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1. Introduction
These days widespread demand from policy makers

is for estimates at a finer level of geographic detail
than the broad regions that were commonly used in the
past, known as small domain (or small area). In this
regards, SAE methods have achieved significant
attention due to its potential to produce robust and
reliable estimates at small area (or area) level. The
usual design-based approach for these small areas are
typically known as direct estimates in the literature.
Model-dependent indirect SAE method that ‘borrow
strength’ via statistical models are mostly used to
produce reliable small area estimates [Rao and Molina
(2015)]. However, sample sizes for small area of interest
are typically small or some time even zero, in this
situation though model dependent estimators perform
better than direct estimators, leading to large sampling
variability. Hence, survey data available for small area
level, present to be insufficient to produce reliable
estimate at small area level and sometimes even use of
census data cannot provide satisfactory results for
intermediate time point since in most of the countries
census is conducted only once in a decade, during this
period population characteristics of interest may change

markedly over time.
Now a days, it is very common in many countries

that different agencies, departments and organizations
independently conduct surveys from the same target
population for same or different purposes, having some
auxiliary variable common to each other. In these
scenario, combining data from more than one survey
can be beneficial to produce reliable SAE methods.
Zieschang (1990), Renssen and Nieuwenbroek (1997),
Merkouris (2004) and Wu (2004) discussed the problem
of combining data from different surveys to estimate
totals at the population and large domain levels.

Kim and Rao (2012) described projection approach
for estimation of population total and large domain totals
by combining data from two independent surveys. An
area-level model approach for SAE by combining
information from several sources is discussed by Kim
et al. (2015). Recently, Islam and Chandra (2017)
developed an approach of small area estimation by
combining the data from two independent surveys under
random effects model. Their development is on fitting
a random effects model to the first survey and then
generating the proxy values of variable of interest for
the second survey. They assumed that random area
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effects in the working model are independent. In
practice most of the small area boundaries are drawn
arbitrarily, hence there appears spatial correlation
among small areas. In this paper we extend the idea of
Islam and Chandra (2017) for combining data from two
surveys under spatial dependent random effects model.
Our aim is to how much gain achieved, incorporating
spatial correlation in SAE using data from two surveys.
The paper is organised as follow: In Section 2, we
review the estimator developed by Islam and Chandra
(2017) for random intercepts model with independent
area effects and discuss these methods to account for
spatial dependence between small areas. In Section 3,
we describe the structure of our simulation study and
present empirical results. We use real data set from
the 1995-96 Australian Agricultural Grazing Industry
Survey (AAGIS) conducted by the Australian Bureau
of Agricultural and Resource Economics of 759 farms
from 12 regions that make up the wheat-sheep zone
for Australian broad acre agriculture. Finally, in Section
4, we provide some concluding remarks and make
suggestions for further research.
2. Methodological Development

Let us assume that a finite population U containing
N units can be partitioned into D non-overlapping

domains Ui (i = 1, .., D) such that 
D

i
i .UU
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further that there is a known number Ni of population
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1  where yij denote the

value of y for unit j in area i. Let xij denote a vector of
order p for auxiliary variables values of unit j in area i.
We further assume that xij contains an intercept term
as its first component. It is assumed that two surveys
are independently conducted in the same population U.
The first and second survey are denoted by the notation
A and B, respectively. The samples of size n(A) and n(B)
units from A and B are denoted by s(A) and s(B),
respectively. The area specific sample sizes for s(A) and
s(B) in area i are denoted by n(A)i and n(B)i, respectively

such that    
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, where

n(A) << n(B). Further, it is assumed that the smaller survey
A has collected both variable of interest y as well as
set of auxiliary variables x. The larger survey B has
not collected data on variable of interest y, but it has
collected set of auxiliary variables which are common
to the first survey A. Here, (k) is used as a subscript to
denote the quantities associated with survey k(k = A,
B). The sample and non-sample part of the population
U, with respect to k are denoted by s(k) and r(k),
respectively. The area specific n (ki ) sample and
Ni – n(ki) non-sample units, with respect to sample k,
are denoted by s(ki) and r(ki), respectively for area i.

Let, d
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The expression for variance estimator of the direct
estimator is obtained from Särndal et al. (1992), page
43, 185 and 391, with   ,w ijAij 1    ,w ijAij 1

   ijAij,ijA   and (A)ij(A)ik, j  k, where (A)ij is the
first order inclusion probability of unit j in area i in A
and (A)ij,ik is the second order inclusion probability of
units j and k in area i in A. Under simple random
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 1  Now we assume that population units

follow unit level linear mixed model particularly random
intercepts model [Chandra et al. (2007)] of the form

.euxy iji
T
ijij  (1)

where,  is a vector of p unknown fixed effects, ui
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and eij denotes random effect of area i and individual
random effect, respectively. It is commonly assumed
that the random effects are Gaussian and these effects
are mutually independent, both across individuals as well

as across areas i.e.  20 ui ,N~u   and  .,N~e eij
20 

In the entire article, the sampling design is assumed as
noninformative, so model assumed for sample units is
also valid for non-sample units of the population.

The population level version of the linear mixed
model of (1) is achieved by aggregating this over the
whole population as

y = x + zu + e (2)
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matrix, z = diag(zi = 1Ni
; 1  i  D), here 1Ni

 is the unit
vector of length N i ,  u = (u1,  . . . ,  uD)T and

  ,e...,,ee TT
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T
1    .e...,,ee T

iNii i1  Since different

areas are independent, the covariance matrix of y has
block diagonal structure given by

V = diag(Vi= ;zzI T
iiuNe i

22  1  i  D), where INi

is the identity matrix of order Ni. We assume that x has
full column rank p. In practice the variance components
that define V are unknown and can be estimated from
the sample data using methods described, for example,
in Harville (1977).

We denote these estimates by  T
eu ˆ,ˆˆ 22   and

put a ‘hat’ on any quantity to denote estimate value of

parameter. Thus  ;zzˆIˆV̂diagV̂ T
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Given a sample s(A) of size n(A) from this population,
without loss of generality, we arrange the vector y so
that its first n(A) elements correspond to the sample units,
and then partition y, x, z and V according to sample and
non-sample units. We can therefore rewrite (2) as
follows :
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EPA and EPB both are based on the assumption that
small areas are independent. However, in practice areas
near to each other are often spatially correlated. So
there is a great opportunity to us to incorporate spatial
correlation in Equation (2). In this paper, we investigate
SAE based on linear models with spatially correlated
small area effects. The neighbourhood structure of small
areas are described by a contiguity matrix. Now we
can re-express (2) by considering spatial dependence
between different small areas as

y = x + zv + e (5)
where, v = (I – W)–1u with E(v) = 0 and Var(v)

    .WIWI T
DDu

1
2



  We also assume a

Simultaneous Autoregressive (SAR) error process
[Chandra et al. (2007)], where the vector of random
area effects v = (vi); i = 1, ..., D satisfies v = Wv + u.
Here  denote spatial autoregressive coefficient, W
denote proximity matrix of order D. The W describes
how random effects from neighbouring areas are
correlated, whereas  defines the strength of this spatial
relationship. We define W as a contiguity matrix by
considering non-zero values to the elements of W only
for those pairs of areas that are adjacent. This matrix
is defined in row-standardized form due to ease of
interpretation;  in this case is called the spatial
autocorrelation parameter [Chandra et al. (2007)]. The
element wkl of a contiguity matrix takes the value 1, if
area l shares an edge with area k and 0 otherwise. In
row-standardised form this becomes
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where, dk is the total number of areas that share
an edge with area k (including area k itself). It follows
that the covariance matrix of y is Var(y) = V = zzT

+ Ne I2  depends on vector of parameters

  ,,, T
eu  22  that is practically unknown. Replacing

it with maximum likelihood (ML) as well as restricted
maximum likelihood (REML) [Chandra et al. (2007)]

estimator   .ˆ,ˆ,ˆˆ T
eu  22  The approximate value of

ML and REML estimators 22
eu ˆ,ˆ   and ̂  can be

obtained via a two-step procedure. The Nelder-Mead
algorithm [Chandra et al. (2007)] is used at the first

step to approximate these estimates and these
approximates uses as starting values for a Fisher
scoring algorithm. It is necessary because the log-
likelihood function has multiple local maxima [Chandra
et al. (2007)]. Di is the D-vector (0,0,0,...,1,...,0,0)T with
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(5). Then the empirical predictor of small area i under
(5) using small survey A data (denoted by EPA.sp) is
defined as
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small survey A. In a similar fashion, we can define
empirical predictor of small area i under (5) using data
from both the survey A and B (denoted by EPB.sp) as
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iBsj

i
spT

iB
sp
ijij

sp.EPB
iB 



 (7)

where, ˆ ˆ ,   sp T sp
ij ij iy x v xij are collected from large

survey B.
3. Empirical Evaluations

In this Section, we report the results from simulation
study that illustrate the performance of the different
estimators of small area means defined in the preceding
sections. The estimators considered in simulation studies
are

 DIR-Direct estimator based on data from
survey A;

 EPA-Empirical predictor (3) based on data from
survey A;

 EPB-Empirical predictor (4) based on data from
both survey A and B;

 EPA.sp-Empirical predictor (6) based on data
from survey A;

 EPB.sp-Empirical predictor (7) based on data



from both survey A and B.
The performance of the different estimators in the

simulation studies is evaluated by computing the average
percentage relative bias (RB), the average percentage
relative root mean squared error (RRMSE) and the
average percentage relative efficiency (RE) defined
by
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Here, the subscript i indexes for small areas and
the subscript h indexes for H Monte Carlo simulations,
mi denoting the true area i mean, with predicted value
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A real data set collected in the 1995-96 Australian
Agricultural Grazing Industry Survey (AAGIS)
conducted by the Australian Bureau of Agricultural and
Resource Economics of 759 farms from 12 regions,
which make up the wheat-sheep zone for Australian
broad acre agriculture is used for simulation. Here
survey variable of interest was TCC-total cash costs
(in Australian dollars, A$) and Id-unique identification
code to each industry, COORD1-latitude, COORD2-
longitude, regions, LANDCL- land area (in hectares),
BEEFCL-number of closing beef stock, SHEEPCL-
number of closing sheep stock and WHEATQ-wheat
quantity harvested (in Kilograms) used as auxiliary
variables, respectively. Our aim is to estimate the
averages of TCC in each of the 12 regions. Now, the
original sample data is used to generate a population of
size N = 39,562 farms by sampling N times with
replacement, with probability proportional to a farm’s
sample weight. H = 1000 independent samples are

selected from this simulated population using stratified
random sampling, with regions are strata with region-
specific sample size fixed to be the same as in original
sample discussed in Table 1. This sample is treated as
the larger samples (second sample, s(B) of size
n(B) = (759). The first sample (smaller sample), S(A) of
size n(A) = 60 is selected with area specific sample sizes,
n(A)i = 5 by using stratified random sampling, with regions
are strata and this process is repeated H = 1000 times
independently to get 1000 independent samples. Similar
to n(A) = 60 two additional sample sizes, n(A) = 120 and
240 with area-specific sample sizes as n(A) = 10 and 20
respectively are also considered for smaller sample,
s(A) to get 1000 independent samples. We discuss the
performance of the estimators, namely DIR, EPA,
EPB, EPA.sp and EPB.sp in simulation study in Table
2. Figs. 1 and 2 demonstrate the boxplots of dispersion
of region-specific values of percentage RB and relative
RMSE for all the estimators. The results in Table 2
reveal that the EPB.sp has lowest relative bias followed
by EPB estimator, except for n(A)i = 10. Fig. 1 shows
the boxplots in terms of the dispersion of region-specific
values of actual percentage RB for the estimators
namely, DIR, EPA, EPB, EPA.sp and EPB.sp. We see
that all the empirical estimator EPA, EPA.sp, EPB and
EPB.sp does not outperform the DIR estimator though
the incorporation of spatial dependence narrow down
the dispersion of EPA.sp and EPB.sp than EPA and
EPB, respectively. From the Table 2, we observe that
combining information from two independent surveys
reduce the bias and also shows that incorporation of
spatial correlation has significant effect on bias
reduction. Again, the EPB.sp outperforms minimum
relative RMSE and maximum efficiency followed by
EPB estimator for all the sample size combinations.
Fig. 2 confirms the observation of Table 2 on relative
RMSE in the simulation study. Again, the EPB.sp
outperforms DIR, EPA, EPB and EPA.sp in terms of
the dispersion of relative RMSE between regions for
all the sample sizes of first (i.e. smaller) sample.
Generally, the results described in Table 2 and Fig. 2
support the conclusion that the combining data from
two surveys improves estimates of small areas when
consider spatial dependent random effects, with the
proposed EPB.sp emerging as the best performing of
the methods that we investigated in the empirical
evaluations.
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4. Concluding Remarks
This paper presents result from an initial exploration

of SAE of means by combining information from two
independent surveys under both spatial independent
random effects model as well as spatial dependent
random effects model. Our empirical results based on
real data show that SAE by combining data from two

independent surveys is beneficial in terms of efficiency.
It is also observed that incorporation of spatial
correlation in the linear mixed model for combing data
from independent two surveys indicate significant gains
in SAE. The empirical predictor based on spatial model
using data from both the survey is the most efficient
small area estimator. There is an important issue that
still need to be explored in the context of mean squared

Fig. 1 : Boxplots of region-specific values of relative bias of the different predictors from simulations using the AAGIS data.

n(A)i = 5 n(A)i = 10 n(A)i = 20

n(A)i = 5 n(A)i = 10 n(A)i = 20

Fig. 2 : Boxplots of region-specific values of relative RMSE of the different predictors from simulations using the AAGIS data.

Table 1 : Region wise population size and corresponding sample size in 12 regions.

Region 1 2 3 4 5 6 7 8 9 10 11 12
Ni 5918 1776 4770 2929 2335 3719 4090 1450 3731 1901 4960 1683

n(B)i 88 44 73 54 58 84 63 42 87 47 76 43

Table 2 :Values of percentage relative biases (RB), percentage relative root mean squared errors (RRMSE) and percentage
relative efficiencies (RE) of the different estimators from simulations study using the AAGIS data. The values are
averaged over 12 regions.

n(A)i = 5 n(A)i = 10 n(A)i = 20
  Predictor

RB, % RRMSE, % RE, % RB,% RRMSE,% RE, % RB,% RRMSE, % RE, %
DIR 1.16 57.6 100 -1.33 38.9 100 1.36 28.2 100
EPA 1.36 54.3 106 -1.14 36.5 106 1.45 25.9 109
EPA.sp 1.57 53.3 108 -0.85 35.6 109 1.35 24.1 117
EPB - 0.07 31.2 185 -1.60 26.0 149 1.23 19.6 144
EPB.sp 0.05 30.1 192 -1.32 25.3 154 1.17 18.6 152
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error (MSE) estimation of the developed empirical
predictor of means under a spatial dependent random
effects model using data from two surveys and we are
working on this.
Acknowledgement

The authors would like to acknowledge the valuable
comments and suggestions of the Editor and the referee.
The first author gratefully acknowledges the National
Fellowship[ F./2015-16/NFO-2015-17-OBC-WES-
36385/(SA-III/website)] provided by Ministry of Social
Justice & Empowerment, Govt. of India, New Delhi
for pursuing Ph. D. degree.
References
Chandra, H., N. Salvati and R. Chambers (2007). Small area

estimation for spatially correlated population-a
comparison of direct and indirect model-based
estimators. Statistics in Transition, 8, 331-350.

Harville, D. A. (1977). Maximum likelihood approaches to
variance component estimation and to related problems.
Journal of  the American Statistical Association ,
72(358), 320-338.

Islam, S. and H. Chandra (2017). Small area estimation
combining data from two independent surveys.
(Submitted).

Kim, J. K. and J. N. K. Rao (2012). Combining data from two

independent surveys: a model assisted approach.
Biometrika, 99, 85-100.

Kim, J., S. Park and S. Kim (2015). Small area estimation
combining information from several sources. Survey
Methodology, 41, 21-36.

Merkouris, T. (2004). Combining independent regression
estimators from multiple surveys. Journal of American
Statistical Association, 99, 1131-1139.

Merkouris, T. (2010). Combining information from multiple
surveys by using regression for efficient small domain
estimation. Journal of the Royal Statistical Society:
Series B, 72, 27-48.

Rao, J. N. K. and I. Molina (2015). Small Area Estimation.
John Wiley & Sons. Inc., New Jersey, 2nd edition.

Renssen, R. H. and N. Nieuwenbroek (1997). Aligning
estimates for common variables in two or more sample
surveys. Journal of American Statistical Association,
92, 368-375.

Särndal, C. E., B. Swensson and J. H. Wretman (1992). Model
Assisted Survey Sampling. Springer-Verlag, New York.

Wu, C. (2004). Combining information from multiple surveys
through the empirical likelihood method. Canadian
Journal of Statistics, 32, 15-26.

Zieschang, K. D. (1990). Sample weighting methods and
estimation of totals in the Consumer Expenditure Survey.
Journal of  the American Statistical Association ,
85(412), 986-1001.

                     Small Area Estimation under a Spatial Model using Data from Two Surveys 237


