling, a relatively large sample is selected and x determined on this sample. This 
sample is called the first phase sample or phase I sample. Determinations for the 
vector y are made on a subsample of the original sample. The subsample is called the 
second phase sample or phase 2 sample. In the form originally suggested by Neyman 
(1938), the original sample was stratified on the basis of x and the stratified estimator 
for y constructed using the estimated stratum sizes estimated with the phase 1 sample. 
We first describe this particular, and important, case of two-phase sampling. We 
simplify the discussion by considering scalar y. Double sampling can be used both 
with ratio or regression estimation technique and stratified sampling for better 
precession.  

 

The general procedure for both double sampling with the ratio estimator and for 
double sampling with the regression estimator is identical. Contrary to double 
sampling for stratification where a categorical variable is observed in the first phase, it 
is usually metric variables that serve as ancillary variables when double sampling with 
the ratio or regression estimator is being used. In the first phase, a sample of size 'n' is 
taken to estimate the mean or total of the auxiliary variable X. The sample taken is 
usually large because measurement of X is cheap, fast and easy. In the second phase, a 
sample is selected on which both target and ancillary variable are observed; from 
these pairs of observations, a relationship between the two variables can be 
established, either a ratio or a regression. The second phase sample is usually small 
because the observation of Y is usually more expensive, difficult and time consuming. 
Then, the observations from the first phase are used to estimate the total and mean of 
the target variable for the entire area of interest. 

 

In both approaches, dependent or independent phases are possible and the 
corresponding estimators need to be used. It is interesting to note, that double 
sampling is also interesting in context of Sampling with partial replacement (SPR) 
that is a very efficient technique to estimate changes. 

 

http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Double_sampling
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Ratio_estimator
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Regression_estimator&action=edit&redlink=1
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Estimation_on_changes#Sampling_with_partial_replacement
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Estimation_on_changes
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NOTATONS 

N Total number of samples in the entire area of interest; 

n´ Number of samples in the first phase; 

n Number of samples in the second phase; 

mdry  Estimated mean of target variable Y from the ratio estimator for entire area; 

mdregy  Estimated mean of target variable Y from regression estimator for entire area; 

x′  Estimated mean of ancillary variable X in the first phase: 

x  Estimated mean of ancillary variable X in the second phase; 

y  Estimated mean of target variable Y in the second phase; 

iy  i-th Observed value of target variable Y; 

r Estimated ratio of the ratio estimator 

b Estimated slope coefficient of regression estimator; 

2
ys  Estimated variance of the target variable Y; 

2
xs ′  Estimated variance of ancillary variable X in the first phase; 

xys  Estimated covariance of Y and X in the second phase; 

ρ̂  Estimated coefficient of correlation of Y and X. 

For the ratio estimator, the mean of the target variable is estimated as, 

 mdr
yy x rx
x

′ ′= =  

with an estimated variance of the estimated mean as, 

 
2 2 2 2 2 22 2ˆ( ) y x xy xy x y

mdr
s r s rs rs r s s

V y
n n N
′ ′+ − −

= + −
′

 

And for the regression estimator, the mean is estimated as, 

( )mdregy y b x x′= + −  

with an estimated variance of the estimated mean as, 

2
2ˆ ˆ( ) 1y

mdreg
s n nV y
n n

ρ
′ − = − ′   
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Examples: 

1. Aerial photographs or satellite images are used to measure the ancillary 
variable, for example percentage crown cover. In the second phase, field plots 
are selected to measure the target variable such as volume or biomass per ha 
and the ancillary variables. Thus, a regression can be established which allows 
to predict the target variable once the ancillary variable is known. In many 
cases, this regression, however, is not very strong so that the 
overall precision that can be achieved is moderate. One of the main issues and 
source of errors in this example is the accuracy of co-registration 
between remote sensing imagery and [sample plot/field plots]. 
 

2. This example is on the estimation of leaf area of a tree, as, for example, 
needed to determine the leaf area index. Here, leaf area is difficult to measure; 
it is much easier to observe leaf weight. Therefore, a regression is established 
in the second phase that allows predicting leaf area from leaf weight; a sample 
of leaves is taken in the second phase sample of which both leaf area and leaf 
weight are determined. In order to apply this regression, the mean (or total) 
leaf weight needs to be determined: for this purpose, a large sample is taken in 
the first phase. In this example, a major issue is the sampling frame for the 
first phase sample, that needs to be carefully defined (or a sampling 
technique is applied that does not require the a-priori definition of the 
sampling frame such as randomized branch sampling). 

10.2 SUCCESSIVE SAMPLING 

Surveys often gets repeated on many occasions (over years or seasons) for estimating 
same characteristics at different points of time. The information collected on previous 
occasion can be used to study the change or the total value over occasion for the 
character and also in addition to study the average value for the most recent occasion. 
For example in milk yield survey one may be interested in estimating the  

1. Average milk yield for the current season,  

2. The change in milk yield for two different season and  

3. Total milk production for the year.  

The successive method of sampling consists of selecting sample units on different 
occasions such that some units are common with samples selected on previous 
occasions. If sampling on successive occasions is done according to a specific rule, 
with partial replacement of sampling units, it is known as successive sampling. The 
method of successive sampling was developed by Jessen (1942) and extended by 
Patterson (1950) and by Tikkiwal (1950, 53, 56, 64, 65, 67) and also Eckler (1955). 
Singh and Kathuria (1969) investigated the application of this sampling technique in 
the agricultural field. Hansen et al. (1955) and Rao and Graham (1964) have 
discussed rotation designs for successive sampling. Singh and Singh (1965), Singh 
(1968), Singh and Kathuria (1969) have extended successive sampling for many other 
sampling designs. 

Generally, the main objective of successive surveys is to estimate the change with a 
view to study the effects of the forces acting upon the population. For this, it is better 

http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Ancillary_variable&action=edit&redlink=1
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Ancillary_variable&action=edit&redlink=1
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Volume_functions
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Biomass_functions_and_carbon_estimation
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Accuracy_and_precision
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Remote_sensing&action=edit&redlink=1
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Leaf_area&action=edit&redlink=1
http://en.wikipedia.org/wiki/Leaf_Area_Index
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Population
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Category:Sampling_design
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Category:Sampling_design
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Randomized_branch_sampling


APPLICATION OF MULTI-PHASE SAMPLING AND SUCCESSIVE SAMPLING IN SAMPLE SURVEYS 

10.4 
 

to retain the same sample from occasion to occasion. For populations where the basic 
objective is to study the overall average or the total, it is better to select a fresh sample 
for every occasion. If the objective is to estimate the average value for the most recent 
occasion, the retention of a part of the sample over occasions provides efficient 
estimates as compared to other alternatives. One important question arises in the 
context of devising efficient sampling strategies for repetitive surveys is whether the 
same sample is to be surveyed on all occasions, or fresh samples are to be chosen on 
each of the occasions; in what manner the composition of the sample is changed from 
occasion to occasion. 

The answer depends on, apart from field difficulties, the specific problems of 
estimation at hand. For instance if the aim is to estimate only the difference between 
the item mean on the current ( y ) and on the previous ( x ) occasion, then the sample 
on both the occasion would give rise to a better estimate than the independent samples 
since the variance of the estimate in the former case viz,  

V ( y x− ) = V ( y ) + V ( x ) –2COV ( y , x )  < V ( y ) + V ( x ), 

as y and x are highly correlated so that Cov ( y , x ) >0 . 

On the contrary, for estimating the average of the means the latter would be better 
than the former in that  
 
V ( y x+ ) = V ( y ) + V ( x ) + 2Cov ( y , x ) > V ( y ) + V ( x ), 

But, if the difference between the means and also their average are to be estimated 
simultaneously, clearly neither of this alternatives are desirable ,hence arises the idea 
of retaining a part (say Sc) of the previous sample (say S1) and supplement it by a set ( 
say Sf) of fresh units on the current occasion, and the data retaining to x on , x and y 
on, and y on Sc, Sf and S build up the optimum estimator of Y  so that it ,together with 
the estimate of X , would give rise to efficient result for difference between Y and 
X ,and also their average. The question then would be that big or small the set of 
common units or fresh units should be for the surveys on the current occasion, how 
these samples should be chosen and what procedure is employed for working out 
estimates. The entire question is interrelated and depends ultimately on the regression 
of y on x. It is known that regression of y on x is linear with significant intercepts then 
we may choose from by SRS without replacement and then employ regression 
estimator, or when the intercept is not significant the sample may be chosen by SRS 
and ratio estimator be employed. 

10.3 SAMPLING ON TWO SUCCESSIVE OCCASIONS 
It is assumed that the survey population remains unaltered from occasion to occasion. 
For the purpose of generality, let the sample size for the first occasion be n1 and for 
second occasion be, n2=n12+n22, where n12 is the number of common units between 
the 1st and the 2nd occasion and n22 units to be drawn afresh on the second occasion. 
The data obtained on current (i.e. 2nd in this case) occasion would be denoted by y 
and that on the previous occasion (i.e. 1st in this case) by x. Now the sampling 
procedure consists of the following steps: 
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1. From the given survey population choose a sample S1 of size n1 units by SRS 
without replacement for survey on the first occasion. 
 

2. On the second occasion choose a set Sc of n12 units from the sample taken at 
step (1) either by SRS or PPS sampling depending on the situation at hand 
and supplement it to another set Sf of n22 units taken independently from the 
unsurveyed (N- n1) units of the population by SRS without replacement so 
that the total sample S2 on the second occasion comprises n2 units. Now S1 

acts as a preliminary sample.  
 

3. The unbiased estimator of Y  based on y and x values of Sc and x values of S1 
would be given as, 

12
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Also in view of selection of Sf as noted in the step (2), the unbiased estimator of ,Y is  
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11.1. Stratified Sampling 
11.1.1 Introduction 
The basic idea in stratified random sampling is to divide a heterogeneous population into 

sub-populations, usually known as strata, each of which is internally homogeneous in 

which case a precise estimate of any stratum mean can be obtained based on a small 

sample from that stratum and by combining such estimates, a precise estimate for the 

whole population can be obtained. Stratified sampling provides a better cross section of 

the population than the procedure of simple random sampling. It may also simplify the 

organization of the field work. Geographical proximity is sometimes taken as the basis of 

stratification. The assumption here is that geographically contiguous areas are often more 

alike than areas that are far apart. Administrative convenience may also dictate the basis 

on which the stratification is made. For example, the staff already available in each range 

of a forest division may have to supervise the survey in the area under their jurisdiction. 

Thus, compact geographical regions may form the strata. A fairly effective method of 

stratification is to conduct a quick reconnaissance survey of the area or pool the 

information already at hand and stratify the forest area according to forest types, stand 

density, site quality etc. If the characteristic under study is known to be correlated with a 

supplementary variable for which actual data or at least good estimates are available for 

the units in the population, the stratification may be done using the information on the 

supplementary variable. For instance, the volume estimates obtained at a previous 

inventory of the forest area may be used for stratification of the population. 

In stratified sampling, the variance of the estimator consists of only the ‘within strata’ 

variation. Thus the larger the number of strata into which a population is divided, the 

higher, in general, the precision, since it is likely that, in this case, the units within a 

stratum will be more homogeneous. For estimating the variance within strata, there 

should be a minimum of 2 units in each stratum. The larger the number of strata the 
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higher will, in general, be the cost of enumeration. So, depending on administrative 

convenience, cost of the survey and variability of the characteristic under study in the 

area, a decision on the number of strata will have to be arrived at.  

11.1.2 Allocation and selection of the sample within strata 
Assume that the population is divided into k strata of N1, N2 ,…,Nk units respectively, and 

that a sample of n units is to be drawn from the population. The problem of allocation 

concerns the choice of the sample sizes in the respective strata, i.e., how many units 

should be taken from each stratum such that the total sample is n. 

Other things being equal, a larger sample may be taken from a stratum with a larger 

variance so that the variance of the estimates of strata means gets reduced. The 

application of the above principle requires advance estimates of the variation within each 

stratum. These may be available from a previous survey or may be based on pilot surveys 

of a restricted nature. Thus, if this information is available, the sampling fraction in each 

stratum may be taken proportional to the standard deviation of each stratum.  

In case the cost per unit of conducting the survey in each stratum is known and is varying 

from stratum to stratum an efficient method of allocation for minimum cost will be to 

take large samples from the stratum where sampling is cheaper and variability is higher. 

To apply this procedure one needs information on variability and cost of observation per 

unit in the different strata. 

Where information regarding the relative variances within strata and cost of operations 

are not available, the allocation in the different strata may be made in proportion to the 

number of units in them or the total area of each stratum. This method is usually known 

as ‘proportional allocation’. 

For the selection of units within strata, In general, any method which is based on a 

probability selection of units can be adopted. But the selection should be independent in 

each stratum. If independent random samples are taken from each stratum, the sampling 

procedure will be known as ‘stratified random sampling’. Other modes of selection of 

sampling such as systematic sampling can also be adopted within the different strata.  
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Stratification, if properly done as explained in the previous sections, will usually give 

lower variance for the estimated population total or mean than a simple random sample of 

the same size. However, a stratified sample taken without due care and planning may not 

be better than a simple random sample. 

11.2. Multistage Sampling 

11.2.1 Introduction 

Cluster sampling is a sampling procedure in which clusters are considered as sampling 

units and all the elements of the selected clusters are enumerated. One of the main 

considerations of adopting cluster sampling is the reduction of travel cost because of the 

nearness of elements in the clusters. However, this method restricts the spread of the 

sample over population which results generally in increasing the variance of the 

estimator. In order to increase the efficiency of the estimator with the given cost it is 

natural to think of further sampling the clusters and selecting more number of clusters so 

as to increase the spread of the sample over population. This type of sampling which 

consists of first selecting clusters and then selecting a specified number of elements from 

each selected cluster is known as sub- sampling or two stage sampling, since the units are 

selected in two stages. In such sampling designs, clusters are generally termed as first 

stage units (fsu’s) or primary stage units (psu’s) and the elements within clusters or 

ultimate observational units are termed as second stage units (ssu’s) or ultimate stage 

units (usu’s). It may be noted that this procedure can be easily generalized to give rise to 

multistage sampling, where the sampling units at each stage are clusters of units of the 

next stage and the ultimate observational units are selected in stages, sampling at each 

stage being done from each of the sampling units or clusters selected in the previous 

stage. This procedure, being a compromise between uni-stage or direct sampling of units 

and cluster sampling, can be expected to be (i) more efficient than uni-stage sampling and 

less efficient than cluster sampling from considerations of operational convenience and 

cost, and (ii) less efficient than uni-stage sampling and more efficient than cluster 

sampling from the view point of sampling variability, when the sample size in terms of 

number of ultimate units is fixed. 
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It may be mentioned that multistage sampling may be the only feasible procedure in a 

number of practical situations, where a satisfactory sampling frame of ultimate 

observational units is not readily available and the cost of obtaining such a frame is 

prohibitive or where the cost of locating and physically identifying the usu’s is 

considerable. For instance, for conducting a socio-economic survey in a region, where 

generally household is taken as the usu, a complete and up-to-date list of all the 

households in the region may not be available, whereas a list of villages and urban blocks 

which are group of households may be readily available. In such a case, a sample of 

villages or urban blocks may be selected first and then a sample of households may be 

drawn from each selected village and urban block after making a complete list of 

households. It may happen that even a list of villages is not available, but only a list of all 

tehsils (group of villages) is available. In this case a sample of households may be 

selected in three stages by selecting first a sample of tehsils, then a sample of villages 

from each selected tehsil after making a list of all the villages in the tehsil and finally a 

sample of households from each selected village after listing all the households in it. 

Since the selection is done in three stages, this procedure is termed as three stage 

sampling. Here, tehsils are taken as first stage units (fsu’s), villages as second stage units 

(ssu’s) and households as third or ultimate stage units (tsu’s).  

One of the advantages of this type of sampling is that at the first stage the frame of fsu’s 

is required which is generally easily available and at the second stage the frame of ssu’s 

is required for the selected fsu’s only and so on. Moreover, this method allows the use of 

different selection procedures in different stages. It is because of these considerations that 

multistage sampling is used in most of the large scale surveys. It has been found to be 

very useful in practice. It is noteworthy that Prof. P.C. Mahalanobis used this sampling 

procedure in crop surveys carried out in Bengal during the period 1937-1941, and he had 

termed this procedure as nested sampling. Cochran (1939) and Hansen and Hurwitz 

(1943) have considered the use of this procedure in agricultural and population surveys 

respectively. Lahiri (1954) discussed the use of multistage sampling in the Indian Sample 

Survey. 
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11.2.2 Two stage sampling with equal probabilities, equal first stage units  
2.2.1 Estimation of population mean  

Let the population under study consists of NM elements grouped into N first stage units, 

each first stage unit containing M second stage units. 

Let us denote 

Yij = the value of the characteristic under study for the j-th second stage unit of the i-th 

first stage unit, j = 1,2,…,M; i= 1,2,…,N 

i.Y  = ∑
=

M

1j
ijY
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Further, let a sample of size nm is selected by first selecting n fsu’s from N fsu’s by 

simple random sampling without replacement (srswor) and then selecting m ssu’s from M 
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It is observed that the variance of sample mean ( Ŷ ) in two stage sampling consists of two 

components, the first representing the contribution arising from sampling of first stage 

units and the second arising from sub-sampling within the selected first stage units. We 

note the following two cases: 

Case (i)   n = N, corresponds to stratified sampling with N first stage units as strata and m 

units drawn from each stratum. 

Case (ii)  m = M, corresponds to cluster sampling. 
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12.1  INTRODUCTION 

In large scale surveys the data on large number of quantitative as well as qualitative 

characters have been collected from the sampled units.  These surveys can be broadly 

divided in two categories on the basis of the type of analysis of the data.  First 

category of surveys are known as descriptive surveys in which main concern of the 

researchers is estimation of parametric function of the target population.  Second 

category of the surveys are known as analytical surveys.  In this category the main 

concern of the researchers lies in structural analysis of the population.  The 

categorical data analysis falls in to second category, specially in case of analysis of 

qualitative variables of survey. 

Standard statistical procedures were developed by assuming that the units in the 

sample are independently and identically distributed.  These assumptions can be 

ensured when sample units are either drawn from an infinite population or selected 

with the help of simple random sampling with replacement (SRSWR) from a finite 

population.  The independence of sample elements greatly facilitates in obtaining 

theoretical results of interest, because of mathematical simplicity, which becomes 

desirable in case of complex statistics such as correlation, regression etc.  

Independence is often assumed automatically and needlessly, even its relaxation 

would permit broader conclusions. 

In case of survey sampling, independence of sample elements is typically assumed, 

although it is seldom realized, when data is collected with complex survey designs.  

This dependence of sample elements is mainly due to effect of  clustering and 

stratification of the sampling units in the target population.  In the past, literature of 

survey sampling is mainly concentrated on providing estimates of simple statistics 

like mean, proportions, total, ratio’s etc. alongwith the estimates of their standard 

errors of the target population.  Recent advances in the field of computer technology 

and easy as well as cheaper availability of computer hardware and software had 

changed the emphasis of survey research towards computer intensive techniques.  
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Some of the important emerging areas are categorical data analysis, regression 

analysis, variance estimation techniques etc. 

  

There are mainly two types of problems encountered in categorical data analysis.  

First, is the measure of association, by which the degree of relationship  between any 

two variables can be measured, second is, testing of hypotheses, under which various 

hypotheses of interest like, goodness-of-fit, independence of attributes and 

homogeneity of proportions can be tested.  The categorical data analysis in survey 

sampling is mostly confined to testing of hypothesis because of it’s practical utility to 

study the structure of the population under consideration and drawing inferences 

accordingly.  For example, an investigator may wish to compare sample proportions 

of farmers growing different high yielding varieties of a crop, with known estimates 

of population proportions from the previous surveys in a district.  This can also be 

used to check the quality of the survey.  More generally, we might make comparisons 

of proportions obtained from different surveys of the same population or among the 

surveys of different regions or countries on similar lines. 

Different methods of sampling in the case of categorical data can be broadly classified 

into three groups.  In case of method I, total sample size is fixed and units are directly 

selected from the population.. The classification of the units in different cells are 

determined by the combination of attributes possessed by selected units.  In method 

II, the marginal frequencies of one of the variables involved in classification is fixed 

and sample is selected accordingly.  The classification on the basis of other variables 

becomes known latter.  Lastly, in method III, the combination of attributes on which 

sample units are classified in to different cells are not inherent property of the units, 

but it is induced by the researchers. 

Log-linear models, which expresses the logarithm of the expected frequencies for 

categorical responses as a linear function of unknown parameters, encompass both 

factorial models for cross-classified categorical data and logistic models for one or 

more dependent categorical or continuos  predictors.  Bishop, Fienberg and Holland 

(1975) provided one of the earliest books in this rapidly expanding field.  Books by 

Agresti (1991), Christensen (1990) etc. also provides details regarding these models.  

In fact log-linear model analysis has rapidly become a major  tool of statistical 
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practice for deciphering multi-dimensional contingency tables arising through 

product-multinomial, multinomial or poisson sampling.  It is widely accepted that 

general multiplicative model provides a natural framework for exploratory 

examination and testing of various hypothesis of statistical independence among 

variables or related distributional homogeneities.  Three general strategies for fitting 

log-linear models have been widely promulgated in forms suitable for use by 

researchers.  First is iterative proportional fitting of hirarchical analysis of variance 

models, analogous to factorial class.  Second, is weighted least squares fitting of 

asymptotic regression models to log-linear functions of  observed cell frequencies.  

Third, is function minimization techniques of a more general nature i.e. Newton-

Raphson or iterative weighted least-squares method. 

12.2 REVIEW OF LITERATURE 

Statistical methods for the analysis of cross-classified count data are used extensively 

by survey researchers.  In particular, the Pearson chi-squared test of independence in a 

two-way contingency tables is probably best known and most often used test.  

Analysis of multi-way contingency tables are also quite common, largely due to 

development of hierarchical log-linear models and related logit models as well as 

associated methods for systematic testing of hypotheses, similar to analysis of 

variance for continuos data. 

Cohen (1976) investigated a very special case of general problem of testing good-

ness-of-fit when data are collected with the help of complex sampling design, 

particularly special case of cluster sampling under the model of constant design effect. 

The design effect as defined by  Kish and Frankel (1974)   is the ratio of the variance 

under the sampling design to variance, under simple random sampling with 

replacement.  The most sustained work on tests of  independence from complex 

samples has been carried out by Nathan (1969, 1972, 1973, 1975).   He also reviewed 

the work of several authors, such as  Bhapkar and Koch (1968) and Chapman (1966).  

  These authors concentrated their efforts on a statistics which is closely related to null 

hypothesis of testing independence of attributes.  Several unbiased statistics have been 

proposed based on sample re-use techniques specially balanced repeated replication 

(B R R) method.  Also, the variance-covariance estimates for different cells of two-

way contingency tables for statistics were estimated with the help of same sample re-
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use method.  The test statistics proposed by the above authors are in the form of 

quadratic function of above statistics.  Unfortunately, test statistics proposed by this 

technique behaves very badly with respect to its achieved significance levels due to 

high correlation between numerators and denominator of the proposed test statistics.  

The simulation results reported by  Nathan (1973)  are flawed, as pointed out by the 

author in his subsequent paper in 1975. 

Fellegi (1980). proposed two test statistics after careful examination of the problem, 

of estimating the variance of non-linear statistics from complex samples, in the light 

of existing literature.  First test statistic is based on Taylor’s approximation of the 

statistics considered by  Nathan  (1973) etc.  Second test statistics is based on the 

approach of eliminating the effect of complex survey design from usual Pearson’s chi-

square statistics, is to divide the statistic by average of cell design effects.  Rao and 

Scott (1979, 1981) have shown that in case of complex sampling designs customary 

test procedures are not valid even asymptotically.  It has been proved that Pearson’s 

chi-square X 2  test statistic and liklihood ratio G 2 test statistic are asymptotically 

distributed as a weighted sum of independent chi-square random variables, each with 

one degree of freedom.  The weights attached to each chi-square random variable are 

eigen values of design effect matrix, which is based on the concept of usual design 

effect matrix which is based on the concept of usual design effect of individual cells.  

Further, first order correction to the above statistics i.e. X 2  and G 2  have been 

proposed so that their first moments becomes equal to its degrees of freedom as in 

case of usual applications for multinomial sampling.  Also, a second order correction 

based on Satherthwaite approximation (1946) has been applied to modify the X 2  and 

G 2  when data are obtained with the help of complex survey designs.  Rao and Scoll 

(1984, 1987) extended these modifications for multi-dimensional contingency tables 

with the help of log-linear models.  Fay (1985) on resampling techniques such as 

jackkfing and BRR. 

Some of relatively less important work in the field of categorical data analysis in 

survey sampling are by  Shuster and Downing (1976) who proposed methods for 

testing independence, quasi-independence and marginal symmetry in contingency 

tables derived for variety of sampling schemes. Cowan and Binder (1978) analysed 

the effect of two stage sampling design on the test of independence in a 2*2 tables. 
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Brier (1980) used Dirichlet multinomial distribution as a model for contingency tables 

generated by cluster sampling schemes. Koch et al (1975) discussed certain aspects of 

multi-variate analysis of the data from possibly complex survey designs in terms of 

large sample methodology involving weighted least squares algorithms for the 

computation of Wald statistics.  Holt et al (1980) empirically studied survey design 

effect on test of goodness-of-fit, test of homogeneity and test of independence for 

British Economic Survey (BES) and General Health Survey (GHS) data.  Similar, 

other important empirical studies in this regard are by Rao and Hidiroglou (1981), 

Kumar and Rao (1984) , Fay (1984), Thomas and Rao (1984, 1985) Singh and Kumar    

(1986), Fay (1989) etc. 

12.3 MODIFIED CHI-SQUARE TEST STATISTICS 

In this section first and second order correction to Pearson’s chi-square test statistics 

in case of data obtained through complex sampling designs will be discussed briefly.  

These techniques will be discussed following the approach of log-linear models, even 

for two-way contingency tables as it provides general method of estimation and 

testing the null hypothesis under consideration.  The cells in contingency tables are 

numbered lexicographically as i=1,2,..,I with corresponding finite population 

proportions µ i ’s and their estimates µ i .  A  log-linear model on the µ i  ‘s may be 

written as  

 log µ µ θ θ   = +~ ( ) 1 X       (1) 

where log µ  is (I x 1) vector of log probabilities, X is a known I * r matrix of full 

rank  r ( )≤ − I 1  such that ′X 1 = 0, θ  is an (r*1) vector of parameters. 0 is a null 

vector and ( )~µ θ  is the normalizing factor which ensures that µ i.  =  1∑ .  If r = I-1 

in equation (1), the saturated log-linear model is obtained. 

The maximum likelihood estimator (MLE) of ( ) ( ) ( )[ ]µ θ µ θ µ θ  =    ,  .  .  .   1 I
′
 under 

multinomial sampling , denoted by ( )µ θ   is obtained from the likelihood equations  

 ( )′ ′X     =  X  yµ θ                          (2) 

where y ( )= y y y yI i1 2,
'

,......., , i = 1,2, ... ,I is the mean of yit indicator variable 

which takes value 0-1 for i-th category associated with t-th unit of the sample.  The 
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fitted proportions from (2) are obtained by any of the three techniques for fitting log-

linear models.  It is customary to obtain’ “pseudo MLE” of ( )µ θ
−

  with the help of 

equation (2) by substituting survey estimator of [ ]   µ µ µ µ  =  ,  ,  ...  ,1 2 I for y  as 

appropriate likelihood function can not be defined for general complex sampling 

designs. 

Now with the help of above” pseudo “MLE” of  ( )µ θ  the test statistics can be 

developed for testing goodness-of-fit, homogeneity of proportions and independence 

of attributes under their corresponding null hypothesis.  The first and second order 

corrections can be applied to these test statistics in case of complex sampling designs.  

The testing of independence of attributes is most oftenly used test statistics by survey 

researchers.  Hence, in the following paragraphs these test statistics are obtained with 

the help of nested models. 

The X matrix of the equation (1) can be partitioned as X = (X1 ,  X2)’ similarly, 

θ θ θ= ′( , .)1 2 .  The null hypothesis of testing independence of attributes is equivalent 

to putting θ 2 = 0, (Bishop et al 1975), given log linear model (1) and r <
−

 (I-1), where 

as  X1  is  I * r2 of rank r2  (r1 + r2 = r). The general Pearson chi-square statistic in this 

case is given by 

( )
( )

X P

i

2 2
1

1

2

   =  n  
  -   

 
0

i i

1i=1

I µ θ µ θ

µ θ

 





















∑                            (3)   

where,   ( )µ θi  1
   is “psuedo MLE” under reduced model, obtained from the “psuedo 

likelihood equations” ′ 



 ′X X1    =   1 1µ θ µ  . Rao and Scott (1984) showed that 

( )X P
2 2

1  is distributed asymptotically. as sum ( )δ i
i

r

  Wi
2

1
1

2

=
∑ , where Wi  is χ1

2   r2 - 

random variables and ( )δ i  2
1  is the i-th eigen value of the design effect 

matrix ( )∆
~

^
 2

1  given below. 

 ( )∆
~

^
 2

1  = [ ]~  ~ ~  ~′ 











−
X X X X22

1
         

-
1 2 2Ω Σθ                   (4) 
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where, ~ ′X2  =  I X
~ ~

 -  X    X  X    X
~ - - ~ ~ - - ~1 1 1 1

1

1
1 2

′ 













′ 

















−

Ω Ωθ θ  

( ) ( ) ( )Ω  =  n  D   -     
~

0
-1θ µ θ µ θ µ θ





′













~ ~ ~
 

 θ
−

~
 equals θ

−
 or θ 1

−
as appropriate. The 

~
Σ  is estimated variance-covariance matrix of 

cell proportions based on survey design.  The first order corrections to the test 

statistics ( )X P
2

1 2 is given by 

( )X PF
2 2

1  =  ( )
( )

X P
2

1 
  

2

2
1

δ
                   (5) 

where, 

r2 ( )δ  2
1  = Tr { }′

















′














−

X
~

    X  X   X
- - ~ ~ ~ ~
Ω Σθ 1

1

 - Tr ′
















′






















X1 1
~

    X  X   X
- -

1
~

1
~ ~ 1

~
Ω Σθ  

      

Here, Tr denotes the trace of  the matrix.  This correction, in general depends on the 

full estimated covariance matrix ( ) Σ
-

=  Var µ . However, if both  µ θ
−




 

-
  and µ θ

−







 

-
1  

can be expressed explicitly in terms of cell probabilities µ i   and their marginals, then  

( )δ  2
1    can be written in terms of deffs of cell estimates and of their marginals, Rao 

and Scott (1984). If an estimate of the full co-variance matrix  Σ
~

=  Var µ
−









  is 

available, a more accurate second order correction to X2
P  can be obtained by using 

the well known Satherthwaite approximation to the distribution of a weighted sum of 

independent  χ 1
2  variables.  In fact this correction takes account of variability in 

generalised design effects ( )δ i  2
1 , unlike the first order corrections.  This is given by 

 

( ) ( )
( )[ ]X PS  ,  a   =  X  

1 +  a 
PF
2 2

1
2

1

 


δ                          (6) 

    
Where this statistics follows χV

2  , chi-square random variable with v =  
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( )I r
a

− −
+

1
1 2 2

1(  ( )
 degrees of freedom.  Here, a  is the coefficient of variation of 

the eigen values  ( )δ i  2
1    of the estimated design effect matrix   ∆   i.e. 

 

( )a 2 2
1  = { ( ) ( ) δ δi

i

I r
2 2

1
1

1

=

− −

∑  /  I - r -1  2 } - 1 

 

where, (I-r-1)  )δ  (2
1 = Tr ∆  

 

and       ( )δ i
i

I r
2 2

1
1

1

=

− −

∑  = Tr 
~
∆2  

It is expected that second order corrections should control type-I error much better 

than first order correction.  More details regarding chi-square tests in case of data 

from complex survey designs is given in a book by  Skinner et al (1989) 

12.4 SIMULATION 

A small simulation study is discussed to illustrate the extend of misleading inferences 

which can be drawn by applying ordinary Chi-square test when data is collected with 

help of complex sampling design.  In this simulation study a multivariate normal 

population of 10-variables is generated with the help of  data taken from 1981 census 

of Faridkot district of Punjab state.  This population of size 5000 is divided in to five 

equal strata each of size 1000, after sorting the data on the basis of stratifying 

variable.  The categorical variables in this population are created in such a way that 

the cells of contingency tables formed with the help of these variables consists of 

equal number of observations in each cell.  This ensure that the different variable used 

in these tables are independent with each others in the population.  Now, 100 samples 

of different sizes (say, 50, 75, 100) are selected by SRSWOR from different strata 

independently, the sample sizes of each strata are given in the table-1.  This type of 

sampling leads to the selection of the sample with properties of various common 

sampling designs used in practice.  Now, the Chi-square test of independence of  

attributes is applied to test the null hypothesis of independence of attributes with the 

help of each of the selected samples.  The table-2 gives the number of samples for 
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which this test is found to be significant for chi-square statistics as well as other 

modified chi-square test statistics.  It can be seen that extent of wrong inference 

drawn is more in case of non-self weighting designs and increases as the skewness of 

the design increases.  The second order correction X PS
2  control the effect of sampling 

designs more effectively as compared to X PF
2   i.e. first order correction. 

     Table - 1 

Allocation of sample size in to different strata for various sampling design 

Design             n=50             n=75             n=100 

Stratum 1 2 3 4  5 1 2 3 4 5 1 2 3 4 5 
D-1 10 10 10 10 10 15 15 15 15 15 20 20 20 20 20 

D-2 6 8 10 12 14 9 12 15 18 21 12 16 20 24 28 

D-3 2 8 10 12 18 3 12 15 18 27 4 16 20 24 36 

D-4 2 3 5 15 25 3 4 8 22 38 4 6 10 30 50 

D-5 1 1 2 8 38 2 2 3 12 56 2 2 4 16 76 

D-6 15 7 5 8 15 22 11 8 12 22 30 14 10 16 30 

D-7 23 2 1 2 22 34 3 2 3 33 46 4 2 4 44 

D-8 24 1 1 1 23 35 2 2 2 34 48 2 2 2 46 
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Table - 2 

Number of samples for which X P
2   X PF

2    X PS
2      are significant  

(X3  * X4  table, 5%  level of significance, m=100)   

        

Design 

n=50 n=75 n=100 

 X P
2  X PF

2  X PS
2  X P

2  X PF
2  X PS

2  X P
2  X PF

2  X PS
2  

1 2 3 4 5 6 7 8 9 10 

D-1 - - - - - - - - - 

D-2 6 6 4 5 5 2 4 4 3 

D-3 21 6 1 14 3 2 10 2 2 

D-4 30 7 1 23 3 1 31 1 - 

D-5 52 11 2 46 7 2 63 4 1 

D-6 8 5 2 10 4 2 4 2 2 

D-7 72 15 5 73 13 5 75 10 3 

D-8 79 12 4 76 10 4 77 10 5 
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13.1   INTRODUCTION 

Modern complex surveys typically collect responses to a large number of items for 
each sampled element. The problem of missing data occurs when some or all of the 
responses are not collected for a sampled element or when some responses are deleted 
because they fail to satisfy edit constraints. It is desirable to distinguish between total 
(or unit) nonresponse and item nonresponse due to procedural differences in their 
adjustment methods. 

Unit (or total) nonresponse occurs when no information is collected from a sample 
unit. It may be caused by a refusal, by a failure to contact the unit (not at home), by 
the inability of the unit to cooperate (perhaps because of illness or a language barrier), 
by the unit not being found (for instance, movers in a panel survey), or by completed 
questionnaires being lost. 

Item nonresponse occurs when the unit cooperates in the survey but fails to provide 
answers to some of the questions. It may arise because of the following reasons.  

i) The informant lacks the information necessary to answer the question. It 
includes his failure to make the effort required to ascertain the information 
by retrieving it from his memory or by consulting his records. This is 
usually described as “Don’t know”. 

ii) The informant refuses to give an answer, perhaps on the grounds that he 
finds the question sensitive, embarrassing, or consider it irrelevant to his 
perception of the survey’s objectives. 

iii) The interviewer fails to record the answer. 

iv) The response is subsequently rejected at an edit check on the grounds that 
it is inconsistent with other responses. 

With regard to compensation for nonresponse, the importance of the distinction 
between unit or item nonresponse resides in the amount of information available 
about the non-respondents. In general the only information available about total non-
respondents is that on the sampling frame from which the sample was selected (e.g., 
the strata and PSUs in which they are located). The important aspects of this 
information can usually be readily incorporated into weighting adjustments that 
attempt to compensate for the missing data. Hence, as a rule weighting adjustments 
are used for total nonresponse. 

In the case of item nonresponse, however, a great deal of additional information is 
available for the elements involved, i.e., not only the information from the sampling 
frame, but also their responses for other survey items. In order to retain all survey 
responses for elements with some item nonresponse, the usual adjustment procedure 
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produces analysis records that incorporate the actual responses to items for which the 
answers were acceptable and imputed responses for other items. Imputation, i.e., 
filling in for missing values is a very common technique for handling nonresponse. 
Imputation is done to reduce non-response bias for a variable, which occurs because 
the distribution of the missing values (if known) may be different from the 
distribution of responses. This is achieved by using relationships between the item to 
be imputed and other variables – but if this relationship is incorrectly modeled it could 
make matters worse. There are several benefits to imputation procedures.  

They are as follows: 

i) Imputation aims to reduce biases in survey estimates arising from 
missing data. 

ii) Imputation makes analysis easier and the results simpler to present. 
Complex algorithms to estimate population parameters in the presence 
of missing data are not required, and hence much processing time is 
saved. There is neither a need to determine the different sets of cases 
with missing data that have to be deleted from different analyses, nor a 
need to provide details of the extent and treatment of missing data with 
each set of results. 

iii) The results obtained from different analyses are bound to be consistent 
with one another, a feature which need not apply to results of analyses 
from an incomplete data set. 

On the other hand, imputation of missing data does, however, have its drawbacks. It is 
not certain that the results obtained after imputation will be less biased than those 
based on the incomplete data set. It all depends on the imputation procedure and the 
form of estimate. Another risk with imputation is that researchers may falsely treat the 
completed data set as if all the data were actual responses, thereby overstating the 
precision of the survey estimates. Therefore, the researchers working with a data set 
containing imputed values should proceed with caution and be aware of the extent of 
imputation for the variables in their analysis as well as the details of the procedure 
used. The imputed values should be flagged, so that the careful researcher can assess 
the effect that imputation may have on the analysis. The aim of this lecture is to 
provide a brief overview of traditional as well as modern computer intensive 
techniques of imputation for handling missing survey data.  

13.2  TRADITIONAL METHODS OF IMPUTATION 

An imputation procedure is defined as a procedure that imputes a value for each 
missing value that is assumed to be quite close to the true missing value. A wide 
variety of imputation methods has been developed for assigning values for missing 
item responses (Kalton and Kasprzyk, 1986). Imputation technique may be quite 
useful when imputation for any missing value is done based on homogeneous 
imputation classes. 
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Deductive imputation 

Sometimes the missing answer to an item can be deduced with certainty from the 
pattern of responses to other items. Edit checks should check for consistency between 
responses to related items. When the edit checks constrain a missing response to only 
one possible value, deductive imputation can be employed. Deductive imputation is 
the ideal form of imputation. 

Mean imputation 

Missing values are replaced by the mean of all responding values for the variable. 
This can be done based on the whole dataset or separately for different categories of 
respondents defined by combinations of selected classification variables. 

Zero imputation 

It is a method of imputation in which zero is substituted for the missing data when a 
unit fails to respond. 

Regression imputation: This method uses respondent data to regress the variable for 
which imputations are required on a set of auxiliary variables. The regression 
equation is then used to predict the values for the missing responses. The imputed 
value may either be the predicted value or the predicted value plus some residual 
(stochastic regression imputation). There are several ways in which the residual may 
be obtained. 

Cold-deck imputation 

Missing values are replaced by values of older data, e.g. from a previous survey, 
which could furthermore be adjusted for trend. 

Hot-deck imputation: In general, a hot-deck procedure is a duplication process - when 
a value is missing from a sample, a reported value is duplicated to represent this 
missing value. The adjective “hot” refers to imputing with values from the current 
sample. This procedure usually has some classification process associated with it. All 
of the sample units are classified into disjoint groups so that the units are as 
homogeneous as possible within each group. For each missing value, a reported value 
is imputed which is in the same classification group. Thus, the assumption is made 
that within each classification group the non-respondents follow the same distribution 
as the respondents. Current survey practice uses many variations of hot-deck 
procedures. 

A sequential hot-deck procedure is one in which the sample is put in some type of 
order within each classification group, and for each missing value the previous 
reported value is duplicated. For example, the ordering might be based on a 
geographic variable. The result of a geographic ordering is that the reported value 
duplicated for a missing value is from a unit which is geographically close to the unit 
with the missing value. The sequential hot-deck suffers the disadvantage that it may 
easily make multiple uses of donors, a feature that leads to a loss of precision in 
survey estimates. 
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The above disadvantages of the sequential hot-deck are avoided in the hierarchical 
hot-deck method. The procedure sorts respondents and non-respondents into a large 
number of imputation classes from a detailed categorization of a sizeable set of 
auxiliary variables. Non-respondents are then matched with respondents on a 
hierarchical basis, in the sense that if a match cannot be made in the initial imputation 
class, classes are collapsed and the match is made at a lower level of detail. 

Another form of hot-deck method is distance function matching which assigns a non-
respondent the value of the ‘nearest’ respondent, where ‘nearest’ is defined in terms 
of a distance function for the auxiliary variable. Various forms of distance function 
have been proposed and the function can be constructed to reduce the multiple uses of 
donors by incorporating a penalty for each use. 

Composite imputation 

This method combines ideas from different methods.  For example, hot deck and 
regression imputation can be combined by calculating predicted means from a 
regression but then adding a residual randomly chosen from the empirical residuals to 
the predicted value when forming values for imputation.   

Multiple imputation 

Because many imputation methods often do not preserve distributional properties, 
multiple imputation is advocated as a way of improving the ability to make inferences 
from data where imputation has been undertaken, particularly when the proportion of 
values missing is high. Multiple imputation retains the advantages of single 
imputation like completing the data set and using the expert knowledge for imputation 
and rectifies its major disadvantages Rubin (1986). As its name suggests, multiple 
imputation replaces each missing value by a vector composed of M ≥ 2 possible 
values. The M values are ordered in the sense that the first components of the vectors 
for the missing values are used to create one complete data set, the second 
components of the vectors are used to create the second completed data set and so on. 
There are some practical difficulties with multiple imputation as there is generally a 
desire to produce one definitive micro data set for public use rather than a several 
which will give slightly different results and the typical data user may not be willing 
to analyze several datasets in order to obtain each answer. 

13.3  IMPUTATION METHODS FOR LONGITUDINAL SURVEYS 

In longitudinal surveys imputations may be carried out within each wave separately 
i.e. considering each time stage (wave) as a complete survey or using together 
multiple observations for different time stages for each unit. The imputation 
procedures of first type are called cross-sectional. They will be necessary if the results 
are to be published just after the completion of each wave. Some of the widely used 
imputation procedures have been studied in the previous section. 

Imputation procedures of second kind i.e. involving multiple observations on each 
unit for imputing missing values are called cross-wave imputation methods. These 
methods make use of larger information and hence are expected to perform better than 
the cross-sectional methods. However a major disadvantage of these methods is that 
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one has to wait for the completion of all the waves before taking up the analysis of 
data. In this section some cross-wave imputation methods are discussed which are 
expected to be useful for imputing the missing values for any time stage. 

Direct Substitution Imputation 

Some variables show high stability over time between successive time stages of a 
survey. Under such situations the direct substitution of target variable from the 
previous (nearest) wave may serve well for a missing value on another wave. For 
example, in case of fodder yield surveys, if the data are collected weekly/fortnightly, 
there may not be much variation in yields between the two waves when the crop is 
fully mature. This method of imputation will be like deductive imputation assuming 
no change over time. 

Average of Preceding Wave and Succeeding Wave Imputation 

The basic assumption in the direct substitution imputation method discussed above is 
that the value of the character under study is stable over time. But in actual practice in 
most of the longitudinal surveys there will be some changes taking place in the value 
of the character under study over time. For example, milk yield of an animal, yield of 
vegetables etc., increase/decrease during the initial/final time stages respectively. 
Therefore a simple and more appropriate method of imputation in such situations will 
be to assign the average value of the preceding wave and succeeding wave for the 
missing wave value. 

13.4  NEW METHODS OF IMPUTATION  

Recent advances in methods and computing capabilities have made possible the 
application of more complex statistical modeling techniques like non-parametric 
regression; neural networks including multi layer perceptron, self organizing maps, 
support vector machines etc. for the purpose of imputation 

Some important Software for Imputation 

A number of computer programs have been developed for editing and imputation 
using traditional approach. The Canadian Census Edit and Imputation System 
(CANCEIS) has been developed to perform editing and imputation for the Canadian 
Census. The GEIS software also developed by Statistics Canada, implements methods 
for data editing and imputation where variables are numerical, continuous and non-
negative, and edits (consistency rules) can be expressed in linear form. SOLAS 3.0 is 
a statistical package that allows both Random Hot Deck imputation and Group Mean 
imputation. Besides specialized software for imputation, general statistical packages 
such as SAS and SPSS also offer some methods for imputation. For example, the 
PROC MIXED in SAS can handle the longitudinal data with missing observations. 

13.5  CONCLUSION 

In real applications, a number of different imputation methods should be combined, 
especially when a data source has several different types of variables. Methods of 
imputation used for a dataset should always be well documented for the end user of 
data. Imputed values should always be flagged or there should be two versions of the 
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variable, one with imputed values and one with original values, so that it is possible to 
use either of the values and compare the results. Further, modern computer intensive 
imputation methods based on neural networks are very promising tool for helping to 
handle non-response in surveys. Although, much works remains to be done before 
these will become commonplace methods.  
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14.1  Introduction 

Consider a survey of a rare and endangered bird species in which observers record the 

number of individuals of the species seen or heard at sites or units within a study area. At 

many of the sites selected for observation, zero abundance may be observed. But 

wherever substantial abundance is encountered, observation of neighbouring sites is 

likely to reveal additional concentrations of individuals of the species. Similar patterns of 

clustering or patchiness are encountered with many other types of animals from whales to 

insects, with vegetation types from trees to lichens, and with mineral and fossil fuel 

resources. A related pattern is found in epidemiological studies of rare, contagious 

diseases. Whenever an infected individual is encountered, addition to the sample of 

closely associated individuals reveals a higher than expected incidence rate. In such 

situations, the field workers may feel the inclination to depart from the preselected 

sample plan and add nearby or associated units to the sample. 

Adaptive cluster sampling refers to designs in which an initial set of units is selected by 

some probability sampling procedure, and, whenever the variable of interest of a selected 

unit satisfies a given criterion, additional units in the neighbourhood of that unit are 

added to the sample. Adaptive cluster sampling provides a means of taking advantage of 

clustering tendencies in a population, when the locations and shapes of the clusters 

cannot be predicted prior to the survey. Thompson (1990, 1991a, 1991b) described some 

designs in which, whenever the observed value of a selected unit satisfies a condition of 

interest, additional units are added to the sample from the neighbourhood of that unit. 

Many purposes may be served by such a design such as increasing the “yield” of 

interesting units. For such surveys, Birnbaum and Sirken (1965) obtained unbiased 

estimators of the Hansen and Hurwitz (1943) type, in which observations are divided by 

draw-by-draw selection probabilities, and of the Horvitz and Thompson (1952) type, in 

which observations are divided by inclusion probabilities. 
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The designs given by Thompson (1990) are related to network sampling in that selection 

of certain units may lead to observation of others. Because of the way the decisions to 

observe additional units depend adaptively on the observed values of the variable of 

interest, however, the selection and inclusion probabilities are not in general known for 

all units in the sample. Modifications must, therefore, be made in estimators of the 

Hansen-Hurwitz or Horvitz-Thompson types to obtain unbiased estimators.  

14.2 Sampling Design 

The basic idea of the adaptive cluster sampling design is illustrated in Figure1. Suppose 

that the interest lies in studying a particular weed that grows in strawberry fields. The 

weed is not particularly abundant, but serves as a host plant for a disease of strawberries. 

The purpose of the estimation of the total (and average) number of weeds in the field can 

be achieved using adaptive cluster sampling. The field is divided using a grid system to 

produce 400 square contiguous sampling units. An initial random sample of 10 units is 

shown in Figure 1a. Whenever one or more of the objects is observed in a selected unit, 

the adjacent neighbouring units to the left, right, top and bottom are added to the sample. 

When this process is completed, the sample consists of 45 units, shown in Figure 1b. 

Neighbourhoods of units may be defined in many ways other than the spatial proximity 

system of this example. 

In the designs considered here, the initial sample consists of a simple random sample of 

n1 units, selected either with or without replacement. As in the usual finite population 

sampling situation, the population consists of N units with labels 1, 2,. . ., N and with 

associated variables of interest y ={y1, y2, . . ., yN}. The sample s is a set or sequence of 

labels identifying the units selected for observation. The data consists of the observed y-

values together with the associated unit labels. The object of interest is to estimate the 

population mean 
N

i
i 1

1 y
N =

µ = ∑
 
or total Nµ  of the y-values.  

A sampling design is a function p(s|y) assigning a probability to every possible sample s. 

In designs such as those described here, these selection probabilities depend on the 

population y-values. It is assumed that for every unit i in the population a 
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neighbourhood Ai is defined, consisting of a collection of units including i. These 

neighbourhoods do not depend on the population y-values. In the spatial sampling 

example, the neighbourhood of each unit consists of a set of geographically nearest 

neighbours, but more elaborate neighbourhood patterns are also possible, including  a  

larger contiguous set of  units or a non-contiguous set such as a systematic  

 

                   

 

 

Figure 1. Adaptive cluster sampling to estimate the number of point-objects in a study 

region of 400 units. An initial random sample of 10 units is shown in (a). Adjacent 

neighbouring units are added to the sample whenever one or more of the objects of the 

population are observed in a selected unit. The resulting sample of 45 units is shown 

in (b). grid pattern around the initial unit. In other sampling situations, neighbourhoods 

may be defined by social or institutional relationships between units. The 

neighbourhood relation is symmetric: if unit j is in the neighbourhood of unit i, then 

unit i is in the neighbourhood of unit j. 

a
 

b
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Figure 2.  Neighbourhood for a sampling unit in the strawberry field study. 

The condition for additional selection of neighbouring units is given by an interval or set 

C in the range of the variable of interest. The unit i is said to satisfy the condition if 

iy C∈ . In the examples, a unit satisfies the condition if the variable of interest yi is 

greater than or equal to some constant c, that is,  C={ y : y ≥ c }. 

When a selected unit satisfies the condition, all units within its neighbourhood are added 

to the sample and observed, some of these units may in turn satisfy the condition and 

some may not. For any of these units that do satisfy the condition, the units in its 

neighbourhood are also included in the sample, and so on. 

Consider the collection of all of the units that are observed under the design as a result of 

initial selection of unit i. Such a collection, which may consist of the union of several 

neighbourhoods, will be termed as cluster when it appears in a sample. Within such a 

cluster there is a sub-collection of units, termed as a network, with the property that 

selection of any unit within the network would lead to inclusion in the sample of every 

other unit in the network. In the example of Figure 1, inside either of the obvious clusters 

of units in the final sample, the sub-collection of units with one or more of the point-

objects forms a network. 

Any unit not satisfying the condition but in the neighbourhood of one that does is termed 

an edge unit. Although selection of any unit in the network will result in inclusion of all 

units in the network and all associated edge units, selection of an edge unit will not result 

in the inclusion of any other units. It is convenient to consider any unit not satisfying the 
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condition a network of size one, so that, given the y-values, the population may be 

uniquely partitioned into networks. 

When the initial sample of n1 units is selected by simple random sampling without 

replacement, the n1 units in the initial sample are distinct because of the without-

replacement sampling, but the data may nevertheless contain repeat observations due to 

selection in the initial sample of more than one unit in a cluster. The unit i will be 

included in the sample either if any unit of the network to which it belongs (including 

itself) is selected as part of the initial sample or if any unit of a network of which unit i is 

an edge unit is selected. Let mi denote the number of units in the network to which unit i 

belongs, and let ai denote the total number of units in networks of which unit i is an edge 

unit. Note that if unit i satisfies the criterion C then ai = 0, whereas if unit i does not 

satisfy the condition then mi = 1. The probability of selection of unit i on any one of the 

n1 draws is ( )i i ip m a N= + . The probability that unit i is included in the sample is 

 i i
i

1 1

N m a N
1

n n
− −   

α = −    
   

                                                                 …(2.1) 

When the initial simple is selected by simple random sampling with replacement, repeat 

observations in the data may occur due either to repeat selections in the initial sample or 

to initial selection of more than one unit in a cluster. With this design, the draw-by-draw 

selection probability is ( )i i ip m a N= + and the inclusion probability is 

( ) 1n
i i1 1 pα = − −                                                                                   …(2.2) 

With either initial design, neither the draw-by-draw selection probability pi nor the 

inclusion probability iα can be determined from the data for all units in the sample, 

because some of the ai may be unknown. 

14.3 Estimators for Population Parameters 

Classical estimators such as the sample mean y , which is an  unbiased estimator of the 

population mean under a non-adaptive design such as simple random sampling, or the 

mean of the cluster means y , which is unbiased under cluster sampling with selection 
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probabilities proportional to cluster sizes, are biased when used with the adaptive designs 

described earlier. These biases are demonstrated later in example. In this section several 

estimators that are unbiased for the population mean under the adaptive designs are 

given.  

The expected value of an estimator t is defined in the design sense, that is, 

sE[t] t .p(s | y)=∑ , where ts is the value of the estimate computed when sample s is 

selected, p(s|y) is the design, and the summation is over all possible samples s. The 

sampling strategy i.e. the estimator together with the design, is design unbiased for the 

population mean if 
N

i
i 1

1E[t] y
N =

= ∑  for all population vectors y. 

14.3.1 The Initial Sample Mean 

If the initial sample in the adaptive design is selected by simple random sampling, with or 

without replacement, the mean, y  of the n1 initial observations is an unbiased estimator 

of the population mean. This estimator ignores all observations in the sample other than 

those initially selected. 

 14.3.2 A Modified Hansen-Hurwitz Type of Estimator 

For sampling designs in which n units are selected with replacement and the probability 

pi of selecting unit i on any draw is known for all units, the Hansen-Hurwitz estimator, in 

which each y-value is divided by the associated selection probability and multiplied by 

the number of times the unit is selected, is an unbiased estimator of the population mean. 

With the adaptive cluster sampling design, the selection probabilities are not known for 

every unit in the sample. An unbiased estimator can be formed by modifying the Hansen-

Hurwitz estimator to make use of observations not satisfying the condition only when 

they are selected as part of the initial sample. Let kΨ  denote the network that includes 

unit k, and let mk be the number of units in that network. (Recall that a unit not satisfying 

the criterion is considered a network of size one.) Let *
ky   represent the average of the 

observations in the network that includes the kth unit of the initial sample, that is,  
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k

*
k j

k j

1y y
m ∈Ψ

= ∑ .  

The modified estimator is  

 
1n

*
kHH 1 k 1

1t y
n∗

=
= ∑ .                                                                                 …(3.2.1) 

The variance of tHH* is 

N
* 2

HH* i
1 i 1

1 1 1V ar (t ) (y )
n N N 1 =

 
= − −µ  − 

∑ ,                                           …(3.2.2) 

if the initial sample is selected without replacement and  

N
* 2

HH* i
1 i 1

1 1Var (t ) (y )
n (N 1) =

= −µ
− ∑                                                     …(3.2.3) 

if the initial sample is selected with replacement.  

An unbiased estimator of this variance is  

  
1n

* 2
HH* k HH*

1 1 k 1

1 1 1V̂ar (t ) (y t )
n N (n 1) =

 
= − −  − 

∑ ,                              …(3.2.4) 

if the initial sample is selected without replacement and  

 
1n

* 2
HH* k HH*

1 1 k 1

1 1V̂ar (t ) (y t )
n (n 1) =

= −
− ∑                                           …(3.2.5) 

if the initial sample is selected with replacement. 

14.3.3 A Modified Horvitz-Thompson Type of Estimator 

For sampling  designs in which the probability iα  that unit i is included in the sample is 

known for every unit, the Horvitz-Thompson estimator, in which each y-value is divided 

by the associated inclusion probability, is an unbiased estimator of the population mean.  
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With the adaptive designs here, the inclusion probabilities are not known for all units 

included in the sample. An unbiased estimator can be formed by modifying the Horvitz-

Thompson estimator to make use of observations not satisfying the condition only when 

they are included in the initial sample. Then the probability that a unit is used in the 

estimator can be computed, even though its actual probability of inclusion in the sample 

may be unknown. If the initial sample is selected by simple random sampling without 

replacement, define 

 k*
k

1 1

N m N
1

n n
−   

α = −    
   

                                                                      …(3.3.1) 

where mk is the number of units in the network that includes unit k. If the initial selection 

is made with replacement, define 1n*
k k1 (1 m N)α = − − . For any unit not satisfying the 

condition, mk = 1. Let the indicator variable Jk be 0 if the kth unit in the sample does not 

satisfy the condition and was not selected in the initial sample; otherwise, Jk=1. The 

modified estimator is 

*
HT* k k k

k 1

1t y J /
N

ν

=
= α∑ ,                                                                      …(3.3.2) 

where ν  is the number of distinct units in the sample. 

To obtain the variance of tHT*, it will be most convenient to change notation to deal with 

the networks into which the population is partitioned, rather than individual units. Let ς  

denote the number of networks in the population and let jΨ  be the set of units 

comprising the jth network. Let mj be the number of units in network j. The total of the y-

values in network j will be denoted by 
j

j i
i

y y
∈ψ

= ∑ . 

The probability *
iα  that the unit i is used in the estimator is the same for all units within 

a given network j; this common probability will be denoted by jπ . The probability jhπ  

that the initial sample contains at least one unit in each of the networks j and h is 
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 j j hh
jh

1 11 1

N m N m mN m N
1

n nn n

 − − −    −    π = − + −                  
,             …(3.3.3) 

when the initial sample is selected without replacement and 

 { } { } ( ){ } 11 1
nn n

jh j h j h1 1 m N 1 m N 1 m m N π = − − + − − − +  
      …(3.3.4) 

when the initial sample is selected with replacement. 

With the convention that jj jπ = π , the variance of the estimator tHT* is 

 ( ) ( )HT* j h jh j h j h2
j 1h 1

1V ar (t ) y y
N

ς ς

= =
= π − π π π π∑∑                          …(3.3.5) 

An unbiased estimator of the variance of tHT* is 

 ( ) ( )HT*) k m km k m k m km2
k 1m 1

1V̂ar (t y y
N

κ κ

= =
= π − π π π π π∑ ∑ ,           …(3.3.6) 

where the summation is over the κ distinct networks represented in the initial sample. 

14.4 A Small Example 

In this section, the sampling strategies are applied to a very small population to shed light 

on the computations and properties of the adaptive strategies in relation to each other and 

to conventional strategies. The population consists of just five units, the y-values of 

which are {1, 0, 2, 10, 1000}. The neighbourhood of each unit includes all adjacent units. 

The condition is defined by C = {y : y ≥5}. The initial sample size is n1 = 2. 

With the adaptive design in which the initial sample is selected by simple random 

sampling without replacement, there are 5C2 =10 possible samples, each having 

probability 1/10. The resulting observations and the values of each estimator are listed in 

Table 1. 

In this population, the 4th and 5th units, with the y-values 10 and 1000, respectively, form 

a network, and the 3rd, 4th and 5th units, with y-values 2, 10 and 1000, respectively, form a 

cluster. In the fourth row of the table, the 1st and 5th units, with y-values 1 and 1000, were 
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selected initially; since 1000 ≥ 5, the single neighbour of the 5th unit, having y-value 10, 

is added to the sample. Since y-value 10 also exceeds 5, the neighbouring unit with y-

value 2 is also added to the sample. 

Table 1. All possible outcomes of Adaptive Cluster Sampling for a population of five units with 

y-values 1, 0, 2, 10 and 1000 in which the neighbourhood of each unit consists of itself 

plus adjacent units. 

Observations 1y  tHH* tHT* y  y  

1, 0 0.50 0.50 0.50 0.50 0.50 

1, 2 1.50 1.50 1.50 1.50 1.50 

1, 10; 2, 1000 5.50 253.00 289.07 253.25 169.67 

1, 1000; 10, 2 500.50 253.00 289.07 253.25 169.67 

0, 2 1.00 1.00 1.00 1.00 1.00 

0, 10; 2, 1000 5.00 252.50 288.57 253.00 168.67 

0, 1000; 10, 2 500.00 252.50 288.57 253.00 168.67 

2, 10; 1000 6.00 253.50 289.57 337.33 337.33 

2, 1000; 10 501.00 253.50 289.57 337.33 337.33 

10, 1000; 2 505.00 505.00 288.57 337.33 337.33 

Mean 202.6 202.6 202.6 202.75 169.17 

Bias 0 0 0 0.15 -33.43 

MSE 59615 22862 17418.4 18660 18086 

 

The computations for the estimators are- tHH* = (1 + (10 + 1000) / 2) / 2 = 253 and tHT* =  

(1/0.4 + 10/0.7 + 1000/0.7) / 5 = 289.07, in which *
1

4 5
1 0.4

2 2
   

α = − =   
   

 and 
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* *
2 3

3 5
1 0.7

2 2
   

α = α = − =   
   

. The classical estimator y = 253.25 is obtained by 

averaging all four observations in the sample, and y = (1 + (10 + 2 + 1000) / 3) / 2 = 

169.67. 

The population mean is 202.6 and the population variance (defined with N-1 in the 

denominator) is 198718. From the Table 1 it is clear that the unbiased adaptive strategies 

indeed have mean 202.6 and the estimators y  and y , used with the adaptive design, are 

biased. 

From the variances and MSEs given in the last row of the Table 1, it is clear that for this 

population, the adaptive design with the estimator tHT* has the lowest variance among the 

unbiased strategies and all of the adaptive strategies are more efficient than simple 

random sampling. 

14.5 Conclusions 

Adaptive cluster sampling appears to be an effective method for sampling from 

populations with rare events as well as aggregation tendencies in these rare events. 

Unbiased estimators can be obtained by modifying the estimators of the Hansen-Hurwitz 

or Horvitz-Thompson types in case of adaptive cluster sampling. As per the example 

shown here, the adaptive Horvitz-Thompson estimator tHT* clearly outperformed its 

Hansen-Hurwitz counterpart tHH* and all of the adaptive strategies are more efficient than 

simple random sampling.  
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15.1 Estimation of area and production of flowers 

In order to strengthen the existing database pertaining to flowers, the National Statistical 

Commission recommended the need to develop a cost-effective suitable sampling 

methodology for estimation of area and production of important flowers on the basis of 

market arrivals. Accordingly, a pilot study entitled “Pilot sample survey to develop 

sampling methodology for estimation of area, production and productivity of important 

flowers on the basis of market arrivals”, was planned and conducted in Delhi State during 

September 2003 to August 2004 in which estimates of production of flowers were 

developed by considering two approaches; (i) market arrival and (ii) village survey. 

15.1.1Methods and Material 

i) Market Survey Approach 

There are three flower mandis in Delhi namely, Hanuman Mandir Mandi, Khari Baoli 

Mandi and Mahrauli Mandi. Cut flowers of Rose, Gladiolus, Chrysanthemum, Tube-rose 

and Carnation etc. are mainly traded in the Hanuman Mandir Mandi and trading of loose 

flowers of Marigold, Rose, Margaret and Jaffrey etc. is carried out in Fatehpuri and 

Mahrauli Mandi by the commission agents and self-selling farmers. The commission 

agents and self-selling farmers were selected as per the following sampling design for 

collection of data on varieties of flowers sold in the three mandis. 

Sampling Design: A stratified random sampling design was followed in each flower 

mandi. Commission agents comprise the first stratum while the self-selling farmers the 

second stratum. Within the first stratum, seven random groups of commission agents 

were formed to cover all the commission agents trading in each Hanuman Mandir Mandi 

and Khari Baoli Mandi. A suitable number of self-selling farmers were selected for the 
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purpose of making inquiry about flowers sold by them. The survey period of one year i.e. 

September 2003 - August 2004 was divided into three sub-periods viz. Period-1: 

September - December 2003, Period-2: January - April 2004 and Period-3: May - August 

2004. A self-selling farmer once chosen was not repeated in the particular period of 

inquiry. One random group of commission agents was randomly selected and observed 

for a fortnight in one sub-period for data collection purpose. The remaining six random 

groups were observed in a similar manner. All the seven groups were observed in seven 

fortnights in one sub-period. This process was repeated in the other two sub-periods also. 

All the commission agents of Mahrauli mandi were observed for 8 days in each period.  

ii) Village Survey Approach 

Out of a total of 228 rural villages, there were about 92 flower growing villages in Delhi 

out of which a sample of 15% villages was randomly selected as per the following 

sampling design.  

Sampling Design: The sampling design adopted for estimation of area under floriculture 

in flower growing villages of Delhi was one of stratified uni-stage random sampling with 

villages as the sampling units. For estimating production of important flowers on the 

basis of village survey, the sampling design was stratified two stage random sampling 

with villages as first stage sampling unit and farmers growing flowers as the second stage 

sampling unit. All the flower growing villages of Delhi were divided into three strata in 

each of the sub-periods as follows; Stratum I: Villages having area up to 5 ha under 

flower, Stratum II: Villages having area more than 5 ha and less than 10 ha and Stratum 

III: villages having area more than 10 ha under floriculture. Out of 92 flower growing 

villages in Delhi, a random sample of 15 (15%) flower growing villages was selected. 

Accordingly, in each of the three strata, 3, 7 and 5 villages were selected in Period-1; 5, 4 

and 6 villages in Period-2; and 5, 3 and 7 villages in Period-3 respectively for the purpose 

of estimation of area and production under different flowers. The area estimates were 

obtained by complete enumeration of selected villages. Villages having 15 or less than 15 

farmers were completely enumerated for compilation of production figures. The 

production estimates for villages having more than 15 farmers were made on the basis of 

a random sample of 15 farmers selected in such a way that there was an appropriate 
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selection of each kind of flower grown in the selected villages. The sampling units at both 

the stages were selected by simple random sampling without replacement.  

15.1.2 Estimation Procedure 

i) Market Survey Approach 

The estimation procedure comprises the following steps: 

Estimation of total market arrival in Delhi for a particular kind of flower in the ith 
period 

Let there be various kinds of flowers grown in Delhi. The entire survey period has been 

divided into 3 sub-periods viz. Period-1 of 122 days, Period-2 of 121 days and Period-3 

of 123 days; two Strata viz. Stratum-1 of Commission Agents/Mashakhors and Stratum-2 

of Self-selling Farmers and seven groups (Each group comprises suitable number of 

Commission Agents/Mashakhors from first stratum and self-selling farmers from the 

second stratum) were formed. 

Let ghady  be the market arrival of the flower for gth group, hth stratum, ath commission 

agent/ self-selling farmer on dth day, Mean market arrival per day for gth group, hth 

stratum, ath commission agent/self-selling farmer is given by 

                      ygha
∑

hm

d h

ghad

m
y

=  

where mh is the number of days for which selected sample of commission agents/self-

selling farmers was observed. 

Estimated market arrival per day per commission agent/self-selling farmer in the hth 

stratum of gth group is given by 

    =ygh.
hn

1 ∑
hn

a
ghay   

The variance of  ygh.
 is given by 

( )
2

.. ∑ -
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where   ∑1 . 
hN

a
gha

h
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N
Y =  

and the estimate of V( ygh.
) is given by  

    ( )
2

.. ∑ -)
1-

1)(1-1( )(ˆ
hn

a
ghgha

hhh
gh yy

nNn
yV =  

where Nh  is the total number of agents in the hth stratum and nh  is the number of agents 

observed in the hth stratum of the gth group.  

Estimated total market arrival per day for the mandi on the basis of gth group is given by 

       ... ∑ˆ
gh

h
hg yNY =/   

The variance of ..
ˆ

gY/  is given by    

)( )ˆ( .
2

.. ∑ gh
h

g yVNYV
h

=/  

and the estimate of )ˆ( ..gYV / is given by  

                  )( ˆ)ˆ(ˆ
.

2
.. ∑ gh

h
g yVNYV

h
=/ . 

Estimated total market arrival per day for the mandi averaged over all groups for the ith 

period is   

      ∑ ..
ˆ1)...(ˆ

g
gY

g
iY =    

The variance of )...(ˆ iY  is given by 

    ( ) ( )∑ ..2)( ...
ˆ1ˆ

g
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and the estimate of ( ))( ...
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iYV  is given by 
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g
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g
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Estimator of total market arrival for the entire year (366 days) for the specified kind of 

flower is given by          

    = . . . .Ŷ (3) ...(2) ...)1( Ŷ 123    Ŷ 121 ...ˆ 122 ++Y   

The variance of  . . . .Ŷ is given by 

           2
(1) ...

2 )121()ˆ()122(....)ˆ( += YVYV )ˆ()123()...ˆ( (3) ...
2

)2( YVYV + . 

and the estimator of variance of the estimate of total market arrival for the year is given 
by 

             2
(1) ...

2 )121()ˆ(ˆ)122(....)ˆ(ˆ += YVYV )ˆ(ˆ)123()...ˆ(ˆ
(3) ...

2
)2( YVYV + . 

Estimates of total market arrivals for all kind of flowers grown in Delhi on the basis of 

market arrival were obtained on the similar lines. 

ii) Village Survey Approach 

The estimation procedure comprises the following steps: 

Estimation of total production for a particular kind of flower for ith period in the 
villages of Delhi 

Let yhij be the production of a particular kind of flower for the jth farmer of the ith village 

in the hth stratum (j = 1, 2, …, Mhi ; i = 1, 2, …, Nh ; h = 1, 2, 3). Let Mhi be the number 

of farmers in the ith village of the hth stratum and Nh be the total number of villages in the 

hth stratum. The average production of a particular kind of flower in the ith village of the 

hth stratum is given by  

    ∑
1

1 im

j
hij

i
hi y

m
y

=

=  , 

where im  is the number of selected farmers in the ith village.    

Average production of a particular kind of flower in the hth stratum is given by      

hi

n

i
hi

h
h yM

n
y

h

∑
1

1

=

= ,  
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where nh denotes the number of villages selected in the hth stratum.  

Accordingly, an estimator of the total production of a particular kind of flower is given 

by             hi

n
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h h
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The estimator of the )ˆ(YV   is given by 
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, '
i1y   be the produce reported from ith  farmer in the 1st 

stratum and '
1y , the average produce from the 1st stratum  is given by 
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15.1.3 Results and Discussion 

Estimates of arrival of flowers on the basis of Market Survey Approach 

Estimates of the total market arrival of loose flowers in Metric Tonnes as well as of cut 

flowers in lakh numbers along with their percentage standard errors in the three flower 

mandi of Delhi are presented in Table 1. A close perusal of Table 1 reveals that the 

estimate of the total market arrival of loose flowers from the villages of Delhi in the 
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flower mandis was 14570.910 MT with 2.51% standard error (S E). The corresponding 

figures for cut flowers was 670.68820 lakhs with 1.53%    S E.   

 
Table 1: Estimate of different kind of flowers in Delhi on the basis of market arrivals 

  
Flowers Loose (MT) Cut (Lakh Numbers) 

Estimate Estimate 
Rose 1896.550    (1.02) 571.46046    (1.74) 

Marigold 1727.171    (3.62) - 

Guldawari 33.651        (*) 26.93842      (7.75) 

Rajnigandha 13.520        (*) 10.81733      (6.11) 

Jaffrey 8897.820    (3.85)  - 

Margaret (White/Yellow) 1899.035    (5.69) - 

Gladiolus - 14.05386      (3.77) 

Gerbera - - 

Orchid - - 

Carnation - - 

Tube Rose (Double) - 2.76533         (*) 

Others 103.161     (2.61) 44.65279      (2.63) 

Total production 14570.910 (2.51) 670.68820    (1.53) 

Note: Figures in parentheses indicate corresponding percent standard errors. 
          * Estimates are based on very few observations. 

15.1.4 Estimates of area and production of flowers on the basis of Village Survey 

Approach 

Table 2 provides period-wise as well as stratum-wise area in ha of loose and cut flowers 

separately in the villages of Delhi. The area under loose flowers was estimated to the tune 

of 2583.28 ha and that of cut flowers 442.59 ha. Thus, during the survey period, total 

3025.87 ha area was estimated under flower crops in Delhi. Out of this, 85.37% area was 

under loose flowers while 14.63% was under cut flowers.  
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Period-wise and stratum-wise estimates of production of loose and cut flowers have been 

presented in Table 3. Estimated production of loose flowers was observed maximum, to 

the tune of 1359.1 MT with 7.03% SE in period-2 of stratum I; 668.551 MT with 7.30% 

SE in period-1 of stratum II and 8277.3 MT with 4.31% SE in period-2 of stratum III. 

Pooled over all periods, these figures were 2992.1 MT with 6.80% SE, 1159.8 MT with 

4.95% SE and the highest 13540.7 MT with 8.18% SE for the three strata respectively. 

The period-wise pooled estimates of production of loose flowers was significantly higher 

in period-2 of the order of 10163.7 MT with 3.73% SE followed by 6272.4 MT with 

7.47% SE in period -1 and 1292.5 MT with 10.62% SE in period-3. The overall estimated 

production of loose flowers in the villages of Delhi was to the tune of 17728.7 MT with 

4.09% SE. The period-wise estimates of the production of cut flowers were 359.11495 

lakhs with 1.98% SE, 257.38033 lakhs with 5.84% SE and 116.91642 lakhs with 17.97% 

SE respectively. The overall production of cut flowers was to the tune of 733.41170 lakhs 

with 3.54% SE.  
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Table 2: Area (ha) under important flowers in the villages of Delhi  

 
Period 

Stratum I Stratum II Stratum III Total 
Loose Cut Total Loose Cut Total Loose Cut Total Loose Cut Total 

 
1 

 
130.08 

 

 
0 

 
130.08 

 

 
61.72 

 

 
23.60 

 

 
85.32 

 

 
627.90 

 

 
98.95 

 

 
726.85 

 

 
819.70 

 
122.55 

 

 
942.25 

 
 
2 

 
123.05 

 

 
0 

 
123.05 

 

 
34.16 

 

 
75.43 

 
109.59 

 
796.74 

 

 
85.26 

 

 
882.00 

 

 
 953.95 

 

 
160.69 

 

 
1114.64 

  
 
3 

 
136.01 

 

 
0 

 
136.01 

 

 
0 

 
84.47 

 

 
84.47 

 

 
673.62 

 

 
74.88 

 

 
748.50 

 

 
809.63 

 

 
159.35 

 

 
968.98 

 
 

Total 
 

389.14 
 

 
0 

 
389.14 

 

 
95.88 

 

 
 183.50 

 

 
279.38 

 

 
2098.26 

 

 
259.09 

 

 
2357.35 

 

 
 2583.28 

 

 
442.59 

 

 
3025.87 

 
 
Table 3: Estimates of production of important flowers in the villages of Delhi  

 
Period 

Stratum I Stratum II Stratum III Total 
Loose 
(MT) 

Cut 
(Lakh) 

Loose 
(MT) 

Cut 
(Lakh) 

Loose 
(MT) 

Cut 
(Lakh) 

Loose 
(MT) 

Cut 
(Lakh) 

1 1325.385 
(13.74) 

0 668.551 
(7.30) 

36.82095 
(6.10) 

4278.511 
(17.28) 

322.29400 
(*) 

6272.447 
(7.47) 

359.11495 
(1.98) 

 
2 1359.087 

(7.03) 
0 527.328 

(*) 
91.41663 
(15.22) 

8277.332 
(4.31) 

165.96370 
(*) 

10163.747 
(3.73) 

257.38033 
(5.84) 

 
3 307.654 

(17.32) 
0 0 72.15765 

(30.54) 
984.832 
(3.79) 

 

44.75877 
(*) 

1292.487 
(10.62) 

116.91642 
(17.97) 

 
Total 2992.126 

(6.80) 
0 1159.879 

(4.95) 
200.39523 

(9.19) 
13540.675 

(8.18) 
533.01647 

(*) 
17728.681 

(4.09) 
733.41170 

(3.54) 
 

Note:     Figures with in parentheses indicate the percent standard errors. 
* Estimates are based on very few observations.
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Comparison of estimates of production of flowers on the basis of Market Arrival and 

Village Survey Approaches  

A comparative study of the estimates of production of loose and cut flowers from the 

market arrivals survey approach and village survey approach is presented in Table 4. The 

results reveal that a maximum 91.4% of loose flowers produced in the flower growing 

villages of Delhi arrived for trading in the flower mandis of Delhi in period-2 (peak period 

of flowers production) while 98.7% cut flowers produced in the villages of Delhi arrived 

for trading in the flower mandis of Delhi in Period-1. When pooled over the three periods, 

it was to the tune of 82.2% and 91.5% respectively. 

 
Table 4: Estimates of production of important flowers based on Market Arrival and 

Village Survey Approaches 
 

 
Period 

Loose (MT) Cut (Lakh Numbers) 
Market Arrivals 
Survey Approach 

Village Survey 
Approach 

Market Arrivals 
Survey Approach 

Village Survey 
Approach 

1 4393.147 
(70.0%) 

 

6272.447 354.35129 
(98.7%) 

359.11495 

2 9290.062 
(91.4%) 

 

10163.747 231.60071 
(90.0%) 

257.38033 

3 887.699 
(68.7%) 

 

1292.487 84.73619 
(72.5%) 

116.91642 

Total 14570.908 
(82.2%) 

 

17728.681 670.68820 
(91.5%) 

733.41170 

Note: Figures in parentheses indicate the percentage of estimated flower production of 
flowers based on market arrivals approach to the estimated production of flowers 
based on village survey approach. 
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15.2 ESTIMATION OF AREA AND PRODUCTION OF MUSHROOMS 

A lot of emphasis has been given in our country for the development of agro based industry 

as it has not only tremendous potential of rural employment generation but it can also 

gainfully utilize natural and farm resources. It is estimated that about 170 million tonnes of 

crops residues are left unused for burning in our country.  If even a fraction of it is utilized 

for the production of mushroom, it can make India one of the major mushrooms producing 

country in the world. Though mushroom production in India started in 1961, it was only 

after 1990 that some noticeable progress was made. 

Mushroom is a perfect health food recommended for use to enrich diet with proteins, 

vitamins, minerals and fibres. The cultivation of mushroom has varied advantages as each 

operation is a full-fledged enterprise in itself like compost making, spawn preparation, 

cultivation, processing and marketing which will provide the employment opportunities to 

the burgeoning population. For successful production of mushroom, it is necessary for 

mushroom cultivators to produce as economically and efficiently as possible better quality 

of mushroom.  

The data on mushroom production was collected by the State Government Departments on 

complete enumeration basis. Production of mushroom involves multiple pickings. Thus, 

the enumerator is required to make repeated visits for the data collection of each and every 

picking. The whole process is time consuming, costly and cumbersome. There is thus a 

possibility of non-sampling errors creeping in the statistics on production of mushroom 

crop. A sample survey based approach therefore appears desirable for developing estimates 

of production of mushroom. The National Statistical Commission (Report 2001) has 

recommended that a sampling methodology be developed for estimation of production of 

mushroom. Accordingly, a study entitled “Pilot study to develop sampling methodology 

for estimation of production of mushroom crop” was taken up by Indian Agricultural 

Statistics Research Institute in Sonepat district of Haryana State to examine the feasibility 

of sample survey based approach for estimation of production of mushroom.  
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15.2.1 METHODS AND MATERIAL 

The primary data was collected in Sonepat district of Haryana state pertaining to Button 

Mushroom crop from November 2007 to April 2008.  Haryana is the third leading state in 

the production of mushroom crop after Tamil Nadu and Karnataka and mushroom is 

extensively cultivated in the Sonepat district of the state. The other mushroom producing 

states are Kerala, Jammu & Kashmir, Himachal Pradesh, Punjab and Uttar Predesh. The 

data pertaining to shed area for raising mushroom, number of beds in each shed, weight of 

wet compost used, spawn consumed, wheat/paddy straw used in preparation of compost, 

processing of mushroom after picking, disposal of produce etc. have been collected from 

the selected mushroom growers in each of the selected village by enquiry method.  

15.2.2 Sampling Design 

The sampling design was stratified two-stage random sampling with blocks/group of 

blocks as strata, mushroom-growing villages as primary stage sampling units and 

mushroom growing cultivators as the ultimate stage unit of selection.  The Sonepat district 

comprising of 6 blocks namely; Ganaur, Gohana, Sonepat, Kharkhoda, Rai and Mudlana, 

was subdivided into three strata by combing the adjacent blocks. These strata were Ganaur 

(Ganaur and Gohana), Sonepat (Sonepat and Kharkhoda) and Rai (Rai and Mudlana). 

There were 23 mushroom growing villages in Ganaur, 22 in Sonepat and 8 in Rai.  A total 

of 8 villages, 3 from each of Ganaur and Sonepat and 2 from Rai were selected by simple 

random sampling without replacement. All mushroom growing cultivators in each of the 

selected villages were categorized into three categories as Small (Wet compost used up to 

500 qtls), Medium (Wet compost used from 500 to 800 qtls) and Large (Wet compost used 

more than 800 qtls). Six cultivators were selected from these categories with proportional 

allocation by simple random sampling without replacement for intensive data collection on 

production of mushroom in the district. Table 1 gives the stratum-wise total number of 

mushroom growing villages, number and name of randomly selected mushroom growing 

villages and number of mushroom growing cultivators. 
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Table 1: Stratum-wise total number of mushroom growing villages, number and 
name of selected villages, total number of mushroom growers in the selected 
villages (Category-wise) and number of selected growers in each of the 
selected villages 

Stratum Total  
number 

of 
villages 

( hN ) 

Selected 
villages    
( )hn  

Name of 
the selected 

villages 

Total number of 
mushroom 

growers 
( hiM ) 

Selected 
mushroom 

growers 
( him ) 

Ganaur 
(Stratum -1) 
 
(Ganaur & 
Gohana) 

23 3 Ahirmajra 24 (5, 9, 10) 6 (1, 2, 3) 

Ganaur 08 (7, 0, 1) 6 (5, 0, 1) 

Rajlugarhi 23 (23, 0, 0) 6 (6, 0, 0) 

Sonepat 
(Stratum –2) 
 
(Sonepat & 
Kharkhoda) 

22 3 Rohat 26 (23, 0, 3) 6 (4, 0, 2) 

Kakroi 18 (18, 0, 0) 6 (6, 0, 0) 

Baiyapur 21 (6, 6, 9) 6 (2, 2, 2) 

Rai 
 
(Stratum-3) 

  
 

08 2 Sersa 06 (0, 0, 6) 6 (0, 0, 6) 

Aterna 27 (27, 0, 0) 6 (6, 0, 0) 

TOTAL 53 08  153 (109, 15, 29) 48 (30, 4, 14) 

 

15.2.3 Estimation Procedure 

Let yhij be the production of mushroom for the jth mushroom growing cultivator of the ith 

village in the hth stratum (j = 1, 2, …, Mhi ; I = 1, 2, …, Nh ; h = 1, 2, 3) where Mhi is the 

number of mushroom growing cultivators in the ith village of the hth stratum and Nh is the 

total number of mushroom growing villages in the hth stratum. The estimate of 

productivity (qt/ha) of mushroom in the ith village of the hth stratum is given by  

    ∑
1

1 him

j
hij

hi
hi y

m
y

=

=  ,                     (1) 

where him  is the number of selected mushroom growing cultivators in the hth stratum of 

the ith village. 

The estimate of average yield (qt/ha) of mushroom in the hth stratum is given by 
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The variance of hy  is given by  
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The estimate of variance of  hy  is given by 

       ( ) ∑
=









−+








−=

hn

i
hi

hihihh
bh

hh
h s

MmNn
s

Nn
yV

1

22 11111ˆ                      (2) 

where   ( )∑
1

2
)1-(

12 -
h

h

n

i
hhinbh yys

=

= ,     2

1

2 )(
)1(

1 ∑ hi

m

j
hij

hi
hi yy

m
s

hi

−
−

=
=

       

Accordingly, an estimator of the average yield (qt/ha) of mushroom in the district is given 
by 

h
h

h yN
N

Y ∑
=

=
3

1

1ˆ          (3)          

 where ∑
=

=
3

1h
hNN  

The variance of Ŷ is given by 
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The estimate of variance of Ŷ is given by 
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15.2.4 Results  

The results on estimates of productivity of mushroom, spawn used, weight of wet compost 

used in production of mushroom etc. are summarized below: 

Estimate of productivity (qtl/ha) of mushroom 

The stratum-wise and pooled over all the strata results of the estimates of productivity are 

presented in Table 2. The results revealed that the productivity of mushroom was 

maximum 383.62 qtl/ha with 5.17% standard error (SE) in stratum III followed by 325.44 

qtl/ha with 9.62% SE in stratum I and 312.34 qtl/ha with 4.76% SE in stratum II. Pooled 

over all the strata, the estimate of productivity of mushroom in Sonipat district was to the 

tune of 328.78 qtl/ha with 4.63% SE. The estimate of productivity (kg/tray) was observed 

highest in stratum III (4.63 kg/tray with 4.31% SE) and lowest in stratum II (4.35 kg/ha 

with 1.98% SE). The productivity in stratum I was observed 4.50 kg/tray with 1.38% SE. 

The productivity of mushroom in Sonepat district was estimated as 4.46 kg/tray with 

1.21% SE. 

Table 2: Estimates of productivity of mushroom along with percentage standard error 
Stratum Estimates of productivity of mushroom 

According to area under mushroom 
(qtl/ha) 

Per tray (kg) 

I 325.44 (9.62%) 4.50 (1.38%) 

II 312.34 (4.76%) 4.35 (1.98%) 

III 383.62 (5.17%) 4.63 (4.31%) 

Over all 328.78 (4.63%) 4.46 (1.21%) 
Note: Figures within parentheses represents percentage standard errors of corresponding estimates. 
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Estimates of productivity of mushroom on the basis of sample survey approach as well as 

complete enumeration approach are presented in Table 3. It may be seen from the Table 

that production of mushroom in the Sonepat district was estimated as 2063 Metric Tonnes 

with 416810 trays in 2007-08 by District Horticulture Office, Sonepat on the basis of 

complete enumeration approach. The productivity of mushroom was observed to be 4.94 

kg/tray on the basis of complete enumeration approach while the same obtained through 

sample survey approach was observed to be 4.46 kg/tray. In view of the closeness of the 

estimates from two sources it can be inferred that sample survey approach appears to be 

suitable for generating estimates on productivity of mushroom crop.  

Table 3: Estimate of productivity of mushroom on the basis of complete enumeration 
approach and sample survey based approach 

Estimate of productivity on the basis of complete 

enumeration approach 

Sample survey 

approach 

No. of 

trays 

Total Production 

(MT) 

Productivity/Tray (kg) Productivity/Tray 

(kg) 

416810 2063 4.94 4.46 (1.21%) 

Note: Figures within parentheses represent percentage standard errors of corresponding estimates. 

Estimate of wet compost used in cultivation of mushroom 

The results obtained for the estimates of wet compost used in mushroom production in the 

selected villages of Sonepat district are presented in Table 4. It may be seen that maximum 

wet compost was observed in stratum III. It was 327.2 Kg/ha with 14.18% SE. In stratum I, 

it was observed minimum i.e. 258.9 Kg/ha with 9.88% SE. Pooled over all the three strata, 

the wet compost used in mushroom cultivation was observed to be to the tune of 269.8 

Kg/ha with 6.50% SE. 
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Table 4: Estimates of wet compost used in cultivation of mushroom  
Stratum Estimates of wet compost weight used in mushroom 

cultivation (Kg/Ha) 

I 258.9 (9.88%) 

II  260.4 (10.75%) 

III  327.2 (14.18%) 

Over all 269.8 (6.50%) 
Note: Figures within parentheses represents percentage standard errors of corresponding estimates. 

 

Estimate of spawn used in cultivation of mushroom 

The estimates of spawn used in cultivation of mushroom are presented in Table 5. The 

results revealed that estimate of spawn used in cultivation of mushroom crop in Sonepat 

district was observed maximum in stratum III (23.86 qtl/ha with 9.39% SE) followed by 

20.90 qtl/ha with 3.53% SE in stratum II. It was 19.20 qtl/ha with 9.74% SE in stratum I. It 

was of the order of 20.61 qtl/ha with 4.52% SE for the entire Sonepat district. This figure 

was obtained by pooling over all the strata. 

Table 5: Estimates of spawn used in cultivation of mushroom along with % S E 

Stratum Estimates of spawn used in mushroom cultivation (Qtl/ha) 

I 19.20 (9.74%) 

II 20.90 (3.53%) 

III 23.86 (9.39%) 

Over all 20.61 (4.52%) 
Note: Figures within parentheses represents percentage standard errors of corresponding estimates. 

Estimates of different supplements used in preparation of compost  

The role of compost preparation in cultivation of mushroom crop is very important. The 

supplements wheat/paddy straw, urea, calcium ammonium nitrate/ di-amonium phosphate 

(CAN/DAP), super phosphate, murate of potash, wheat bran, chicken manure, gypsum and 

furadan are used in preparation of compost. The estimates of each of the above mentioned 

supplements are summarized as follows: 

Estimators of wheat/paddy straw, urea, CAN/DAP, super phosphate and murate of potash 

are presented in Table 6. It was observed that the maximum wheat/paddy straw was used 
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by the mushroom growers in stratum III. This was 30.21 qtl/ha with 8.21% SE in stratum 

III while it was observed minimum in stratum I (24.20 qtl/ha with 6.15% SE). The pooled 

estimate for wheat/paddy straw was of the order of 25.79 qtl/ha with 4.78% SE. Estimate 

of urea used in preparation of compost was observed 19.77 qtl/ha with 8.50% SE, the 

maximum was in stratum III (17.47 qtl/ha with 6.00% SE) and the minimum in stratum II. 

The estimate of urea for the entire district was of the tune of 18.51 qtl/ha with 4.66% SE. 

The estimate of CAN/DAP was found maximum in stratum III (18.64 qtl/ha with 7.31% 

SE) followed by stratum I and stratum II. It was of the order of 15.66 qtl/ha with 3.37% SE 

and 13.64 qtl/ha with 2.48% SE in stratum I and stratum II respectively. The over all 

estimate of CAN/DAP used in preparation of compost was of the tune of 15.27 qtl/ha with 

2.22% SE. The estimates of super phosphate in preparation of compost vary from 17.16 

qtl/ha to 24.19 qtl/ha in different strata with an average of 17.79 qtl/ha for the district. It 

was observed maximum in stratum III while the minimum was in stratum II.  The 

percentage standard error varies from 5.03% to 9.52% from stratum to stratum and pooled 

over all the strata, the estimated value of super phosphate used in preparation of compost 

was to the tune of 18.89 qtl/ha with 4.87% SE. Estimate of murate of potash was found 

maximum in stratum III (20.11 qtl/ha with 3.30% SE) followed by stratum I (17.91 qtl/ha 

with 9.27% SE) and stratum II (16.83 qtl/ha with 7.82% SE) respectively. The pooled 

estimate was 17.79 qtl/ha with 5.11% SE.  

Table 6: Estimates of Wheat/Paddy straw, Urea, CAN/DAP, Super phosphate and 
Murate of Potash used in preparation of compost  

St
ra

tu
m

 Estimates of Wheat/Paddy straw, Urea, CAN/DAP, Super phosphate and 
Murate of Potash used in preparation of compost  

Wheat/Paddy 
Straw (qt/ha) 

Urea (qt/ha) CAN/DAP 
(qt/ha) 

Super 
phosphate 

(qt/ha) 

Murate of 
Potash(qt/ha) 

I 24.20 (6.15%) 
 

19.07 (8.46%) 15.66 (3.37%) 18.70  
(9.52%) 

17.91  
(9.27%) 

II 25.77 (8.93%) 17.47 (6.00%) 13.64 (2.48%) 17.16  
(6.50%) 

16.83 (7.82%) 

III 30.21 (8.21%) 
 

19.77 (8.50%) 18.64 (7.31%) 24.19  
(5.03%) 

20.11 (3.30%) 

Over 
all 

25.79 (4.78%) 
 

18.51 (4.66%) 15.27 (2.22%) 18.89  
(4.87%) 

17.79 
(5.11%) 

Note: Figures within parentheses represents percentage standard errors of corresponding estimates. 
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Estimates of wheat bran, chicken manure, gypsum and furaden used in preparation of 

compost by the mushroom growers are presented in Table 7. The estimate of wheat bran 

used in preparation of compost was of the order of 59.63 qtl/ha with 9.78% SE in stratum 

III (maximum), 45.87 qtl/ha with 5.58% SE in stratum II (minimum) and 58.46 qtl/ha with 

8.90% SE in stratum III. Over all estimate of wheat bran was observed to be 53.48 qtl/ha 

with 5.19% SE. From the data collected on use of chicken manure in compost preparation 

it was observed that maximum chicken manure was mixed by the mushroom growers of 

stratum II. It was estimated 62.85 qtl/ha with 7.01% SE in stratum II followed by 59.57 

qtl/ha with 9.80% SE in stratum III and 56.71 qtl/ha with 3.65% SE in stratum I.  It was to 

the tune of 59.81 qtl/ha with 3.80% SE for whole of the district. 

It can be seen from Table 7 that the estimate of gypsum was observed maximum in stratum 

I (75.12 qtl/ha with 6.26% SE) followed by 70.36 qtl/ha with 7.47% SE in stratum III and 

68.61 qtl/ha with 4.80% SE in stratum II respectively. Pooled over all the three strata, the 

estimate of gypsum used in preparation of compost was of the order of 71.57qtl/ha with 

3.56% SE. The estimates of use of furaden in preparation of compost vary from 0.66 qtl/ha 

to 0.75 qtl/ha in the three strata with the variation in percentage standard error from 6.84 to 

9.64. The estimate of furaden was observed maximum in stratum I and the minimum in 

stratum II. It was estimated as 0.71 qtl/ha with 5.06% SE for the entire district. 

Table 7: Estimates of Wheat Bran, Chicken Manure, Gypsum and Furaden used in 
preparation of compost  

 
Stratum 

Estimates of Wheat Bran, Chicken Manure, Gypsum and Furaden 
used in preparation of compost 

Wheat Bran 
(qt/ha) 

Chicken Manure 
(qt/ha) 

Gypsum 
(qt/ha) 

Furaden (qt/ha) 

I 59.63   (9.78%) 56.71 (3.65%) 75.12 (6.26%) 0.75 (6.84%) 

II 45.87 (5.58%) 62.85 (7.01%) 68.61 (4.80%) 0.66 (9.64%) 

III 58.46 (8.90%) 59.57 (9.80%) 70.36 (7.47%) 0.73 (7.22%) 

Over all 53.48 (5.19%) 59.81   (3.80%) 71.57 (3.56%) 0.71 (5.06%) 
Note: Figures within parentheses represents percentage standard errors of corresponding estimates. 

Recommendations 
Sample survey based approach appears to be appropriate for developing estimate of 

production of mushroom but some more such like studies needed to be carried out before it 

can be recommended for adoption. Percentage SEs estimated for different parameters for 
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estimating mushroom productivity is estimated under the reasonable limits, it is 

recommended that the sample sizes at both the stages may be taken same as in this study 

for the future surveys. Mushrooms are grown in sheds/beds. Therefore, reporting the 

estimates of different parameters on the basis of area (quintal per ha) is a better way than is 

currently the case in the district i.e. reporting made on the basis of kg per tray. The area 

under mushroom may be calculated as the total area in ha of the beds used in sheds for 

cultivating mushroom crop. 
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16.1 INTRODUCTION 

Sample Surveys are generally multivariate and at times the surveyor’s interest is to 
establish the pattern of relationships between the variables on which data are 
collected. In this context the correlation and regression analysis is most appropriate. 
The usual theory of least squares for estimation of regression coefficients assumes 
that the observations are identically, independently distributed. This assumption is 
satisfied for with replacement designs . But surveys are generally conducted using 
multistage random sampling designs where in there are stratum, clusters and units are 
selected without replacement. Thus, the assumption of independence of units do not 
hold good in the context of survey data.The usual least squares approach needs to be 
modified to account for the sampling design. Standard statistical packages like SPSS, 
BMDP, SAS etc. which are based on usual least squares approach will provide 
misleading inferences about the estimates of regression coefficients when the data 
have been collected from a complex sampling design.  

When the population is very heterogeneus a single regression equation for the entire 
population may not fit. One may have to fit separate regression line for each group. If 
the groups are strata there are no problems. However, if the groups happen to be 
clusters then there may be serious problem as only a sub-set of clusters are 
represented in the sample.. Problems of this type have been tackled by Pfeffarmann 
and Nathan (1981) using a random coefficient regression model. 

16.2  THEORETICAL DEVELOPMENTS 

Assuming that a single regression equation suffice for the entire population, there can 
be two types of inferences; descriptive inference and analytic inference. Descriptive 
inferences relate to parameters which are functions of the values attached to the ‘N’ 
units in the population. When the parameter of interest relates to the super population, 
inferences are analytic. 

Descriptive inferences can be design based or model based. The former is based on 
the distribution generated by random sampling and details can be found in standard 
text such as Cochran (1977). In the model based approach models are postulated to 
represent the population structure- and inferences are based on the probability 
distribution specified in the model, the so called ξ -distribution. Important references 
in this context are Smith (1976) and Sarndal (1978). A combined design and model 
based approach is also proposed like by Godambe and Thompson (1973). A detailed 
review of various approaches is given by Cassel, Sarndal and Wretman (1977). 

When the object of inference is the model parameter it is assumed that the finite 
population constitutes a random sample from the super population. Since survey 
populations are usually large a finite population estimator based on all values will be 
“close to” the unknown super population parameter. This estimator constituting the 
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finite population parameter can be estimated from the sample. However, the 
assumption of an underlying super population is critical to interpretation. 

The approaches described above can be put in a tabular form depending upon the 
parameter of interest and type of inferences. Hartley and Sielken (1975) classify 
regression models according to these two criteria. 

SAMPLING THEORIES CLASSIFIED BY SAMPLING PROCEDURES AND 
TARGET PARAMETERS 

Target Parameters Sampling Procedure 

 Repeated sampling from a fixed 
finite population 

Repeated two-step sampling 
from an infinite population 

 Case 1 Case 2 

Parameters of finite 
Population B 

 

Classical finite population 
sampling theory. p- inference 

Super population theory for 
finite populationξ -inference 

 Case 3 Case 4 

Parameters of infinite 
super population β  

 Infeasible  Inference on infinite population 
parameters two-step sampling 
procedure ξ -inference 

Kish and Frankel (1974), Shah Holt and Folsom (1977) and Jonrup and Rennermalm 
(1976) consider that the only relaxant inference concerns the finite population 
parameter. The approach of estimation is purely design based. Kish and Frankel 
(1974) suggest these methods for estimating the sampling variance of the estimator. 
These are Taylor series method, the Jacknife method and balanced repeated 
replication. They have made computations of design effect (deft) of sample regression 
co-efficients in the case of clustered population with high intra cluster correlation and 
shown that the deff’s are greater than one. Therefore, standard errors based on usual 
approach will be serious underestimate. The case where the parameter of interest is 
the finite population regression co-efficient and the finite population is a realization of 
a super population has been studied by Hartley and Seilken (1975). Hence both the 
sampled regression co-efficient and population regression coefficients are random 
variables in this approach. 

Scott and Holt (1982) consider model parameters as object of inference. Since 
clustering effects are qualitative rather than qualitative such effects are best 
represented by incorporating intra-cluster correlations into the covariance mapix of 
the regression residuals. 
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Under this model where observations are assumed to have come from a two-stage 
sample the effect of using ordinary least-squares estimators are examined. The OLS 
estimator is unbiased, but there is loss in efficiency and estimate of variance of the 
estimated co-efficients are serious under estimate. 

If the variable used for survey design is quantitative (design variable) in nature then 
the effect of survey design can be incorporated by including the design variable as 
another explanatory variable. Nathan and Holt (1980) have followed this approach. 
OLS estimator is shown to be biased. The maximum likelihood estimator derived 
under normality assumption by Demets and Halperin (1977) is shown to be 
asymptotically unbiased. In order to examine the effect of a quantitative design 
variable a simulation study was carried out which compared the probability weighted 
estimator and its variance, the ordinary least squares estimator and its least square 
variance and the maximum likelihood estimator and its normal theory variance in 
terms of the coverage probability of confidence intervals. The design variable was 
used to construct strata and to vary the selection probabilities within strata. The results 
of the study clearly demonstrated that the maximum likelihood estimator performs 
well over the other two estimators. However, in some other situation the p-weighted 
estimators also performed fairly well. 

Dwelling on the controversy relating to the model based and design-based approaches 
of inference Dumouchel and Duncan (1983) enumerate the efficiency advantage of a 
model-based estimator where the model holds and the consistency property of design-
based estimator whether or not the model holds. They also cite earlier references 
pertaining to the both sides of controversy. In addition a test is proposed, which can 
be performed with computer packages for linear regression to examine whether the 
model-based (un weighted) and design -based (weighted) regressions are different. If 
the null hypothesis, that there is no significance difference between weighted and 
unweighted estimators, is rejected the authors suggest using a weighted estimator 
while in the other case a unweighted estimator based purely on the assumptions of the 
model is suggested. The paper of Dumouchel and Duncan clearly illustrates the most-
essential consideration in choosing between model based and design - based 
inference, namely, efficiency under a correctly specified model versus consistency 
under failure of the assumptions of the model. 

Nathan (1981) points out the deficiencies of both the approaches of making inference. 
His criticism of the model based approach stems from the fact that it relies heavily on 
the assumption that the presumed model is correct - an assumption not realized very 
often practically indicating thereby that the model based inferences are not robust to 
departures from model. On the other hand design-based inferences are made on finite 
population parameters having little descriptive values in themselves. As a remedial 
action he suggests a compromise by taking only those finite population parameters 
which are close approximations of model parameters as target parameter of interest. 
In line with this argument he proposes estimating separate regression coefficients for 
sub-populations rather than estimating a single regression coefficient for the whole of 
the population. If the sub-populations are ,large enough this will ensure that the finite 
population regression closely approximate the super-population parameter, so that any 
inference relating to the finite population parameters can be considered as relating to 
the super-population parameter. 
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Commenting on the controversly, Kalton (1983 ) mentions that any approach to be 
adopted should depend on the purpose of analysis. If prediction is the ultimate aim the 
design-based approach should be adopted. However, if one is aiming higher i.e. 
developing a causal model that applies to other populations as well then model based 
approach is appropriate. 

 Regression models in Surveys 

The model very widely used is  

 Y X B e
− − − −
= +  

where Y
−

 denotes the vector of response variable, X
−

 the matrix of explanatory 

variables, e
−

 the vector of residuals, and the vector B
−

 denotes the regression 

coefficients obtained by minimizing the residual sums of squares over ‘N’ units in the 
population. The value of B

−
 is given by 

 B X X X Y
− − −

−

− −
= 




' '
1

 

 Kish and Frankel (1974) adopt this model. However, Duomouchel and Duncan 
(1983) note that this is not truly a model and it simply gives the definition of finite 
population parameter. 

Fuller (1975) and Hatley and Seilken (1975) consider current finite population as a 
random sample from a super-population with structure Y X B e

− − − −
= +  , where β

−
 is a 

vector of fixed constants and e
−

 are random error terms with ( )E eζ − −
= 0  and 

( )V e Vζ σ
− −
= 2  and expectations are taken with respect to the super-population or ζ  

distribution. The target parameter of interest is 

 B X V X X V YN
N

N
N N N− −

−

−

−

− −
−

−
=

















'

.

'1

1

1  

when V I
N N− −
=  , B

−
 reduces to X X X YN N N N

' '

− −

−

− −









1

 where X YN N
' ,

−
−

 are of dimension 

Nxp and pX 1 respectively. 

There are others who use the same model as above that is 

 Y X e
− − − −
= +β  
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with usual assumption but the target parameter of interest is β
−

 not B
−

 . The estimator 

is obtained by direct application of least squares. 

Some additional models are discussed in the survey sampling literature. These models 
can be considered in combination with each of the three cases discussed above. One 
of these models is of the form Y X e

j− − − −
= +β , or Y X B e

j− − − −
= +  where β

− j
 or B

j−
 are the 

regression coefficients in a subset of the population, such as a stratum or cluster. As 
mentioned earlier if the subsets are strata the β

− j

 or B
j−
  may be estimated separately 

for each stratum, but in the case of clusters this is not possible. Several authors have 
suggested an average of the β

− j
 or B

j−
 across subsets, such as π j jB∑  , where π j  is 

the proportion of the population in the jth subset , as a target parameter of interest 
(Konijn, (1962); Pfeffaramann and Nathan, (1977). Porter (1973), in considering a 
situation with several observations per unit, uses a model with Bi  specific to unit i, 

and he estimates the mean of Bi , B Ni /∑ .The Porter model is similar to the random 
coefficients regression model (see, for instance, Swamy, 1970) but the two models are 
not equivalent : in Porter’s model, the Bi

’’s are fixed for a given unit, but for the 
random coefficients model they are random variables. 

 Regression Analysis of Survey Data  

If B
−

 is the parameter of interest, it is estimated from a survey sample of size ‘n’ by 

 B
w

X W X X W Y
−

=
− −

−
−

−

− −
−

−











^ ' '1
1

1  

where X
−

 is the matrix of sample values of the explanatory variables. Y
−

 is (nx1) 

sampled vector of response variable, and W
−

 is (nxn) diagonal matrix of inclusion 

probabilities on the diagonal. For a super-population model with heteroscedastic 
variance covariance matrix of residuals, a weighted least squares may be used for 
sample estimator 

 β ^ ' '

− − −

−

−

−

− −

−

−
= 


X V X X V Y1

1
1  

The difference between the two estimators arise due to the weights used i.e. in the 
first case W

−

−1  and in other case V
−

−1  

In case of homoscedasticity and for self-weighting designs B
W

^

−
and β

−

^
 coincide. The 

estimator B
W−

^
 can be obtained directly from standard computer programs which 

provide for weighted regression (e.g. BMDP) by using the weights W
−

−1  or from 

packages like, SPSS by carrying out unweighted regression on the transformed 
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variables Wi
−1 X i , Wi

−1 Yi  However, under either alternative the reported 
variances and covariances of the estimators are incorrect. 

The model variance of β
−

^
 is 

 σ 2
1

X X
− −

−






'  

which is the result given by standard unweighted regression program. However, the 

model variance of B
W−

^
 is 

 σ 2 1
1

1 1 1
1

X W X X W W X X W X
−

−
−

− −
−

−
−

− − −
−

−

−











' ' ' '  

The weighted regression programs with weights W
−

−1  will give a different value i.e. 

σ 2 1
1

X W X
− −

−

−

−






'  for the model variance of B
W

^

−
 which equals V B

W

^

−







  only if 

W I
−

−

−
=1 .The design variance of B

W

^

−
 which should be the relevant measure of 

accuracy of B
W

^

−
 as an estimator of B

−
 can be estimated by techniques such as Taylor 

series linearization or sample reuse approach. The latter includes techniques such as 
balanced repeated replication, Jackknife repeated replications and boot strap method. 
The programs SURREGR from Research triangle Institute and SUPERCARP, (a PC 
version of it called PCCARP is now also available) from IOWA State University 
obtains variance estimates for regression statistics using the Taylor Series approach. 
The REPERR program in the Survey Research Center’s OSIRIS IV software system 
computes sampling errors of regression statistics by either the BRR or JRR methods 
(Lepkowski, 1982). 

Empirical comparisons of the variance estimators are given by Kish and Frankel 
(1974) and by Richards and Freeman (1980) and theoretical comparisons by Krowski 
and Rao (1981). Four methods of estimating variances of non-linear estimators have 
been described in detail by Kalton (1977) namely Taylor Expansion method, Simple 
Replicated Sampling, BRR and JRR. His empirical study reveals that the Taylor’s 
method ,BRR , and JRR method perform satisfactorily with Taylor’s method having 
slight edge. However, the replicated sampling method was found to be inferior. 

From the above discussion it is clear that the question central to regression analysis of 
survey data is choosing the appropriate approach and then the corresponding 
parameters of interest. Once this is sorted out the estimators, and the variance 
estimators are readily available. It can be seen that different solutions are available in 
the literature. Thus Dumouchel and Duncan suggest carrying out a test to settle the 
controversy, Nathan offers a compromise package, Brewer and Mellor emphasize on 
standardizing the model while Kalton stresses on keeping ones aim in view while 
making a decision regarding the approach to be followed. But no clear cut solutions 
are provided and ultimate decision rests on the person who is working on the problem. 
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16.3    MEASUREMENT ERRORS IN CONTEXT WITH REGRESSION 
ANALYSIS 

It is well known that data collected in sample surveys particularly that collected from 
human respondents are subject to measurement errors. The US Bureau of the census 
(1972) has reported estimates of response variance, as a percentage of total variance 
ranging from 0.5 to 40 percent. Battese et al (1972) report response variances of a 
similar magnitude for item associated with farm operations. In addition to response 
errors, coding and processing errors also occur. Also, imputation can be viewed as 
giving rise to measurement error - the measurement error in this case being the 
difference between imputed value and the true value. A sizable literature exists on the 
effects of random measurement errors on regression and correlation analysis 
especially in econometrics and psychometrics. If the response variable is subject to 
measurement errors, the regression coefficients are unaffected (although the estimates 
are less precise). If, however, the explanatory variables are subject to response error 
the least squares estimators are biased. If the response errors in the independent and 
dependent variables are correlated the bias is increased or decreased depending on the 
signs of error correlation. Cochran (1968) and chai (1971), discussed the effect of 
response variance on regression statistics. Fuller (1971), investigated the properties of 
errors in variables estimators of regressions parameters under super population model 
with normal errors. While estimating regression parameters in the presence of 
measurement errors Fuller (1975) utilising Frankel’s data (1971) found out that 
adjustment of the covariance matrix for response errors resulted in about ten percent 
increase in the estimated coefficients. The computer package SUPERCARP 
(Hidiroglou, Fisher and Hickman, 1980) provides the option of specifying 
uncorrelated measurement errors in model development. 

In practice measurement errors are unlikely to be random but they may well be 
correlated with other variables. The possible effect of correlated measurement errors 
on regression analysis is illustrated by Duncan and Hill (1984). In a survey data on 
labor earnings it was found that regression co-efficient of tenure variable was 
substantially underestimated when the survey response were used. They attribute this 
under estimation to the fact that there was a sizable negative correlation between the 
measurement error in reported earnings and the level of tenure. This emphasizes the 
importance of paying serious attention to the possible effect of measurement errors on 
the interpretation of regression analysis of survey data. 
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17.1  Introduction 

Regression analysis is a statistical methodology that utilizes the relation between two or 
more quantitative variables so that one variable can be predicted from the other, or others. 
This methodology is widely used in business, the social and behavioral sciences, the 
biological sciences including agriculture and fishery research. For example, fish weight at 
harvest can be predicted by utilizing the relationship between fish weights and other 
growth affecting factors like water temperature, dissolved oxygen, free carbon dioxide 
etc. There are other situations in fishery where relationship among variables can be 
exploited through regression analysis. 
 
Regression analysis serves three major purposes: (1) description (2) control and (3) 
prediction. We frequent use equations to summarize or describe a set of data. Regression 
analysis is helpful in developing such equations. For example we may collect a 
considerable amount of fish growth data and data on a number of biotic and abiotic 
factors, and a regression model would probably be a much more convenient and useful 
summary of those data than a table or even a graph. Besides prediction, regression 
models may be used for control purposes. A cause and effect relationship may not be 
necessary if the equation is to be used only for prediction. In this case it is only necessary 
that the relationships that existed in the original data used to build the regression equation 
are still valid. 
 
A functional relation between two variables is expressed by a mathematical formula. If X 
denotes the independent variable and Y the dependent variable, a functional relation is of 
the form 

Y = f(X) 
Given a particular value of X, the function f indicates the corresponding value of Y. A 
statistical relation, unlike a function is not a perfect one. In general, the observations for a 
statistical relation do not fall directly on the curve of relationship. 
 
Depending on the nature of the relationships between X and Y, regression approach may 
be classified into two broad categories viz., linear regression models and nonlinear 
regression models. The response variable is generally related to other causal variables 
through some parameters. The models that are linear in these parameters are known as 
linear models, whereas in nonlinear models parameters are appear nonlinearly. Linear 
models are generally satisfactory approximations for most regression applications. There 
are occasions, however, when an empirically indicated or a theoretically justified 
nonlinear model is more appropriate. In the present lecture we shall consider fitting of 
linear models only. 
 



 
REGRESSION ANALYSIS 

17.2 
 

 
17.2 Linear Regression Models 
We consider a basic linear model where there is only one predictor variable and the 
regression function is linear. Model with more than one predictor variable is straight 
forward. The model can be stated as follows: 

ii10i εββ ++= XY         (1)                            
 
Where Y i is the value of the response variable in the ith trial β0 and β1 are parameters, Xi 
is a known constant, namely, the value of the predictor variable in the ith trial, εi is a 
random error term with mean zero and variance σ2 and εi and εj are uncorrelated so that 
their covariance is zero. 
 
Regression model (1) is said to be simple, linear in the parameters, and linear in the 
predictor variable. It is “simple” in that there is only one predictor variable, “linear in the 
parameters” because no parameters appears as an exponent or its multiplied or divided by 
another parameter, and “linear in predictor variable” because this variable appears only in 
the first power. A model that is linear in the parameters and in the predictor variable is 
also called first order model. 
 
17.2.1 Meaning of Regression Parameters 

The parameters β0 and β1 in regression model (1) are called regression coefficients, β1 is 
the slope of the regression line. It indicates the change in the mean of the probability 
distribution of Y per unit increase in X. The parameter β0 in Y intercept of the regression 
line. When the scope of the model includes X = 0, β0 gives the mean of the probability 
distribution of Y at X = 0. When the scope of the model does not cover X = 0, β0 does not 
have any particular meaning as a separate term in the regression model. 
 
17.2.2 Method of Least Squares 

To find “good” estimates of the regression parameters β0 and β1, we employ the method 
of least squares. For each observations (Xi, Y i) for each case, the method of least squares 
considers the deviation of Y from its expected value, i 0 1 iβ βY X− − . In particular, the 
method of least squares requires that we consider the sum of the n squared deviations. 
This criterion is denoted by Q: 

∑ +−=
=

n

i
XYQ

1

2
i10i )ββ(                         

(2) 
According to the method of least squares, the estimators of β0 and β1 are those values b0 
and b1, respectively, that minimize the criterion Q for the given observations. 
 
Using the analytical approach, it can be shown for regression model (1) that the values of 
b0 and b1 that minimizes Q for any particular set of sample data are given by the 
following simultaneous equations: 
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These two equations are called normal equations and can be solved for b0 and b1: 
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where X and Y are the means of the Xi and the Y i observations, respectively. 
 
17.2.3 Properties of Fitted Regression Line 
Once the parameters estimates are obtained, the fitted line would be  

ii XbbY 10ˆ +=                 
(3) 

The ith residual is the difference between the observed value Yi and the corresponding 
fitted value iŶ , i.e., iii YYe ˆ−= . 

 
The estimated regression line (3) fitted by the method of least squares has a number of 
properties worth noting. 

1. The sum of the residuals is zero, 0
1

=∑
=

n

i
ie . 

2. Sum of the squared residuals, ∑
=

n

i
ie

1

2  is a minimum. 

3. Sum of the observed values Yi  equals the sum of the fitted values iŶ , 

∑=∑
==

n

i
i

n

i
i YY

11
ˆ . 

4. Sum of the weighted residuals is zero, weighted by the level of the predictor 

variable in the ith trial: 0
1

=∑
=

n

i
iieX . 

5. Sum of the weighted residuals is zero, weighted by the fitted value of the response 

variable in the ith trial: 0ˆ
1

=∑
=

n

i
iieY . 

6. The regression line always goes through the points ( YX , ). 
 

 



 
REGRESSION ANALYSIS 

17.4 
 

17.2.4 Estimation of Error Term Variance 2σ  
The variance 2σ of the error terms iε in regression model (1) needs to be estimated to 
obtain an indication of the variability of the probability distribution of Y. In addition, a 
variety of inferences concerning the regression function and the prediction of Y require an 
estimate of 2σ . 

Denote by SSE = ∑=∑ −
==

n

i
i

n

i
ii eYY

1

2

1

2)ˆ( , is the error sum of squares or residual sum of 

squares. Then an estimate of 2σ  is given by, 

  
pn

SSE
−

=σ2ˆ ,                   

(4) 
where p is the total number of parameters involved in the model. We also denote this 
quantity by MSE. 

 
17.2.5 Inferences in Linear Models 

Frequently, we are interested in drawing inferences about 1β , the slope of the regression 
line. At times, tests concerning 1β  are of interest, particularly one of the form: 
  010 =β=H  
  011 ≠β=H  
The reason for interest in testing whether or not 01 =β is that, when 01 =β , there is no 
linear association between Y and X. For normal error regression model, the condition 

01 =β  implies even more than no linear association between Y and X. 01 =β  for the 
normal error regression model implies not only that there is no linear association between 
Y and X but also that there is no relation of any kind between Y and X, since the 
probability distribution of Y are then identical at all levels of X. 

 
An explicit test of the alternatives is based on the test statistic: 

  
)( 1

1
bs
bt = , 

where )( 1bs is the standard error of b1 and calculated as )( 1bs =
∑ −
=

n

i
i XX

MSE

1

2)(
. 

The decision rule with this test statistic when controlling level of significance at α  is  
 if ),;2/1( pntt −α−≤   conclude H0,  

 if ),;2/1( pntt −α−>   conclude H1. 
Similarly testing for other parameters can be carried out. 
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17.2.6 Prediction of New Observations 
The new observation on Y to be predicted is viewed as the result of a new trial, 
independent of the trials on which the regression analysis is based. We denote the level of 
X for the new trial as Xh and the new observation on Y as Yh. Of course, we assume that 
the underlying regression model applicable for the basic sample data continues to be 
appropriate for the new observation. 
 
The distinction between estimation of the mean response, and prediction of a new 
response, is basic. In the former case, we estimate the mean of the distribution of Y. In the 
present case, we predict an individual outcome drawn from the distribution of Y. Of 
course, the great majority of individual outcomes deviate from the mean response, and 
this must be taken into account by the procedure for predicting Yh(new). We denote by hŶ , 

the predicted new observation and by )ˆ(2
hYσ the variance of hŶ . An unbiased estimator 

of )ˆ(2
hYσ  is given by )ˆ(ˆ 2

hYσ = )ˆ(ˆ 22
hYs+σ , where )ˆ(2

hYs  is the estimate of variance of 
prediction at Xh and given by 

)ˆ(2
hYs = 

∑ −

−
+σ

=

n

i
i

h

XX

XX
n

1

2

2
2

)(

)(1(ˆ .              

(5) 
Confidence interval of hŶ  can be constructed by using t-statistic namely, 

  );2/1(ˆ pntYh −α−± )ˆ(2
hYσ . 

 
17.2.7 Measure of Fitting, R2 
There are times when the degree of linear association is of interest in its right. Here we 
describe one descriptive measure that is frequently used in practice to describe the degree 
of linear association between Y and X. 

Denote by SSTO = ∑ −
=

n

i
i YY

1

2)( , total sum of squares which measures the variation in the 

observation Yi , or the uncertainty in predicting Y, when no account of the predictor 
variable X is taken. Thus SSTO is a measure of uncertainty in predicting Y when X is not 
considered. Similarly, SSE measures the variation in the Yi when a regression model 
utilizing the predictor variable X is employed. A natural measure of the effect of X in 
reducing the variation in Y, i.e., in reducing the uncertaintity in predicting Y, is to express 
the reduction in variation (SSTO-SSE=SSR) as a proportion of the total variation: 

 
SSTO
SSE

SSTO
SSRR −== 12               (6) 

The measure 2R  is called coefficient of determination, 10 2 ≤≤ R . In practice 2R  is not 
likely to be 0 or 1 but somewhere between these limits. The closer it is to 1, the greater is 
said to be the degree of linear association between X and Y. 
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17.2.8 Diagnostics and Remedial Measures  
When a regression model is considered for an application, we can usually not be certain 
in advance that the model is appropriate for that application, any one, or several, of the 
features of the model, such as linearity of the regression function or normality of the error 
terms, may not be appropriate for the particular data at hand. Hence, it is important to 
examine the aptness of the model for the data before inferences based on that model are 
undertaken. In this section we discuss some simple graphic methods for studying the 
appropriateness of a model, as well as some remedial measures that can be helpful when 
the data are not in accordance with the conditions of the regression model. 
 
17.2.8.1 Departures From Model to be Studied 
We shall consider following six important types of departures from linear regression 
model with normal errors: 
(i) The linearity of regression function.  
(ii) The constancy of error variance. 
(iii) The independency of error terms. 
(iv) Presence of  one or a few outlier observations.  
(v) The normal distribution of error terms. 
(vi) One or several important predictor variables have been omitted from the model. 
(vii) Presence of multicollinearity. 
  
17.2.8.2 Graphical Tests for Model Departures Nonlinearity of Regression Model 
Whether a linear regression function is appropriate for the data being analyzed can be 
studied from a residual plot against the predictor variable or equivalently from a residual 
plot against the fitted values. 
 
Figure 1(a) shows a prototype situation of the residual plot against X when a linear 
regression model is appropriate. The residuals then fall within a horizontal band centred 
around 0, displaying no systematic tendencies to be positive and negative. 
 
Figure 1(b) shows a prototype situation of a departure from the linear regression model 
that indicates the need for a curvilinear regression function. Here the residuals tend to 
vary in a systematic fashion between being positive and negative. 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

Fig. 1(a)  Fig. 1(b) 

 
Fig. 1(c) 

 Fig. 1(d) 
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Nonconstancy of Error Variance 
Plots of residuals against the predictor variable or against the fitted values are not only 
helpful to study whether a linear regression function is appropriate but also to examine 
whether the variance of the error terms is constant 
 
The prototype plot in Figure 1(a) exemplifies residual plots when error term variance is 
constant. Figure 1(c) shows a prototype picture of residual plot when the error variance 
increases with X. In many biological science applications, departures from constancy of 
the error variance tend to be of the “meghaphone” type. 
 
Presence of Outliers 
Outliers are extreme observations. Residual outliers can be identified from residual plots 
against X or Ŷ .   
 
Nonindependence of Error Terms 
Whenever data are obtained in a time sequence or some other type of sequence, such as 
for adjacent geographical areas, it is good idea to prepare a sequence plot of the residuals. 
The purpose of plotting the residuals against time or some other type of sequence is to see 
if there is any correlation between error terms that are near each other in the sequence. 
 
A prototype residual plot showing a time related trend effect is presented in Figure 1(d), 
which portrays a linear time related trend effect. When the error terms are independent, 
we expect the residuals in a sequence plot to fluctuate in a more or less random pattern 
around the base line 0. 
 
Nonnormality of Error Terms 
Small departures from normality do not create any serious problems. Major departures, 
on the other hand, should be of concern. The normality of the error terms can be studied 
informally by examining the residuals in a variety of graphic ways. 
 
Comparison of frequencies: when the number of cases is reasonably large is to compare 
actual frequencies of the residuals against expected frequencies under normality. For 
example, one can determine whether, say, about 90% of the residuals fall between 
± 1.645 MSE . 
 
Normal probability plot: Still another possibility is to prepare a normal probability plot of 
the residuals. Here each residual is plotted against its expected value under normality. A 
plot that is nearly linear suggests agreement with normality, whereas a plot that departs 
substantially from linearity suggests that the error distribution is not normal. 
 
Omission of Important Predictor Variables 
Residuals should also be plotted against variables omitted from the model that might 
have important effects on the response. The purpose of this additional analysis is to 
determine whether there are any key variables that could provide important additional 
descriptive and predictive power to the model. The residuals are plotted against the 
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additional predictor variable to see whether or not the residuals tend to vary 
systematically with the level of the additional predictor variable. 
 
17.2.8.3 Statistical Tests for Model departures 
Graphical analysis of residuals is inherently subjective. Nevertheless, subjective analysis 
of a variety of interrelated residuals plots will frequently reveal difficulties with the 
model more clearly than particular formal tests. 
 
 
 
Tests for Randomness 
A run test is frequently used to test for lack of randomness in the residuals arranged in 
time order. Another test, specially designed for lack of randomness in least squares 
residuals, is the  
 
Durbin-Watson test: 
The Durbin-Watson test   assumes the first order autoregressive error models. The test 
consists of determining whether or not the autocorrelation coefficient ( ρ , say) is zero. 
The usual test alternatives considered are: 
 0:0 =ρH  

0:0 >ρH  
The Durbin-Watson test statistic D is obtained by using ordinary least squares to fit the 
regression function, calculating the ordinary residuals: ttt YYe ˆ−= , and then calculating 
the statistic: 
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D                  

(7) 
Exact critical values are difficult to obtain, but Durbin-Watson have obtained lower and 
upper bound Ld and Ud  such that a value of D outside these bounds leads to a definite 
decision. The decision rule for testing between the alternatives is: 
 if  D > dU, conclude H0 
 if  D <dL, conclude H1 
 if   UL dDd ≤≤ , test is inconclusive. 
Small value of D lead to the conclusion that ρ >0. 
 
 
 
Tests for Normality 
Correlation Test for Normality:In addition to visually assessing the appropriate 
linearity of the points plotted in a normal probability plot, a formal test for normality of 
the error terms can be conducted by calculating the coefficient of correlation between 
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residuals ei and their expected values under normality. A high value of the correlation 
coefficient is indicative of normality. 
 
Kolmogorov-Smirnov test : The Kolmogorov-Smirnov test  is used to decide if a 
sample comes from a population with a specific distribution. The Kolmogorov-Smirnov 
(K-S) test is based on the empirical distribution function (ECDF). Given N ordered data 
points 1 2, ,..., NY Y Y , the ECDF is defined as  

( ) /NE n i N= , 
where ( )n i   is the number of points less than Yi and the Yi are ordered from smallest to 
largest value. This is a step function that increases by 1/N at the value of each ordered 
data point. The graph below is a plot of the empirical distribution function with a normal 
cumulative distribution function for 100 normal random numbers. The K-S test is based 
on the maximum distance between these two curves.  

 

An attractive feature of this test is that the distribution of the K-S test statistic itself does 
not depend on the underlying cumulative distribution function being tested. Another 
advantage is that it is an exact test (the chi-square goodness-of-fit test depends on an 
adequate sample size for the approximations to be valid). Despite these advantages, the 
K-S test has several important drawbacks: 

1. It only applies to continuous distributions.  
2. It tends to be more sensitive near the center of the distribution than at the tails.  
3. Perhaps the most serious limitation is that the distribution must be fully specified. 

That is, if location, scale, and shape parameters are estimated from the data, the 
critical region of the K-S test is no longer valid. It typically must be determined 
by simulation.  

Due to limitations 2 and 3 above, many analysts prefer to use the Anderson-Darling 
goodness-of-fit test.   
The Kolmogorov-Smirnov test is defined by:  

H0: The data follow a specified distribution 

http://itl.nist.gov/div898/handbook/eda/section3/eda35e.htm
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H1: The data do not follow the specified distribution 
The Kolmogorov-Smirnov test statistic is defined as  

1

1max ( ( ) , ( ))i i
i N

i iD F Y F Y
N N≤ ≤

−
= − −         

 (9) 
where F is the theoretical cumulative distribution of the distribution being tested which 
must be a continuous distribution (i.e., no discrete distributions such as the binomial or 
Poisson), and it must be fully specified (i.e., the location, scale, and shape parameters 
cannot be estimated from the data). 
 
The hypothesis regarding the distributional form is rejected if the test statistic, D, is 
greater than the critical value obtained from a table. There are several variations of these 
tables in the literature that use somewhat different scalings for the K-S test statistic and 
critical regions. These alternative formulations should be equivalent, but it is necessary to 
ensure that the test statistic is calculated in a way that is consistent with how the critical 
values were tabulated.  
 
Anderson-Darling Test: The Anderson-Darling test is used to test if a sample of data 
came from a population with a specific distribution. It is a modification of the 
Kolmogorov-Smirnov (K-S) test and gives more weight to the tails than does the K-S 
test. The K-S test is distribution free in the sense that the critical values do not depend on 
the specific distribution being tested. The Anderson-Darling test makes use of the 
specific distribution in calculating critical values. This has the advantage of allowing a 
more sensitive test and the disadvantage that critical values must be calculated for each 
distribution. Currently, tables of critical values are available for the normal, lognormal, 
exponential, Weibull, extreme value type I, and logistic distributions.   
 The Anderson-Darling test is defined as:  

H0: The data follow a specified distribution. 
H1: The data do not follow the specified distribution 

The Anderson-Darling test statistic is defined as 2A N S= − − , 

where, 1
1

(2 1)[ln ( ) ln(1 ( )]
N

i N i
i

iS F Y F Y
N + −

=

−
= + −∑              

(10) 
F is the cumulative distribution function of the specified distribution. Note that the Yi are 
the ordered data. The critical values for the Anderson-Darling test are dependent on the 
specific distribution that is being tested. Tabulated values and formulas are available in 
literature for a few specific distributions (normal, lognormal, exponential, Weibull, 
logistic, extreme value type 1). The test is a one-sided test and the hypothesis that the 
distribution is of a specific form is rejected if the test statistic, A, is greater than the 
critical value.  

 
Tests for Constancy of Error Variance 
Modified Levene Test : The test is based on the variability of the residuals. Let ei1 
denotes the ith residual for group 1 and ei2 denotes the ith residual for group 2. Also we 
denote n1 and n2 to denote the sample sizes of the two groups, where: n1 + n2 = n. 

http://itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda363.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3669.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda3668.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda366g.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda362.htm#CDF
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Further, we shall use 1
~e and 2

~e to denote the medians of the residuals in the two groups. 
The modified Levene test uses the absolute deviations of the residuals around their 
median, to be denoted by di1 and di2: 

111
~eed ii −= ,     222

~eed ii −=  
With this notation, the two-sample t test statistic becomes: 
 

*
Lt = 

21

21

11
nn

s

dd

+

−                

(11) 
Where 1d and 2d are the sample means of the di1 and di2, respectively, and the pooled 
variance s2   is: 

2
)()( 2

22
2

112

−

−+−
= ∑ ∑

n
dddd

s ii . 

If the error terms have constant variance and n1 and n2 are not too small, *
Lt  follows 

approximately the t distribution with n-2 degrees of freedom. Large absolute values of 
*
Lt indicate that the error terms do not have constant variance. 

 
White Test  In statistics, the White test is a statistical test that establishes whether the 
residual variance of a variable in a regression model is constant: that is for 
homoscedasticity. This test, and an estimator for heteroscedasticity-consistent standard 
errors, were proposed by Halbert White in 1980. These methods have become extremely 
widely used, making this paper one of the most cited articles in economics. To test for 
constant variance one undertakes an auxiliary regression analysis: this regresses the 
squared residuals from the original regression model onto a new set of regressors, which 
the contains the original regressors, the cross-products of the regressors and the squared 
regressors. One then inspects the R2. The LM test statistic is the product of the R2 value 
and sample size: 

2.LM n R=                 
(13) 

This follows a chi-square distribution, with degrees of freedom equal to the number of 
estimated parameters (in the auxiliary regression) minus one. 
 
Tests for Outlying Observations 
(i) Elements of Hat Matrix : The Hat matrix is defined as XXXXH ′′= −1)( , X is 
the matrix for explanatory variables. The larger values reflect data points are outliers.  
 
(ii) WSSDi: WSSDi is an important statistic to locate points that are remote in x-
space. WSSDi measures the weighted sum of squared distance of the ith point from the 
center of the data.  Generally if the WSSDi values progress smoothly from small to large, 
there are probably no extremely remote points. However, if there is a sudden jump in the 
magnitude of WSSDi, this often indicates that one or more extreme points are present. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Regression_model
http://en.wikipedia.org/wiki/Homoscedasticity
http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
http://en.wikipedia.org/wiki/Halbert_White
http://en.wikipedia.org/wiki/Regressor
http://en.wikipedia.org/wiki/Regressor
http://en.wikipedia.org/wiki/Chi-square_distribution
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(iii) Cook's Di: Cook's Di is designed to measure the shift in ŷ when ith obsevation is 
not used in the estimation of parameters. iD  follows approximately ( )1pn,pF −− (1-α). 
Lower 10% point of this distribution is taken as a reasonable cut off (more conservative 

users suggest the 50% point). The cut off for iD  can be taken as 
n
4 . 

(iv) DFFITSi : DFFIT is used to measure difference in ith component of ( )( )iŷŷ − . It 

is suggested that 
2

1

i n
1p2DFFITS 





 +

≥ may be used to flag off influential observations.  

(v) )i(jDFBETAS : Cook's iD  reveals the impact of ith observation on the entire 
vector of the estimated regression coefficients. The influential observations for individual 
regression coefficient are identified by 1p,...,2,1j,DFBETAS )i(j += , where each 

)i(jDFBETAS  is the standardized change in jb  when the ith observation is deleted. 

 (vi) iCOVRATIO :The impact of the ith observation on variance-covariance matrix of 
the estimated regression coefficients is measured by the ratio of the determinants of the 
two variance-covariance matrices. Thus, COVRATIO reflects the impact of the ith 
observation on the precision of the estimates of the regression coefficients. Values near 1 
indicate that the ith observation has little effect on the precision of the estimates. A value 
of COVRATIO greater than 1 indicates that the deletion of the ith observation decreases 
the precision of the estimates; a ratio less than 1 indicates that the deletion of the 
observation increases the precision of the estimates. Influential points are indicated by 

( )
n

1p31COVRATIOi
+

>− . 

(vii) iFVARATIO : The statistic detects change in variance of iŷ  when an observation 
is deleted. A value near 1 indicates that the ith observation has negligible effect on 
variance of iy . A value greater than 1 indicates that deletion of the ith observation 
decreases the precision of the estimates, a value less than one increases the precision of 
the estimates. 
 
Tests for Multicollinearity  
The use and interpretation of a multiple regression model depends implicitly on the 
assumption that the explanatory variables are not strongly interrelated. In most regression 
applications the explanatory variables are not orthogonal. Usually the lack of 
orthogonality is not serious enough to affect the analysis. However, in some situations the 
explanatory variables are so strongly interrelated that the regression results are 
ambiguous. Typically, it is impossible to estimate the unique effects of individual 
variables in the regression equation. The estimated values of the coefficients are very 
sensitive to slight changes in the data and to the addition or deletion of variables in the 
equation. The regression coefficients have large sampling errors which affect both 
inference and forecasting that is based on the regression model. The condition of severe 
non-orthogonality is also referred to as the problem of multicollinearity. 
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The presence of multicollinearity has a number of potentially serious effects on the least 
squares estimates of regression coefficients as mentioned above. Some of the effects may 
be easily demonstrated.  Multicollinearity also tends to produce least squares estimates 

jb  that are too large in absolute value.   
  
Detection of Multicollinearity 
Let ( )ijrR =  and ( )ij1 rR =−  denote simple correlation matrix and its inverse. Let 

( )11ppi ....p,...,2,1i, λλλλ ≤≤= −  denote the eigen values of R. The following are 
common indicators of relationships among independent variables. 
1. Simple pair-wise correlations 1rij =  

2. The squared multiple correlation coefficients 

9.0
r
11R ii

2
i >−= , where 2

iR  denote the squared multiple correlation coefficients for the 

regression of xI on the remaining x variables. 
3. The variance inflation factors, 10rVIF ii

i >=  and  
4. eigen values, 0i =λ . 
The first of these indicators, the simple correlation coefficients between pairs of 
independent variables ijr , may detect a simple relationship between ix  and jx . Thus 

1rij =  implies that the ith and jth variables are nearly proportional. 

 
The second set of indicators, 2

iR , the squared multiple correlation coefficient for the 
regression of ix  on the remaining x variables indicates the degree to which ix  is 
explained by a linear combination of all of the other input variables. 
 
The third set of indicators, the diagonal elements of the inverse matrix, which have been 
labeled as the Variance Inflation Factors, iVIF . The term arises by noting that with 
standardized data (mean zero and unit sum of squares), the variance of the least squares 
estimate of the ith coefficient is proportional to iir , 10VIFi >  is probably based on the 

simple relation between iR  and iVIF . That is 10VIFi >  corresponds to 9.0R2
i > . 

 
17.2.8.4 Overview of Remedial Measures 
If the simple regression model (1) is not appropriate for a data set, there are two basic 
choices: 
 

1. Abandon regression model and develop and use a more appropriate model. 
 

2. Employ some transformation on the data so that regression model (1) is 
appropriate for the transformed data. 
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Each approach has advantages and disadvantages. The first approach may entail a more 
complex model that could yield better insights, but may also lead to more complex 
procedure for estimating the parameters. Successful use of transformations, on the other 
hand, lead to relatively simple methods of estimation and may involve fewer parameters 
than a complex model, an advantage when the sample size is small. Yet transformation 
may obscure the fundamental interconnections between the variables, though at times 
they may illuminate them. 
 
Nonlinearity of Regression Function 
When the regression function is not linear, a direct approach is to modify regression 
model (1) by altering the nature of the regression function. For instance, a quadratic 
regression function might be used. 

iiii XXY ε+β+β+β= 2
210  

or an exponential regression function: 

i
X

i
iY ε+γγ= 10 . 

When the nature of the regression function is not known, exploratory analysis that does 
not require specifying a particular type of function is often useful. 
 
Nonconstancy of Error Variance 
When the error variance is not constant but varies in a systematic fashion, a direct 
approach is to modify the method to allow for this and use the method of weighted least 
squares to obtain the estimates of the parameters. 
 
Transformations is another way in stabilizing the variance.  We first consider 
transformation for linearizing a nonlinear regression relation when the distribution of the 
error terms is reasonably close to a normal distribution and the error terms have 
approximately constant variance. In this situation, transformation on X should be 
attempted. The reason why transformation on Y may not be desirable here is that a 
transformation on Y, such as YY =′ , may materially change the shape of the 
distribution and may lead to substantially differing error term variance.  
 
Following transformations are generally applied for stabilizing variance. 
(1) when the error variance is rapidly increasing YY 10log=′  or YY =′  
(2) when the error variance is slowly increasing, 2YY =′  or )(YExpY =′  
(3) when the error variance is decreasing, YY /1=′  or  )( YExpY −=′ . 
 
Box - Cox Transformations: It is difficult to determine, which transformation of Y is 
most appropriate for correcting skewness of the distributions of error terms, unequal error 
variance, and nonlinearity of the regression function. The Box-Cox transformation 
automatically identifies a transformation from the family of power transformations on Y. 
The family of power transformations is of the form: λYY =′ , where is a parameter to be 
determined from the data. Using standard computer programme it can be determined 
easily. 
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Nonindependence of Error Terms 
When the error terms are correlated, a direct approach is to work with a model that calls 
for error terms. A simple remedial transformation that is often helpful is to work with 
first differences. 
 
Nonnormality of Error terms 
Lack of normality and non-constant error variance frequently go hand in hand. 
Fortunately, it is often the case that the same transformation that helps stabilize the 
variance is also helpful in approximately normalizing the error terms. It is therefore, 
desirable that the transformation for stabilizing the error variance be utilized first, and 
then the residuals studied to see if serious departures from normality are still present. 
 
Omission of Important Variables 
When residual analysis indicates that an important predictor variable has been omitted 
from the model, the solution is to modify the model. 
 
Outlying Observations 
Outliers can create great difficulty. When we encounter one, our first suspicion is that the 
observation resulted from a mistake or other extraneous effect. On the other hand, 
outliers may convey significant information, as when an outlier occurs because of an 
interaction with another predictor omitted from the model. A safe rule frequently 
suggested is to discard an outlier only if there is direct evidence that it represents in error 
in recording, a miscalculation, a malfunctioning of equipment, or a similar type of 
circumstances. When outlying observations are present, use of the least squares and 
maximum likelihood estimates for regression model (1) may lead to serious distortions in 
the estimated regression function. When the outlying observations do not represent 
recording errors and should not be discarded, it may be desirable to use an estimation 
procedure that places less emphasis on such outlying observations. Robust Regression 
falls under such methods. 
 
 
Multicollinearity 
i) Collection of additional data: Collecting additional data has been suggested as 
one of the methods of combating multicollinearity. The additional data should be 
collected in a manner designed to break up the multicollinearity in the existing data. 
 
ii) Model respecification: Multicollinearity is often caused by the choice of model, 
such as when two highly correlated regressors are used in the regression equation. In 
these situations some respecification of the regression equation may lessen the impact of 
multicollinearity. One approach to respecification is to redefine the regressors. For 
example, if x1, x2 and x3 are nearly linearly dependent it may be possible to find some 
function such as x = (x1+x2)/x3 or x = x1x2x3 that preserves the information content in 
the original regressors but reduces the multicollinearity. 
 
iii) Ridge Regression: When method of least squares is used, parameter estimates are 
unbiased. A number of procedures have been developed for obtaining biased estimators 
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of regression coefficients to tackle the problem of multicollinearity. One of these 
procedures is ridge regression. The ridge estimators are found by solving a slightly 
modified version of the normal equations. Each of the diagonal elements of XX′ matrix 
are added a small quantity.  
   
Example 

Table 1 

Case X11 X21 X31 Yi 
1 12.980 0.317 9.998 57.702 
2 14.295 2.028 6.776 59.296 
3 15.531 5.305 2.947 56.166 
4 15.133 4.738 4.201 55.767 
5 15.342 7.038 2.053 51.722 
6 17.149 5.982 -0.055 60.446 
7 15.462 2.737 4.657 60.715 
8 12.801 10.663 3.048 37.447 
9 17.039 5.132 0.257 60.974 
10 13.172 2.039 8.738 55.270 
11 16.125 2.271 2.101 59.289 
12 14.340 4.077 5.545 54.027 
13 12.923 2.643 9.331 53.199 
14 14.231 10.401 1.041 41.896 
15 15.222 1.220 6.149 63.264 
16 15.740 10.612 -1.691 45.798 
17 14.958 4.815 4.111 58.699 
18 14.125 3.153 8.453 50.086 
19 16.391 9.698 -1.714 48.890 
20 16.452 3.912 2.145 62.213 
21 13.535 7.625 3.851 45.625 
22 14.199 4.474 5.112 53.923 
23 15.837 5.753 2.087 55.799 
24 16.565 8.546 8.974 56.741 
25 13.322 8.589 4.011 43.145 
26 15.949 8.290 -0.248 50.706 
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Table 2:  Indicators of Influential Observations 

Case ri ti tI*=s.t/si hii Di WSSDi 

1 0.460 0.289 0.281 0.215 0.005 39* 
2 1.253 0.732 0.724 0.093 0.013 12 
3 0.377 0.215 0.210 0.048 0.001 1 
4 0.044 0.025 0.026 0.042 0.000 1 
5 -0.256 -0.146 -0.141 0.053 0.000 3 
6 1.010 0.611 0.602 0.155 0.017 20 
7 0.389 0.226 0.221 0.081 0.001 7 
8 0.132 0.088 0.086 0.301 0.001 41 
9 0.432 0.262 0.256 0.155 0.003 18 
10 0.589 0.355 0.347 0.147 0.005 23 
11 -3.302 -2.021 -2.193 0.173 0.214 14 
12 -0.406 -0.232 -0.226 0.053 0.001 3 
13 0.194 0.118 0.117 0.163 0.001 24 
14 -0.268 -0.164 -0.161 0.175 0.001 23 
15 0.802 0.476 0.469 0.122 0.007 15 
16 -0.482 -0.295 -0.289 0.177 0.005 26 
17 3.756 2.134 2.343 0.041 0.048 0 
18 -6.072 -3.589 -5.436 0.114 0.412 8 
19 -1.198 -0.727 -0.719 0.160 0.025 24 
20 1.126 0.666 0.658 0.114 0.014 11 
21 0.449 0.266 0.259 0.119 0.003 12 
22 0.791 0.453 0.444 0.055 0.003 3 
23 -0.060 -0.035 -0.032 0.059 0.000 3 
24 0.574 1.181 1.188 0.927 4.409 19 
25 0.268 0.163 0.158 0.159 0.001 19 
26 -0.606 -0.356 -0.350 0.101 0.004 11 
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Table 3:  Indicators of Influential Observations 

Case Cov Ratio Dffits Intercept X1 X2 X3 

    DFBETAS 
1 1.512 0.148 0.056 -0.053 -0.006 0.006 
2 1.203 0.232 0.062 -0.042 -0.042 -0.050 
3 1.254 0.047 -0.005 0.010 -0.008 -0.007 
4 1.257 0.005 0.000 0.000 -0.001 0.000 
5 1.267 -0.033 -0.001 -0.001 -0.006 0.006 
6 1.331 0.258 -0.095 0.132 -0.042 -0.050 
7 1.299 0.068 -0.005 0.015 -0.036 -0.005 
8 1.721 0.057 0.027 -0.034 0.026 -0.006 
9 1.408 0.109 -0.030 0.048 -0.035 -0.031 
10 1.380 0.144 0.058 -0.058 -0.041 0.016 
11 0.639 -1.004 -0.154 -0.045 0.776 0.525 
12 1.260 -0.054 -0.017 0.014 0.014 0.000 
13 1.435 0.051 0.017 -0.19 -0.004 0.013 
14 1.452 -0.074 -0.026 0.031 -0.35 0.015 
15 1.315 0.175 -0.008 0.033 -0.105 0.002 
16 1.441 -0.134 -0.014 0.014 -0.044 0.047 
17 0.496 0.482 0.061 -0.17 -0.107 -0.046 
18 0.410 -1.945 0.362 -0.308 -0.220 -1.177 
19 1.301 -0.341 0.031 -0.045 -0.080 0.094 
20 1.252 0.236 -0.055 0.097 -0.105 -0.051 
21 1.350 0.095 0.054 -0.061 0.024 -0.018 
22 1.228 0.108 0.052 -0.048 -0.028 -0.020 
23 1.279 -0.008 0.001 -0.002 0.001 0.002 
24 12.715 4.230 -3.642 3.276 3.180 3.934 
25 1.426 0.069 0.031 -0.039 0.029 -0.003 
26 1.309 -0.117 0.000 -0.007 -0.016 0.043 

 
 
 
 
 
 
 



 
REGRESSION ANALYSIS 

 

17.19 
 

Table 4:  Regression Coefficients and Summary Statistics 

Description  b0 b1 b2 b3 s R2 Max 
VIF 

Min 
e.v. 

Max 
Ri

2 

All Data (n=26) 8.11 3.56 -1.63 0.34 1.80 0.94 2.82 0.210 0.65 
Delete (11, 17, 

18) 
7.17 3.66 -1.79 0.40 0.51 0.99 2.85 0.210 0.65 

Delete (24) 30.91 2.39 -2.14 -
0.36 

1.78 0.94 30.64 0.017 0.97 

Delete (11, 17, 
18, 24) 

24.27 2.79 -2.11 -
0.16 

0.50 0.99 171.90 0.003 0.99 

Ridge k=0.05 
(n=22) 

14.28 3.22 -1.73 0.25 0.66 0.99 10.20 0.053 0.90 

Delete X3 (n=22) 19.50 3.03 -2.00  0.49 0.99 1.02 0.863 0.02 
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18.1 Introduction 

Regression analysis is a method for investigating functional relationships among 
variables. The relationship is expressed in the form of an equation or a model connecting 
the response or dependent variable and one or more explanatory or predictor variables.  
Most of the variables in this model are quantitative in nature. Estimation of parameters in 
this regression model is based on four basic assumptions.  First, response or dependent 
variable is linearly related with explanatory variables. Second, model errors are 
independently and identically distributed as normal variable with mean zero and common 
variance.  Third, independent or explanatory variables are measured without errors.  The 
last assumption is about equal reliability of observations.   

 
In case, our response variable in model is qualitative in nature, then probabilities of 
falling this response variable in various categories can be modeled in place of response 
variable itself, using same model but there are number of constraints in terms of 
assumptions of multiple regression model.  First, since the range of probability is between 
0 and 1, whereas, right hand side function in case of multiple regression models is 
unbounded.  Second, error term of the model can take only limited values and error 
variance are not constants but depends on probability of falling response variable in a 
particular category. 

 
Generally, conventional theory of multiple linear regression (MLR) analysis has been 
applied for a quantitative response variable, while for the qualitative response variable or 
more specifically for binary response variable it is better to consider alternative models. 
As for example, considering following scenarios:  

 
• A pathologist may be interested whether the probability of a particular disease can 
be predicted using tillage practice, soil texture, date of sowing, weather variables etc. 
as predictor or independent variables.  
 
• An economist may be interested in determining the probability that an agro-based 
industry will fail given a number of financial ratios and the size of the firm (i.e. large 
or small). 

 
Usually discriminant analysis could be used for addressing each of the above problems. 
However, because the independent variables are mixture of categorical and continuous 
variables, the multivariate normality assumption may not hold. Structural relationship 
among various qualitative variables in the population can be quantified using number of 
alternative techniques.  In these techniques, primary interest lies on dependent factor 
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which is dependent on other independent factors. In these cases the most preferable 
technique is either probit or logistic regression analysis as it does not make any 
assumptions about the distribution of the independent variables.  The dependent factor is 
known as response factor.  In this model building process, various log odds related to 
response factors are modelled.  As a special case, if response factor has only two 
categories with probabilities p1 and p2 respectively then the odds of getting category one 
is (p1 / p2).  If log (p1 / p2) is modelled using ANalysis Of VAriance (ANOVA) type of 
model, it is called logit model. Again, if the same model is being treated as regression 
type model then it is called logistic regression model.  In a real sense, logit and logistic 
are names of transformations. In case of logit transformation, a number p between values 
0 and 1 is transformed with log {p/(1-p)}, whereas in case of logistic transformation a 
number x between - ∞ to + ∞ is transformed with {ex /(1 + ex)}  function.  It can be seen 
that these two transformation are reverse of each other i.e. if logit transformation is 
applied on logistic transformation function, it provides value x and similarly, if logistic 
transformation is applied to logit transformation function it provides value p.  Apart from 
logit or logistic regression models, other techniques such as CART i.e. Classification And 
Regression Trees can also be used to address such classification problems.  A good 
account of literature on logistic regression are available, to cite a few, Fox(1984), 
Klienbaum (1994) etc.  

 
18.2 Violation of Assumptions of Linear Regression Model when Response is 
Qualitative                                                                                                                               
Linear regression is considered in order to explain the constraints in using such model 
when the response variable is qualitative. Consider the following simple linear regression 
model with single predictor variable and a binary response variable: 
 
             i 0 1 i iY =β +β X +ε  , i = 1, 2, …, n     

where the outcome Yi is binary (taking values 0,1), 2
i εε ~ N (0,σ )  ,   and   are independent 

and n is the number of observations.  
Let  iπ  denote the probability that Yi =1 when Xi = x, i.e. 
                      i i i iπ = P(Y =1|X = x) = P(Y =1)                                                            
thus          i iP(Y = 0) =1-π       .                           
Under the assumption iE(ε ) 0= , the expected value of the response variable is  

i i i iE(Y ) =1.(π ) +0.(1-π ) = π  
If the response is binary, then the error terms   can take on two values, namely, 
                      i iε 1 π= −       when Yi =1 
                       i iε π= −      when Yi =0 
Because the error is dichotomous (discrete), normality assumption is violated. Moreover, 
the error variance is given by: 

                                  
2 2

i i i i i

i i

V(ε ) π (1-π ) (1-π )(-π )
π (1-π )

= +
=
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It can be seen that variance is a function of  iπ 's  and it is not constant. Therefore the 
assumption of homoscadasticity (equal variance) does not hold. 

18.3 Binary Logistic regression 

Logistic regression is normally recommended when the independent variables do not 
satisfy the multivariate normality assumption and at the same time the response variable 
is qualitative.  Situations where the response variable is qualitative and independent 
variables are mixture of categorical and continuous variables, are quite common and 
occur extensively in statistical applications in agriculture, medical science etc. The 
statistical model preferred for the analysis of such binary (dichotomous) responses is the 
binary logistic regression model, developed primarily by a researcher named Cox during 
the late 1950s.   Processes producing sigmoidal or elongated S-shaped curves are quite 
common in agricultural data. Logistic regression models are more appropriate when 
response variable is qualitative and a non-linear relationship can be established between 
the response variable and the qualitative and quantitative factors affecting it.  It addresses 
the same questions that discriminant function analysis and multiple regression do but with 
no distributional assumptions on the predictors. In logistic regression model, the 
predictors need not have to be normally distributed, the relationship between response 
and predictors need not be linear or the observations need not have equal variance in each 
group etc.  A good account on logistic regression can be found in Fox (1984) and 
Kleinbaum (1994). 
 
The problem of non-normality and heteroscadasticity (see section 2) leads to the non 
applicability of least square estimation for the linear probability model. Weighted least 
square estimation, when used as an alternative, can cause the fitted values not constrained 
to the interval (0, 1) and therefore cannot be interpreted as probabilities. Moreover, some 
of the error variance may come out to be negative. One solution to this problem is simply 
to constrain π to the unit interval while retaining the linear relation between π and 
regressor X within the interval. Thus 
             

0 1

0 1 0 1

0 1

0 ,β +β X 0
π = β +β X ,0 β +β X 1

1 ,β +β X 1

<
 ≤ ≤
 >

 

However, this constrained linear probability model has certain unattractive features such 
as abrupt changes in slope at the extremes 0 and 1 making it hard for fitting the same on 
data. A smoother relation between π and X is generally more sensible. To correct this 
problem, a positive monotone (i.e. non-decreasing) function is required to transform (β0 + 
β1xi) to unit interval. Any cumulative probability distribution function (CDF) P, meets 
this requirement. That is, respecify the model as  πi = P (β0 + β1xi). Moreover, it is 
advantageous if P is strictly increasing, for then, the transformation is one-to-one, so that 
model can be rewritten as P-1(πi) = (β0 + β1xi), where  P-1 is the inverse of the CDF P. 
Thus the non-linear model for itself will become both smooth and symmetric, 
approaching π = 0 and   π = 1 as asymptotes. Thereafter maximum likelihood method of 
estimation can be employed for model fitting. 
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18.3.1 Properties of Logistic Regression Model 

The Logistic response function resembles an S-shape curve, a sketch of which is given in 
the following figure. Here the probability π initially increases slowly with increase in X, 
and then the increase accelerates, finally stabilizes, but does not increase beyond 1.      
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

X

P
ro

b
ab

il
it

y

     
                         
The shape of the S-curve can be reproduced if the probabilities can be modeled  with only 
one predictor variable as follows: 

-zπ = P(Y=1|X= x) = 1/(1+e )     
where z = β0 + β1x, and e is the base of the natural logarithm. Thus for more than one 
(say r) explanatory variables, the probability π is modeled as  

1 1 r r
-z

π = P(Y=1|X = x ...X = x )

=1/(1+e )
 

where     0 1 1 r rz = β +β x +...+β x . 
This equation is called the logistic regression equation. It is nonlinear in the parameters 
β0, β1… βr.  Modeling the response probabilities by the logistic distribution and 
estimating the parameters of the model constitutes fitting a logistic regression. The 
method of estimation generally used is the maximum likelihood estimation method.  
 
To explain the popularity of logistic regression, let us consider the mathematical form on 
which the logistic model is based. This function, called f (z), is given by   
                 f (z) = 1/ (1+e-z) , -∞ < z < ∞                                                                   
Now when z = -∞, f (z) =0 and when z = ∞, f (z) =1. Thus the range of f (z) is 0 to1. So 
the logistic model is popular because the logistic function, on which the model is based, 
provides  
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• Estimates that lie in the range between zero and one.  
• An appealing S-shaped description of the combined effect of several explanatory 
variables on the probability of an event. 
 
18.3.2 Maximum Likelihood Method of Estimation of Logistic Regression 

For simplicity, a simple binary logistic regression model with only one explanatory 
variable is considered. The model is given by 

 
-z

i i i iπ = P(Y =1|X = x ) = 1/(1+e )            
where z = β0 + β1xi, and e is the base of the natural logarithm. The binary response 
variable Yi takes only two values (say 0 and 1). Since each Yi observation is an ordinary 
Bernoulli random variable, where: 
               P (Yi = 1) = πi  
  and       P (Yi = 1) = 1 - πi,  
the probability distribution function is represented as follows: 

              
i iY 1-Y

i i i i if (Y )= π (1- π ) ,Y = 0,1;i=1,2,...,n                                              
 

Since iY ’s are independent, then the joint probability density function is:                                                                      

               

i i

i i

n n
Y 1-Y

1 n i i i i
i=1 i=1

n
Y 1-Y

e 1 n e i i
i=1

n
i e i i

i=1

g(Y ...Y ) = f (Y ) = π (1- π )

log g(Y ...Y ) = log π (1- π )

= Y log π /(1-π )

∏ ∏

∏

∑
                                              

Since E (Yi) = πi, for a binary variable it follows that 

             
( )0 1 i

1- β +β X
i1-π = 1+e

−
 
                 

Then, 

             [ ]e i i 0 1 ilog π /(1-π ) =β +β X        
Hence the log likelihood function can be expressed as follows: 

             

( )0 1 i
n n - β +β X

e 0 1 i 0 1 i e
i=1 i=1

log L(β ,β ) = Y (β +β X )- log 1+e 
  ∑ ∑

          
where L (β0, β1) replaces g (Y1… Yn) to show explicitly that the function can now be 
viewed as the likelihood function of the parameters to be estimated, given the sample 
observations.  
 
The maximum likelihood estimates β0 and β1 in the simple logistic regression model are 
those values of β0 and β1 that maximize the log-likelihood function. No closed-form 
solution exists for the values of β0 and β1 that maximize the log-likelihood function. 
Computer intensive numerical search procedures are therefore required to find the 
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maximum likelihood estimates 0β̂ and 1β̂ . Standard statistical software programs such as 
SAS (PROC LOGISTIC), SPSS (Analyze- Regression-Binary Logistic) provide 

maximum likelihood estimates for logistic regression. Once these estimates 0β̂ and 1β̂  are 
found, by substituting these values into the response function the fitted response function, 

say, iπ̂ , can be obtained. The fitted response function is as follows:  

              
( )0 1 i

i ˆ ˆ- β +β X

1π̂ =
1+e

 
 
 
 
                                                                                

 
When log of the odds of occurrence of any event is considered using a logistic regression 
model, it becomes a case of logit analysis.  Here the thus formed logit model will have its 
right hand side as a linear regression equation. 

18.4 Model Validation 

The model validation can be done by employing various tests on any fitted logistic 
regression model. The tests related to the significance of the estimated parameters, 
goodness of fit and predictive ability of the models are discussed subsequently. 
 
  
Wald, Likelihood ratio and Score tests are three commonly used tests for testing the 
overall significance of the logistic regression model.  
 
18.4.1 Wald test  

Let β̂  be the vector of parameter estimates obtained. Let a set of restrictions be imposed 
in the form of a hypothesis H0: β = 0. If the restrictions are valid, then at least 
approximately β̂  should satisfy them. The Wald statistic is then defined as 

 ( ) 1ˆ ˆ ˆW Var
−

 ′=  β β β   

Under H0, in large samples, W has a Chi-square distribution with degrees of freedom 
equal to the number of restrictions imposed.  
 
18.4.2 Likelihood Ratio (LR) Test 

The LR statistic is defined as two times the logarithm of the ratio of the likelihood 
functions of two different models evaluated at their MLEs. The LR statistic is used for 
testing the overall significance of the model. Assuming that there are r1 variables in the 
model under consideration which can be considered as the full model, based on the MLEs 
of the full model, L (full) is calculated. Beside this, the likelihood function L (reduced) is 
calculated for the constant only model. The LR statistic is then defined as:   
 { } { }LR = -2 ln L(reduced) -ln L(full)   . LR is asymptotically distributed as Chi-
square with degrees of freedom equal to the difference between the number of parameters 
estimated in the two models.  
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18.4.3  Goodness of Fit in Logistic Regression 

Among various testing problems, goodness of fit is one of the most important aspects in 
the context of the logistic regression analysis for testing whether the model fitted well or 
not. Hosmer-Lemeshow goodness-of-fit test is one of the most common tools 
conveniently used in logistic regression analysis.  This test is performed for a binary 
logistic regression model by first sorting the observations in increasing order of their 
estimated event probabilities. The observations are then divided into approximately ten 
groups on the basis of the estimated probabilities. Comparison between the numbers 
actually in each group (observed) to the numbers predicted by the logistic regression 
model (predicted) is carried out subsequently. The number of groups may be smaller than 
10 if there are fewer than 10 patterns of explanatory variables. There must be at least 
three groups in order that the Hosmer-Lemeshow statistic can be computed.  
 
The Hosmer-Lemeshow goodness-of-fit statistic is obtained by calculating the Pearson 
chi-square statistic from the (2×g) table of observed and expected frequencies where g is 
the number of groups.  
 
The statistic is written as:  

( )
( )

2
2 2

2
1

ˆ
χ ~

ˆ ˆ1

g i i i
HL g

i i ii

O N

N

π
χ

π π −
=

−
=

−
∑             

Where  
    Oi = the observed number of events in the ith group  
    Ni = the number of subjects in ith group  
and ˆiπ = the average estimated probability of an event in the ith group. 
 
18.4.4 Predictive ability of the model  

Once models are fitted and relevant goodness of fit measures are employed, judging the 
predictive ability of the model can be done. In logistic regression modeling setup, 
predictive ability of  models can be judged by employing various measures such as  
Somers’D, Gamma, Kendall’s Tau (Tau-a) and c. Here two measures viz. Gamma and 
Somers’D have been discussed. Gamma statistic is the simplest one. The measures 
Gamma, and Somers’D are based on concordance and discordance. By observing the 
ordering of two subjects on each of two variables, one can classify the pair of subjects as 
concordant or discordant. The pair is concordant if the subject ranking is higher on both 
the variables. The pair is discordant if the subject ranking is higher on one variable and 
lower on the other. The pair is tied if the subjects have the same prediction on both of the 
variables.  

The Gamma is defined as   s d

s d

N - N
N + N

     

where Ns is the number of same pairs and Nd the number of different pairs. Gamma 
ignores all tied pairs of cases. It therefore may exaggerate the “actual” strength of 
association. Gamma lies between -1 to1.  
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The Somers’D is a simple modification of gamma. Unlike gamma, the Somers' D 
includes tied pairs in one way or another. Somers’D is defined as  

 s d

s d y

N - N
N + N +T

     

where T
y 

is the number of pairs tied on the dependent variable, Y. Somers' d ranges from 
-1.0 (for negative relationships) to 1.0.  
 
18.4.5 Classificatory ability of the models  

Comparison between various logistic regression models fitted and with other 
classification methods such as discriminant function and decision tree methods can be 
made with respect to their classifying ability with the help of (2 x 2) classification tables 
in case of a binary response group variable. The columns are the two observed values of 
the dependent variable, while the rows are the two predicted values of the dependent. In a 
perfect model, all cases will be on the diagonal and the overall percent correct will be 
100%.  
 
Critical terms associated with classification table are as follows:  

Hit rate: Number of correct predictions divided by sample size. The hit rate for the model 
should be compared to the hit rate for the classification table for the constant-only model.  

Sensitivity: Percent of correct predictions in the reference category (usually 1) of the   
dependent. It also refers to the ability of the model to classify an event correctly. 

Specificity: Percent of correct predictions in the given category (usually 0) of the 
dependent. It also refers to ability of the model to classify a non event correctly. 
False positive rate: It is the proportion of predicted event responses that were observed as 
nonevents  

False negative rate: It is the proportion of predicted nonevent responses that were observed 
as events. 

Higher the sensitivity and specificity lower the false positive rate and false negative rate, 
better the classificatory ability. 
 
18.5 Association between attributes/ variables  

An association exists between two variables if the distribution of one variable changes 
when the level (or value) of the other variable changes.  If there is no association, the 
distribution of the first variable is the same regardless of the level of other variable. Odds 
ratio is usually used for measuring such associations. For example, consider the following 
table having two attributes ‘Weather’ and ‘Mood of boss’ each at two levels. 
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  Mood of boss 
Good Bad 

Weather   
Rain 82 18 
Shine 60 40 

 
Odds of an event is the ratio of the probability of an event occurring to the probability of 
it not occurring.  That is,  

 
Odds=P(event)/{1-P(event)} = P(event=1)/P(event=0) 

 
In the above table, there is 82% probability that the mood of the boss will be ‘Good’ in 
case of ‘Rain’.  The odds of ‘Good mood’  in ‘Rain’ category =0.82/0.18 =4.5.  The odds 
of ‘Good mood’  in ‘Shine’ category =0.60/0.40 =1.5.  The odds ratio of ‘Rain’ to ‘Shine’ 
equals (4.5/1.5) =3 indicating that the odds of getting ‘Boss in good mood’ during  ‘Rain’  
is three times those during ‘Shine’.  Also there is 18% probability that mood of boss will 
be ‘Bad’ in case of ‘Rain’; the odds of ‘Bad mood’  in ‘Rain’ =0.18/0.82 =0.22.  Thus, in 
case the probability is very small (0.18 in this case), there is no appreciable difference in 
mentioning the same as probability or odds. 
 
The importance of odds ratio is case of logistic regression modeling can be further 
explained by taking a simple case of influence of an attribute “Gender”  
X with two levels (Male or Female) on another attribute “opinion towards legalized 
abortion” Y with two levels (Yes=1, No=0).  Logistic regression when written in its 
linearised form takes the following ‘logit’ form: 
 

logit {Y=1| X=x} = log (π/ (1-π))=log (odds) = β0+β1*x 
Now, 
Odds (Females)= exp(β0+β1) and Odds (Males)= exp(β0).  Hence  
 
Odds ratio = exp(β0+β1)/exp(β0) = exp(β1).   
Thus here regression coefficient of Y on X i.e. β1 is not directly interpreted but after 
taking exponentiation of it. 
 
18.6 Multinomial logistic regression modeling 
Let X is a vector of explanatory variables and π denotes the probability of binary response 
variable then logistic model is given by  
 

( ) =πitlog  
 
 
where, ‘alpha’ is the intercept parameter and  ‘beta’  is a vector of slope parameters.  In 
case response variable has ordinal categories say 1,2,3,--------, I, I+1  then generally 
logistic model is fitted with common slope based  on cumulative probabilities of response 

( )πα
π

π β g=+=






−

X
1

log
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categories instead of individual probabilities.  This provides parallel lines of regression 
model with following form  
 
g [Prob (                    )] =   
 
where, ,,, 21 kααα −−−−−− are k intercept parameters and β    is the vector of slope 
parameters.   
 
Multinomial logistic regression (taking qualitative response variable with three 
categories, for simplicity) is given by 
 
  logit[Pr(Y ≤ j – 1 / X)] = αj + βT X ,      j = 1,2 
 
where αj are two intercept parameters (α1 < α2 ), βT = (β1, β2, …….,βk) is the slope 
parameter vector not including the intercept terms, XT = (X1, X2, ….,Xk) is vector of 
explanatory variables.  This model fits a common slope cumulative model i.e. ‘parallel 
lines’ regression model based on the cumulative probabilities of the response categories. 
 

  logit(π1) = 
,X........XX

1
log kk22111

1

1 βββα
π

π
++++=








−          

 

 logit(π1 + π2) =  
kk22112
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1
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  π1 + π2 + π3 = 1 
 
πj (X) denotes classification probabilities Pr(Y=j-1 / X) of response variable Y, j = 1,2,3, 
at XT. 
These models can be fitted through maximum likelihood procedure. 
 
18.7  Application of binary logit models in agriculture and other sciences 

Sometimes quantitative information on pests and diseases is not available but is available 
in qualitative form such as occurrence / non-occurrence, low / high incidence etc. The 
statistical model preferred for the analysis of such binary (dichotomous) responses is the 
binary logistic regression model. It can be used to describe the relationship of several 

Iixi ≤≤+ 1,βα( )xiy ≤
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independent variables to the binary (say, named 0 & 1) dependent variable. The logistic 
regression is used for obtaining probabilities of occurrence, say E, of the different 

categories when the model is of the form: P(E =1)  = 
)exp(1

1
z−+

 where z is a function of 

associated variables, if  P(E =1) ≥ 0.5  then there is more chance of occurrence of an 
event and if  P(E =1) < 0.5  then probability of occurrence of the event is minimum.  If 
the experimenter wants to be more stringent, then the cutoff value of 0.5 could be 
increased to, say, 0.7.  
 
Consider the dataset given in the Table given below. Weather data during 1987-97 in 
Kakori and Malihabad mango (Mangifera indica L.) belt (Lucknow) of Uttar Pradesh is 
used here to develop logistic regression models for forewarning powdery mildew caused 
by Oidium mangiferae Berthet and validated the same using data of recent years. The 
forewarning system thus obtained satisfactorily forewarns with the results obtained 
comparing well with the observed year-wise responses. The status of the powdery mildew  
(its epidemic and spread) during 1987-97 are given in the following table, with the 
occurrence of the epidemic denoted by 1 and 0 otherwise. The variables used were 
maximum temperature (X1 ) and relative humidity (X 2 ). The model is given by 

                             P (Y=1) = 1/ [1+exp {- (β 0  + β 1  x 1  + β 2  x 2 )}]   
Table: Epidemic status (Y) of powdery mildew fungal disease in Mango in U.P. 
 

Year Third week(Y) of 
March 

Average weather data in second week of March  
        X1                               X 2  

1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 

1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
1 

     30.14                          82.86 
     30.66                          79.57 
     26.31                          89.14 
     28.43                          91.00 
     29.57                          80.57 
     31.25                          67.82 
     30.35                          61.76 
     30.71                          81.14 
     30.71                          61.57 
     33.07                          59.76 
     31.50                          68.29 

              
Logistic regression models were developed using the maximum likelihood estimation 
procedure in SAS. Consider 1987-96 model based on second week of March average 
weather data using which forewarning probability is obtained for the year 1997. The 

parameter estimates corresponding to intercept, X1 and X2 are obtained as 
^

0β  = -72.47; 
^

1β  = 1.845; 
^

2β = 0.22.  
Then the model becomes 
 

P (Y=1) = 1/ {1+ exp (-(-72.47+ (1.845* x 1 ) + ( 0.22* x 2 ))} 
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Plugging in the values X1  = 31.50 and X 2  = 68.29, of year 1997 it can be seen that    
P(Y=1) = 0.66. This is the forewarning probability of occurrence of powdery mildew in 
mango using logistic regression modeling for 1997.  The logistic regression model 
yielded good results. If P (Y=1) <0.5, then probability that epidemic will occur is 
minimal, otherwise there is more chance of occurrence of epidemic and this can be taken 
as objective procedure of forewarning the disease. As we were having the information 
that there was epidemic during the year 1997, it can be seen that the logistic regression 
model forewarns the actual status correctly. 
  
Consider one example, data from the field of medical sciences relating to Occurrence or 
Non-occurrence of Coronary Heart Disease (CHD) in human beings as given in the 
following table. 
 

Group Age No. of 
observations 

Presence of  
CHD 

1 25 10 1 
2 30 15 2 
3 35 12 3 
4 40 15 5 
5 45 13 6 
6 50 8 5 
7 55 17 13 
8 60 10 8 

 
  
The result is given below: 
  
                         Response Variable (Events)     CHD 
                         Response Variable (Trials)      n 
                         Model                                    binary logit 
                         Optimization Technique         Fisher's scoring 
 
                             Number of Observations Used           8 
                             Sum of Frequencies Used              100 
 
                                         Response Profile 
                                Ordered     Binary           Total 
                                  Value     Outcome      Frequency 
                                      1     Event                  43 
                                      2     Nonevent            57 
 
                                       Model Fit Statistics 
                                                           Intercept 
                                            Intercept            and 
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                              Criterion          Only     Covariates 
 
                              AIC               138.663        112.178 
                              SC                 141.268        117.388 
                              -2 Log L        136.663        108.178 
 
                             Testing Global Null Hypothesis: BETA=0 
 
                    
  Test                 Chi-Square       DF     Pr > ChiSq 
 
                     Likelihood Ratio        28.4851        1         <.0001 
                     Score                         26.0782        1         <.0001 
                     Wald                          21.4281        1         <.0001 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                              Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept     1     -5.1092      1.0852       22.1641        <.0001 
age             1      0.1116      0.0241       21.4281        <.0001 
 
                                       Odds Ratio Estimates 
                                         Point          95% Wald 
                            Effect    Estimate      Confidence Limits 
                            age          1.118       1.066       1.172 
 
Association of Predicted Probabilities and Observed Responses 
                        Percent Concordant     74.6    Somers' D    0.588 
                        Percent Discordant     15.7    Gamma        0.651 
                        Percent Tied            9.7    Tau-a        0.291 
                        Pairs                       2451    c            0.794 
 
                            Partition for the Hosmer and Lemeshow Test 
                            Event                                 Nonevent 
Group       Total    Observed    Expected    Observed    Expected 
1                    10             1        0.90                      9        9.10 
2                    15             2        2.20                     13       12.80 
3                    12             3        2.77                      9        9.23 
4                    15             5        5.16                     10        9.84 
5                    13             6        6.22                       7        6.78 
6                     8              5        4.93                       3        3.07 
7                    17            13       12.53                     4        4.47 
8                     10           8         8.30                       2        1.70 
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Hosmer and Lemeshow Goodness-of-Fit Test 
                                Chi-Square       DF     Pr > ChiSq 
                                    0.2178        6         0.9998 
 
The Interpretation of the above output is given subsequently. 

 
The fitted model is given by  
    
       P (CHD=1) = 1/ (1+ exp (-z))     where z = β0+β1 * (age  group)  

 
Testing of overall Null Hypothesis that BETA = 0 using Likelihood and other tests indicate 
that they are highly significant and hence there is considerable effect on age on CHD 
disease.   

 
The Hosmer-Lemeshow Goodness of Fit Test with 6 degrees of freedom suggests that the 
fitted model is adequate.  Here one has to see for a large p-value (>0.05). in order to infer 
that the model is very well fitted. 

 
Table : Classification Table for Predicted Event frequencies 
 

Correct Incorrect Percentages 

Event Non-
event 

Event Non-
event 

Hit 
rate 

Sensitivity Specificity False 
POS 

False 
NEG 

48 26 17 9 74.0 84.2 60.5 26.2 25.7 

 
Here "Correct" columns list the numbers of subjects that are correctly predicted as events 
and nonevents.  Also "Incorrect" columns list both the number of nonevents incorrectly 
predicted as events and the number of events incorrectly predicted as nonevents.   
 
FALSE positive and FALSE negative rates are low, sensitivity (the ability of the model to 
predict an event correctly) (84.2%) and specificity (the ability of the model to predict a 
nonevent correctly) (60.5%) of the model are high enough and hence the fitted model is 
very effective for prediction/ classification. 
  
References: 
 
Fox, J. (1984). Linear statistical models and related methods with application to social 

research, Wiley, New York. 
 
Kleinbaum, D.G. (1994). Logistic regression: A self learning text, New York: Springer. 
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19.1 Introduction 

The need for statistical information seems endless in modern society. In particular, data 

are regularly collected to satisfy the need for information about specified sets of elements, 

called finite population. The collection of all units having certain properties as per the 

objectives of the study at particular point or period of time is known as ‘population’. One 

of the most important modes of data collection for satisfying such needs is a sample 

survey. Sample survey is a technique of selection of a part of an aggregate to represent 

the whole, that is, a partial investigation of the finite population and is frequently used in 

everyday life in all kinds of investigations. A sampling method is a scientific and 

objective procedure of selecting units from the target population. The method provides a 

sample that is expected to be representative of the population as a whole. There is another 

approach called ‘complete enumeration’ or ‘census survey’ in which data is collected 

from each unit of the population. This approach is usually used in census of population, 

agriculture etc. A sample survey costs less than a census survey, is usually less time 

consuming and even more accurate than a census survey. 

The technique of selecting a sample is of fundamental importance in sampling theory and 

usually depends on the nature of the investigation. The sampling methods which are 

commonly used may be broadly bifurcated into two approaches, viz., purposive sampling 

(or non-probability sampling) and random sampling (or probability sampling). The 

method of purposive sampling is purely based on judgement of the sampler. Thus, it 

induces judgemental or personal bias in selection of sampling units. Due to this, random 

sampling approach is generally adopted in most of the surveys. The method of random 

sampling involves assigning predetermined probabilities to every unit of the population 

and selecting the units according to the predetermined probabilities. The sum of 

probabilities of all the units is one.  
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The method of Simple Random Sampling (SRS) is the most commonly used method of 

sampling. The reason lies in its simplicity in selection as well as mathematical derivation. 

The probability of selection of every sample in the method of SRS is equal. Further, the 

units are selected one by one and the probability of selection of every unit of population 

in the sample is same. 

The selection of units in the sample following SRS is purely random. Thus, it may 

happen that all the units selected in the sample may belong to one type or representing 

some part of the population only. Thus, one may end up with a sample where certain 

parts of the population are over represented while some other parts are under represented. 

Or in other words, the selected sample may not be representative enough resulting in 

misleading inferences about the population under study. An improved sampling 

mechanism which is capable of producing representative samples is, therefore, very much 

a practical necessity. 

In agricultural, environmental and ecological sampling one may encounter a situation 

where the exact measurement (or quantification) of a selected unit is either difficult or 

expensive in terms of time, money or labour, but where the ranking of a small set of 

selected units according to the character of interest can be done with reasonable success 

on the basis of visual inspection or any other rough method not requiring actual 

measurement. 

Suppose the objective is to estimate the distribution of volume of trees in a forest. If the 

forest were believed to be homogenous, a simple random sample could be taken by 

choosing the nearest tree to each of a set of randomly selected coordinates across the 

region of the forest. If homogeneity were less believable, the forest could be grided and 

trees randomly selected from within each grid-cell. Natural forests, however, are not so 

conveniently arranged. Stratification, clustering and various other area sampling schemes 

could be considered in such a situation.  

Characteristics of these sampling mechanisms are simple random sampling at the 

ultimate stage of sampling. Replacement of SRS in the ultimate smallest group by some 
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other efficient sampling mechanism may lead to further increase in the precision of 

sample estimates. 

In statistical settings where actual measurements of the sample observations are difficult 

or costly or time consuming or destructive etc. but acquisition and subsequent ranking of 

the potential sample data is relatively easy, improved methods of statistical inference can 

result from using Ranked Set Sampling (RSS) technique. In what follows, we describe 

the method of RSS. 

Consider the example explained earlier. Select two trees randomly and make judgement 

with the help of eyes about the content of wood. Mark the tree having lesser wood 

content and discard the one having higher wood content. Next, select two more trees, 

make judgement through eyes and mark the tree having higher wood content and discard 

the other one. Repeat the procedure of alternately selecting the tree having lesser wood 

content and the other having higher wood content 25 times. Thus, out of 100 randomly 

selected trees only 50 are retained. Out of these 50 trees, 25 are from a stratum of trees 

generally having lesser wood content and the other 25 are from a stratum of trees having 

higher wood content. These 50 kept trees constitute the Ranked Set Sample. The sample 

so selected is expected to contain trees of almost all the sizes. Thus, it is likely to provide 

a better representation of trees in the population as compared to the method of SRS. 

In situations where visual inspection is not directly available, ranking can sometimes be 

done on the basis of a covariate that is more accessible requiring less costs than, but 

correlated with, the character of interest. Thus, if we are interested in the volumes of trees, 

we may use the ranking by diameter to approximate the ranking by volume. This 

procedure is called as ranking using concomitant variables. This was first discussed by 

Stokes (1977) and referred it as “ranked set sampling with concomitant variables”. 

19.2 Method of RSS 

The RSS procedure with equal allocation involves randomly drawing m2 units from a 

population with mean µ and a finite variance 2σ  and then randomly partitioning them 

into m equal-sized sets with set size m. The units are then ranked within each set with 
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respect to other than variable of interest. Here, ranking of the units could be based on 

visual inspection, judgement, auxiliary information or by some other relatively 

inexpensive methods not requiring actual measurement of the variable of interest. The 

unit receiving the smallest rank is accurately quantified from the first set, the unit 

receiving the 2nd smallest rank is accurately quantified from the 2nd set, and so forth, until 

the unit with largest rank is accurately quantified from the mth set. This constitutes one 

cycle. This procedure involves the measurement of m units out of the m2 originally 

selected units.  

The entire cycle is replicated r times until altogether n = mr observations have been 

quantified out of m2r originally selected units. These n quantified units constitute the 

ranked set sample. 

Example: Consider the set size m = 3 with r = 4 cycles. This situation is illustrated in 

figure 1, where each row denotes a judgment-ordered sample within a cycle, and the units 

selected for quantitative analysis are circled. Here, 36 units have been randomly selected 

in 4 cycles; however, only 12 units are actually measured to obtain the ranked set sample 

for quantitative analysis. 

 

 

 

 

 

 

 

Cycles Rank 
1                      2                       3 

1 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 

2 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 

3 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 

4 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 
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Figure 1: A ranked set sample design with set size m = 3 and no. of sampling cycles r = 4. 

Although 36 sample units have been selected from the population, only the 12 circled 

units are actually included in the final sample for quantitative analysis. 

19.3 RSS Estimator and its Variance 
Let us consider only one cycle first. Let, X11, X12, …, X1m, X21, X22, …, X2m, …, Xm1, 

Xm2, …, Xmm be independent random variables all having the same cumulative 

distribution function F(x). Also let Xi(1), Xi(2), …, Xi(m) be the corresponding order 

statistics of Xi1, Xi2, …, Xim (for all i=1,2,…,m). Then X1(1), X2(2), …, Xi(i), …, Xm(m) is 

the ranked set sample, since Xi(i) is the ith order statistics in the ith sample. 

 
The values of Xij for randomly drawn units can be arranged in the following diagram: 
 
       Set 
        1                    X11            X12           …               X1m 
        2                    X21            X22           …               X2m 
        .  
        . 
        . 
       m                   Xm1            Xm2          …               Xmm 

 
 
 
After ranking the units appear as shown below: 
 
      Set                                Order statistics        
        1                    X1(1)           X1(2)           …              X1(m) 
        2                    X2(1)           X2(2)           …              X2(m) 
        .  
        . 
        . 
       m                   Xm(1)           Xm(2)          …             Xm(m) 
 
 
The quantified units are presented as given below: 
 
      Set                       
        1                  X1(1)               *              …                * 
        2                   *                X2(2)            …                *           
        .  
        . 
              m                   *                   *              …             Xm(m)         
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The mean of ranked set sample is denoted by (m)X  where,  

m
(m) i(i)

i 1

1X X
m =

= ∑  

For convenience, i(i)X  can also be written as (i:m)X which denotes the i:mth order 

statistics from the population, and the parenthesis are used to surround the subscript to 

show that (i:m)X  are independent unlike the usual i:mth order statistics denoted by 

i:mX  which are positively correlated.  

Now, 

          
m

(m) (i:m)
i 1

1X X
m =

= ∑  

so that, 

m1E[X ] = E[X ]= μ(m) (i:m)m i=1
∑  

This shows that (m)X  is an unbiased estimator of population mean, µ. 

This estimator can be compared with the sample mean based on m iid quantifications 

based on usual order statistics. The latter can be written as, 

m
i:m

i 1

1X X
m =

= ∑  

where i:mX  are the order statistics of the m quantifications. Since, as pointed out, the 

i:mX are positively correlated, it follows that (m)X  is more efficient than X for 

estimating µ. In essence, the RSS quantifications (i:m)X  are more regularly spaced with 

less clustering than is simple random sample of size m. 

When the whole process of drawing random sample is repeated r times, the ith order 

statistics from ith sample in jth cycle will be denoted by (i:m) jX , i=1,2,…,m and 
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j=1,2,…,r. Here, these are not iid in general, but for a given value of i these are so with 

(i:m) j (i:m)E[X ]=µ  and 2
(i:m) j (i:m)V[X ]=σ  in the absence of ranking error. The 

estimator, RSSµ̂ , of population mean, µ, is defined as follows: 

RSSµ̂ = (m)rX  =
m r

(i:m) j
i 1 j 1

1 X
mr = =
∑∑                                                        ...........(1)    

Also if, (i:m)µ̂  = 
r

(i:m) j
j 1

1 X
r =
∑  then, 

RSSµ̂  = (m)rX  = 
m

(i:m)
i 1

1 ˆ
m =

µ∑ . 

Now,  

         
m r m r

RSS (m)r (i:m) j (i:m)
i 1 j 1 i 1 j 1

1 1ˆ E[ ]=  E[X ] E[X ]
mr mr= = = =

µ = = µ = µ∑∑ ∑∑  

Hence, RSSµ̂  is unbiased estimator of population mean, µ. 

The variance of RSSµ̂  is given by, 

 
2m (i:m)

RSS (m)r
i 1

1ˆV[ ] V[X ]
mr m=

σ
µ = = ∑                              ………….(2) 

An equivalent expression of variance is given by 

m
2 2

RSS (i:m)
i 1

1 1ˆV[ ] [ { } ]
mr m =

µ = σ − µ −µ∑                    ………….(3) 

where 2σ  denotes the population variance. 

Ranked Set Sampling works by creating an “artificially” stratified sample. RSS provides 

a more precise estimator of population mean than SRS and it is also more cost efficient in 

a given situation. This is due to the fact that RSS results in a sample in which units are 

more evenly spaced. Since the units in RSS are more evenly spaced than SRS, the 

variance of RSS estimates is expected to be less than SRS estimates. 
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19.4 Relative Precision of the RSS Estimator of Population Mean Relative to the 

SRS Estimator and its Estimator 

The relative precision, (RP) of RSS estimator, RSSµ̂ , as compared with simple random 

sample (SRS) estimator, SRSµ̂ , with same sample size, n, is computed as follows: 

SRS

RSS

ˆV( )RP
ˆV( )
µ

=
µ

 

Here, SRS estimator, SRSµ̂ , is based on a random sample of n = mr observations and not 

a random sample of m2r observations. This is because the cost of acquiring and ranking 

samples is not taken into account, but only the cost of quantification is considered. 

Therefore, 

2
SRSˆV( ) mr

σµ =                                                                                      .........(4) 

RP is given by, 

           
SRS

mRSS (i) 2

i 1

ˆV( ) 1RP
ˆV( ) 11 ( )

m =

µ
= =

µ τ
−

σ∑
            …..(5) 

where, (i) (i:m)τ =µ −µ .  
 
An equivalent and useful measure of RP are relative cost (RC) and relative savings (RS). 

These are defined as: 

1RC and RS 1 RCRP= = −  

 
In this context, the relative savings (RS) is given by, 

m (i) 2

i 1

1RS ( )
m =

τ
=

σ∑                                                                                  ......(6) 

 
Since this expression is positive, RSS is always more cost efficient than SRS with same 

number of observations. 

McIntyre (1952) and Takahasi and Wakimoto (1968) showed that m 11 RP
2
+

≤ ≤  and so, 

m 10 RS
m 1
−

≤ ≤
+

.  
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TECHNIQUES OF CROP CUTTING EXPERIMENT 
 

MAN  SINGH 

Indian Agricultural Statistics Research Institute, New Delhi-110012 

20.1 Introduction  

Agricultural statistics has great importance for the planners for planning of the economic 
policies for betterment of the people of the country. The agricultural statistics includes 
land utilization, agricultural production including livestock and fisheries, cost and prices, 
number & size of holdings, composition of agricultural population, ownership & tenancy 
of holdings, agricultural machinery & power etc. Crop area and crop production is an 
important constituent of agricultural statistics system. The total production of a crop is 
based on acreage under the crop and average yield per hectare. In India, crop area figures 
are compiled on the basis of complete enumeration while the crop yield is estimated on 
the basis of sample survey approach. The whole country is divided into three broad 
categories i.e. temporarily settled states, permanently settled states and non-reporting 
areas on the basis of the procedure adopted for recording the crop area statistics. 

20.2 Crop Area Statistics  

20.2.1 Temporary Settled States: The system of temporary settlements was introduced 
in our country in 1892, with a view to fix land revenue for a period.  Generally, it is 
revised at the time of next settlement. The States and Union Territories which have 
adopted this system as of now covering 86% reporting area. These states are cadastrally 
surveyed and having a primary reporting agency for collecting the statistics of crop area. 
The crop area statistics are being collected by complete enumeration method. The 
primary worker called Patwari is responsible for collection of crop area statistics under 
his jurisdiction. The crop area statistics is collected through field to field inspection 
during each of the agricultural season. This exercise is known as Girdawari. The register 
in which crop area is recorded is known as “Khasra Register”. The States and Union 
Territories covered under temporarily settled states are Andhra Pradesh, Telangana, 
Assam, Andaman & Nicobar Islands, Bihar, Chandigarh, Chhattisgarh, Delhi, Dadar & 
Nagar Haveli, Gujarat, Himachal Pradesh, Haryana, Jharkhand, Jammu & Kashmir, 
Karnataka, Madhya Pradesh, Maharashtra, Punjab, Puducherry, Rajasthan, Tamil Nadu, 
Uttar Pradesh and Uttrakhand.  

20.2.2 Permanently Settled States: The states/areas known as permanently settled states 
where land revenue was permanently fixed and question of revision ordinarily did not 
arise. These states are cadastrally surveyed but they do not have primary reporting 
agency. There are three permanently settled states West-Bengal, Orissa and Kerala 
covering 9% reporting area.  Crop area statistics are compiled by sample survey approach 
through a scheme entitled “Establishment of an Agency for Reporting of Agriculture 
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Statistics” (EARAS) by the regular reporting agency. Every year a sample of 20% 
villages is selected and the selected villages are completely enumerated for the purpose of 
reporting crop area statistics. Next year a fresh sample of 20% villages is selected and 
data collected. Thus, all the villages in the respective state are covered in five years. 

20.2.3 Non-reporting Areas: The regions for which there is no system of reporting crop 
area in the country are covered under this category. Mostly NEH States are covered under 
this category. In this region the reporting crop area is 5%. The crop area estimates in 
NEH region except Assam are not based on any systematic approach. Here, the statistics 
of land records are collected on a sample basis. The revenue/agriculture officer collects 
the information on the basis of his personal belief and knowledge.  

20.3 Crop Yield Estimation 

The crop yield estimation in the country is carried out on the basis of sample survey 
approach using Crop Cutting Experiment (CCE). A series of studies were carried out by 
the statisticians and a scientific technique was developed to conduct the crop cutting 
experiment for obtaining the reliable yield rates Hubback (1925), Mahalanobis (1939), 
Sukhatme and Panse (1951). The estimates of yield rates are obtained on the basis of 
scientifically designed CCE under a scheme of the Directorate of Economics and 
Statistics (DES), Ministry of Agriculture entitled “General Crop Estimation Surveys” 
(GCES).  

20.4 Equipment/Material  

The CCE is conducted with the help of equipments/tools. These equipments/tools and 
related material are as under: 

 

20.4.1 Pegs 
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20.4.2 Measuring tape 

 
20.4.3 Rope 

 
 20.4.4 Weighing balance       

4.4  (a): Spring Balances 
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20.4.4 (b): Beam balance 

 

 

20.4.5 Set of weights  

 
 

20.4.6 Hessian Cloth 

The Hessian cloth is a coarsely woven fabric usually made from vegetable fibers and jute. 
Known for its plain weaving and durable quality, these are eco-friendly and are used for 
the packaging of various varieties of goods like grains, sugar, pulses and others. 
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20.4.7 Cloth Bag  

 
The other items required for smooth running of CCE are two strong water proof bags 
(one for CCE equipments and other for CCE records), blank schedules, instruction 
manual, random number table, stationary. The other essential tools/machines for 
harvesting, threshing and winnowing/cleaning of experimental crop are easily available 
with owner of field.    

20.5 Size and shape of the CCE plot 

During the earlier attempt in crop surveys greater attention was paid in deciding the size 
of the CCE plot in a selected field. Various plot sizes were tried varying from 1/160 of an 
acre for paddy in Orissa to 1/10 of an acre for cotton in Madhya Pradesh. The plot size 
adopted in the earlier attempts by Hubback and Mahalanobis was very small, being of the 
order of 1/2000 of an acre. Attempts were made since 1944 to study the relative 
efficiency of various plot sizes for yield rates. The first investigation for testing the 
relative efficiency of different plot sizes was conducted on wheat crop in Moradabad 
district of Uttar Pradesh during 1944-45 (Sukhatme, 1946a, 1946b, 1947a). In this study, 
altogether five different plots sizes were compared; three equilateral triangles each of side 
33’, 16½’ and 81/4 ’; two circular plots of radius 2’ and 3’. The result showed that plot 
area less than 30 sq. ft. gave serious overestimates of yield. The bias towards 
overestimation diminished with the increase in the size of the experimental plot but plots 
of size of 118 sq. ft. were not free from perceptible bias. Therefore more sizes and shapes 
of plots were tried on other crop in different parts of country (Sukhatme, 1946a, 1947a). 
In Madras, different plot sizes were studied on paddy crop; a rectangular plot of 50 links 
x 20 links (area 435.6 sq. ft.), two circular plots of radius 3’ each (area 28.3 sq. ft.), two 
circular plots of radius 2’ each (area 12.6 sq. ft.) and in addition, the whole of the 
remaining field was harvested. Results showed that while the yield estimate from the plot 
size of 50 links x 20 links was in close agreement with that from harvesting the whole 
field, those from small plots were considerable overestimates.  



 
TECHNIQUES OF CROP CUTTING EXPERIMENT 

20.6 
 

Another study was taken on paddy crop by Sukhatme to the comparison of the plot size 
adopted by Mahalanobis in Bihar (Mahalanobis, 1945) with plot size 50 links x 25 links 
(Sukhatme, 1947 a). Altogether five plots were in each selected field. The plots were:  

(a) one rectangular plot of size 50 links x 25 links (area 544.5 sq. ft.),  

(b) two isosceles right-angled triangles with equal sides each equal to 5 ft. (area 
12.5 sq. ft.) and 

  (c) two equilateral triangles of side 15 links each (area 42.5 sq. ft.).  

The result of investigation confirmed the previous results that are smaller plot size 
overestimated the yield. Similar results were reported on cotton (Panse, 1946 b, 1947) 
which shows that even with the best supervision and training, it is not unlikely that plots 
up to 200 sq. ft. may give biased estimates. In an experiment conducted in Orissa on jute, 
the plot of size 10 links x 10 links were found to give a significant overestimation as 
compared to plot of 25 links x 25 links size. 

The size and shape of the CCE plot for various crops, in respect of different States are 
specified. The shapes of the cuts for various crops vary to some extent in different States. 
In most of the States and for many crops, the plots are either square of size 5 meters x 5 
meters, 10 meters x 10 meters or rectangle of size 10 meters x 5 meters. In the State of 
U.P., the experimental plot is equilateral triangle of side 10 meters for most of the crops 
and in West Bengal, it is circle of radius 1.7145 meters approximately.  For some crops, 
specially fruits, it consists of either specific number of trees. The plot size adopted for 
different food and non-food crops is as under.  

 

Name of the crop Shape Length 
(Meter) 

Breadth 
(Meter) 

Diagonal 
(Meter) 

Paddy, Wheat, Jowar, Bajra, Ragi, 
Maize, Groundnut, Tobacco, Sugarcane, 
Korra, Greengram, Chillies, Mesta, 
Horsegram, Blackgram, Bengalgram, 
Sunflower 

Square 5 5 7.07 

Redgram, Sesamum, Caster, Cotton  Square 10 10 14.14 

20.6 Crop cutting experiment technique 

There are following essential steps to be followed in the conduct of CCE. 

• Selection of villages 

• Selection of field 

• Identification of South-West corner of the selected field 
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• Identification South-West corner of the experimental plot in the selected field 

• Marking of the experimental plot of a given size and shape 

• Harvesting of experimental crop of CCE plot 

• Threshing of experimental crop  

• Winnowing and cleaning of experimental crop  

• Weighing of the produce (wet weight) just after cleaning, 

• Drying of produce, in case of excess moisture, and 

• Weighing of produce after drying (dry weight).  

20.6.1 Selection of villages 

The number of experiment has to be conducted in a state for a particular crop is to be 
decided at State level. The districts of the State are divided into two groups “Major” and 
“Minor” on the basis of area under particular crop. Those districts having area of crop 
under study more than 80000 hectare or between 40000 to 80000 hectare or average area 
more than the other districts is called “Major” district. Generally 80 to 120 CCE are to 
be conducted for particular crop in major district. The rest of the districts are called 
“Minor” district for a particular crop. In these districts 44 to 46 CCE are to be organized 
in such a way to obtained high precision of yield rates and also to manage the work load 
of the primary worker. 

Number of CCE allotted to district is to be allocated to each stratum i.e. Community 
Development Block/Tehsil on the basis of area under particular crop. Maximum 16 CCE 
is to be conducted in stratum. Two CCE is recommended to conduct in village. 
Therefore, number of villages is half of the number of CCE. Stratum wise list of each 
district is prepared at State by the state level officer and send to the concerned district 
level officer to distribute among the primary workers engaged in the selected villages. 

20.6.2 Selection of field 

Field is a distinct piece of land growing the crop under study which is clearly demarcated 
on all its sides either by bunds or by patch of other crops or left un-cultivated. 

As per the existing methodology of estimation of yield rates of crops, two fields of 
selected crop has to be selected in each selected village and one experimental plot of the 
selected crop has to be conducted in each selected field (Sukhatme and Panse, 1951). For 
selecting two fields in each selected village, two random numbers are assigned to the 
primary worker. The complete land of the selected village is divided into fields. Each 
field has its own identification number called survey number or Khasra number. The 
highest survey number in the selected village may be higher, equal or less than the 
random number assigned for selection of the field. If the assigned random number is 
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equal or less than the highest survey number, the survey number corresponding to the 
random number is selected and if it is higher than the highest survey number, the 
assigned random number is divided by the highest survey number and the survey number 
corresponding to the remainder is selected. In case, the remainder is 0, the highest survey 
number is selected. Crop under study is not grown in the selected survey number, the 
next survey number has to be selected. 

If the selected survey number is further divided into sub-divisions, only one sub-division 
has to be selected randomly. In case the selected survey/sub-division number contains 
more than one field growing the crop under study, the field nearest to the south west 
corner of survey/sub-division number is to be selected. The selected field must satisfy the 
following conditions.  

• The area of the selected field should be more than the area of CCE plot, so that 
the CCE plot of recommended size must be accommodated in the selected field. 

• If the selected field is sown with mixed crops, the experimental crop must 
constitute at least 10% of its crops area. 

• The experimental crop in the field is not meant for prize competition or seed 
production or demonstration. 

• The experimental crop is not grown for fodder purpose. 

The field must be considered for selection for conducting crop cutting experiment and 
yield obtained from the CCE plot must be recorded, if  

• the experimental crop has not germinated or has failed but its area is recorded by 
the Village Accountant, or 

• the field growing the experimental crop is grazed by cattle or damaged partially or 
completely by wild animals, or 

• the experimental crop is affected by pests/diseases/heavy rainfall/inadequate 
rainfall.  

• the yield must be recorded as zero in case the experimental crop is damaged 
completely.  

The field need not be considered for selection for conducting crop cutting experiment, if 

• the experimental crop has not germinated or has failed and its area is not recorded 
by the Village Accountant, or 

• the experimental crop has withered or dried up and another crop has been raised 
in its place in the same season, the area of latter has been recorded by the Village 
Accountant.  

Substitution of fields is not allowed on the plea of poor growth or prior harvest by 
cultivators without intimation or due to late visit by primary worker. Further, if a part or 
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whole of the selected field has been already harvested, the experiment should not be 
conducted in that field, and it has to be treated as lost.  

20.6.3 Identification of South-West corner of the selected field 

Fixing of the south-west corner of the selected field has made mandatory for all to make 
the similarity. After selection of the field, the South-West corner of the field is to be 
identified. If you stand at South-West corner facing north of the selected field, the 
selected field will be in front of you and your right hand side. In case, the selected field is 
not exactly in north-south and east-west direction, the corner which is approximately 
south-west may be taken as south-west corner of the selected field.  

 

20.6.0 South-West corner of the selected field 

20.6.4 Measurement of the length and breadth of the selected field  

The field selected for CCE may or may not be in regular shape. For the purpose of 
identifying the south-west corner of the field, it is essential that the field should be ether 
in square or rectangular shape. The procedure for measuring the length and breadth in 
both the situation i.e. regular and irregular shape of the field is as followed. 

20.6.4.1 Regular shape of the selected field 

When the selected field is in a regular shape i.e. square or rectangular, then we measured 
the longest side as a length and shorter side as a breadth in the normal steps from the 
south-west corner of the field (Figure-20.6.4.1).  
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Figure-20.6.4.1: Regular shape of the field 

20.6.4.2 Irregular shape of the selected field 

In case, the selected field is not regular shape, then enclose the selected field in an either 
in square or rectangular shape by touching outer least possible dimensions of the selected 
field. It is essential for locating the south-west corner of the selected field and also south-
west corner of the experimental plot within the selected field. The south-west corner of 
the experimental plot should be fixed with reference to the south-west corner of the outer 
regular shape of the irregular selected field. Measure the longest side as a length and 
shorter side as a breadth of the outer regular shape of the irregular selected field in the 
normal steps (Figure-20.6.4.2 (a, b & c). 

 

(a) 
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(b) 

 

(c) 
Figure-20.6.4.2 (a, b, c): Irregular shape of the field 

20.6.5 Making of the experimental plot 

The crops are sown in rows in one and two direction and without line. Keeping in view 
the proper representation of each plant either sown in rows or otherwise, the three 
different methods are recommended for making the experimental plot for CCE. Marking 
of the CCE plot may be done on the date of harvesting. 
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20.6.5.1 Making of experimental plot for CCE when crop is sown without line 

The crops like wheat, barley, mustard, gram, lentil, peas, greengram, blackgram, redgram 
maize, jowar, bajra, etc sown through either broadcasting or in compact rows without 
maintaining plant to plant distance within the row. Method of making the experimental 
plot for conducting the CCE is as under. 

20.6.5.1.1 Determination of the random number pair 

Two random numbers, one for length and the other for breadth have to be selected with 
the help of random number table. These random numbers are to be selected using column 
number assigned to the primary worker. To ensure that the whole experimental plot gets 
accommodate in the selected field, steps in the length and breadth of the experimental 
plot have to be deducted from length and breadth of the selected field, respectively. 
Suppose the shape of experimental plot is square of side 5 meter.  (7 steps are in 5 meter 
approximately).  

 

Example: 
Length of the selected field   120 Steps 
Steps in length of CCE 007 Steps 
Length of the selected field minus number of steps in length of CCE 113 Steps 
Breadth of the selected field  70 Steps 
Steps in breadth of CCE 07 Steps 
Breadth of the selected field minus steps in breadth of CCE 63 Steps 

Let column number 1 of random number table is assigned to the primary worker. A 
random number which is less than or equal to 113 is to be selected for length. Since 113 
comprises of three digits, therefore, by referring column number one of three digits 
random number table, random number 058 appeared first which is less than 113. The 
random number 058 is selected for length. The second random number is to be selected 
for breadth. It should be less than or equal to 63. Since, 63 comprises of two digits, 
therefore, by referring column number one of two digit random number table, random 
number 51 appeared first. This random number is less than 63. Accordingly, random 
number 51 is selected for breadth. (58, 51) is the pair of random number selected for 
locating the south-west corner of the experimental plot in the selected field. If the 
assigned column of random number table is exhausted during the process of selection of 
random numbers, the next column on the right hand side will have to be referred. If the 
whole or part of the experimental plot goes beyond the boundary of the selected field 
owing to irregular shape of the selected field, the pair of random number should be 
rejected and a new pair of random number should be selected till whole experimental plot 
accommodate within the field. 
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20.6.5.1.2 Marking of the experimental plot 

20.6.5.1.2.1 Marking of south-West corner of the experimental plot 

The selected random number for length is 58. Therefore, measure 58 steps along the 
length of the selected field from its south-west corner and the point where reached, 
measure 51 steps perpendicular to the length and parallel to breadth of the selected field. 
Thus, the point “A” where reached, is the south-west corner of the experimental plot 
(Figure-20.6.3.1.2). The point “A” is also called as the key point or first corner of the 
experimental plot. Fix a peg at the key point of the experimental plot.  

 

Figure-20.6.5.1.2.1: South-west corner of experimental plot (Step-1) 

20.6.5.1.2.2 Marking of second corner of the experimental plot 

We measured five meter along the length of the selected field from corner “A”. The 
corner which is 5 meter away from corner “A” is the second corner “B” of the 
experimental plot. Fix a peg at corner “B” (Figure-20.6.3.1.2.2). The line joining the 
point “A” and “B” is the base of the experimental plot. 
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Figure-20.6.5.1.2.2: Second corner of experimental plot (Step-2) 

20.6.5.1.2.3 Marking of third corner of the experimental plot 

Third and fourth corner of the experimental are to marked with the help of right angle 
triangle method. To mark the third corner, let first person stand at corner “A” by holding 
the measuring tape at 0 meter mark and second person must has to stand at corner “B” 
holding at 12.07 (7.07+5.0) meter mark on the same measuring tape. The third person 
holding at 7.07 [sq rt (52 + 52)] meter mark on the measuring tape should stretch the 
measuring tape in the direction of breadth of the selected field, the point where reached 
shall be the third corner “C” of the experimental plot. The third corner is 7.07 meter 
(diagonal) away from corner “A” and 5 meter from corner “B”. Fix a peg at corner “C” 
(Figure-20.6.5.1.2.3).  

 
Figure-20.6.5.1.2.3: Third corner of experimental plot (Step-3) 

20.6.5.1.2.4 Marking of fourth corner of the experimental plot 
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For locating the fourth corner of the experimental plot the third person standing at corner 
“C” now hold the measuring tape on 5.0 meter mark away from corner “A” and 7.07 
meter  away from corner “B” . He should stretch the measuring tape in the direction of 
breadth of the field.  The point where he reached is the fourth corner “D” of the 
experimental plot. Fix a peg at corner “D” (Figure-20.6.5.1.2.4).  

 

Figure-20.6.5.1.2.4: Fourth corner of experimental plot (Step-4) 

20.6.5.1.2.5 Experimental plot 

A, B, C and D are the four corners of the experimental plot. Check the distance between 
the corners. The distance between A & B, B & C, C & D and A & D should be 5 meter. 
The distance between both the diagonals AC and BD should also be checked and it 
should be 7.07 meter for each diagonal (Figure- Figure-20.6.5.1.2.5).  

 

Figure-20.6.5.1.2.5: Experimental plot (Step-5) 
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20.6.5.2 Making of experimental plot for CCE when crop is sown in distinct rows in 
one direction 

The crops like potato, redgram, sugarcane, caster, cotton, etc are sown in rows without 
maintaining plant to plant distance within the row. Method of making the experimental 
plot for conducting the CCE is as under. 

20.6.5.2.1 Counting of rows 

Rows are to be counted starting from the south-west corner of the field. Conventionally, 
this side may be identified as breadth of the field (Figure-20.6.5.2.1).  

 

Figure-20.6.5.2.1: Enumeration of Rows 

20.6.5.2.2 Measurement of length  

Enclose the selected field in a regular shape (rectangle or square) in case it is not in 
regular shape  and measure the length of longest row in normal steps in the selected field 
(Figure-20.6.5.2.2). 
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Figure-20.6.5.2.2: Length of longest row 

 

20.6.5.2.3 Average number in the breadth of CEE 
Take three physical observations randomly in the specified breadth of the experimental 

plot (5 meters or 10 meters in plains and 2 meters in hills) at three places in the selected 

field and workout the average number in the specified breadth of CCE plot.  

20.6.5.2.4 Determination of random number for random row 
The average number of rows is to be deducted from the total number of rows in the 

selected field and add one also. Deduction of average rows in the CCE plot is necessary 

for ensuring that the CCE plot may fall in the selected field. Addition of one is necessary 

for inclusion of last row in of the selected field in the sample of CCE. A random number 

less than or equal to the number obtained by adding one should be selected using 

assigned column of random number table.  

Example:  

Let, total number of rows in the selected field is 65 and average number of rows is 6 in 

the specified breadth of CEE plot. For selection of random number for random row, we 

may calculate the number as follows.  

Total number of rows in the selected field  65 
Average number of rows in 5 meter breadth 6 
(Number of rows in the selected field minus Average number of rows) + One 60 
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Suppose column number one is assigned column, Since 60 is the two digit number, 
therefore, using assigned column number one of two digit random number table, 22 is 
appeared first which is less than 60. The 22 is selected as random number for identifying 
the random row. The random row will be the first row of the experimental plot.  

20.6.5.2.5 Determination of random number for random step  

Steps in specified length of CCE plot may be deducted from the length (step) of longest 
row. Deduction of steps in length of CCE is essential for ensuring that the CCE plot may 
fall in the selected field. A random number which is less than or equal to the length 
obtained after deducting steps in specified length of CCE from the length (step) of 
longest row is to be selected using assigned column number of the random number table.  

 

Example:  

Let, the length of longest row is 115 steps and length of CCE plot is five meter. There are 
seven steps in five meter. For selection of random number for random step, we may 
calculate the number as follows. 

Length of  longest row  in   steps 115 

Steps in CCE length  7 

Length of  longest row  in   steps minus Steps in CCE length 108 

As per 108, using allotted column number one of three-digit random number table, 
random number 10 is appeared first which is less than 108, therefore, random number 10  
may be considered as random step.    

The selected random number pair is (22, 10) 

20.6.5.2.6 Marking of the experimental plot 

20.6.5.2.6.1 Marking of south-west corner of the experimental plot 

Starting from south west corner of the selected field, count the rows up to random row 
i.e. 22. From the starting point of random row along its length moving between the inter-
space of selected random row (22) and its preceding row (21) by measuring random steps 
(10) where we reached is the south-west corner “A” of the experimental plot (Figure-
20.6. 5.2.6.1). This may also called as first corner or key point of CCE plot. Fix a peg 
“A” at this point “A” in between the inter-space of the selected row and its preceding 
row. 
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Figure-20.6.5.2.6.1: SW of experimental plot (Step-1) 

 

20.6.5.2.6.2 Marking of second corner of experimental plot  
As per length of CCE plot, measure it in meters from the key point (First corner of CCE) 
moving in between random row and its preceding row toward the length of row and fix 
second peg “B” at other corner. It is the second corner of the experimental plot (Figure-
20.6.5.2.6.2). 

 
Figure-20.6.5.2.6.2: Second corner of experimental plot (Step-2) 
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20.6.5.2.6.3 Marking of third corner of experimental plot  

Now count average number of rows i.e. six from random row 22 (second corner “B”) 
which is the first row of CCE moving perpendicular direction to the row towards inner 
side of the selected field and fix third peg “C” in between the inter-space of last row (i.e. 
6th) to be included in the CCE plot or 27th row of the selected field and its succeeding row 
i.e. 28th (Figure-20.6.5.2.6.3). 

 
Figure-20.6.5.2.6.3: Third corner of the CCE plot (Step-3) 

20.6.5.2.6.4 Marking of fourth corner of experimental plot  

Measure length in meters as in the length of CCE plot, moving in between last row i.e. 
sixth of CCE or 27th of selected field and its forward row 28th from third corner “C” 
parallel to “B”-“A” in the direction of Key point “A”, the other end where we reached, it 
is the fourth corner of the CCE plot, fix forth peg “D”at this point (Figure-20.6.5.2.6.4).  
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Figure-20.6.5.2.6.4: Fourth corner of the CCE plot (Step-4) 

20.6.5.2.6.5 Experimental plot  

Count the rows between corner “B”&“C” and “A” & “D”. These are equal to average 
number of rows i.e. six. The distance between “A” & “B” and & “C” “D” may also be 
verified. It should be equal to the length of CCE plot. The distance of all the sides and 
diagonal may be measured and recorded (Figure-20.6.5.2.6.5). The side AD and BC may 
not be equal to 5 meter. Actual length of diagonals (AC and BD) may be measured and 
noted.  

If the experimental plot does not fall wholly within the field due to irregular shape of the 
field, reject the first pair of random number and select a new random number pair. 
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Figure-20.6.5.2.6.5: CCE plot (Step-5) 

20.6.5.3 Making of experimental crop for CCE when crop is sown in line in two 
directions 

The crop like tobacco is sown in both the directions in line. The procedure for making 
CCE plot is lightly differ from the procedure of making the CCE plot when crop is sown 
in one direction in line. The procedure of making the CCE plot is as under.  

20.6.5.3.1 Enumeration of rows 

Rows are to be counted in both the direction i.e. length and breadth of the selected field 
starting from its south-west corner (Figure-20.6.5.3.1).  
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Figure-20.6.5.3.1: Enumeration of Rows  

 

20.6.5.3.2 Average number of rows  

Take three physical observations at random at three places in the selected field and count 
the rows in both the side i.e. length and breadth of experimental plot. The size of 
experimental plot for physical observation may be the same as for CCE plot (5 x 5 meters 
or 10 x10 meters or 10 x 5 meter in plains and 10 x 2 meters in hills).Workout the 
average number in the specified length and breadth of CCE plot.  

20.6.5.3.3 Determination of random number for random row in the length direction 

Average number of rows in specified length may be deducted from the total number of 
rows in longer side i.e. length and add one for inclusion of last row in the sample. 
Deduction of average rows is essential for ensuring that the CCE plot may fall in the 
selected field. Random number for length side is to be selected using assigned column 
number. The random number table has to be used as the digit in rows in length side. 

Example:  

Let, the average number of rows in 5 meter length is 6 and total rows are 108 in the 
direction of length. For selection of random number for random row, we may calculate 
the number as follows. 

Total number of rows in the direction of length  108 
Average rows in 5 meter length of CCE 6 
(Total number of rows minus average rows in the length of CCE) + one 103 
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103 is three digit number, therefore, the assigned column number one of three digit 
random number table may be referred and a number less than or equal to 103 is to be 
selected. By using the column number one of three digit random number table, 48 is 
appeared first which is less than 103 and it will be considered as selected.  

20.6.5.3.4 Determination of random number for random row in the breadth 
direction 

The similar exercise as done for selection of random row for length may also be followed 
for selection of random row for breadth.  

Example:  

Let, the average number of rows in 5 meter breadth is 8 and total rows are 65 in the 
direction of breadth. For selection of random number for random row, we may calculate 
the number as follows. 
Total number of rows in the direction of breadth 65 
Average rows in 5 meter breadth of CCE 8 
(Total number of rows minus average rows in the breadth of CCE) + one 58 

58 is two digit number, therefore, the assigned column number one of two digit random 
number table may be referred and a number less than or equal to 58 is to be selected. By 
using the column number one of two digit random number table, 22 is appeared first 
which is less than 58 and it will be considered as selected.  
The random number pair is (48, 22) 

20.6.5.3.5 Marking of the experimental plot 

20.6.5.3.5.1 Marking of south-west corner of the experimental plot 

Starting from south-west corner of the selected field, move towards the direction of 
length of the field by counting and stop at last random row (i.e. 48). From this point move 
towards the direction of breadth (perpendicular to the length) of the field in  between the 
inter-space of selected row (i.e. 48) and its preceding row (i.e. 47) by counting the rows 
and stop at random row selected for breadth (i.e. 22).  Fix first peg “A” between the 
interspace of row selected for breadth (i.e. 22) and the preceding row (i.e. 21). The point 
“A” is the south-west corner (key point) or first corner of the experimental plot (Figure-
20.6.5.3.5.1). 
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Figure-20.6.5.3.5.1: South-West Corner of Experimental Plot 

20.6.5.3.5.2 Marking of second corner of experimental plot  

From the key point “A” move in between the interspace of preceding row (i.e. 21) and 
selected row (i.e. 22) by counting the average number of rows (i.e. 6) in the direction of 
length of the selected field and stop at random row  i.e. 6 which is to be included in CCE 
plot. Row number 48th of the selected field will be the first row of the CCE plot and last 
row of CCE plot will be 53th row of the selected field.  Fix second peg “B” between the 
interspace of last row (i.e. 6th and 53th row of the selected field) and its succeeding row 
number 54th (Figure-20.6.5.3.5.2). 

 
Figure-20.6.5.3.5.2: Second Corner of Experimental Plot 
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20.6.5.3.5.3 Marking of third corner of experimental plot  

From second corner “B” proceed along the breadth of the field in between the interspace 
of last row of CCE (i.e. 6th row of CCE or row number 53th of selected field) and its 
succeeding row (i.e. 54) by counting the average number of rows workout in 5 meter in 
breadth (i.e. 8) and stop at last 8th row to be included in CCE plot (or row number 29 of 
selected field). We reached in between the interspace of last 8th row of CCE plot (or row 
number 29 of selected field) and its succeeding row (row number 30). This is the third 
corner of CCE plot. Fix third peg here at “C” point (Figure-20.6.5.3.5.3). 

 
Figure-20.6.5.3.5.3: Third corner of experimental plot 

20.6.5.3.5.4 Fourth corner of experimental plot 

Proceed from third corner “C” along the interspace of last row (i.e. row number 29) of 
CCE plot and its succeeding row (i.e. row number 30 of selected field) parallel to “A” & 
“B” and towards south-west corner of the experimental plot by counting average number 
of rows in the length of CCE plot (i.e. 6 in 5 meter). We reached back in between the 
interspace of selected row for length (i.e. 48) and preceding row (i.e. 47). This is the forth 
corner of CCE plot. Fix the fourth peg “D” here (Figure-20.6.5.3.5.4). Count the rows 
between “A”-“D”. These may be equal to rows between “B”-“C”. 
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Figure-20.6.5.3.5.4: Fourth corner of experimental plot 

20.6.5.3.5.5 Experimental plot 
Verify the rows in both the directions i.e. length and breadth. These may be equal to the 

average number of rows in the sides i.e. 6 rows in length and 8 rows in breadth side.  The 

distance between “A” & “B”, “B” & “C”, “C” & “D”, A & D, “A” & “C” and “B” & “D” 

may also be measured  and noted also. (Figure-6.5.3.6.5). Sides of CCE plot may not be 

equal to specified length and breadth of CCE plot. Actual length of diagonals (AC and 

BD) may also be measured and noted.  

If the experimental plot does not fall wholly within the field due to irregular shape of the 

field, reject the first pair of random number and select a new random number pair. 
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Figure-20.6.5.3.5.5: Experimental plot 

20.7.0 Harvesting of experimental crop 
It is important that the pegs should be tall, straight and firmly fixed on the ground. The 
distance outer side of one peg to another peg may be checked carefully. A rope/string 
should be used for demarcating the boundary of the CCE plot and its length should not be 
increase on stretching.  A well stretch string should be tied around the pegs and it should 
be lowered gradually to the ground level. The position of the string on the ground 
demarcates the boundary of the experimental plot. The decision for harvesting the plants 
is based on the position of their roots, if they are on boundary line. The plants on the 
boundary line of the experimental plot will be harvested only if the roots are more than 
half inside the experimental plot. Care should be taken to collect all the harvested plants, 
bundled it, marked with proper and transported to the threshing floor. No plant and ear 
head should be fallen during harvesting, bundling and transporting. 

 
20.7.0 Harvesting of experimental crop 
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20.8.0 Threshing  

The harvested experimental crop should be spread on a piece of hessian cloth for drying 
and threshing the experimental crop. After proper drying, it should be threshed carefully 
as per the usual method. All grains should be with threshed crop. 

 
20.8.0 Threshing 

20.9.0 Winnowing and cleaning 

Grains from straw should be separated by winnowing with the help of wind, winnowing 
fan and other cleaning tool. Materials like seed of other crops, weed seed, dust particles, 
stone, husk etc. should not be in the produce. 

 
20.9.0 Winnowing and cleaning 
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20.10.0 Weight of wet produce  

Weight of clean produce should be taken just after its winnowing/ cleaning. At this time 
most of the crops have excess moisture, therefore, this wet is called as wet weight. 
Weight should be taken to the nearest possible weighing unit by a perfect weighing 
balance / machine. After weighing, the produce should be returned to the farmer. 

 
20.10.0 Weight of wet produce 

 

20.11.0 Driage 

Driage experiments are necessary, if the produce has more moisture. Sample of 
recommended quantity of the produce has to be taken in cloth bag and kept for. Driage 
experiments are necessary to obtain final estimates of yield in terms of dry produce. 
Driage experiments for different crops are to be conducted by the district statistical 
officer. Driage experiments for different crops are to be selected out of the CCE 
supervised by the district level officers at the district level. The driage experiments are 
conducted in respect of 15 per cent of the experiments planned for the specific crops or 
subject to a minimum of four experiments per crop.  

Generally, one kilogram sample of harvested produce should be taken at random for 
drying by the District Statistical Supervisor. If, the produce obtained from the 
experimental plot is less than one kilogram, the entire produce is to be taken.  In the case 
of sugarcane, the final produce is expressed in terms of cane only. In the case of cotton, 
the final produce is expressed in terms of lint. The cotton (Kapas) is converted into lint 
by using ginning percentage (kapas to lint) which is obtained from the ginning factories. 
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20.10.0 Weight of dry produce  

Weight of dry produce should be taken after its proper drying. This wet is called as dry 
weight. Weight should be taken to the nearest possible weighing unit by a perfect 
weighing balance / machine. After weighing, the produce should be returned to the 
farmer.  
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