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Chapter-1                                                               INTRODUCTION 

 

1.1 Introduction 

Breeding techniques are used as a tool for the development of commercial hybrids for which 

a major objective of plant and animal breeders is to raise the genetic potential. Any breeding 

experiment centres on acquiring information regarding the general combining ability (gca) 

effects of the individual lines involved as parents and the specific combining ability (sca) 

effects of the crosses. The information collected on gca and sca forms a basis of making 

correct choice of the best parental lines. 

One of the most common and rigorously used breeding techniques is mating design, of which 

diallel crosses are the simplest and easily manageable. However, higher order crosses like 

triallel and tetra-allele cross based hybrids are genetically more viable, stable and consistent 

in performance than diallel cross hybrids. Triallel and tetra-allele cross hybrids have wider 

genetic base which gives them strong buffering mechanism as individual or when constituting 

a population. 

 There are many cases of crops (like maize or corn) and animals (like swine and chicken) 

where triallel and tetra-allele crosses are the commonly used breeding techniques of 

producing commercial hybrids (Shunmuguthai and Srinivasan, 2012). Triallel crossbred 

chickens show better egg traits than diallel crossbred chickens and are also having lower 

mortality (Khawaja et al., 2013). Triallel and tetra-allele crossing scheme is very much 

acceptable and practiced in pig farming. The resultant product is also economical and of good 

quality.  The silkworm production industry is also practicing the triallel and tetra-allele 

crosses for exploitation of heterosis. 

1.2 Diallel cross  

Diallel cross, also known as two-way or two-line or single cross, is a type of mating design 

which involves crossing between two parental lines to produce an offspring. A common 

diallel cross involving two inbred lines A and B can be symbolically represented in many 

ways like (A×B) or (A, B) or (A B). Diallel crosses can be categorized into complete diallel 

crosses (CDC) and partial diallel crosses (PDC).  
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1.2.1 Complete diallel cross  

A CDC can be defined as the set of all possible matings between several genotypes 

(individuals, clones, homozygous lines, etc). The CDC among 𝑁 lines gives rise to 𝑁2 

progenies which can be further divided into three categories. They are crosses among 𝑁 

inbred lines, a set of  
𝑁(𝑁−1)

2
  F1 hybrids and a set of  

𝑁(𝑁−1)

2
 F1 reciprocal hybrids. Depending 

upon the group that is considered, there are four models known as Griffing’s models (I, II, III 

and IV): 

I. Including all the 𝑁2 possibilities 

II. Including N parents and  
𝑁(𝑁−1)

2
  F1 hybrids 

III. Including  
𝑁(𝑁−1)

2
 F1 hybrids and  

𝑁(𝑁−1)

2
  F1 reciprocal hybrids 

IV. Including  
𝑁(𝑁−1)

2
 F1 hybrids only 

Analysis of diallel crosses is described in Griffing (1956 a, b). 

 

An example of complete diallel cross (Method I of Griffing) consisting of 36 crosses that can 

be made from 6 lines (U, V, W, X, Y and Z) is given below: 

 

(U×U) (U×V) (U×W) (U×X) (U×Y) (U×Z) 

(V×U) (V×V) (V×W) (V×X) (V×Y) (V×Z) 

(W×U) (W×V) (W×W) (W×X) (W×Y) (W×Z) 

(X×U) (X×V) (X×W) (X×X) (X×Y) (X×Z) 

(Y×U) (Y×V) (Y×W) (Y×X) (Y×Y) (Y×Z) 

(Z×U) (Z×V) (Z×W) (Z×X) (Z×Y) (Z×Z) 

  

1.2.2 Partial diallel cross 

Even if one excludes the 
𝑁(𝑁−1)

2
 reciprocal crosses and 𝑁 parental inbreds then also there are 

𝑁(𝑁−1)

2
 crosses consisting of a diallel among a set of 𝑁 lines. This number of crosses is 

directly related with the number of lines and hence increases rapidly as 𝑁 increases. For 

example, when there are 𝑁 = 4 lines, there are only 6 crosses constituting the diallel but when 

𝑁 = 10, the number of crosses becomes 45. With scarce resources, a full diallel cross may not 

be possible when the number of inbred lines is large. As an alternate if one chooses not to 
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include all the inbred lines then it may not give fruitful results as the randomly excluded lines 

may constitute the potent set. Thus, it is not advisable to leave any line out of the experiment. 

In this situation, a small sample taken from a complete diallel cross, which has at least that 

minimum representation, can be used to estimate the gca effects of all inbred lines. Such a 

fraction of CDC is known as PDC.  

 

An example of PDC plan consisting of 36 crosses is given below for 12 lines (A, B,…, L). 

 

(A×E) (A×F) (A×H) (A×I) (A×K) (A×L) 

(B×D) (B×I) (B×J) (B×F) (B×I) (B×L) 

(C×D) (C×I) (C×J) (C×E) (C×H) (C×K) 

(D×H) (D×K) (D×I) (D×L) (E×G) (E×J) 

(E×I) (E×L) (F×G) (F×J) (F×H) (F×K) 

(G×K) (G×L) (G×J) (G×L) (H×J) (H×K) 

 

1.3 Triallel cross  

Triallel crosses, often referred as three-way crosses, are those type of mating designs in 

which each cross is obtained by crossing three inbred lines. A triallel cross can be obtained 

by crossing the resultant of a diallel cross with an unrelated inbred line. A common triallel 

cross involving three inbred lines A, B and C can be symbolically represented as (A×B)×C or 

(A, B, C) or simply (A B C). Unlike diallel cross, the three lines involved in the triallel cross 

do not contribute equally and thus, it is important to differentiate amongst them. The two 

lines A and B which are used first to produce a diallel cross contribute half as much as that of 

the third line C used to obtain the triallel cross. Hence, lines A and B are also referred as half 

parents whereas line C as full parent. Triallel crosses can be broadly categorized as complete 

triallel cross (CTrC) and partial triallel crosses (PTrC). 

1.3.1 Complete triallel cross 

The set of all possible three-way matings between several genotypes (individuals, clones, 

homozygous lines, etc) leads to a CTrC. If there are 𝑁 number of inbred lines involved in a 

CTrC, the total number of crosses is 𝑇 =
𝑁(𝑁−1)(𝑁−2)

2
. Here is an example of complete triallel 

cross consisting of 30 crosses that can be made for 5 lines (P, Q, R, S and T). 
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(P×Q)×R (P×R)×Q (Q×R)×P 

(P×Q)×S (P×S)×Q (Q×S)×P 

(P×Q)×T (P×T)×Q (Q×T)×P 

(P×R)×S (P×S)×R (R×S)×P 

(P×R)×T (P×T)×R (R×T)×P 

(P×S)×T (P×T)×S (S×T)×P 

(Q×R)×S (Q×S)×R (R×S)×Q 

(Q×R)×T (Q×T)×R (R×T)×Q 

(Q×S)×T (Q×T)×S (S×T)×Q 

(R×S)×T (R×T)×S (S×T)×R 
 

1.3.2 Partial triallel cross 

When the number of lines increases, the total number of crosses in CTrC also increases. It is 

almost impossible for the investigator to handle it with limited available resources. This 

situation lies in taking a fraction of CTrC with certain underlying properties, known as PTrC. 

In 1965, Hinkelmann defined PTrC as a set of triallel matings in which every line occurs 𝑟ℎ 

and 𝑟𝑓 times as half-parent and full-parent, respectively and each cross of the type (𝑖 × 𝑗) × 𝑘 

{alongwith (𝑖 × 𝑘) × 𝑗 and (𝑗 × 𝑘) × 𝑖, to maintain the Structural Symmetry Property (SSP)} 

occurs either once or not at all. The total number of crosses is 𝑁 times  𝑟𝑓 . Here is an 

example of PTrC consisting of 63 crosses that can be made for 7 lines (T, U, V, W, X, Y and 

Z) with 𝑟𝑓  = 9, 𝑟ℎ = 18, 𝑓 = 3/5 (Note that, the degree of fractionation 𝑓 is defined as the ratio 

of crosses in a PTrC to a CTrC for a given number of lines):  

 (T×U)×V  (T×V)×U (U×V)×T (T×U)×X (T×X)×U (U×X)×T 

(T×U)×Z (T×Z)×U  (U×Z)×T (T×V)×X (T×X)×V (V×X)×T 

(T×V)×Y (T×Y)×V (V×Y)×T  (T×W)×X (T×X)×W (W×X)×T 

(T×W)×Y (T×Y)×W (W×Y)×T (T×W)×Z  (T×Z)×W (W×Z)×T 

(T×Y)×Z (T×Z)×Y (Y×Z)×T (U×V)×W (U×W)×V  (V×W)×U 

(U×V)×Y (U×Y)×V (V×Y)×U (U×W)×Y (U×Y)×W (W×Y)×U 

(U×W)×Z (U×Z)×W (W×Z)×U (U×X)×Y (U×Y)×X (X×Y)×U 

(U×X)×Z  (U×Z)×X (X×Z)×U (V×W)×X (V×X)×W (W×X)×V 

(V×W)×Z (V×Z)×W  (W×Z)×V (V×X)×Z (V×Z)×X (X×Z)×V 

(V×Y)×Z (V×Z)×Y (Y×Z)×V  (W×X)×Y (W×Y)×X (X×Y)×W 

(X×Y)×Z (X×Z)×Y (Y×Z)×X    
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1.4 Tetra-allele cross  

Tetra-allele cross often referred as four-way cross or double cross or four-line cross are those 

type of mating designs in which every cross is obtained by mating amongst four inbred lines. 

A tetra-allele cross can be obtained by crossing the resultant of two unrelated diallel crosses. 

A common triallel cross involving four inbred lines A, B, C and D can be symbolically 

represented as (A×B)×(C×D) or (A, B, C, D) or (A B C D) etc. Tetra-allele cross can be 

broadly categorized as Complete Tetra-allele Cross (CTeC) and Partial Tetra-allele Crosses 

(PTeC). 

1.4.1 Complete tetra-allele cross  

The set of all possible four-way mating between several genotypes (individuals, clones, 

homozygous lines, etc.) leads to a CTeC. If there are 𝑁 number of inbred lines involved in a 

CTeC, the the total number of crosses, 𝑇 =
𝑁(𝑁−1)(𝑁−2)(𝑁−3)

8
. Here is an example of complete 

tetra-allele cross consisting of 15 crosses that can be made for 5 lines (P, Q, R, S and T). 

 

(P×Q)×(R×S) (P×R)×(S×T) (P×S)×(Q×T) (P×T)×(R×S) (Q×T)×(R×S) 

(P×Q)×(R×T) (P×R)×(Q×T) (P×S)×(R×T) (P×T)×(Q×R) (S×T)×(Q×R) 

(P×Q)×(S×T) (P×R)×(Q×S) (P×S)×(Q×R) (P×T)×(Q×S) (Q×S)×(R×T) 
 

1.4.2 Partial tetra-allele cross  

When more number of lines are to be considered, the total number of crosses in CTeC also 

increases. Thus, it is almost impossible for the investigator to carry out the experimentation 

with limited available resource material. This situation lies in taking a fraction of CTeC with 

certain underlying properties, known as PTeC. An example of PTeC consisting of 21 crosses 

that can be made for 7 lines (T, U, V, W, X, Y and Z) with 𝑓 = 1/5 is given below: 

(T×U)×(V×W) (T×V)×(X×Z) (T×W)×(Z×V) 

(U×V)×(W×X) (U×W)×(Y×T) (U×X)×(T×W) 

(V×W)×(X×Y) (V×X)×(Z×U) (V×Y)×(U×X) 

(W×X)×(Y×Z) (W×Y)×(T×V) (W×Z)×(V×Y) 

(X×Y)×(Z×T) (X×Z)×(U×W) (X×T)×(W×Z) 

(Y×Z)×(T×U) (Y×T)×(V×X) (Y×U)×(X×T) 

(Z×T)×(U×V) (Z×U)×(W×Y) (Z×V)×(Y×U) 
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1.5 Triallel and tetra-allele cross plans incorporating sca effects 

Diallel cross is the simple and easily manageable mating design. However, triallel and tetra-

allele cross based hybrids are found to be genetically more viable, stable and consistent in 

performance. These techniques help the breeders to improve the quantitative traits which are 

of economical as well as nutritional importance in crops and animals. Triallel and tetra-allele 

cross hybrids are more stable than pure lines as well as compared to diallel cross hybrids 

because they are having strong buffer mechanism because of the wider genetic base. Further, 

the sca effects are also of much importance for breeders besides the gca effects. In case of 

diallel crosses, only a single first order sca effect can be studied whereas in case of triallel 

crosses and tetra-allel crosses, second and even third order sca effects can be studied. 

1.6 Random effects model approach 

Most of the studies involving mating designs are done presuming the assumptions of a 

standard linear model where the gca effects are considered to be fixed in nature. But, there 

are situations where the idea of taking gca effects as fixed may not be justifiable. Consider a 

situation of dairy farm, where instead of mating with own bulls to the owned cows, the cows 

are inseminated by calling a technician. The technician is having bull semen from an 

esteemed artificial breeding industry. The industry owns their bulls that generally sire 

daughter cows that are high-yielding. It can be achieved by each year buying some young 

bulls that are considered to be a random sample from the population of bulls. As the bulls are 

considered random, their effect is also a random effect. When a sample of inbred lines from a 

possibly large hypothetical population is considered to predict the gca effects or to estimate 

the variance components and the variances of the obtained estimates, considering the gca 

effects as random effects is advisable. 

 

1.7 Prediction of combining ability effects 

There are many situations where one wants to quantify the realization of an unobservable 

random variable. Consider an example of measuring intelligence in human beings. Each one 

has some intelligence level, usually quantified and referred as IQ. It can never be measured 

exactly and thus some sort of test scores is used as a substitute for giving a value to 

anybody’s IQ. An example from breeding sector is that of predicting the genetic merit of a 

dairy bull from the milk yield capacity of his daughters. Same is the situation for predicting 

the yielding capacity of the cross from the sample of inbred lines. In all these examples, from 
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observations on some random variables the value of some other related random variables that 

cannot be observed are to be predicted. The concept of Best Linear Unbiased Predictor 

(BLUP) is used for unbiased prediction of the yielding capacity of the cross from the sample 

of inbred lines under mixed effects model. 

1.8 Variance component estimates 

Both plant and animal breeders are interested to increase the production of economically 

important products from farm animals (e.g., eggs, milk, butter, wool, meat etc.), or plants. 

One way of achieving this objective is to use BLUP of the unobserved line effects for ranking 

the value of inbred lines which will increase the productivity of future generation. But the 

prediction of line effects depends on good estimates of variance components related to line 

effects and error. Thus, variance components are of much interest for breeders. Besides this, 

the genetic parameter heritability on which the breeding policies depends is also a function of 

variance components. Thus, under a random effect model for breeding experiments, assuming 

the gca effects as random, the variance components related to line and error effects can be 

estimated. Henderson Method III, which incorporates both fixed and random effect 

components in the model, can be adopted for this study and unbiased estimate of different 

variance components can be obtained. 

1.9 Designs for breeding trials 

Statistical techniques related to designing and analyses of experiments are uninterruptedly 

used by the breeders and are having indispensable role while going for any breeding related 

study or experimentation. Breeding programmes are conducted using suitable designed 

experiments. When the size of experiment is large, then in order to handle the variability in 

the experimental material it is necessary to group it in various categories which are maximum 

possible homogenous within themselves and heterogeneous to each other. This concept leads 

to blocking concept in the field of design of experiments. Higher order crosses, like triallel 

and tetra-allele cross experiments involve larger number of crosses which makes it difficult to 

handle as a single group. Even if we use block designs, it may be possible that a complete 

block is of very large in size and thus becomes heterogeneous, which is not acceptable. In this 

situation incomplete block designs with smaller block sizes are desirable. Hence, it is 

important to have small and efficient designs for mating designs of higher order.  
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1.10 Robust design for breeding experiments 

An optimal or efficient design may not remain so and may become disconnected and all the 

contrasts pertaining to combining ability effects may not be estimable or may become 

inefficient if the underlying assumptions are not fulfilled. Hence, it is much important that the 

design used is robust against such disturbances like missing observation(s), outlying 

observation(s), exchange or interchange of crosses, inadequacy of assumed model, etc. In 

case of breeding experiments the loss of observation is much prevalent because an 

observation may not sprout or may not survive till the time of measurement. Besides this, any 

human error regarding tagging may also result in loss of observation. Robust designs 

involving triallel and tetra-allele crosses against missing observation would be obtained using 

the robustness criteria of connectedness and efficiency. These connected and efficient designs 

will be helpful for the breeders to estimate the gca effects of lines even if an observation is 

missing.  

1.11 Motivation and objectives 

Higher order crosses like triallel and tetra-allele cross based hybrids are not frequently used 

by the breeders as they require extra resources as compared to diallel crosses. But, triallel and 

tetra-allele crosses can provide information on gca and sca effects which may not be captured 

by diallel crosses. Majority of the work on mating-environmental designs has been done in 

diallel and ignoring the sca effects. Apart from inferring about gca effects often breeders are 

interested in getting information on gca effects after adjusting for sca effects, which is 

possible only if sca effects are also included in the model. Developing general methods for 

constructing designs will not only attract the breeders to use them but the information 

obtained on the higher order sca along with gca effects may also help in developing hybrids 

with important traits.  

The use of mixed effects model is more reliable because only a sample of inbred lines from a 

possibly large hypothetical population is considered to predict the gca effects or to estimate 

the variance components and the variances of the obtained estimates in triallel or tetra-allele 

cross hybrids. The concept of BLUP would be helpful for unbiased prediction of the yielding 

capacity of the cross from the sample of inbred lines under mixed effects model.  

Estimation of genetic components of variances is important in plant and animal breeding 

experiments and can be used further for the estimation of heritability. Estimation of the 
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variance components and variances of the estimates under mixed effects model is important 

as the BLUP of the unobserved line effects depends on these estimates.  

Since, large number of crosses is to be made in case of higher order crosses, there is a chance 

that some human error may creep in due to loss of tags or labels or some of the observations 

may be lost after making the crosses. Robust designs involving triallel and tetra-allele crosses 

would help the breeders to get information on gca effects from their experiments without 

much loss of precision, even if an observation is missing. A catalogue of robust designs using 

the concept of connectedness and efficiency criteria would be beneficial to the experimenters 

to choose a robust design. 

Keeping these points in view following objectives have been considered: 

 To obtain efficient triallel and tetra-allele cross designs including sca effects in the model 

 To obtain Best Linear Unbiased Predictor (BLUP) for predicting the unobserved 

combining ability effects together with general mean effect in triallel and (or) tetra-allele 

cross designs  

 To obtain estimates of variance components under mixed effects triallel and (or) tetra-

allele cross model 

 To study the robustness of designs involving triallel and tetra-allele crosses against 

missing observation(s) 

 

1.12 Scope of the present investigation 

Mating designs find an important place in the area of research done in the field of Genetics as 

well as Statistics. A large number of breeders and statisticians working in this area and 

volume of research work published in this area show the importance of this topic. In the 

present investigation, an attempt has been made to supplement and carry forward the work 

done in the area of designs involving higher order crosses, i.e., triallel and tetra-allele crosses. 

A general introduction to the topic is given in this chapter. 

In Chapter II of the thesis, a critical review of the research work related to triallel and tetra-

allele cross designs incorporating specific combining ability effects, prediction of combining 

ability effects, variance components estimate and robust design for breeding experiments has 

been given. 
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Chapter III focuses on various existing fixed effects and random effects models for triallel 

and tetra-allele cross experiments. Various methodologies related to prediction of combining 

ability effects; variance components and robustness of designs have been discussed. Various 

definitions, designs, formulae and details of programs used in this investigation have also 

been reported in this chapter.  

The first section of Chapter IV dedicates to the development of general methods of 

constructing designs involving triallel and tetra-allele crosses. The joint information matrix 

for combining ability effects have been derived including both gca and sca effects in the 

model and the expression for estimated variance of elementary contrasts pertaining to gca 

effects have been also derived. Characterization properties of the designs obtained have been 

studied. Efficiencies of the developed designs have been calculated.  

In second section of Chapter IV, considering a random effects model for tetra-allele crosses, 

the best linear unbiased predictor (BLUP) for predicting the unobserved combining ability 

effects together with general mean effect in tetra-allele cross design has been obtained. Lower 

bound of mean square error (MSE) has been also derived to characterize efficient classes of 

designs. 

In third section of Chapter IV, variance components along with their large sample variance, 

using mixed linear model approach in tetra-allele crosses has been obtained using Henderson 

Method III.  

In last section of Chapter IV, robustness of newly developed and previously available designs 

for triallel and tetra-allele cross experiments have been investigated using connectedness and 

efficiency criteria, against missing observation(s). Programs have been written in Statistical 

Software Package (SAS) to calculate the efficiencies of the designs to choose a robust design 

and a catalogue has also been prepared consisting of parameters of robust designs along-with 

efficiency factor.  

Chapter V deals with a general discussion of various methodologies developed and designs   

obtained for triallel and tetra-allele cross experiments. 

Finally, the thesis concludes with a brief summary, abstracts (in English and Hindi), 

references and Annexures consisting of SAS programs. 

   



 
 

 

Chapter-2                                            REVIEW OF LITERATURE 

 
 

2.1 Introduction 

Breeding techniques are evolving day by day and have emerged as a major tool for the 

development of present day commercial hybrids. This technique exploits the hybrid vigour of 

the cross which is normally reflected as improvement in desirable characteristics. 

Schmidt (1919) has defined diallel crossing as a technique which can be used to compare the 

breeding value of ancestors. The terms gca and sca were originally defined by Sprague and 

Tatum (1942). Griffing (1956 a, b) has given the analytic procedure of diallel crossing 

systems. Since then, a lot of literature is available on diallel crosses. 

Although diallel cross is the simplest and easily manageable hybridization method, triallel 

and tetra-allele cross hybrids are genetically more stable, viable and consistent in 

performance. There are various examples of the application of triallel and tetra-allele crosses 

in plant as well as animal breeding. Triallel and tetra-allele crosses are the common mating 

designs used in background for the production of maize hybrids on commercial scale 

(Shunmugathai and Srinivasan, 2012).  

Triallel crossbred chickens are proved to have better egg traits than diallel crossbred chickens 

with lower mortality (Khawaja et al. 2013). The area of piggery is very much accountable for 

higher order crosses as they are used in cultivating and harvesting products with higher 

qualities. The silkworm production industry is also using the triallel and tetra-allele crosses 

for the purpose of harvesting heterosis.  

In this chapter, a rigorous account of the work done related to statistical techniques involving 

triallel and tetra-allel crosses has been given. 

2.2 Triallel and tetra-allele cross designs 

Little research is available on designs for tetra-allele crosses. So these are reviewed with 

triallel crosses and presented here. Triallel and tetra-allele crosses are considered to be higher 

order crosses as they involve more number of lines as compared to simple diallel cross. 

Triallel crosses are often referred as three-way crosses wherein every cross is obtained by 
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crossing three inbred lines. Tetra-allele cross often referred as four-way cross or double cross 

or four-line cross in which every cross is obtained by mating amongst four inbred lines.  

Triallel cross has been defined by Rawlings and Cockerham (1962 a) as a set of all possible 

three-way matings among a group of lines. The definition given by them is also applicable for 

full or complete triallel crosses. Rawlings and Cockerham (1962 b) gave the method of 

analysis for tetra-allele cross hybrids using the analysis method of single cross hybrids under 

the assumption of no linkage. This analysis was meant for obtaining information related to 

genetic as well as non-genetic, from tetra-allele cross hybrids.  Analysis of variance 

(ANOVA) was done under a linear model set up. The results were established in terms of 

dispersion properties of related hybrids. The analysis gave the basis for inferring that there is 

an interaction system present in tetra-allele crosses hybrids.  

Hinkelmann (1965) was the first to introduce the concept of PTrC. He developed PTrC 

involving only a fraction taken from all possible triallel crosses and gave a method of 

construction using Generalized Partially Balanced Incomplete Block (GPBIB) designs. The 

underlying model involved only gca effects under the assumption that the sca effects are 

insignificant or very small. The analysis for obtaining the gca effects of line was also 

described. It was also established that PTrC are related to incomplete block designs and this 

property was used for constructing designs and analysing appropriate plans. 

Ponnuswamy (1971) considered the research problem of constructing incomplete block 

designs for triallel crosses. He gave a method of constructing designs for triallel cross based 

on a three associate PBIB design. The method gives a 3 associate design for triallel crosses in 

two replicates. Some more methods of construction using Latin Squares and Graeco Latin 

Squares have also been obtained. The method of analysis is also given providing full 

information for gca effects. A good review of complete triallel cross and PTrC  can be seen in 

the review paper by Hinkelmann (1975). 

Arora and Aggarwal (1984) discussesd the applications of confounded triallel experiments 

which is nothing but directly related to the PTrC. The concept of extended triangular designs 

has been used to get PTrC designs. In their study, they have assigned the sum total degrees of 

freedom to three orthogonal components, which belong to gca effects of the lines, two-line 

sca effects and three-line sca effects, respectively. Venkatesan (1985) has considered the 

multi-way crosses and various aspects of multi-way crosses have been studied.  
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Arora and Aggarwal (1989) extended their research work on triallel crosses including 

reciprocal effects in the model. They derived a four class association scheme from a three 

associate class partially balanced design and then assigned the sum total degrees of freedom 

to four orthogonal components, which belong to gca effects of the lines, two-line sca effects, 

three-line sca effects and reciprocal effects, respectively.  

Ceranka et al. (1990) have worked regarding the estimation of parameters involved in the 

model for triallel crosses under the blocked set up. 

Ponnuswamy and Srinivasan (1991) used a new class of balanced incomplete block (BIB) 

designs known as Partially Doubly Balanced Incomplete Block (PDBIB) designs for the 

construction of a class of PTrC. The method gives a PTrC design which reciprocates the 

property of a CTrC design. They also provided a list of PDBIB designs which can be further 

used for the purpose of constructing suitable triallel crosses. Subbarayan (1992) studied the 

applications of pure cyclic triple system for experiments involved in breeding. 

Das and Gupta (1997) worked in the area of optimality of block designs for triallel crosses. In 

their study, a new class of designs known as Nested Balanced Block (NBB) designs have 

been introduced and used for obtaining optimal designs for triallel crosses. A fixed effects 

model has been considered for the study without including sca effects in the model. It is 

shown that there is a one to one correspondence between NBB designs and optimal designs 

for triallel crosses. Several classes of such designs which can lead to optimal triallel cross 

designs have been reported. 

Dharmalingam (2002) gave a method of construction of PTrC using Trojan square designs 

and the method is more general as compared to others. Degree of fractionation of their 

designs is considerably small. 

Parsad et al. (2005) worked on optimality aspect of diallel and tetra-allele cross designs. The 

problem of finding an optimal class of designs has been considered in three types of model 

set-up, that is, zero-way, one-way and two-way elimination of heterogeneity. In each case, 

only gca effects is considered in the model and sca effects are presumed to be absent. Method 

of construction of universally optimal block designs for diallel cross experiments using a 

NBB design is given.  Method of construction of universally optimal row column design for 

diallel cross experiments using NBB designs is also described. MS-optimal designs under all 

the three set ups are given and are claimed to have a high A- and D-efficiency.  Subbarayan 
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(2009) has considered two associate class PBIB designs for the construction of designs 

involving PTrC. 

Some classes of mating designs have been obtained using generalized incomplete Trojan type 

designs by Varghese and Jaggi (2011) and various aspects of designs and analysis of genetic 

cross experiments were explained in detail by Singh et al. (2012).  

Sharma et al. (2012) considered the problem of investigating optimal class of designs 

involving PTrC. The model considered includes gca effects of first and second kind but not t 

the sca effects. A method of construction of designs involving triallel crosses has been 

proposed for prime or prime power number of lines based on Mutually Orthogonal Latin 

Squares (MOLS). Method of analysis has also been illustrated. Shunmugathai and Srinivasan 

(2012) discussed that triallel has helped both plant as well as animal breeders to improve 

various nutritionally and economically important traits.  

Khawaja et al. (2013) have studied various parameters like production performance, egg 

quality, etc. of triallel cross hybrid chickens in comparison to reciprocal F1 crossbred 

chickens and found that triallel cross hybrid chickens are having better egg qualities than 

diallel chickens with lower cases of mortality. 

Harun (2014) discussed various methods of constructing designs for triallel cross experiments 

using MOLS, association schemes and PBIB designs. The variance factor of contrasts 

pertaining to estimated gca effects of first and second kind has been given. 

Harun et al. (2016 a) developed some methods of constructing designs involving complete 

and PTrC using MOLS and PBIB designs. Further, Harun et al. (2016 b & c) developed 

methods for constructing various classes of PTrC designs for test line versus single control 

comparisons. Harun et al. (2017) developed PTrC plans based on BIB designs.  

2.3 Mating plans with models incorporating sca effects 

Diallel cross is the simplest and easily manageable mating design but triallel and tetra-allele 

cross based hybrids are found to be genetically more viable, stable and consistent in 

performance than diallel cross based hybrids. The sca effects are also of much importance for 

breeders besides the gca effects. In case of diallel cross, different aspects of designs 

considering both gca and sca effects have been addressed but higher order mating designs are 

mostly studied for gca effects only. Since sca effects are of prime importance and the major 
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research including sca effects in the model is done only in the area of diallel crosses, there is 

a need to investigate the problem of considering sca effects in the model alongwith gca 

effects for triallel and tetra-allele cross experiments. 

Chai and Mukerjee (1999) considered the problem of including sca effects while 

investigating the problem of diallel cross designs. They have considered a model which 

includes sca effects along with gca effects in addition to the block effects. PBIB designs 

based on triangular association scheme were investigated for optimality aspects and it has 

been concluded that these designs are universally optimal for estimating gca effects in the 

presence of sca effects. Choi et al. (2002) investigated orthogonal designs for diallel crosses 

in blocked set up and studied the optimality of designs including sca effects in the model. 

Das and Dey (2004) investigated designs involving diallel crosses with sca effects. They 

considered a model that incorporates both types of combining ability effects and under such 

model, conditions have been derived for blocked setup so that the gca effects are estimated 

free from sca effects.  

Varghese and Varghese (2013) included sca effects in the model of mating-environmental 

designs for diallel crosses under two-way blocking setup. Further, Varghese et al. (2015) 

considered the usual linear fixed effect model under the row column set up including sca 

effects in the model alongwith the gca effects and information matrix related to gca effects 

has been derived eliminating sca effects. 

Varghese et al. (2016) discussed a methodology for estimating gca effects free from sca 

effects in case of Type III CDC considering a row-column set-up. They also obtained a class 

of variance balanced row column designs.  

Varghese and Varghese (2017) investigated the problem of comparing test lines with a 

control line including sca effects in the model. Various classes of designs under two-way 

blocking and variance balanced structure have been obtained for estimating the contrasts 

related to gca effects orthogonal to sca effects.  

2.4 Prediction of combining ability effects and variance component estimates 

Most of the studies involving mating designs are done under the assumptions of a standard 

linear model where the gca effects are considered to be fixed in nature. But, there are 

situations where the idea of taking gca effects as fixed may not be always justifiable and one 
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can also consider them as random effects according to the situation. In this investigation too, 

only a small fraction of inbreds is taken from a large population in order to predict the gca 

effects or to estimate the variance components and the variances of the obtained estimates. 

Cockerham (1961) established the relationship between the design properties and the genetic 

components of variance in case of triallel crosses. Rawlings and Cockerham (1962 a) 

proposed an orthogonal model for triallel cross designs. Rawlings and Cockerham (1962 b) 

have presented the analysis of tetra-allele cross hybrids. They performed an orthogonal 

analysis of variance and the interpretation was done in terms of variances of the effects based 

on the underlying linear model and also in terms of variance-covariance structure of relatives. 

Hinkelmann (1965) gave an alternative model for the analysis of triallel cross hybrids, which 

as compared to the previous work of Rawlings and Cockerham (1962 a) was non orthogonal 

and thus, resulted in a class of estimators. 

Ponnuswamy (1971) worked in the area of estimation of genetic component of variances for 

triallel crosses based on the model proposed by Hinkelmann in 1965. The determination of 

relationship of genetic component with the design was done through studying covariance 

between relatives. Rather than considering the full model which involves all possible number 

of loci, a restricted model was considered. The model consisted of only two loci and, the 

higher order interactions were considered to be negligible. Thus, an explicit relation was 

established for the variance components with the involved design when the number of loci 

considered was exactly two. 

Srinivasan and Ponnuswamy (1993) considered the problem of estimating variance 

components taking into account the epistatic effects. A systematic and purely mathematical 

approach has been suggested based on a new triallel cross model. Using a non orthogonal 

model, a possible solution for variance components have been obtained. Considering the 

unimaginable complexity while considering the methods like ANOVA, maximum likelihood 

(ML), restricted maximum likelihood (REML) etc., they have used a different approach 

which is based on quadratic unbiased estimation in mixed linear model.  

Higher order mating designs like triallel and tetra-allele crosses can be used to study and 

harvest the epistatic properties of gene action but the limited resources availability is the main 

hurdle to use them. Srinivasan and Ponnuswamy (1995) considered the idea of using PTrC 

with certain basic properties for the estimation of genetic and design component of variance. 
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The PTrC constructed by Ponnuswamy and Srinivasan (1991) using PDBIB designs have 

been considered and the design components of variance estimates have been obtained by 

superimposing them on completely randomized design. The method of analysis used was 

based on quadratic unbiased estimation under general mixed linear model set-up. 

Zhu and Weir (1996) gave a bio-model for diallel analysis and suggested the use of minimum 

norm quadratic unbiased estimation (MINQUE) for estimating different variance and 

covariance components. Venkateswarlu and Ponnuswamy (1998) considered the problem of 

estimation of variance components in diallel model. They used the approach of Srinivasan 

and Ponnuswamy (1993). 

Ghosh and Das (2003) investigated the problem of estimation of heritability and optimality 

aspects of diallel cross designs. A random effect model, where the gca effects of the lines 

have been considered as random is proposed for the estimation of variance components and 

the variances of estimates. The unbiased estimates and their variances has been worked out 

both under unblocked and blocked set up. The existence of an A-optimal incomplete block 

design for diallel cross experiments along with the existence of a NBIB designs has been 

established. They have also proved that any known MS-optimal design under the fixed effect 

model remains valid under A- and D-optimal designs for random effect model.  

Ghosh et al. (2005) considered the mixed effects model for the estimation of variance 

components and characterization of optimal diallel cross designs. They worked out the 

unbiased estimates of variance components and their large sample variances. The given 

estimator is having one to one correspondence with heritability. The optimality of designs 

under unblocked and blocked set up has been studied and optimal partial diallel cross designs 

have been characterized. Based on simulation study, they claimed that for small samples also 

the large sample variances are nearly equal to the exact variances. 

Ghosh and Das (2005) considered the problem of predicting the yield capacity of crosses 

through diallel cross experiments. Under this investigation, they considered a random effects 

model for studying the optimality of diallel cross designs for best linear unbiased prediction. 

The BLUP for gca effects has been given and various properties of the predictor have been 

studied. The characterization for A-optimality of designs for BLUP has been done. Some 

efficient classes of PDC designs have been reported. 
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The problem of diallel analysis and separation of genetic variance components has been 

studied using eight faba bean genotypes by Zeinab and Helal (2014). 

2.5 Robust designs for breeding experiments 

An optimal/efficient design may not remain so if the underlying assumptions are violated. 

Sometimes, situation may arise such that all the contrasts pertaining to combining ability 

effects may not be estimable. Hence, it is much important to obtain robust designs against 

disturbances like missing observation(s), outlying observation(s), exchange/interchange of 

crosses, inadequacy of assumed model, etc. 

The concept of connectedness criterion of robustness was introduced by Ghosh (1978), with 

respect to robustness of BIB designs. The criterion advocates that a design which is 

connected in the sense that it allows the estimation of all the elementary treatment contrasts 

through the design, remains connected even though some disturbances have crept in.  

Panda (2000) considered the problem of interchange of a pair of crosses while conducting a 

complete diallel experiment. The problem considered involved both the situations where the 

interchanged crosses are totally different or differ in one of either lines involved in the diallel 

cross. He studied the robustness of block designs for CDC experiments using two criteria, 

connectedness and efficiency. The study reveals that randomized complete block designs 

(RCBD) used for conducting CDC experiments and binary balanced block designs are robust 

against interchange between two crosses in two of its blocks. Some non-binary balanced 

block designs are also reported to be robust against interchange between two crosses in two 

of its blocks. 

Panda et al. (2001) have considered optimal block designs for triallel cross experiments for 

investigating robustness against an exchanged cross. They have taken all the three possible 

conditions in which the two exchanged crosses are totally different, different in two lines and 

different in one line. They have considered the connectedness and efficiency criteria against 

the cross interchange and concluded that any universally optimal design for triallel cross 

experiment is robust if the number of lines involved is greater than 9. 

Dey et al. (2001) considered the problem of missing observations in diallel cross 

experiments. The two cases of diallel cross experiments where a single observation was 

missing and another with a complete block missing was investigated for robustness using 
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connectedness and efficiency criteria. Robust block designs against one missing observation 

and robust proper binary balanced block designs are reported for diallel cross experiments. 

Bhar and Gupta (2002) considered the problem of missing observations in diallel cross 

experiments. They studied the robustness of variance balanced designs under row column set 

up against missing observations. Lal and Jeisobers (2002) investigated the problem of 

missing crosses from a block to study the robustness of diallel cross designs under blocked 

set up. 

Prescott and Mansson (2004) investigated the problem of loss of one or more observations in 

a diallel cross design. Theoretical results have been given for loss of one cross from CDC 

based on BIB designs and PDC based on PBIB designs. The effect of missing observation is 

seen as A-efficiency which is based on average variances of estimates of elementary contrasts 

of gca effects of lines and the study reveals that the designs are fairly robust. Robustness of 

block designs for CDC experiments have been investigated using the connectedness and 

efficiency criteria against interchange of a pair of crosses by Panda et al. (2005).  

Shunmugathai and Srinivasan (2012) studied robustness of NBIB designs under the situation 

of interchange of a pair of crosses in triallel crosses. A-efficiency has been calculated by 

taking the ratio of harmonic means of the non-zero eigenvalues of the information matrices. 

The study suggested that NBIB designs are fairly robust. 

 



 
 

 

Chapter-3                                          MATERIAL AND METHODS 

 

3.1 Introduction  

Higher order mating designs like triallel and tetra-allele cross based hybrids are found to be 

better than diallel cross based hybrids, when viability and consistency in performance is 

considered. The sca effects are of much importance for breeders besides the gca effects. In 

case of diallel crosses, only first order sca effect can be studied whereas in triallel crosses 

three first order and one second order sca effect and in case of tetra-allele crosses first, 

second and even third order sca effects can be studied.  

3.2 Triallel cross 

Triallel crosses are intermediate between diallel and tetra-allele crosses with respect to 

number of lines used, complexity of handling the crosses and the amount of information 

regarding combining abilities. 

3.2.1 Full model with sca effects 

Consider a triallel cross experiment involving 𝑁 number of lines giving rise to 𝑇 number of 

crosses. Let a cross of type (𝑖 × 𝑗) × 𝑘 is represented as (𝑖, 𝑗, 𝑘) and the fixed effect of the 

triallel cross (𝑖, 𝑗, 𝑘) by 𝑦𝑖𝑗𝑘, then the following model can be used for representing cross 

effect: 

            𝑦𝑖𝑗𝑘 = 𝑦̅ + ℎ𝑖 + ℎ𝑗 + 𝑔𝑘 + 𝑠𝑖𝑗 + 𝑠𝑖𝑘 + 𝑠𝑗𝑘 + 𝑠𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘,                                (3.2.1.1) 

where 𝑦̅ is the average effect of the crosses, {ℎ𝛼}, 𝛼 = 𝑖, 𝑗 and  {𝑔𝑘} represents the gca effects 

half parents and full parents respectively, {𝑠𝛼𝛽}, (𝛼, 𝛽) ∈ (𝑖, 𝑗, 𝑘) represents the first order sca 

effects, 𝑠𝑖𝑗𝑘 represents the second order sca effects, 𝑒𝑖𝑗𝑘 represents the random error 

component with the constraints 

           ∑ ℎ𝑖
𝑁
𝑖=1 = 0 and ∑ 𝑔𝑖

𝑁
𝑖=1 = 0                                                                             (3.2.1.2) 

           ∑ 𝑠𝛼𝛽𝛼𝛽 = 0 ∀ (𝛼, 𝛽) ∈ (𝑖, 𝑗, 𝑘), 𝑖 ≠ 𝑗 ≠ 𝑘 = 1,2, … , 𝑁 and                            (3.2.1.3) 

          ∑ 𝑠𝑖𝑗𝑘𝑖𝑗𝑘 = 0 ∀ 𝑖 ≠ 𝑗 ≠ 𝑘 = 1,2, … , 𝑁                                                                (3.2.1.4) 
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It is important to note here that if a cross (𝑖, 𝑗, 𝑘) is occurring in the experiment then the other 

two alternative forms (𝑖, 𝑘, 𝑗) and (𝑗, 𝑘, 𝑖) are also included in the experiment, to satisfy the 

SSP of triallel crosses. 

3.2.2 Model without sca effects 

In this approach, gca effects of first and second kind corresponding to half and full parents 

will be estimated for which it is assumed that the sca effects are contributing much less to the 

total combining ability effects as compared to gca effects and hence sca effects are negligible. 

The model can be written as 

         𝑦𝑖𝑗𝑘 = 𝑦̅ + ℎ𝑖 + ℎ𝑗 + 𝑔𝑘 + 𝑒𝑖𝑗𝑘,                                                                     (3.2.2.1) 

where 𝑦̅ is the average effect of the treatments, {ℎ𝛼}, 𝛼 = 𝑖, 𝑗, represents the gca effects of 

first kind corresponding to the lines occurring as half parents, {𝑔𝑘} represents the gca effects 

of second kind corresponding to the lines occurring as full parents, 𝑒𝑖𝑗𝑘 is the random error 

component and 

        𝑔1 + 𝑔2 + ⋯+ 𝑔𝑁 = 0 or ∑ 𝑔𝑖
𝑁
𝑖=1 = 0                                                         (3.2.2.2) 

        ℎ1 + ℎ2 + ⋯+ ℎ𝑁 = 0 or ∑ ℎ𝑖
𝑁
𝑖=1 = 0                                                          (3.2.2.3)                          

The model in matrix notation is expressed as: 

        𝒚 = 𝑦 ̅𝟏𝑇 + 𝑾1
′ 𝒉 + 𝑾2

′ 𝒈 + 𝒆,                                                                       (3.2.2.4) 

where,  𝒚 is the 𝑇 × 1 vector of responses due to crosses, 𝑦 ̅ is the mean effect of crosses, 𝒉 is 

the 𝑁 × 1 vector of gca effects due to half parent, 𝒈 is the 𝑁 × 1 vector of gca effects due to 

full parent and 𝒆 is the 𝑁 × 1 vector of random error component. 𝑾𝟏 and 𝑾𝟐 are  𝑁 × 𝑇 

matrices with rows indexed by the line numbers 1,2, …𝑁 and columns by the three-way 

crosses arranged in the manner described earlier, such that the {𝑡, (𝑖, 𝑗, 𝑘)}𝑡ℎentry of 𝑾𝟏 is 0.5 

if 𝑡 ∈ (𝑖𝑗) and zero otherwise and the {𝑡, (𝑖, 𝑗, 𝑘)}𝑡ℎentry of 𝑾𝟐 is 1 if 𝑡 ∈ 𝑘 and zero 

otherwise.  The normal equations are as 

 𝐸(𝒚) = 𝑦 ̅𝟏𝑇 + 𝑾1
′ 𝒉 + 𝑾2

′ 𝒈, 

 𝑾𝟏𝐸(𝒚) = 𝑦 ̅𝑾𝟏𝟏𝑇 + 𝑾𝟏𝑾1
′ 𝒉 + 𝑾𝟏𝑾2

′ 𝒈,  and

 

             𝑾𝟐𝐸(𝒚) = 𝑦 ̅𝑾𝟐𝟏𝑇 + 𝑾𝟐𝑾1
′ 𝒉 + 𝑾𝟐𝑾2

′ 𝒈.
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On solving the three normal equations, the estimate of the gca effects of half parent is given 

as:

 

                       𝒉̂ = (𝑾𝟏𝑾1
′ )

−
(𝑾𝟏𝒚 − 𝑾𝟏𝑦 ̅𝟏𝑇)  

               = [(𝑾𝟏𝐖1
′ )

−
𝑾𝟏 − (𝑾𝟏𝐖1

′ )
−
𝑾𝟏𝐉𝑇𝑇/𝑇)]𝒚 = 𝑮1𝒚 (say),               (3.2.2.5) 

and the estimate of  gca effects of full parent is given as: 

                        𝒈̂ = (𝑾𝟐𝑾2
′ )

−
(𝑾𝟐𝒚 − 𝑾𝟐𝑦 ̅𝟏𝑇)  

                            = [(𝑾𝟐𝑾2
′ )

−
𝑾𝟐 − (𝑾𝟐𝑾2

′ )
−
𝑾𝟐𝑱𝑇𝑇/𝑁)]𝒚 = 𝑮2𝒚 (say).            (3.2.2.6) 

The restrictions being imposed in order to estimate the gca effects of half parents free from 

gca effects of full parents are as: 

               𝟏′𝒉̂ = 𝟏′𝒈̂ = 𝑮1𝟏 = 𝑮2𝟏 = 𝑮1
′ 𝑮2 = 𝟎 and 

               𝑟𝑎𝑛𝑘(𝑮1) = 𝑟𝑎𝑛𝑘(𝑮𝟐) = (𝑁 − 1).                                                       (3.2.2.7) 

Now, considering the usual setup of a block design 𝑑, the joint information matrix regarding 

(
𝑮1

𝑮2
) 𝒚 is given by: 

                     𝑪𝒅_𝒈𝑐𝑎 = [
𝑮1𝑪𝑑𝑮1

′ 𝑮1𝑪𝑑𝑮2
′

𝑮2𝑪𝑑𝑮1
′ 𝑮2𝑪𝑑𝑮2

′
],                                                               (3.2.2.8) 

where 𝑪𝑑 = 𝑹𝑑 −
1

𝑘
𝑵𝑑𝑵𝑑

′ , 𝑹𝑑 = 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2, … , 𝑟𝑇) is the diagonal matrix of replications of 

the crosses under the design 𝑑 and 𝑵𝑑 is the incidence matrix of crosses versus blocks. Here, 

𝑪𝑑 is the information matrix of the general block design 𝑑 where treatments are nothing but 

the 𝑇 number of tri-allele crosses, hence we have 𝑪𝑑𝟏𝑇 = 𝟎. As discussed earlier regarding 

orthogonality, in order to estimate 𝑮1𝑪𝑑𝑮1
′  and 𝑮2𝑪𝑑𝑮2

′  orthogonally the off diagonal 

components must vanish and we must have 𝑮2𝑪𝑑𝑮1 
′ = 𝑮1𝑪𝑑𝑮2

′ = 𝟎. Thus we have 

  𝑪gca_half = 𝑮1𝑪𝑑𝑮1
′  and  𝑪gca_full = 𝑮2𝑪𝑑𝑮2

′ . 

3.3 Tetra-allele cross 

Tetra-allele cross experiment provides us more information regarding the combining abilities 

and the hybrids developed based on them are found to be more stable and consistence in 
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performance due to broad genetic base. Based on nature of gca effects, fixed or random, in 

the model, two approaches are described. 

3.3.1 Fixed effects model with sca effects 

Consider a tetra-allele cross experiment in which the 𝑇 crosses are regarded as treatments. 

Let a cross of type (𝑖 × 𝑗) × (𝑘 × 𝑙) be represented as (𝑖, 𝑗, 𝑘, 𝑙), and the fixed effect of the 

cross (𝑖, 𝑗, 𝑘, 𝑙)is denoted by 𝑦𝑖𝑗𝑘𝑙, then the following model can be used: 

            𝑦𝑖𝑗𝑘𝑙 = 𝑦̅ + 𝑔𝑖 + 𝑔𝑗 + 𝑔𝑘 + 𝑔𝑙 + 𝑠𝑖𝑗 + 𝑠𝑖𝑘 + 𝑠𝑖𝑙 + 𝑠𝑗𝑘 + 𝑠𝑗𝑙 + 𝑠𝑘𝑙                     

                            +𝑠𝑖𝑗𝑘 +  𝑠𝑖𝑗𝑙 + 𝑠𝑖𝑘𝑙 + 𝑠𝑗𝑘𝑙 + 𝑠𝑖𝑗𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙,                             (3.3.1.1) 

where 𝑦̅ is the average effect of the crossess, {𝑔𝛼}, 𝛼 = 𝑖, 𝑗, 𝑘, 𝑙, represents the gca effects, 

{𝑠𝛼𝛽}, (𝛼, 𝛽) ∈ (𝑖, 𝑗, 𝑘, 𝑙) represents the first order sca effects, {𝑠𝛼𝛽𝛾}, (𝛼, 𝛽, 𝛾) ∈ 𝑖, 𝑗, 𝑘, 𝑙, 

represents the second order sca effects, 𝑠𝑖𝑗𝑘𝑙 represents the third order sca effects, 𝑒𝑖𝑗𝑘𝑙 

represents the random error,  and with 

                           ∑ 𝑔𝑖
𝑁
𝑖=1 = 0, ∑ 𝑠𝛼𝛽𝛼𝛽 = 0, ∑ 𝑠𝛼𝛽𝛾𝛼𝛽𝛾 = 0 and                                    

  ∑ 𝑠𝑖𝑗𝑘𝑙𝑖𝑗𝑘𝑙 = 0, 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙, 𝑖 < 𝑗, 𝑘 < 𝑙 , 𝑖, 𝑗, 𝑘, 𝑙 = 1,2, … ,𝑁,       (3.3.1.2) 

for every (𝛼, 𝛽, 𝛾) ∈ (𝑖, 𝑗, 𝑘, 𝑙), for 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙,  𝑖 < 𝑗, 𝑘 < 𝑙,  𝑖, 𝑗, 𝑘, 𝑙 = 1,2, … ,𝑁. 

Since complete tetra-allele crosses are considered here, whenever a cross (𝑖, 𝑗, 𝑘, 𝑙) is 

involved, it means that the other two alternative crosses of the types (𝑖, 𝑘, 𝑗, 𝑙) and (𝑖, 𝑙, 𝑗, 𝑘) 

are also included in the experiment, simultaneously.  

3.3.2 Random effects model for tetra-allele cross 

Consider a mating design involving tetra-allele cross experiment performed to analyse the 

observations taken from 𝑇 crosses based on 𝑁 lines. If the effect of the cross (𝑖, 𝑗, 𝑘, 𝑙) is 

denoted by 𝑦𝑖𝑗𝑘𝑙 then we can have the following representation: 

                        𝑦𝑖𝑗𝑘𝑙 = 𝑦̅ + 𝑓𝑖 + 𝑓𝑗 + 𝑓𝑘 + 𝑓𝑙 + 𝑒𝑖𝑗𝑘𝑙,                                                    (3.3.2.1) 

where 𝑦̅ is the average effect of the crosses, {𝑓𝛼}, 𝛼 = 𝑖, 𝑗, 𝑘, 𝑙, represents the gca effects with 

𝐸 (𝑓𝛼) = 0 or  ∑ 𝑓𝛼 = 0, 𝑉𝑎𝑟(𝑓𝛼) = 𝜎𝛼
2 ≥ 0, 𝐶𝑜𝑣(𝑓𝛼 , 𝑓𝛽) = 0, 𝑒𝑖𝑗𝑘𝑙 is the random error 

component uncorrelated with  𝑓𝛼, with  𝐸 (𝑒𝑖𝑗𝑘𝑙) = 0 and 𝑉𝑎𝑟(𝑒𝑖𝑗𝑘𝑙) = 𝜎𝑒
2 ≥ 0, (𝛼, 𝛽) ∈

(𝑖, 𝑗, 𝑘, 𝑙), 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,… ,𝑁. 
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The model can be expressed in matrix notation as  

                       𝒚 = 𝑿𝜷 + 𝒆 or 

                  𝒚 = 𝑦̅𝟏𝑁 + 𝑾4
′ 𝒇 + 𝒆,                                                                                 (3.3.2.2) 

such that 𝑿 = [𝑿1 𝑿2] =  [𝟏𝑁 𝑾4
′ ] and 𝜷 = [

𝜷1

𝜷2
] =  [

𝑦̅
𝒇
], where 𝒚  is an  𝑇 × 1 vector of 

observations, 𝒇 is a 𝑁 × 1 vector of gca effects with 𝐸(𝒇) = 𝟎 and 𝐷(𝒇) = 𝑽𝒇 = 𝜎𝑓
2𝑰𝑁, 𝒆 is a 

𝑇 × 1 vector of random error with 𝐸(𝒆) = 𝟎 and 𝐷(𝒆) = 𝜎𝑒
2𝑰𝑇, and 𝑾𝟒 is an 𝑁 × 𝑇 

incidence matrix with rows indexed by the line numbers 1,2, …𝑚,…𝑁 and columns by the 𝑇 

crosses such that the {𝑚, (𝑖, 𝑗, 𝑘, 𝑙)}th entry of 𝑾𝟒 takes a value 1 if 𝑚 ∈ (𝑖, 𝑗, 𝑘, 𝑙) and 0, 

otherwise. Let 𝒑 = (𝑝1, 𝑝2, . . . , 𝑝𝑁)′ , where 𝑝𝑖 is the replication of 𝑖𝑡ℎ line. Also, 𝑾𝟒𝑾4
′ = 𝑮 

is a matrix whose elements {𝑔𝑖𝑗} is the number of times a pair  (𝑖, 𝑗)  appears in the design. 

Thus, we have 𝑾4𝟏𝑇 = 𝒑 . Also, we have 𝑟𝑎𝑛𝑘(𝑾𝟒) = 𝑁, 𝑮 is a symmetric matrix with 

𝑟𝑎𝑛𝑘(𝑮) = 𝑁 and 𝑡𝑟𝑎𝑐𝑒(𝑮) = 4𝑇. 

3.4 Prediction of combining ability effects 

There are many situations where one wants to quantify the real value of a random variable 

which is directly unobservable in nature. An example from breeding sector is that of 

predicting the genetic merit of a dairy bull from the milk yield capacity of his daughters. In 

this study too, the yielding capacity of the crosses from a sample of inbred lines are to be 

predicted. When we have observations on some random variables from which we have to 

predict the value of some other related random variable that cannot be observed, the concept 

of Best Linear Unbiased Predictor (BLUP) is used for unbiased prediction of the yielding 

capacity of the cross from the sample of inbred lines under mixed effect model. 

3.4.1 Model and experimental set up 

Consider the usual fixed effects linear model set up expressed as 

               𝒚 = 𝑿𝜽 + 𝒆, 

where 𝒚 is a 𝑇 × 1 vector of observations, 𝜽 is a 𝑡 × 1 vector of parameters which are of 

fixed effect nature, 𝑿  is the 𝑇 × 𝑡 incidence matrix and 𝒆 is an 𝑇 × 1 error vector such that 

𝐸(𝒆) = 𝟎 and 𝐷(𝒆) = 𝝈𝒆
𝟐𝑰𝑇. Consider that the random effects of the model can be 

represented by 𝒁𝒃 which are having properties parallel to 𝑿𝜽, where 𝒃 is a vector of random 
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effects that occurs in the model and 𝒁 is the corresponding incidence matrix. Now, the vector 

𝒃  can be further poartitioned into 𝑟 sub-vectors as per the numbers of random effect 

parameters involved in the experimentation. Thus, incorporating 𝒃 in the fixed effects model, 

a general mixed effects model can be obtained and expressed as  

                           𝒚 = 𝑿𝜽 + 𝒁𝒃 + 𝒆,                                                                              (3.4.1.2) 

where 𝜽 and 𝒃 represents the fixed and random effects respectively such that 𝐷(𝒃𝑖) = 𝜎𝑖
2𝑰𝑞𝑖

, 

𝑖 = 1,2, … , 𝑟, 𝐶𝑜𝑣(𝒃𝑖 , 𝒃𝐽) = 0, 𝑖 ≠ 𝑗 , 𝑖, 𝑗 = 1,2, … , 𝑟 and 𝐶𝑜𝑣(𝒃, 𝒆) = 𝟎. We can get the 

forms related to expectation and dispersion of vector 𝒃 as 𝒃̅ = 𝐸(𝒃) = 0, and  

              𝑽𝑏 = 𝐷(𝒃) =

[
 
 
 
 
𝜎1

2𝑰𝑞1
0 … 𝟎

0 𝜎2
2𝑰𝑞2 𝟎

⋮
0 0

⋱ ⋮
𝜎𝑟

2𝑰𝑞𝑟]
 
 
 
 

. 

Now, the matrix  𝒁 can also be partitioned in 𝑟 sub-matrices which are conformable with 

vector 𝒃 as 𝒁 = [𝒁1 𝒁2 … 𝒁𝑟]. The model can be redefined as  

 𝒚 = 𝑿𝜽 + ∑ 𝒁𝑖𝒃𝑖
𝑟
1 + 𝒆, such that 

 𝐸(𝒚) = 𝑿𝜽,  

 𝑽𝒚 = 𝐷(𝒚) = 𝐷(𝑿𝜽 + ∑ 𝒁𝑖𝒃𝑖
𝑟
1 + 𝒆) 

                     = ∑ 𝜎𝑖
2𝒁𝑖𝒁𝑖

′𝑟
1 + 𝜎𝑒

2𝑰 and  

 𝐶𝑏𝑦 = 𝐶𝑜𝑣(𝒃, 𝒚) = 𝐷(𝒃)𝒁′      = 

[
 
 
 
𝜎1

2𝒁1
′ 0 … 𝟎

0 𝜎2
2𝒁2

′ 𝟎
⋮
0 0

⋱ ⋮
𝜎𝑟

2𝒁𝑟
′ ]
 
 
 

 . 

3.4.2 BLUP and Properties of BLUP 

Under the above defined mixed effects model, the problem of prediction can be considered. 

For some known matrix 𝑳, the function 𝑳′𝜽 remains an estimable function, the predictor is 

taken as  

 𝒘 = 𝑳′𝜽 + 𝒃, where the joint distribution is given as  

           [
𝒘
𝒚]~ {[𝑳

′𝜽
𝑿𝜽

] , [
𝑽𝒃 𝑪𝒃𝒚

𝑪𝒚𝒃 𝑽𝒚
]}. 



26 
 

 
 

Since the predictor involves both fixed and random effects, the procedure must be first 

predicting 𝒘 and then choosing the best predictor 𝒘̃ having the following properties: 

 Best, as it will be minimizing 𝐸(𝒘 − 𝒘̃)′𝑨(𝒘 − 𝒘̃) for some positive definite and 

symmetric matrix 𝑨. 

 Linear, as it can be expressed as some linear form of 𝒚, 𝒘̃ = 𝒂 + 𝑩𝒚, such that the 

vector and matrix are not related to 𝜽. 

 Unbiased, as 𝐸(𝒘̃) = 𝐸(𝒘). 

Since, the unbiasedness of  𝒘̃ is achieved only if 𝒂 + 𝑩𝑿𝜽 = 𝑳′𝜽 for all 𝜽. Also, the vector 𝒂 

must be independent of 𝒂, which is possible only if 𝒂 = 𝟎 and 𝑩𝑿 = 𝑳′. 

The best linear unbiased predictor for 𝒘 is given as 

BLUP (𝒘) = 𝒘̃ = 𝑳′𝜽0 + 𝑪𝒃𝒚𝑽𝒚
−𝟏(𝒚 − 𝑿𝜽0),  

where 𝑿𝜽0 is the BLUE(𝑿𝜽) such that 

             𝜽0 = (𝑿′𝑽𝒚
−𝟏𝑿)−𝑿′𝑽𝒚

−𝟏𝒚. 

3.5 Robust design for breeding experiments 

An optimal or efficient design may not remain so if the underlying assumptions are violated. 

Sometimes, situation may arise such that all the contrasts pertaining to combining ability 

effects may not be estimable. Hence, it is much important to obtain robust designs against 

disturbances like missing observation(s), outlying observation(s), exchange/interchange of 

crosses, inadequacy of assumed model, etc. Missing observation(s) is the most commonly 

occurring disturbance in breeding experiments since large number of crosses is to be made in 

case of higher order crosses and there is a chance that some human error may creep in due to 

loss of tags or labels, or some of the observations may be lost or die after making the crosses. 

There are many criteria to check robustnesss, of which the connectedness and efficiency 

criteria of robustness have been considered here. 

Connectedness Criterion for robustness: Consider a connected design 𝑑 ∈ 𝒟 which allows 

the estimation of all elementary treatments contrasts pertaining to gca effects of lines and let 

𝑑∗ be the residual design which we get due to 𝜉 i.e. the disturbance caused by missing 

observation. Then connectedness criterion of robustness against 𝜉 demands that the design 𝑑∗ 
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must remain connected even after the disturbance so that all the elementary contrasts are 

estimable. 

Efficiency criterion for robustness: The connectedness criterion alone cannot serve the 

purpose of robustness against a disturbance because a design may remain connected but may 

become inefficient due to 𝜉. Thus, it is necessary to take care of efficiency of the residual 

design, for which the efficiency criterion of robustness is studied. This criterion involves the 

calculation of efficiency of the design 𝑑∗, which is the ratio of the harmonic mean of the non-

zero eigenvalues of information matrices related to the designs 𝑑 and 𝑑∗ respectively. If  𝐂𝑑 

is the information matrix of the original design 𝑑 and  𝐂𝑑∗ of the residual design, then the 

efficiency (𝐸) of the residual design can be calculated relative to the original one as 

                𝐸 = 
 Harmonic mean of non−zero eigenvalues of  𝐂𝑑∗

Harmonic mean of non−zero eigenvalues of  𝐂𝑑
 . 

3.6 Definitions 

Degree of fractionation: The value of degree of fractionation (𝑓) can be obtained for any 

mating design for given number of lines. In order to obtain the value of 𝑓, one has to find out 

the ratio of total number of crosses involved in the partial mating design to the total number 

of crosses in the complete mating design. Let 𝑇𝐶𝑇𝑟𝐶 and 𝑇𝐶𝑇𝑒𝐶 be the number of crosses 

involved in CTrC and CTeC designs, respectively, whereas  𝑇𝑃𝑇𝑟𝐶 and 𝑇𝑃𝑇𝑒𝐶 represents the 

number of crosses involved in PTrC and PTeC  designs respectively, for a given number of 

lines 𝑁. Then the degree of fractionation 𝑓𝑃𝑇𝑟𝐶 and 𝑓𝑃𝑇𝑒𝐶 related to designs involving PTrC 

and PTeC, respectively, are calculated as 

           𝑓𝑃𝑇𝑟𝐶 =
𝑇𝑃𝑇𝑟𝐶

𝑇𝐶𝑇𝑟𝐶
=

2𝑇𝑃𝑇𝑟𝐶

𝑁(𝑁−1)(𝑁−2)
  and 

           𝑓𝑃𝑇𝑒𝐶 =
𝑇𝑃𝑇𝑒𝐶

𝑇𝐶𝑇𝑒𝐶
=

8𝑇𝑃𝑇𝑒𝐶

𝑁(𝑁−1)(𝑁−2)(𝑁−3)
 . 

Canonical efficiency factor: The canonical efficiency factor of a design with lines replicated  

𝑟 times, is calculated relative to an orthogonal design with the same number of lines, by 

working out the harmonic mean of (1/ 𝑟) times the non-zero eigenvalues of the information 

matrix of the design, assuming that the error variance is same for both situations. 
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Canonical efficiency factor of PTrC designs: Consider a design 𝑑 used for performing a 

PTrC experiment. Let  𝐂𝑑𝑔𝑐𝑎−ℎ𝑎𝑙𝑓
 and  𝐂𝑑𝑔𝑐𝑎−𝑓𝑢𝑙𝑙

 are the information matrices related to the 

half parents and related to the full parents under the design 𝑑. Let 𝑟ℎ and 𝑟𝑓 are the 

replications of lines as half-parent and full-parent, respectively and let 𝐸ℎ and 𝐸𝑓 denote the 

canonical efficiency factors pertaining to gca effects of half parents and full parents, 

respectively, then we can calculate the efficiencies as: 

 𝐸ℎ =  
1

𝑟ℎ
 (harmonic mean of non-zero eigenvalues of  𝐂𝑑𝑔𝑐𝑎−ℎ𝑎𝑙𝑓

) and  

             𝐸𝑓 =  
1

𝑟𝑓
 (harmonic mean of non-zero eigenvalues of  𝐂𝑑𝑔𝑐𝑎−𝑓𝑢𝑙𝑙

).  

AM-HM inequality: Let 𝑎1, 𝑎2, … , 𝑎𝑖 , … , 𝑎𝑛 be a set of 𝑛 real positive numbers. Then, the 

Arithmetic Mean (AM) and Harmonic Mean (HM) of 𝑎𝑖s (𝑖 = 2,… , 𝑛) are 
1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1  and  

𝑛

∑ (
1

𝑎𝑖
)𝑛

𝑖=1

 respectively. Then according to AM-HM inequality we have 

          
1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1 ≥ 

𝑛

∑ (
1

𝑎𝑖
)𝑛

𝑖=1

    ⇒ ∑ (
1

𝑎𝑖
)𝑛

𝑖=1 ≥ 
𝑛2

∑ 𝑎𝑖
𝑛
𝑖=1

,  

where equality is attained when all 𝑎𝑖 ′s (𝑖 = 2, … , 𝑛)  are equal. 

Henderson Method III (Searle et al., 1992): The three methods of Henderson (I, II and  III) are 

just  three of many possible variations of the ANOVA method which can be used for handling 

unbalanced data in the process of estimating variance components. Out of the three different ways 

of using unbalanced data, from random or mixed models, Method III is based on the concept of 

borrowing sums of squares from the analysis of fixed effects models. The sums of squares used are 

the reductions in sums of squares due to fitting one model and various sub-models of it. In this 

method, the results of both fixed effects model and mixed effects model is used. The merits of 

Method III include that the estimates are unbiased, it can be applied to all mixed models, and 

interactions between random factors can be included in the model. For balanced data all the three 

methods are same. 

3.7 Balanced incomplete block (BIB) designs 

A BIB design (Dey, 1986)   can be defined as an incomplete block design in which 𝑣 

treatments are arranged in 𝑏 blocks of size 𝑘 each, such that the block contents are distinct 

from each other and are less in number than 𝑣, with each treatment and pair of treatments 



29 
 

 
 

replicated in 𝑟 and 𝜆 blocks, respectively. Here, the positive integers 𝑣, 𝑏, 𝑟, 𝑘 and 𝜆 are 

usually referred in the literature as the parameters of the BIB design. These designs are 

binary, equireplicated, proper and variance balanced.  

3.8 Partially balanced incomplete block (PBIB) designs and association schemes 

m-class association scheme (Dey, 1986):  An abstract relationship defined on 𝑣 symbols or 

treatments is called an 𝑚-class association scheme (𝑚 ≥ 2) if the following conditions are 

satisfied: 

 Any two treatments 𝑎1 and 𝑎2 are either 1st, 2nd, … , or, 𝑚th associates, the relation of 

association being symmetrical, i.e., if 𝑎1 is the 𝑖th associate of 𝑎2, then so is 𝑎2 of 𝑎1. 

 Given a treatment 𝑎1, the number of treatments that are 𝑖th associates of 𝑎1 is 𝑛𝑖 for 𝑖 =

1, 2, … ,𝑚, where the number 𝑛𝑖 does not depend on the treatments chosen, viz., 𝑎1. 

 Given a pair of treatments 𝑎1 and 𝑎2, which are mutually 𝑖th associates, the number of 

treatments which are simultaneously 𝑗th associate of 𝑎1 and 𝑘th associate of 𝑎2 is 𝑝𝑗𝑘
𝑖 , 

where 𝑝𝑗𝑘
𝑖  does not depend on the pair of 𝑖th associates chosen, viz., 𝑎1 and 𝑎2. 

 The positive integers 𝑣, 𝑛𝑖, 𝑝𝑗𝑘
𝑖  (𝑖, 𝑗, 𝑘 = 1, 2, … ,𝑚) are usually referred as the 

parameters of the m-class association scheme. 

Triangular association scheme: Triangular association scheme is a two-class association 

scheme which holds particular interest in the construction of designs for breeding trials, due 

to the special properties they possess. The scheme is defined (Dey, 1986) as follows: 

Let there be 𝑡 = 
𝑛(𝑛−1)

2
 treatments, arranged in a 𝑛 × 𝑛 square array of side 𝑛, such that the 

principal diagonal positions of the array are kept empty, the 
𝑛(𝑛−1)

2
 positions above the main 

diagonal are placed with the 𝑡 treatment symbols and in a similar manner the positions below 

the main diagonal are filled up by the 𝑡 symbols such that the resultant arrangement is 

symmetrical about the main diagonal. The association rule followed in this two-class 

triangular association scheme is that two treatments are first associates if they are placed in 

the same row or same column of the array and are second associates, otherwise. 

Example: Let 𝑛 = 5. The association scheme for 𝑡 = 10 treatments (K, L, M, N, O, P, Q, R, S 

and T) can be depicted as: 
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* K L M N 

K * O P Q 

L O * R S 

M P R * T 

N Q S T * 

The first and second associates of all the treatments are as follows:  

Treatment 1st Associates 2nd Associates 

K L, M, N, O, P, Q R, S, T 

L K, M, N, O, R, S P, Q, T 

M K, L, N, P, R, T O, Q, S 

N K, L, M, Q, S, T O, P, R 

O K, P, Q, L, R, S M, N, T 

P K, O, Q, M, R, T L, N, S 

Q K, O, P, N, S, T L, M, R 

R L, O, S,M, P, T K, N, Q 

S L, O, R, N, Q, T M, K, P 

T M, P, R, N, Q, S K, L, O 

 

PBIB designs (Dey, 1986): PBIB designs belong to the class of incomplete block designs, 

and are based on 𝑚 class (𝑚 ≥ 2) association schemes. In these, 𝑣 treatments are arranged in 

𝑏 blocks of size 𝑘 each, such that the block contents are distinct and are less in number than 

𝑣, with each treatment and pair of treatments are replicated in 𝑟 and 𝜆𝑖 blocks, respectively. If 

two treatments 𝑎1 and 𝑎2 are mutually 𝑖th associates in the association scheme, then 𝑎1 and 𝑎2 

occur together in 𝜆𝑖 blocks, where the integer 𝜆𝑖 does not depend on the pair (𝑎1, 𝑎2 ) so long 

as they are mutually 𝑖th associates, 𝑖 = 1, 2, … ,𝑚. Further, not all 𝜆𝑖’s are equal. Here, the 

positive integers 𝑣, 𝑏, 𝑟, 𝑘 and 𝜆𝑖 are usually referred as the parameters of the design. These 

designs are binary, equireplicated, proper but not variance balanced.  
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3.9 Latin squares 

A Latin square (LS) is defined (Yates, 1940) as an arrangement of 𝑡 symbols in 𝑡2 cells 

arranged in 𝑡 rows and 𝑡 columns such that each symbol occurs in each row and in each 

column exactly once. This 𝑡 is called the order of the Latin square. Two Latin squares of 

order 3 and 5, respectively are given below.  
 

      P Q R S T 

𝜶 𝜷 𝜸    Q R S T P 

𝜷 𝜸 𝜶    R S T P Q 

𝜸 𝜶 𝜷    S T P Q R 

      T P Q R S 

 

Standard Form of a Latin square: A standard Latin square has the symbols or letters 

constituting the rows and columns appear in natural order in the first row and first column.  

The following Latin squares are in standard form: 

 

0 1 2 3  A B C D 

1 2 3 0  B C D A 

2 3 0 1  C D A B 

3 0 1 2  D A B C 

 

Orthogonal Latin Squares (OLS): Two Latin Squares of order 𝑡, are said to be orthogonal 

to each other if one is superimposed on other then every pair of symbol is distinct and 

appears exactly once. Consider the following two Latin Squares of order 3: 

𝜶 𝜷 𝜸  𝜶 𝜸 𝜷  𝜶𝜶 𝜷𝜸 𝜸𝜷 

𝜷 𝜸 𝜶  𝜷 𝜶 𝜸  𝜷𝜷 𝜸𝜶 𝜶𝜸 

𝜸 𝜶 𝜷  𝜸 𝜷 𝜶  𝜸𝜸 𝜶𝜷 𝜷𝜶 

LS-I 
 

LS-II 
 LS-I superimposed 

on LS-II 

(i)  (ii)  (iii) 

 

From (iii) it can be seen that LS-I and LS-II are two orthogonal Latin squares. 

Mutual Orthogonal Latin Squares (MOLS): In a complete set of Latin squares of order 𝑡, 

if every pair of Latin squares are orthogonal to each other then the set is called MOLS of 
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order 𝑡. The maximum number of MOLS possible of order 𝑡 is (𝑡 − 1). Set of such (𝑡 − 1) 

OLS is known as a complete set of MOLS. Complete set of MOLS of order 𝑡 exists when 𝑡 is 

either prime or prime power. A table of complete sets of MOLS for 𝑡2 ≤ 9 can be seen in 

Fisher and Yates (1963). 

A simple method of generating complete set of MOLS is used in this study for number of 

symbols as odd prime. The elements of first row of first LS are taken in natural order and 

then the columns are developed by jumping one symbol for first LS, jumping two symbol for 

second LS and so on. 

For example, a complete set of MOLS of order 5, using symbols P, Q, R, S and T is given 

below, where the complete set of 4 MOLS is generated through a very simple procedure:  

 

P Q R S T  P Q R S T  P Q R S T  P Q R S T 

Q R S T P  R S T P Q  S T P Q R  T P Q R S 

R S T P Q  T P Q R S  Q R S T P  S T P Q R 

S T P Q R  Q R S T P  T P Q R S  R S T P Q 

T P Q R S  S T P Q R  R S T P Q  Q R S T P 

LS-I  LS-II  LS-III  LS-IV 

 

Now, it can be verified by superimposition of a LS on other that every possible combination 

of two LS chosen from these LS are OLS. 

 

PP QQ RR SS TT  PP QQ RR SS TT  PP QQ RR SS TT 

QR RS ST TP PQ  QS RT SP TQ PR  QT RP SQ TR PS 

RT SP TQ PR QS  RQ SR TS PT QP  RS ST TP PQ QR 

SQ TR PS QT RP  ST TP PQ QR RS  SR TS PT QP RQ 

TS PT QP RQ SR  TR PS QT RP SQ  TQ PR QS RT SP 

LS-I on LS-II  LS-I on LS-III  LS-I on LS-IV 
 

 

PP QQ RR SS TT  PP QQ RR SS TT  PP QQ RR SS TT 

RS ST TP PQ QR  RT SP TQ PR QS  ST TP PQ QR RS 

TQ PR QS RT SP  TS PT QP RQ SR  QS RT SP TQ PR 

QT RP SQ TR PS  QR RS ST TP PQ  TR PS QT RP SQ 

SR TS PT QP RQ  SQ TR PS QT RP  RQ SR TS PT QP 

LS-II on LS-III  LS-II on LS-IV  LS-III on LS-IV 
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3.10 Lattice Designs 

Lattice designs belong to the class of incomplete block designs. They may fall in the category 

of either BIB or PBIB designs. In case of Lattice designs a subgroup of blocks together 

makes a complete replication i.e., we have blocks nested within replications. All types of 

lattice designs have the property of resolvability i.e., a constant number of blocks can be 

taken at a time so as to form groups of blocks, each one of which is a complete replication. 

On the basis of structure of treatments number, lattice designs can be mainly classified as 

Square Lattice, Cubic lattice, Circular lattice and Rectangular lattice. 

Square lattice designs (Yates, 1940): Square lattice designs have treatment structure of the 

form 𝑣 = 𝑠2. The parameters of a square lattice design is given as  𝑣 = 𝑠2, 𝑏 = 𝑖𝑠, 𝑟 = 𝑖 and 

𝑘 = 𝑠, where 𝑖 = 2,3, … , (𝑠 + 1). The number of replications and thus the number of blocks 

are variables based on which they can be either BIB or two associate class PBIB designs. The 

lattices can be named as simple, triple, quadruple, 𝑚-ple and balanced lattice for 𝑖 = 2, 𝑖 = 3, 

𝑖 = 4, 𝑖 = 𝑚 and 𝑖 = (𝑠 + 1), respectively. The lattices leads to a PBIB design for 𝑖 =

2,3, … , 𝑠, and for 𝑖 = (𝑠 + 1)  we get a BIB design. The method of construction of square 

lattices is based on MOLS.  

For any given treatment structure, the first two replications can be generated by writing the  

𝑠2  treatments as a 𝑠 × 𝑠 array in the following fashion 

             |

1 2
𝑠 + 1

⋮
𝑠(𝑠 − 1) + 1

𝑠 + 2
⋮

𝑠(𝑠 − 1) + 2

⋯
⋯

…

𝑠
2𝑠
⋮
𝑠2

|   and    |

1 𝑠 + 1
2
⋮
𝑠

𝑠 + 2
⋮

2𝑠

⋯
⋯

…

𝑠(𝑠 − 1) + 1
𝑠(𝑠 − 1) + 2

⋮
𝑠2

|.  

The rest of maximum possible (𝑠 − 1) replications are generated using MOLS of order 𝑠, to 

constitute a total of (𝑠 + 1) replications. 

Example 3.10.1: Here is an example for 𝑣 = 𝑠2 = 9. The method of construction is based on 

MOLS of order 3. Writing the 9 treatments in a square array row-wise and column-wise we 

get six blocks. Then consider the two MOLS of order 3. These two OLS are superimposed on 

the original 3 × 3 array of the symbols, one by one, and same symbol positions are taken as 

block contents to get six more blocks. Hence, the four replications are obtained to result in a 

balanced square lattice design with parameters 𝑣 = 𝑠2 = 9, 𝑏 = 12, 𝑟 = 4 and 𝑘 = 3. 
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Rep I  Rep II  Rep III  Rep IV 

Blk 1  p q r  Blk 1  p s v  Blk 1  p u w  Blk 1  p t x 

Blk 2 s t u  Blk 2 q t w  Blk 2 q s x  Blk 2 q u v 

Blk 3 v w x  Blk 3 r u x  Blk 3 r t v  Blk 3 r s w 

Using rows  Using columns  Using OLS I  Using OLS II 

If two replications of this design are used, then it will lead to a simple square lattice and if we 

consider three replications then it is known as triple lattice. The underlying association 

scheme can be taken as L2 (Latin Square association scheme with two constraints) by 

considering the first 𝑠 × 𝑠 array, where for a given treatment, treatments occurring in either 

of same row or column are considered as first associates and the rest are second associates.  

Cubic lattice designs (Das and Giri, 1986): Cubic lattices are formed when the treatments 

can be expressed in the 𝑣 = 𝑠3 structure. Cubic lattice designs belong to the three associate 

class PBIB designs. These designs have fixed 3 replications and the number of blocks is a 

multiple of 3. The parameters of these designs are  𝑣 = 𝑠3, 𝑏 = 3𝑠2, 𝑟 = 3 and 𝑘 = 𝑠. 

Example 3.10.2: Here is an example for 𝑣 = 𝑠3 = 27. In order to construct the design, first 

we have to consider the underlying association scheme. First we have to make the following 

arrangement in which the triplets are the positions of treatments column-wise, block wise and 

row-wise respectively. The triplet (1 2 3) means that the corresponding treatment 6 is present 

in the third row of second block in the first column.  

1 1 1 1  10 2 1 1  19 3 1 1 

2 1 1 2  11 2 1 2  20 3 1 2 

3 1 1 3  12 2 1 3  21 3 1 3 
              

4 1 2 1  13 2 2 1  22 3 2 1 

5 1 2 2  14 2 2 2  23 3 2 2 

6 1 2 3  15 2 2 3  24 3 2 3 

              
7 1 3 1  16 2 3 1  25 3 3 1 

8 1 3 2  17 2 3 2  26 3 3 2 

9 1 3 3  18 2 3 3  27 3 3 3 

Now, two treatments are said to be first associates if they have two positions either of three in 

common, second associates if they have one position in common, otherwise they are third 

associates. The cubic lattice design based on the association scheme with parameters 𝑣 =

27, 𝑏 = 27, 𝑟 = 3 and 𝑘 = 3 is given below.  
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Rep I  Rep II  Rep III 

Blk 1 1 2 3  Blk 1 1 4 7  Blk 1 1 10 19 

Blk 2 4 5 6  Blk 2 2 5 8  Blk 2 2 11 20 

Blk 3 7 8 9  Blk 3 3 6 9  Blk 3 3 12 21 

Blk 4 10 11 12  Blk 4 10 13 16  Blk 4 4 13 22 

Blk 5 13 14 15  Blk 5 11 14 17  Blk 5 5 14 23 

Blk 6 16 17 18  Blk 6 12 15 18  Blk 6 6 15 24 

Blk 7 19 20 21  Blk 7 19 22 25  Blk 7 7 16 25 

Blk 8 22 23 24  Blk 8 20 23 26  Blk 8 8 17 26 

Blk 9 25 26 27  Blk 9 21 24 27  Blk 9 9 18 27 

The blocks of first replication are generated by taking those treatments which are present in 

the same blocks or treatments having same rows and column positions. The blocks of second 

replication are constituted by those treatments which are having first and third positions 

same. The third replication includes the blocks having same second and third position.  

Circular lattice designs (Rao, 1956): Circular lattices can be formed for treatments which 

takes the form 𝑣 = 2𝑠2. Circular lattice designs are three associate class PBIB designs with 

parameters 𝑣 = 2𝑠2, 𝑏 = 2𝑠, 𝑟 = 2 and 𝑘 = 2𝑠. The association scheme is established by 

taking 𝑠 concentric circles and its 𝑠 diagonals and the lattice points formed by the intersection 

of circles and diameters is numbered and considered as treatments. Then, for any treatment 

the first associates are the treatments on same circle and same diagonal, second associates are 

the treatments either on same circle or same diagonal, and rest are third associates. 

Example 3.10.3: Consider an example for 𝑠 = 2 yielding 𝑣 = 2𝑠2 = 8. Then, we have to 

take two concentric circles along with the two diagonals as shown in Fig. 3.10.3. 

 

 

    

                                         

 

                                                            Fig. 3.10.3 
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Now, the circular lattice design can be obtained by developing the blocks of first replication 

by taking the treatments on one circle as one block. The blocks of second replication are 

obtained by taking the treatments on one diagonal as one block. Thus, for the given example 

the design is obtained with parameters 𝑣 = 8, 𝑏 = 4, 𝑟 = 2 and 𝑘 = 4. 

R
ep

-1
 Blk I 1 2 3 4 

Blk II 5 6 7 8 

R
ep

-2
 Blk I 1 3 5 7 

Blk II 2 4 6 8 

Rectangular lattice designs (Nair, 1951): Rectangular lattice designs can be constructed for 

treatments structure expressed as 𝑣 = 𝑠(𝑠 + 1). These designs belongs to the four associate 

class of PBIB designs with parameters 𝑣 = 𝑠(𝑠 + 1), 𝑏 = 𝑠(𝑠 + 1), 𝑟 = 𝑠 and 𝑘 = 𝑠 or 𝑣 =

𝑠(𝑠 + 1), 𝑏 = (𝑠 + 1)2, 𝑟 = (𝑠 + 1) and 𝑘 = 𝑠. 

Rectangular lattice designs with parameters 𝑣 = 𝑠(𝑠 + 1), 𝑏 = (𝑠 + 1)2, 𝑟 = (𝑠 + 1) and 

𝑘 = 𝑠 can be obtained using balanced lattice design for 𝑣 = (𝑠 + 1)2. The method advocates 

that from the selected balanced lattice design any replication is chosen and deleted and from 

the rest of replications the extra treatments are discarded to give a rectangular lattice design. 

Example 3.10.4: Here is an example for 𝑣 = 𝑠(𝑠 + 1) = 6. Consider the balanced lattice 

design for 9 treatments. The first replication is deleted and the treatments 7, 8 and 9 are 

discarded from the rest of replication to give a rectangular design with parameters 𝑣 = 6, 𝑏 =

9, 𝑟 = 3 and 𝑘 = 2 as shown below: 

R
ep

 I
 

Blk 1 1 4 

Blk 2 2 5 

Blk 3 3 6 

R
ep

 I
I 

Blk 1 1 6 

Blk 2 2 4 

Blk 3 3 5 

R
ep

 I
II

 Blk 1 1 5 

Blk 2 2 6 

Blk 3 3 4 
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3.11 Kronecker Product  

In similar lines to Searle (1982), if there are two matrices, 𝑲 = {𝑘𝑖𝑗} and 𝑴 = {𝑚𝑖𝑗}, of order 

𝑎 × 𝑏 and 𝑐 × 𝑑 respectively, then the Kronecker product of these two matrices is given as 

 𝑲 ⊗ 𝑴 = [
𝑘11𝑴 … 𝑘1𝑎𝑴

⋮ ⋱ ⋱
𝑘𝑏1𝑴 … 𝑘𝑎𝑏𝑴

] 

= 

[
 
 
 
 
 
 
 
 
𝑘11𝑚11 … 𝑘11𝑚𝑖𝑗

⋮ ⋱ ⋱
𝑘11𝑚𝑖𝑗 … 𝑘11𝑚𝑖𝑗

…

…

…

…

𝑘1𝑎𝑚𝑖𝑗 … 𝑘1𝑎𝑚𝑖𝑗

⋮ ⋱ ⋱
𝑘1𝑎𝑚𝑖𝑗 … 𝑘1𝑎𝑚𝑖𝑗

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

𝑘𝑏1𝑚𝑖𝑗 … 𝑘𝑏1𝑚𝑖𝑗

⋮ ⋱ ⋱
𝑘𝑏1𝑚𝑖𝑗 … 𝑘𝑏1𝑚𝑖𝑗

…

…

…

…

𝑘𝑎𝑏𝑚𝑖𝑗 … 𝑘𝑎𝑏𝑚𝑖𝑗

⋮ ⋱ ⋱
𝑘𝑎𝑏𝑚𝑖𝑗 … 𝑘𝑎𝑏𝑚𝑖𝑗]

 
 
 
 
 
 
 
 

,  

where the order of the resultant matrices is 𝑎𝑐 × 𝑏𝑑. 

This can be more easily understood through an example. 

Let 𝑲 = [
2 1
1 0

] and 𝑴 = [
1 2 4
1 1 3
2 3 2

0
1
1
], then the Kronecker product of these two matrices a 

matrix of order 6 × 8 is given as: 

           𝑲 ⊗ 𝑴 = 

[
 
 
 
 
 

 

2 4 8
2 2 6

0 1 2
2 1 1

4 0
3 1

4 6 4
1 2 4

2 2 3
0 0 0

2 1
0 0

1 1 3
2 3 2

1 0 0
1 0 0

0 0
0 0]

 
 
 
 
 

. 

3.12 Full rank factorization 

Searle (1982) defined full rank factorization of a matrix, which is not of full rank. This 

factorization is useful in calculating Moore-Penrose inverse in this study. Let 𝑨 be a matrix of 

order 𝑚 × 𝑛, such that 𝑟𝑎𝑛𝑘(𝑨) = 𝑟. Then using full rank factorization it is possible to 

express 𝑨 as the product of two matrices with full rank as follows: 

 𝑨 = 𝑷𝑮, 

where 𝑷 and 𝑮 are full rank matrices of order 𝑚 × 𝑟 and 𝑟 × 𝑛, respectively.  
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Now, there is at least one full rank matrix 𝑿 of order 𝑟 × 𝑟, such that we can have following 

representation 

 𝑨 = [
𝑿 𝒀
𝒁 𝑼

], 

where 𝒀, 𝒁 and 𝑼 are matrices of order 𝑟 × (𝑛 − 𝑟), (𝑚 − 𝑟) × 𝑟 and (𝑚 − 𝑟) × (𝑛 − 𝑟), 

respectively. Since, 𝑟𝑎𝑛𝑘(𝑨) = 𝑟, there are 𝑟 linearly independent rows and columns and 

remaining are linear combination of them.  

 

Thus, we can write the matrices 𝒀, 𝒁 and 𝑼 as: 

 [𝒁 𝑼] = 𝑭[𝑿 𝒀] and [
𝒀
𝑼

] = [
𝑿
𝒁
]𝑯, 

where 𝑭 and 𝑯 are matrices of order (𝑚 − 𝑟) × 𝑟 and 𝑟 × (𝑛 − 𝑟) respectively, such that 𝑭 = 

𝒁𝑿−1 and 𝑯 = 𝑿−1𝒀. Thus we can have following representations for 𝑨  

 𝑨 = [
𝑿 𝑿𝑯
𝑭𝑿 𝑭𝑿𝑯

] 

               = [
𝑰
𝑭
]  𝑿[𝑰 𝑯] 

               = [
𝑰

𝒁𝑿−1 
] 𝑿[𝑰 𝑿−1𝒀 ] 

               = [
𝑿
𝒁 

] [𝑰 𝑿−1𝒀 ] = [
𝑰

𝒁𝑿−1 
] [𝑿 𝒀 ]. 

3.13 SAS Codes 

The following programs have been written in SAS [PROC IML] software to study the 

characterization properties of the developed designs  

 SAS code for computing canonical efficiency factor of the design involving triallel 

crosses for estimating gca effects for half parents as well as full parents under 

unblocked set-up. 
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 SAS code for computing canonical efficiency factor of the design involving triallel 

crosses for estimating gca effects for half parents as well as full parents under blocked 

set-up. 

 

 SAS code for computing canonical efficiency of the disturbed design involving triallel 

crosses for estimating gca effects for half parents as well as full parents under 

unblocked set-up to investigate the robustness of designs against missing observation 

using the connectedness and efficiency criteria. 

 

 SAS code for computing canonical efficiency of the disturbed design involving triallel 

crosses for estimating gca effects for half parents as well as full parents under blocked 

set-up to investigate the robustness of designs against missing observation using the 

connectedness and efficiency criteria. 

 

 SAS code for computing canonical efficiency of the disturbed design involving tetra-

allele crosses for estimating gca effects under unblocked set-up to investigate the 

robustness of designs against missing observation using the connectedness and 

efficiency criteria. 

 

 SAS code for computing canonical efficiency of the disturbed design involving tetra-

allele crosses for estimating gca effects under blocked set-up to investigate the 

robustness of designs against missing observation using the connectedness and 

efficiency criteria. 

These programs are given in Annexures. 

 



 
 

 Chapter-4                                                                            RESULTS 

 

4.1 Introduction 

Greater genetical viability, and stability along with consistency of higher order crosses as 

compared to diallel crosses, is the main attraction to breeders for adopting higher order 

mating plans like triallel and tetra-allele crosses. Besides this, triallel and tetra-allele cross 

hybrids exhibit higher individual as well as population buffering mechanism because of the 

broad genetic base. 

4.2 Higher order mating designs incorporating sca effects 

For breeders, sca effects are of much importance in addition to gca effects. In case of diallel 

crosses, only a first order sca effect can be studied whereas in triallel crosses three first order 

sca effects alongwith a second order sca effect and in case of tetra-allele crosses first, second 

and even third order sca effects can be studied. Thus, these techniques provide ample amount 

of information on sca effects and help the breeders to improve various traits which are of 

economical as well as nutritional importance in crops and animals.  

4.2.1 Triallel cross experiments with sca effects 

Triallel cross hybrids find a vital role in the area of plant and animal breeding experiments 

due to their uniformity, stability and the relative simplicity of selecting and testing. Triallel 

crosses are intermediate between diallel and tetra-allele crosses with respect to number of 

lines used, complexity of handling the crosses and the amount of information regarding 

combining abilities. 

Model and experimental setup 

There are various methods of analysing the data collected through a triallel cross experiment, 

based on the model considered. The model may include all types of sca effects, or only lower 

order sca effects or may not include sca effects, along with gca effects, as per the 

experimental objectives. 

4.2.1.1 Model with first order sca effects 

Let us consider that the triallel crosses (𝑖, 𝑗, 𝑘), are arranged in the order (1, 2,3), 

(1, 2,4),...,(1,2, 𝑘),...,(1,2, 𝑁),(1,3,4),...,(1, 𝑗, 𝑗 + 1),...,(1, (𝑁 − 1), 𝑁),(2, 3,4),..., (𝑖, 𝑖 +

1, 𝑖 + 2),..., {(𝑁 − 2), (𝑁 − 1), 𝑁} ∀ 𝑖 ≠ 𝑗 ≠ 𝑘 = 1,2, … ,𝑁. It should be noted that along 
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with every cross of the type (𝑖, 𝑗, 𝑘) crosses of the types (𝑖, 𝑘, 𝑗) and (𝑗, 𝑘, 𝑖) are also included 

in the experiment simultaneously. Let 𝒈 = (𝑔1, 𝑔2, … , 𝑔𝑁)′ be a 𝑁 × 1 vector of gca effects 

of full parents, 𝒉 = (ℎ1, ℎ2, … , ℎ𝑁)′ be a 𝑁 × 1 vector of gca effects of half parents. 𝒚 and 𝒔 

be 𝑇 × 1 vectors whose elements are {𝑦𝑖𝑗𝑘} and {𝑠𝑖𝑗𝑘},  respectively. Let us define a matrix 

𝑾of order 2𝑁 × 𝑇 with rows indexed by the line numberings as 1,2,… ,𝑁 repeatedly two 

times and, the columns by the 𝑇 number of crosses, in same order as described previously, of 

the types (𝑖, 𝑗, 𝑘), including the crosses of the types (𝑖, 𝑘, 𝑗) and (𝑗, 𝑘, 𝑖) also simultaneously. 

Then, the {𝑡, (𝑖, 𝑗, 𝑘)}th entry of 𝑾 takes a value 0.5 if 𝑡 ∈ (𝑖, 𝑗), takes a value 1 if 𝑡 ∈ 𝑘 and 0, 

otherwise. Before arriving at the final model we have 𝑾𝟏𝑇 =
(𝑁−1)(𝑁−2)

2
𝟏2𝑁,𝑾

′𝟏2𝑁 =

2𝟏𝑁 and 𝑦 ̅ =
𝟏𝑇
′ 𝒚

𝑇
. Now the model can be rewritten in matrix notation as follows: 

            𝒚 = 𝑦 ̅𝟏𝑇 +𝑾
′ (
𝒈
𝒉
) + 𝒔 + 𝒆,                                                             (4.2.1.1.1) 

where 𝑦̅ is the average effect of the crosses, 𝟏𝑇 is the  𝑇 × 1 vector of unity and 𝒆 is the  𝑇 ×

1 vector of random errors . The constraints  

                       𝑔1 + 𝑔2 +⋯+ 𝑔𝑁 = 0 or ∑ 𝑔𝑖
𝑁
𝑖=1 = 0 or 𝟏𝑁

′ 𝒈 = 0, 

                       ℎ1 + ℎ2 +⋯+ ℎ𝑁 = 0 or ∑ ℎ𝑖
𝑁
𝑖=1 = 0 or 𝟏𝑁

′ 𝒉 = 0 and 

                       ∑ ∑ 𝑠(𝑗𝑘)𝑖𝑘>𝑗𝑗 = 0 ∀ 1 ≤ 𝑖 ≤ 𝑁 or 𝑾𝒔 = 𝟎,                                      (4.2.1.1.2)                         

have been imposed to the model.  

Before proceeding further it is important to derive the forms of 𝑾𝑾′ and (𝑾𝑾′)+.   

               𝑾𝑾′ = [

(𝑁−1)(𝑁−2)

2
𝑰𝑁 −

(𝑁−2)

2
(𝑰𝑁 − 𝑱𝑁)

−
(𝑁−2)

2
(𝑰𝑁 − 𝑱𝑁)

(𝑁−2)2

4
𝑰𝑁 +

(𝑁−2)

4
𝑱𝑁
] = [

𝑨 𝑩
𝑩′ 𝑫

] (say)      (4.2.1.1.3) 

Now, we can see that 𝑟𝑎𝑛𝑘(𝑨) =  𝑟𝑎𝑛𝑘 (𝑩) = 𝑟𝑎𝑛𝑘 (𝑫) = 𝑁  and 𝑟𝑎𝑛𝑘 (𝑾𝑾′) = 2𝑁 − 1. 

Thus, it is not possible to find the true inverse of 𝑾𝑾′. Also, we can see that the 

condition 𝑟𝑎𝑛𝑘 (𝑾𝑾′) = 𝑟𝑎𝑛𝑘(𝑨)  for finding the generalized inverse of a matrix by 

partitioning is not satisfied. So, in order to find a unique inverse of 𝑾𝑾′, it is better to 

proceed for finding the Moore Penrose inverse denoted as (𝑾𝑾′)+, through full rank 

factorization method. 
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Moore Penrose inverse (𝑾𝑾′)+: In order to find the (𝑾𝑾′)+ the first step is to write 𝑾𝑾′ 

as the product of two matrices which are of full column and full row rank, respectively.  

Let 𝑾𝑾′ = [
𝑿 𝒛
𝒛′ 𝒖

], be written as the product of two matrices 𝑲 and 𝑳 which are of full 

column and row rank, respectively, where 𝑲 = [
𝑿
𝒛′
] and 𝑳 = [𝑰 𝑿−1𝒛]. Since the rank of 

𝑾𝑾′ is (2𝑁 − 1), i.e. one less than full rank. 𝑿 can be taken as top left (2𝑁 − 1) rows and 

columns of 𝑾𝑾′. This top left (2𝑁 − 1) portion of 𝑾𝑾′ can be always made of full rank by 

pre or post multiplying 𝑾𝑾′ by permutation matrices of suitable order. Thus, 𝑾𝑾′ is 

partitioned and expressed as follows: 

 𝑾𝑾′ = [
𝑿 𝒛
𝒛′ 𝑢

] = [
𝑿11 𝑿12
𝑿21 𝑿22

𝒛

𝒛′ 𝑢

].  

The general form of 𝑾𝑾′, in terms of number of lines is expressed as: 

 

[
 
 
 
 
 
 
 
 
 

{
  
 

  
 

(
(𝑁−1)(𝑁−2)

2
𝑰𝑁)

(

−
(𝑁−2)

2
(𝑰𝑁−1 − 𝑱𝑁−1)

(𝑁−2)

2
𝟏𝑁−1
′

)

(−
(𝑁−2)

2
(𝑰𝑁−1 − 𝑱𝑁−1)

(𝑁−2)

2
𝟏𝑁−1) (

(𝑁−2)2

4
𝑰𝑁−1 +

(𝑁−2)

4
𝑱𝑁−1)}

  
 

  
 

𝒛

𝒛′ 𝑢]
 
 
 
 
 
 
 
 
 

, 

where the vector 𝒛 = (

(𝑁−2)

2
𝟏𝑁−1

0
(𝑁−2)

4
𝟏𝑁−1

) and the scalar 𝑢 =
(𝑁−2)2

4
+
(𝑁−2)

4
. Now, to find the 

inverse of matrix 𝑿 we have to use the method of partitioning as   

                  𝑿−1 = [
𝑿11
−1 + 𝑭𝑬−1𝑭′ −𝑭𝑬−1

−𝑬−1𝑭′ 𝑬−1
], 

where 𝑬 = 𝑿22 − 𝑿21𝑿11
−1𝑿12 and 𝑭 = 𝑿11

−1𝑿12. The following results have been derived: 

 𝑿11
−1 = {

2

(𝑁−1)(𝑁−2)
𝑰𝑁}, 
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 𝑭 = −
1

(𝑁−1)
{
(𝑰𝑁−1 − 𝑱𝑁−1)

−𝟏𝑁−1
′

}, 

             𝑿21𝑿11
−1𝑿12 =

(𝑁−2)

𝟐(𝑁−1)
{𝑰𝑁−1 + (𝑁 − 2)𝑱𝑁−1},  

 𝑬 =
(𝑁−2)(𝑁−3)

4(𝑁−1)
{𝑁𝑰𝑁−1 − 𝑱𝑁−1},   

 𝑬−1 =
4(𝑁−1)

𝑁(𝑁−2)(𝑁−3)
{𝑰𝑁−1 + 𝑱𝑁−1}, 

          −𝑭𝑬−1 =
4

𝑁(𝑁−2)(𝑁−3)
{
(𝑰𝑁−1 − (𝑁 − 1)𝑱𝑁−1)

−𝑁𝟏𝑁−1
′

},            

           𝑭𝑬−1𝑭′ =
4

𝑁(𝑁−1)(𝑁−2)(𝑁−3)
[
[𝑰𝑁−1 + {(𝑁 − 1)

2−𝑁}𝑱𝑁−1] 𝑁(𝑁 − 2)𝟏𝑁−1

𝑁(𝑁 − 2)𝟏𝑁−1
′ 𝑁(𝑁 − 1)

], 

and  𝑿11
−1 + 𝑭𝑬−1𝑭′is given as 

             
4

𝑁(𝑁−1)(𝑁−2)(𝑁−3)
[

(𝑁−1)(𝑁−2)

2
[𝑰𝑁−1 + {(𝑁 − 1)

2−𝑁}𝑱𝑁−1] 𝑁(𝑁 − 2)𝟏𝑁−1

𝑁(𝑁 − 2)𝟏𝑁−1
′ 𝑁(3𝑁−5)

2

]. 

Hence the inverse of matrix 𝑿 is derived and it can be easily seen that matrices 𝑲 = [
𝑿
𝒛′
] and 

𝑳 = [𝑰 𝑿−1𝒛] are of full column and row rank respectively, with 𝑿−1𝒛 = [
𝟏𝑁−1
1

−𝟏𝑁−1

]. Thus 

the Moore Penrose inverse can be obtained by the formulae (𝑾𝑾′)+ = 𝑳′(𝑲′𝑾𝑾′𝑳′)−𝟏𝑲′. 

Now, we have to first find (𝑲′𝑾𝑾′𝑳′)−𝟏 for which the following results are needed to be 

obtained first 𝑲′𝑾𝑾′ = (
𝑨11 𝑨12
𝑨21 𝑨22

),  

where 𝑨11 =
(𝑁−2)2

4
[
[{(𝑁 − 1)2 + 1}𝑰𝑁−1 + (𝑁−2)𝑱𝑁−1] (𝑁 − 2)𝟏𝑁−1

(𝑁 − 2)𝟏𝑁−1
′ 𝑁(𝑁 − 1)

], 𝑨12 = 𝑨21
′ , 

where 𝑨21 =
(𝑁−2)2

8
{−(3𝑁 − 4)𝑰𝑁−1 + (4𝑁−5)𝑱𝑁−1 (4𝑁 − 5)𝟏𝑁−1

′ }, and 
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𝑨22 =
(𝑁−2)2

8
[

(4𝑁 − 5)𝟏𝑁−1
′ (𝑁 − 1)

1

2
[{(𝑁 − 2)2 + 4}𝑰𝑁−1 + (7𝑁−12)𝑱𝑁−1]

(7𝑁−12)

2
𝟏𝑁−1

];  

and  𝑲′𝑾𝑾′𝑳′ = (

𝑩11 𝑩12 𝑩13
𝑩21 𝑩22 𝑩23
𝑩31 𝑩32 𝑩33

),  

where  𝑩11 =
(𝑁−2)2

8
[2{(𝑁 − 1)2 + 1}𝑰𝑁−1 + 3(2𝑁−3)𝑱𝑁−1],    

         𝑩12 =
3(𝑁−2)2(2𝑁−3)

8
𝟏𝑁−1, 

         𝑩13 = −
(𝑁−2)2(3𝑁−4)

8
𝑰𝑁−1, 

         𝑩21 =
(𝑁−2)2(3𝑁−4)

8
𝟏𝑁−1
′ , 

         𝑩22 =
(𝑁−2)2(2𝑁+1)(𝑁−1)

8
, 

         𝑩23 =
(𝑁−2)2(3𝑁−4)

8
𝟏𝑁−1
′ , 

         𝑩31 = −
(𝑁−2)2

16
[2(3𝑁 − 4)𝑰𝑁−1 − (15𝑁−22)𝑱𝑁−1], 

         𝑩32 =
(𝑁−2)2(15𝑁−22)

16
𝟏𝑁−1 and 

         𝑩33 =
(𝑁−2)2{(𝑁−2)2+4}

16
𝑰𝑁−1. 

Since the matrix 𝑲′𝑾𝑾′𝑳′ is not a symmetric matrix, hence one has to find the inverse of 

this matrix by the procedure available for non-symmetric matrices. 

Consider that 𝑲′𝑾𝑾′𝑳′  the matrix can be expressed in a new form as follows: 

           𝑲′𝑾𝑾′𝑳′ = (
𝑨1 𝑩1
𝑪1 𝑫1

),  

where 𝑨1 = (
𝑩11 𝑩12
𝑩21 𝑩22

), 

           𝑩1 = (
𝑩13
𝑩23

), 
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           𝑪1 = (𝑩31 𝑩32) and 

           𝑫1 = 𝑩23. Then, the inverse can be obtained by the following relation: 

           [
𝑨1 𝑩1
𝑪1 𝑫1

]
−1

= [
𝟎 𝟎
𝟎 𝑫1

−1] + [
𝑰

−𝑫1
−1𝑪1

] (𝑨1 − 𝑩1𝑫1
−1𝑪1)

−1[𝑰 −𝑩1𝑫1
−1]. 

Now, we have following results: 

  𝑫1
−1 =

16

(𝑁−2)2{(𝑁−2)2+4}
𝑰𝑁−1,  

           −𝑫1
−1𝑪1 = 

1

{(𝑁−2)2+4}
[2(3𝑁 − 4)𝑰𝑁−1 − (15𝑁−22)𝑱𝑁−1 −(15𝑁−22)𝟏𝑁−1],             

 −𝑩1𝑫1
−1 =

2(3𝑁−4)

{(𝑁−2)2+4}
[

𝑰𝑁−1

−𝟏𝑁−1
′

], 

−𝑩1𝑫1
−1𝑪1 is given as  

 −
(𝑁−2)2(3𝑁−4)

8{(𝑁−2)2+4}
[

2(3𝑁 − 4)𝑰𝑁−1 − (15𝑁−22)𝑱𝑁−1 −(15𝑁−22)𝟏𝑁−1

(15𝑁2 − 43𝑁 + 30)𝟏𝑁−1
′ (𝑁 − 1)(15𝑁 − 22)

], 

and 𝑨1 − 𝑩1𝑫1
−1𝑪1 is given as 

(𝑁−2)2

4{(𝑁−2)2+4}
[
𝑁2(𝑁 − 3)2𝑰𝑁−1 + (3𝑁

3 + 6𝑁2 − 21𝑁+8)𝑱𝑁−1 (3𝑁3 + 6𝑁2 − 21𝑁+8)𝟏𝑁−1

−(21𝑁3 − 86𝑁2 + 109𝑁 − 40)𝟏𝑁−1
′ (𝑁 − 1)(𝑁3 − 26𝑁2 + 69𝑁 − 40)

]. 

Now we can see that (𝑨1 − 𝑩1𝑫1
−1𝑪1) is an asymmetric matrix, hence we have to find out 

the inverse as the earlier method. 

Let (𝑨1 − 𝑩1𝑫1
−1𝑪1) = (

𝑨2 𝑩2
𝑪2 𝑫2

). Then, the inverse is given as 

[
𝑨2 𝑩2
𝑪2 𝑫2

]
−1

= [
𝟎 𝟎
𝟎 𝑫2

−1] + [
𝑰

−𝑫2
−1𝑪2

] (𝑨2 − 𝑩2𝑫2
−1𝑪2)

−1[𝑰 −𝑩2𝑫2
−1].  

Now, we have to use the following results: 

         𝑫2
−1 =

4{(𝑁−2)2+4}

(𝑁−2)2(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
, 
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                   −𝑫2
−1𝑪2 =

(21𝑁3−86𝑁2+109𝑁−40)

(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
𝟏𝑁−1
′ , 

      −𝑩2𝑫2
−1 = −

(3𝑁3+6𝑁2−21𝑁+8)

(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
𝑱𝑁−1,           

     −𝑩2𝑫2
−1𝑪2 =

(𝑁−2)2(21𝑁3−86𝑁2+109𝑁−40)(3𝑁3+6𝑁2−21𝑁+8)

4{(𝑁−2)2+4}(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
,  

                    𝑨2 − 𝑩2𝑫2
−1𝑪2 = 𝑘 {𝑰𝑁−1 +

(3𝑁3+6𝑁2−21𝑁+8)

(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
} 𝑱𝑁−1,  

and thus, finally we get (𝑨2 − 𝑩2𝑫2
−1𝑪2)

−1 as 

                    
1

𝑘
{𝑰𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝑱𝑁−1}, where 𝑘 =

{𝑁(𝑁−2)(𝑁−3)}2

4{(𝑁−2)2+4}
. 

Now, [
𝑰

−𝑫2
−1𝑪2

] (𝑨2 − 𝑩2𝑫2
−1𝑪2)

−1 is given as follows: 

         
1

𝑘

[
 
 
 
 𝑰𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝑱𝑁−1

(21𝑁3−86𝑁2+109𝑁−40)

(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
{1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
} 𝟏𝑁−1

′
]
 
 
 
 

, 

 and [
𝑰

−𝑫2
−1𝑪2

] (𝑨2 − 𝑩2𝑫2
−1𝑪2)

−1[𝑰 −𝑩2𝑫2
−1] is given as follows:    

        
1

𝑘

[
 
 
 
 𝑰𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝑱𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1

(21𝑁3−86𝑁2+109𝑁−40)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1
′ −

(21𝑁3−86𝑁2+109𝑁−40)(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)(𝑁3−26𝑁2+69𝑁−40)]
 
 
 
 

. 

Also, (𝑨1 − 𝑩1𝑫1
−1𝑪1)

−1 = [
𝑨2 𝑩2
𝑪2 𝑫2

]
−1

is given as: 

 

1

𝑘

[
 
 
 
 𝑰𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝑱𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1

(21𝑁3−86𝑁2+109𝑁−40)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1
′ {

𝑁2(𝑁−3)2

(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
−

(21𝑁3−86𝑁2+109𝑁−40)(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁3−5𝑁2+12𝑁−8)(𝑁−1)(𝑁3−26𝑁2+69𝑁−40)
}]
 
 
 
 

 

Thus, finally we get, (𝑲′𝑾𝑾′𝑳′)−1 = [
𝑨1 𝑩1
𝑪1 𝑫1

]
−1

as follows: 
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 1
𝑘

[
 
 
 
 
 
 
 
 𝑰𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝑱𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1

2(3𝑁−4)

(𝑁2−4𝑁+8)
𝑰𝑁−1

(21𝑁3−86𝑁2+109𝑁−40)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1
′

2(3𝑁−4)

(𝑁2−4𝑁+8)
𝑰𝑁−1 +

(−15𝑁5+94𝑁4−279𝑁3

+372𝑁2−216𝑁+64)

4(𝑁−1)( 𝑁2

−4𝑁+8
)(𝑁

3−5𝑁2

+12𝑁−8
)
𝑱𝑁−1

{
𝑁2(𝑁−3)2

(𝑁−1)(𝑁
3−26𝑁2

+69𝑁−40
)
−

(21𝑁
3−86𝑁2

+109𝑁−40
)(3𝑁

3+6𝑁2

−21𝑁+8
)

4(𝑁
3−5𝑁2

+12𝑁−8
)(𝑁−1)(𝑁

3−26𝑁2

+69𝑁−40
)
}

(−15𝑁5+94𝑁4−279𝑁3+372𝑁2−216𝑁+64)

4(𝑁−1)(𝑁2−4𝑁+8)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1

−
2(3𝑁−4)

(𝑁2−4𝑁+8)
𝟏𝑁−1
′

4(𝑁4−6𝑁3

+18𝑁2−24𝑁+16)

(𝑁2−4𝑁+8)𝟐
𝑰𝑁−1]

 
 
 
 
 
 
 
 

 

 

and  𝑳′(𝑲′𝑾𝑾′𝑳′)−𝟏 is given as:  

 1
𝑘

[
 
 
 
 
 
 
 
 
 
 
 
 𝑰𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝑱𝑁−1 −

(3𝑁3+6𝑁2−21𝑁+8)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1

2(3𝑁−4)

(𝑁2−4𝑁+8)
𝑰𝑁−1

(21𝑁3−86𝑁2+109𝑁−40)

4(𝑁−1)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1
′

2(3𝑁−4)

(𝑁2−4𝑁+8)
𝑰𝑁−1 +

(−15𝑁5+94𝑁4−279𝑁3

+372𝑁2−216𝑁+64)

4(𝑁−1)( 𝑁2

−4𝑁+8
)(𝑁

3−5𝑁2

+12𝑁−8
)
𝑱𝑁−1

(16𝑁6−143𝑁5+590𝑁4−135𝑁3

+1684𝑁2−1112𝑁+320)

4(𝑁−1)( 𝑁2

−4𝑁+8
)(𝑁

3−5𝑁2

+12𝑁−8
)
𝟏𝑁−1
′

{
𝑁2(𝑁−3)2

(𝑁−1)(𝑁
3−26𝑁2

+69𝑁−40
)
−

(21𝑁
3−86𝑁2

+109𝑁−40
)(3𝑁

3+6𝑁2

−21𝑁+8
)

4(𝑁
3−5𝑁2

+12𝑁−8
)(𝑁−1)(𝑁

3−26𝑁2

+69𝑁−40
)
}

(−15𝑁5+94𝑁4−279𝑁3+372𝑁2−216𝑁+64)

4(𝑁−1)(𝑁2−4𝑁+8)(𝑁3−5𝑁2+12𝑁−8)
𝟏𝑁−1

(16𝑁9−535𝑁8+4612𝑁7−20350𝑁6+53096𝑁5

−84715𝑁4+8228𝑁3−4738𝑁2+15616𝑁−2560)

4(𝑁−1)(𝑁
3−5𝑁2

+12𝑁−8
)(𝑁

3−26𝑁2

+69𝑁−40
)(𝑁2−4𝑁+8)

−
2(3𝑁−4)

(𝑁2−4𝑁+8)
𝟏𝑁−1
′

4(𝑁4−6𝑁3

+18𝑁2−24𝑁+16)

(𝑁2−4𝑁+8)𝟐
𝑰𝑁−1

−

4(𝑁4−6𝑁3

+18𝑁2−24𝑁+16)

(𝑁2−4𝑁+8)𝟐
𝟏𝑁−1
′

]
 
 
 
 
 
 
 
 
 
 
 
 

 

After substituting all the intermediate forms involved in the calculation, the final form of the 

Moore Penrose inverse (𝑾𝑾′)+ = 𝑳′(𝑲′𝑾𝑾′𝑳′)−𝟏𝑲′ is  

           

2

𝑁(𝑁−2)

[
 
 
 
 
 (𝑁−2)
(𝑁−3)

(𝑰𝑁 −
(3𝑁−21𝑁3+68𝑁2−104𝑁+64)

4𝑁(𝑁−1)(𝑁−2)(𝑁2−4𝑁+8)
𝑱𝑁−1)

2

(𝑁−3)
(𝑰𝑁 −

(𝑁6−19𝑁5+128𝑁4−480𝑁3

+1024𝑁2−1216𝑁+512)

4𝑁(𝑁−1)(𝑁−2)(𝑁2−4𝑁+8)2
)𝑱𝑁)

2

(𝑁−3)
(𝑰𝑁 −

(𝑁6−19𝑁5+128𝑁4−480𝑁3

+1024𝑁2−1216𝑁+512)

4𝑁(𝑁−1)(𝑁2−4𝑁+8)2
)𝑱𝑁)

2(𝑁−1)

(𝑁−3)
(𝑰𝑁 −

(7𝑁6−69𝑁5+336𝑁4−928𝑁3

+1536𝑁2−1344𝑁+512)

8𝑁(𝑁−1)2(𝑁2−4𝑁+8)2
)𝑱𝑁)]

 
 
 
 
 

 

. 

Estimates of gca and sca effects 

Now, pre-multiplying (4.2.1.1.1) with 𝑾 we get  

 𝑾𝒚 = 𝑦 ̅𝑾𝟏𝑇 +𝑾𝑾
′ (
𝒈
𝒉
) +𝑾𝒔 +𝑾𝒆, and thus we get the following: 

 (
𝒈̂

𝒉̂
) = (𝑾𝑾′)+(𝑾𝒚 − 𝑦 ̅𝑾𝟏𝑇) 

= (𝑾𝑾′)+𝑾𝒚− (𝑾𝑾′)+𝑾𝟏𝑇𝑦 ̅  
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 = (𝑾𝑾′)+𝑾𝒚− (𝑾𝑾′)+
(𝑁−1)(𝑁−2)

2
𝟏2𝑁

𝟏𝑇
′ 𝒚

𝑇
.  

Thus, the estimates of joint gca effects can be simplified and expressed as: 

          (
𝒈̂

𝒉̂
) = {(𝑾𝑾′)+𝑾− 

𝟏

𝑁
(𝑾𝑾′)+𝑱2𝑁×𝑇} 𝒚 

                 = 𝑯1𝒚, where 

           𝑯1 = (𝑾𝑾
′)+𝑾− 

𝟏

𝑁
(𝑾𝑾′)+𝑱2𝑁×𝑇, 

      = (𝑾𝑾′)+𝑾− 
𝟏

2𝑇
𝑱2𝑁×𝑇                                                                        (4.2.1.1.4) 

Now, 𝒚 = 𝑦 ̅𝟏𝑇 +𝑾
′ (
𝒈
𝒉
) + 𝒔 + 𝒆, and using  (4.2.1.1.4) we get 

             𝒔̂ = 𝒚 − 𝑦 ̅𝟏𝑇 −𝑾′ (
𝒈̂

𝒉̂
)  

     = 𝒚 − 𝑦 ̅𝟏𝑇 −𝑾′ {(𝑾𝑾′)+𝑾− 
𝟏

𝑁
(𝑾𝑾′)+𝑱2𝑁×𝑇}  

     =  𝒚 −
𝟏𝑇𝟏𝑇

′

𝑇
𝒚 −𝑾′(𝑾𝑾′)+𝑾𝒚− 

𝟏

𝑁
𝑾′(𝑾𝑾′)+𝑱2𝑁×𝑇𝒚.  

Thus, the final estimate of sca effects after simplification is given as 

 𝒔̂ = (𝑰 −𝑾′(𝑾𝑾′)+𝑾)𝒚  

    = 𝑯2𝒚, where 

 𝑯2 = (𝑰 −𝑾′(𝑾𝑾′)+𝑾).                                                                          (4.2.1.1.5) 

Also, it can be seen that 𝑟𝑎𝑛𝑘(𝑯1) = 2(𝑁 − 1) and 𝑟𝑎𝑛𝑘(𝑯2) = 𝑇 − 2𝑁 + 1. 

Now, it is important to check the orthogonality of the model and verify following three 

conditions: 

(i) 𝑯1𝟏 = 𝟎.  

Proof: We have, 𝑯1𝟏 = {(𝑾𝑾
′)+𝑾− 

𝟏

𝑁
(𝑾𝑾′)+𝑱2𝑁×𝑇} 𝟏  

= (𝑾𝑾′)+𝑾𝟏− 
𝟏

𝑁
(𝑾𝑾′)+𝑱2𝑁×𝑇𝟏  
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= (𝑾𝑾′)+ (
(𝑁−1)(𝑁−2)

2
𝟏 −

𝑻

𝑁
𝟏) = 𝟎.                

(ii) 𝑯2𝟏 = 𝟎.   

Proof: As 𝑯2𝟏 = (𝑰 −𝑾′(𝑾𝑾′)+𝑾)𝟏  

= 𝟏 −
(𝑁−1)(𝑁−2)

2
 𝑾′(𝑾𝑾′)+𝟏  

= 𝟏 −
(𝑁−1)(𝑁−2)

2(𝑁−1)(𝑁−2)
 𝑾′𝟏  

= 𝟏 −
𝟐(𝑁−1)(𝑁−2)

2(𝑁−1)(𝑁−2)
𝟏 = 0. 

 

(iii) 𝑯1𝑯2 = 𝑯2𝑯1 = 𝟎. 

Proof: 𝑯1𝑯2 = { (𝑾𝑾′)+𝑾− 
𝟏

2𝑇
𝑱2𝑁×𝑇} { 𝑰 −𝑾′(𝑾𝑾′)+𝑾} 

= (𝑾𝑾′)+𝑾−
𝟏

2𝑇
𝑱2𝑁×𝑇 − (𝑾𝑾

′)+(𝑾𝑾′)(𝑾𝑾′)+𝑾+
𝟏

2𝑇
𝑱2𝑁×𝑇𝑾′(𝑾𝑾′)+𝑾 

=(𝑾𝑾′)+𝑾−
𝟏

2𝑇
𝑱2𝑁×𝑇 − (𝑾𝑾

′)+𝑾+
𝟏

2𝑇
𝑱2𝑁×𝑇 = 0. (using property of Moore Penrose 

inverse). Similarly we can also prove that 𝑯2𝑯1 = 𝟎. 

It is clear that (
𝒈
𝒉
) and 𝒔 represent orthogonal treatment contrasts having 2(𝑁 − 1) and 

(𝑇 − 2𝑁 + 1) degrees of freedom, respectively and can be used for obtaining orthogonal 

estimates of functions of gca and sca effects. 

Information matrices 

Now, under the usual set up of a block design 𝑑, the joint information matrix regarding 

(
𝑯1
𝑯2
) 𝒚 is given by the expression: 

     𝑪𝑑_𝑐𝑎 = [
𝑯1𝑪𝑑𝑯1

′ 𝑯1𝑪𝑑𝑯2
′

𝑯2𝑪𝑑𝑯1
′ 𝑯2𝑪𝑑𝑯2

′
], 

where 𝑪𝑑 = 𝑹𝑑 −
1

𝑘
𝑵𝑑𝑵𝑑

′ , 𝑹𝑑 = 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2, … , 𝑟𝑇) is the diagonal matrix of replications 

of the crosses under the design 𝑑 and 𝑵𝑑 is the incidence matrix of crosses versus blocks. 
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Here, 𝑪𝑑 is the information matrix of the general block design 𝑑, where treatments are the 

𝑇 crosses with 𝑪𝑑𝟏𝑇 = 𝟎. As discussed earlier regarding orthogonality, in order to 

estimate 𝑯1𝑪𝑑𝑯1
′  and 𝑯2𝑪𝑑𝑯2

′  orthogonally the off diagonal components must vanish 

and we must have 𝑯2𝑪𝑑𝑯1
′ = 𝑯1𝑪𝑑𝑯2

′ = 𝟎. Thus, we have 𝑪gca = 𝑯1𝑪𝑑𝑯1
′  and 

  𝑪sca = 𝑯2𝑪𝑑𝑯2
′ . 

4.2.1.2 Model excluding sca effects  

In this approach, gca effects of first and second kinds corresponding to half and full 

parents will be estimated for which it is assumed that the sca effects are contributing less 

to the total combining ability effects as compared to gca effects. The model can be written 

as 

          𝑦𝑖𝑗𝑘 = 𝑦̅ + ℎ𝑖 + ℎ𝑗 + 𝑔𝑘 + 𝑒𝑖𝑗𝑘,                                                                 (4.2.1.2.1) 

where 𝑦̅ is the average effect of the crosses, {ℎ𝛼}, 𝛼 = 𝑖, 𝑗, represents the gca effects of 

first kind corresponding to the lines occurring as half parents, {𝑔𝑘} represents the gca 

effects of second kind corresponding to the lines occurring as full parents, 𝑒𝑖𝑗𝑘 is random 

error  and 

         𝑔1 + 𝑔2 +⋯+ 𝑔𝑁 = 0 or ∑ 𝑔𝑖
𝑁
𝑖=1 = 0,                                                    (4.2.1.2.2) 

         ℎ1 + ℎ2 +⋯+ ℎ𝑁 = 0 or ∑ ℎ𝑖
𝑁
𝑖=1 = 0.                                                     (4.2.1.2.3)                          

The model in matrix notation is expressed as: 

    𝒚 = 𝑦 ̅𝟏𝑇 +𝑾1
′ 𝒉 +𝑾2

′ 𝒈 + 𝒆                                                                    (4.2.1.2.4) 

where 𝒚 is the 𝑇 × 1 vector of responses due to crosses, 𝑦̅ is the mean effect of crosses, 𝒉 

is the 𝑁 × 1 vector of gca effects due to half parents, 𝒈 is the 𝑁 × 1 vector of gca effects 

due to full parents and 𝒆 is the 𝑇 × 1 vector of random errors. 𝑾1 and 𝑾2 are  𝑁 × 𝑇 

matrices with rows indexed by the line numbers 1,2, …𝑁 and columns by the three-way 

crosses arranged in the manner described earlier, such that the {𝑡, (𝑖, 𝑗, 𝑘)}𝑡ℎentry of 𝑾𝟏 is 

0.5 if 𝑡 ∈ (𝑖𝑗) and zero, otherwise and the {𝑡, (𝑖, 𝑗, 𝑘)}𝑡ℎentry of 𝑾𝟐 is 1 if 𝑡 ∈ 𝑘 and zero, 

otherwise.  The normal equations are: 

    𝐸(𝒚) = 𝑦 ̅𝟏𝑇 +𝑾1
′ 𝒉 +𝑾2

′ 𝒈 
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   𝑾1𝐸(𝒚) = 𝑦 ̅𝑾1𝟏𝑇 +𝑾1𝑾1
′ 𝒉 +𝑾1𝑾2

′ 𝒈, and

 

              𝑾2𝐸(𝒚) = 𝑦 ̅𝑾2𝟏𝑇 +𝑾2𝑾1
′ 𝒉 +𝑾2𝑾2

′ 𝒈.

 

On solving these three normal equations, the estimate of gca effects of half parent is given as:

 

       𝒉̂ = (𝑾1𝑾1
′ )
−
(𝑾1𝒚 −𝑾1𝑦 ̅𝟏𝑇) 

 

      = [(𝑾𝟏𝐖1
′ )
−
𝑾𝟏 − (𝑾𝟏𝐖1

′ )
−
𝑾𝟏𝐉𝑇/𝑇)]𝒚  

= 𝑮1𝒚,                                                                                           (4.2.1.2.5) 

and the estimate of gca effects of full parent is given as: 

             𝒈̂ = (𝑾𝟐𝑾2
′ )
−
(𝑾𝟐𝒚 −𝑾𝟐𝑦 ̅𝟏𝑇), 

                = [(𝑾𝟐𝑾2
′ )
−
𝑾𝟐 − (𝑾𝟐𝑾2

′ )
−
𝑾𝟐𝑱𝑇/𝑁)]𝒚 

  = 𝑮2𝒚.                                                                                           (4.2.1.2.6) 

It is clear that 𝒉 and 𝒈 represents orthogonal treatment contrasts, both having (𝑁 − 1) 

degrees of freedom and can be used for obtaining orthogonal estimates of function of gca 

effects of half and full parents. 

The restrictions being imposed in order to estimate the gca effect of half parents free from 

gca effect of full parents are as: 

𝟏′𝒉̂ = 𝟏′𝒈̂ = 𝑮1𝟏 = 𝑮2𝟏 = 𝑮1
′ 𝑮2 = 𝟎,  𝑟𝑎𝑛𝑘(𝑮1) = 𝑟𝑎𝑛𝑘(𝑮𝟐) = 𝑁 − 1. 

Now, under the usual set up of a block design 𝑑, the joint information matrix regarding 

(
𝑮1
𝑮2
) 𝒚 is given by: 

       𝑪𝒅_𝒈𝑐𝑎 = [
𝑮1𝑪𝑑𝑮1

′ 𝑮1𝑪𝑑𝑮2
′

𝑮2𝑪𝑑𝑮1
′ 𝑮2𝑪𝑑𝑮2

′
], 

where 𝑪𝑑 = 𝑹𝑑 −
1

𝑘
𝑵𝑑𝑵𝑑

′ , 𝑹𝑑 = 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2, … , 𝑟𝑇) is the diagonal matrix of replications of 

the crosses under the design 𝑑 and 𝑵𝑑 is the incidence matrix of crosses versus blocks. Here, 

𝑪𝑑 is the information matrix of the general block design 𝑑 where treatments are nothing but 

the 𝑇 number of triallel crosses, hence we have 𝑪𝑑𝟏𝑇 = 𝟎. In order to estimate 𝑮1𝑪𝑑𝑮1
′  and 
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𝑮2𝑪𝑑𝑮2
′  orthogonally the off diagonal components have to vanish and hence 𝑮2𝑪𝑑𝑮1

′ =

𝑮1𝑪𝑑𝑮2
′ = 𝟎. Thus, we have   𝑪gca_half = 𝑮1𝑪𝑑𝑮1

′  and   𝑪gca_full = 𝑮2𝑪𝑑𝑮2
′ . 

4.2.1.3 Methods of construction  

General methods of constructing PTrC plans are described in this section using various types 

of designs and association schemes.  

Method 1: PTrC plans using triangular association scheme  

Let there be 𝑁 =
𝑛(𝑛−1)

2
 lines, where 𝑛 > 4. Arrange these 𝑁 lines in a two-associate 

triangular association scheme, i.e., allot 𝑁 lines to the off diagonal positions above the 

principal diagonal in a natural order and repeat the same below the diagonal such that the 

final arrangement is symmetrical about the diagonal. Diagonal positions are left empty. 

Consider all possible pair of lines that can be made from each row of the array. Add a third 

line to each of these pairs to form triplets. Line that appears at the intersection of the second 

row containing the first line in the pair and column containing the second line in the pair is 

considered, and added to each pair to form triplets. Make three-way crosses from these 

triplets considering lines in the pairs as half parents and third added line in the triplet as full 

parent. This will result in a partial three-way cross design with parameters 𝑁 =
𝑛(𝑛−1)

2
, 𝑇 =

𝑛(𝑛−1)(𝑛−2)

2
, 𝑏 = 𝑛, 𝑘 =

(𝑛−1)(𝑛−2)

2
, 𝑟ℎ = 2(𝑛 − 2) and 𝑟𝑓 = (𝑛 − 2). 

Remark: It can be seen that the above method of construction gives a layout in which the 

crosses are arranged in six groups. This excludes the necessity for an environmental design 

for laying out the crosses as these groups can be treated as blocks of a design. Hence, through 

this method one can get a combination of mating as well as environmental design, at one go.  

Example 4.2.1.3.1: The method can be well understood by an example for 𝑛 = 6 giving rise 

to 𝑁 = 15. 

* A B C D E 

A * F G H I 

B F * J K L 

C G J * M N 

D H K M * O 

E I L N O * 
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The first cross of first block is obtained by considering the first pair of lines (i.e., A & B) as 

half parents and then crossing it with the line present at the row-column intersection of lines 

A and B (i.e., F), treating F as the full parent in the cross. Proceeding in the same manner, for 

all possible pairs of first row one can obtain the three-way crosses to be placed in first block. 

In a similar manner, from other rows, remaining blocks can be obtained. The design so 

obtained is: 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

(A×B)×F (A×F)×B (B×F)×A (C×G)×A (D×H)×A (E×I)×A 

(A×C)×G (A×G)×C (B×J)×C (C×J)×B (D×K)×B (E×L)×B 

(A×D)×H (A×H)×D (B×K)×D (C×M)×D (D×M)×C (E×)N×C 

(A×E)×I (A×I)×E (B×L)×E (C×N)×E (D×O)×E (E×O)×D 

(B×C)×J (F×G)×J (F×J)×G (G×J)×F (H×K)×F (I×L)×F 

(B×D)×K (F×H)×K (F×K)×H (G×M)×H (H×M)×G (I×N)×G 

(B×E)×L (F×I)×L (F×L)×I (G×N)×I (H×O)×I (I×O)×H 

(C×D)×M (G×H)×M (J×K)×M (J×M)×K (K×M)×J (L×N)×J 

(C×E)×N (G×I)×N (J×L)×N (J×N)×L (K×O)×L (L×O)×K 

(D×E)×O (H×I)×O (K×L)×O (M×N)×O (M×O)×N (N×O)×M 

The parameters of this design are 𝑛 = 6, 𝑁 = 15, 𝑇 = 60, 𝑏 = 6, 𝑘 = 10, 𝑟ℎ = 8 and 𝑟𝑓 =

4.  

Information matrices 

Let 𝐈𝑁 is an identity matrix of order 𝑁, 𝐀𝑁 is a matrix of order 𝑁 whose elements, {𝑎𝑖𝑗} takes 

value 1 if 𝑖 and 𝑗 are first associates otherwise 0,  and 𝐁𝑁 is a matrix of order 𝑁 whose 

elements, {𝑏𝑖𝑗} takes value 1 if 𝑖 and 𝑗 are second associates, otherwise 0. 

The general form of information matrix related to half parents (𝐂half) is 𝑎0 𝐈𝑁 + 𝑎1 𝐀𝑁 +

𝑎2 𝐁𝑁, where 𝑎0 =
2(𝑛−3)(𝑛−4)

(𝑛−2)
, 𝑎1 = −

2(𝑛−3)(𝑛−4)

(𝑛−2)2
 and 𝑎2 =

4(𝑛−4)

(𝑛−2)2
.  

The general form of information matrix related to full parents (𝐂full) is 𝑏0 𝐈𝑁 + 𝑏1 𝐀𝑣 +

𝑏2 𝐁𝑁, where 𝑏0 = (𝑛 − 4), 𝑏1 = −
(𝑛−4)

(𝑛−2)
 and 𝑏2 =

2(𝑛−4)

(𝑛−2)(𝑛−3)
 .  

For Example 4.2.1.3.1, 𝐂half = 3𝐈15 − 0.75𝐀15 + 0.5𝐁15 and 𝐂𝑓𝑢𝑙𝑙 = 2𝐈15 − 0.5𝐀15 +

0.33𝐁15. 
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Inverted information matrices 

The general form of inverse of information matrix related to half parents (𝐂half
− ) is 𝑐0 𝐈𝑁 +

𝑐1 𝐀𝑁 + 𝑐2 𝐁𝑁, where 𝑐0 =
(𝑛−2)(𝑛−3)

2(𝑛−1)2(𝑛−4)
, 𝑐1 = −

(𝑛−3)

2(𝑛−1)2(𝑛−4)
 and 𝑐2 =

1

(𝑛−1)2(𝑛−4)
.  

The general form of inverted information matrix related to full parents (𝐂full
− ) is 𝑑0 𝐈𝑁 +

𝑑1𝐀𝑁 + 𝑑2𝐁𝑁, where 𝑑0 =
(𝑛−3)2

(𝑛−1)2(𝑛−4)
 , 𝑑1 = −

(𝑛−3)2

(𝑛−1)2(𝑛−2)(𝑛−4)
 and 𝑑2 =

2(𝑛−3)

(𝑛−1)2(𝑛−2)(𝑛−4)
.  

For Example 4.2.1.3.1, 𝐂full
− = 0.18𝐈15 − 0.045𝐀15 + 0.03𝐁15 and 𝐂half

− = 0.12𝐈15 −

0.03𝐀15 + 0.02𝐁15. 

Eigenvalues 

The eigenvalues of 𝐂half are 𝑎0 + (𝑛 − 2)𝑎2 and  0, whereas the eigenvalues of the 𝐂full are 

𝑏0 + (𝑛 − 2)𝑏2 and 0. 

Variance factors 

The general expression for variance factor of estimated contrasts for half parents 

(Vhalf(ℎ𝑖 − ℎ𝑗)̂ ) is 2(𝑐0 − 𝑐1 ) =  
(𝑛−3)

(𝑛−1)(𝑛−4)
, when 𝑖 and 𝑗(𝑖 ≠ 𝑗) are first associates to each 

other, and 2(𝑐0 − 𝑐2 ) =  
1

(𝑛−1)
, when 𝑖 and 𝑗(𝑖 ≠ 𝑗)are second associates to each other. The 

general expression for average variance factor of estimated contrasts for half parents 

(V̅half(ℎ𝑖 − ℎ𝑗)̂ ) is 
𝑛(𝑛−3)

(𝑛2−1)(𝑛−4)
. 

The general expressions for variance factor of estimated contrasts for full parents 

(Vfull(𝑔𝑖 − 𝑔𝑗)̂ ) is 2(𝑑0 − 𝑑1 ) =  
2(𝑛−3)2

(𝑛−1)(𝑛−2)(𝑛−4)
 , when 𝑖 and 𝑗(𝑖 ≠ 𝑗) are first associates to 

each other, and 2(𝑑0 − 𝑑2) =  
2(𝑛−3)

(𝑛−1)(𝑛−2)
 when 𝑖 and 𝑗(𝑖 ≠ 𝑗) are second associates to each 

other. The general expressions for average variance factor of estimated contrasts for full 

parents (V̅full(𝑔𝑖 − 𝑔𝑗)̂ ) is  
2𝑛(𝑛−3)2

(𝑛2−1)(𝑛−2)(𝑛−4)
. 

Degree of fractionation and efficiency factor 

The degree of fractionation (𝑓) for this series of designs involving triallel crosses is 

8

(𝑛+1)(𝑛2−𝑛−4)
.  
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The canonical efficiency factor for the developed class of designs pertaining to gca effects of 

half parents (𝐸ℎ) is 
(𝑛−1)(𝑛−4)

(𝑛−2)2
  and of full parents (𝐸𝑓) is  

(𝑛−1)(𝑛−4)

(𝑛−2)(𝑛−3)
.  

List of designs 

Considering the model under blocked setup, the canonical efficiency factor of the designs as 

compared to an orthogonal design with same number of replications has been calculated and 

listed along with other parameters in Table 4.2.1.3.1. 

Table 4.2.1.3.1. List of designs using triangular association scheme for triallel crosses 

under blocked setup 

𝒏 𝑵 𝒃 𝒌 𝑻 𝒇 𝒓𝒉 𝒓𝒇 𝐕̅𝐡𝐚𝐥𝐟(𝒉𝒊 − 𝒉𝒋)̂  𝐕̅𝐟𝐮𝐥𝐥(𝒈𝒊 − 𝒈𝒋)̂  𝑬𝒉 𝑬𝒇 

5 10 5 6 30 0.08 6 3 0.42 0.56 0.44 0.67 

6 15 6 10 60 0.04 8 4 0.26 0.39 0.63 0.83 

7 21 7 15 105 0.03 10 5 0.20 0.31 0.72 0.90 

8 28 8 21 168 0.02 12 6 0.16 0.27 0.78 0.93 

9 36 9 28 252 0.01 14 7 0.14 0.23 0.82 0.95 

10 45 10 36 360 0.01 16 8 0.12 0.21 0.84 0.96 

11 55 11 45 495 0.01 18 9 0.11 0.19 0.86 0.97 

12 66 12 55 660 0.01 20 10 0.10 0.17 0.88 0.98 

13 78 13 66 858 < 0.01 22 11 0.09 0.16 0.89 0.98 

14 91 14 78 1092 < 0.01 24 12 0.08 0.15 0.90 0.98 

 Method 2: PTrC designs based on Lattice designs 

This method can be used to obtain block designs for PTrC for a wide range of parameters. In 

this method, any lattice designs with standard parameters (𝑣, 𝑏∗, 𝑟∗, 𝑘∗, 𝑠) is considered and 

the block contents are taken as lines. Now, from each block all possible three-way crosses are 

made such that the set of crosses made from all the blocks of a replication of lattice design 

constitute the block of the new design. The parameters of the resultant class of PTrC designs 

are 𝑁 = 𝑣, 𝑏 = 𝑟∗, 𝑘 =
𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
 and 𝑇 =

𝑏𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
. Different classes of PTrC 

designs constructed using different types of lattice designs, along with example is given. (It 

may be noted that along with every cross of the type (𝑖, 𝑗, 𝑘), crosses of the types (𝑖, 𝑘, 𝑗) and 

(𝑗, 𝑘, 𝑖) are to be considered in the same block, but are not shown here in the design layouts) 

Class I (Square lattices based PTrC designs): Any square lattice with parameters, 𝑣 = 𝑠2,

𝑏∗ = 𝑠(𝑠 + 1), 𝑟∗ = (𝑠 + 1) and 𝑘∗ = 𝑠, can be used to obtain PTrC designs with 

parameters, 𝑁 = 𝑠2, 𝑏 = (𝑠 + 1), 𝑘 =
𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
 and 𝑇 =

𝑏𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
. An example is 
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illustrated here for 𝑠 = 3 to construct a PTrC design for 9 lines. Consider a square lattice 

design with parameters, 𝑣 = 9, 𝑏∗ = 12, 𝑟∗ = 4, 𝑘∗ = 3 and 𝑠 = 3. The four replications of 

the lattice designs forms the four blocks of PTrC designs with block contents as the three-way 

crosses formed by taking all the possible triplets from each block of a replication. Finally we 

get a PTrC designs with parameters, 𝑁 = 9, 𝑏 = 4,    𝑘 = 9, 𝑇 = 36 and 𝑓 = 0.142. (Only 3 

crosses within a block are shown here. However, to maintain SSP, remaining 6 crosses are 

also to be taken) 

Rep 1 
Blk 1 Blk 2 Blk 3      

1,2,3 4,5,6 7,8,9      

Rep 2 
Blk 1 Blk 2 Blk 3  Blk 1 (1×2)×3 (4×5)×6 (7×8)×9 

1,4,7 2,5,8 3,6,9  Blk 2 (1×4)×7 (2×5)×8 (3×6)×9 

Rep 3 
Blk 1 Blk 2 Blk 3  Blk 3 (1×5)×9 (3×4)×8 (2×6)×7 

1,5,9 3,4,8 2,6,7  Blk 4 (1×6)×8 (2×4)×9 (3×5)×7 

Rep 4 
Blk 1 Blk 2 Blk 3  PTrC design 

1,6,8 2,4,9 3,5,7      

Square Lattice design    

Class II (Rectangular lattices based PTrC designs): Any rectangular lattice design with 

parameters, = 𝑠(𝑠 − 1), 𝑏∗ = 𝑠2, 𝑟∗ = 𝑠 and 𝑘∗ = (𝑠 − 1), can be used to obtain PTrC 

designs with parameters, 𝑁 = 𝑣 = 𝑠(𝑠 − 1), 𝑏 = 𝑠, 𝑘 =
𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
 and 𝑇 =

𝑏𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
. An example is illustrated here for 𝑠 = 4, which can be used to construct 

PTrC design for 12 lines. Consider a rectangular lattice design with parameters, 𝑣 = 12,

𝑏∗ = 16, 𝑟∗ = 4, 𝑘∗ = 3 and 𝑠 = 4.  

R
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Rep 1 
Blk 1 Blk 2 Blk 3 Blk 4 

1,5,9  2,6,10  3,7,11  4,8,12  

Rep 2 
Blk 1 Blk 2 Blk 3 Blk 4 

1,6,11  2,5,12  3,8,9  4,7,10  

Rep 3 
Blk 1 Blk 2 Blk 3 Blk 4 

1,8,10  4,5,11  2,7,9  3,6,12  

Rep 4 
Blk 1 Blk 2 Blk 3 Blk 4 

1,7,12  3,5,10  4,6,9  2,8,11  
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Three-way crosses are made within blocks of each replication to construct a PTrC design with 

parameters, 𝑁 = 12, 𝑏 = 4,    𝑘 = 12,  𝑇 = 36 and 𝑓 = 0.018. 

P
T

rC
 D

es
ig

n
s Blk 1 (1×5)×9  (2×6)×10  (3×7)×11  (4×8)×12  

Blk 2 (1×6)×11  (2×5)×12  (3×8)×9  (4×7)×10  

Blk 3 (1×8)×10  (4×5)×11  (2×7)×9  (3×6)×12  

Blk 4 (1×7)×12  (3×5)×10  (4×6)×9  (2×8)×11  

Class III (Circular Lattices based PTrC designs): Any circular lattice design with 

parameters, 𝑣 = 2𝑠2, 𝑏∗ = 2𝑠, 𝑟∗ = 2, and 𝑘∗ = 2𝑠, can be used to obtain PTrC designs 

with parameters, 𝑁 = 𝑣 = 2𝑠2, 𝑏 = 𝑟∗, 𝑘 =
𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
 and 𝑇 =

𝑏𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
. An 

example is illustrated here for 𝑠 = 2, which can be used to construct PTrC design for 8 lines. 

Consider a circular lattice design with parameters, 𝑣 = 8, 𝑏∗ = 4, 𝑟∗ = 2, 𝑘∗ = 4 and 𝑠 =

2. All possible three-way crosses are made within each block of a replication of this lattice 

design to yield a PTrC designs with parameters, 𝑁 = 8, 𝑏 = 2,    𝑘 = 24 and  𝑇 = 16. 

Rep 1 
Blk 1 Blk 2  

Blk 1 
(1×2)×3  (1×2)×4  (1×3)×4  (2×3)×4  

1,2,3,4  5,6,7,8   (5×6)×7  (5×6)×8  (5×7)×8  (6×7)×8  

Rep 2 
Blk 1 Blk 2  

Blk 2 
(1×3)×5  (1×3)×7  (1×5)×7  (3×5)×7  

1,3,5,7  2,4,6,8   (2×4)×6  (2×4)×8  (2×6)×8  (4×6)×8  

Circular Lattice design   PTrC design 

Class IV (Cubic lattices based PTrC designs): Any cubic lattice design with parameters, 

𝑣 = 𝑠3, 𝑏∗ = 3𝑠2, 𝑟∗ = 3,  and 𝑘∗ = 𝑠, can be used to obtain PTrC designs with parameters, 

𝑁 = 𝑠3, 𝑏 = 3, 𝑘 =
𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
 and 𝑇 =

𝑏𝑠𝑘∗(𝑘∗−1)(𝑘∗−2)

2
. An example is illustrated here 

for 𝑠 = 3, which can be used to construct PTrC design for 27 lines. Consider a circular lattice 

design with parameters, 𝑣 = 27, 𝑏∗ = 27, 𝑟∗ = 3, and 𝑘∗ = 3 .  

C
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Rep 1 

Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 

1,2,3  4,5,6  7,8,9  10,11,12  13,14,15  

Blk 6 Blk 7 Blk 8 Blk 9  

16,17,18  19,20,21  22,23,24  25,26,27   

Rep 2 
Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 

1,4,7  2,5,6  3,6,9  10,13,16  11,14,17  
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Blk 6 Blk 7 Blk 8 Blk 9  

12,15,18  19,22,25  20,23,26  21,24,27   

Rep 3 

Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 

1,10,19  2,11,20  3,12,21  4,13,22  5,14,23  

Blk 6 Blk 7 Blk 8 Blk 9  

6,15,24  7,16,25  8,17,26  9,18,27   

 

Treating the treatment numbers as line numbers, triallel crosses are made within block of 

each replication of this lattice design to give a PTrC designs with parameters, 𝑁 = 27, 𝑏 =

3,    𝑘 = 27,  𝑇 = 81 and 𝑓 = 0.003 as shown below: 

P
T

rC
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n
s 

Blk 1 (1×2)×3  (4×5) ×6  (7×8)×9  (10×11)×12  (13×14)×15  

(16×17)×18 (19×20)×21  (22×23)×24  (25×26)×27   

Blk 2 (1×4)×7  (2×5)×6  (3×6)×9  (10×13)×16  (11×14)×17  

(12×15)×18 (19×22) ×25  (20×23) ×26  (21×24) ×27   

Blk 3 (1×10) ×19  (2×11) ×20  (3×12) ×21  (4×13) ×22  (5×14) ×23  

(6×15) ×24 (7×16) ×25  (8×17) ×26  (9×18) ×27   

 

List of designs 

A list of parameters of PTrC designs constructed using different types of lattice design 

alongwith degree of fractionation and efficiency factor has been given in the Table 4.2.1.3.2. 

Table 4.2.1.3.2 List of designs using lattice designs for triallel crosses under blocked 

setup 

𝑵 𝒃 𝒌 𝑻 𝒇 𝐕̅𝐡𝐚𝐥𝐟(𝒉𝒊 − 𝒉𝒋)̂  𝐕̅𝐟𝐮𝐥𝐥(𝒈𝒊 − 𝒈𝒋)̂  𝑬𝒉 𝑬𝒇 
Type 

of lattices 

8  2  24  48  0.29  0.31  0.47  0.54  0.71  Circular  

9  4  9  36  0.14  0.30 0.52  0.84  0.96  Square  

12  4  9  36  0.02  0.20  0.41  0.99  0.99  Rectangular  

27  3  27  81 < 0.01  0.16 0.27 0.99  0.86  Cubic  

 

Method 3: PTrC plans using Kronecker product 

This method can be used to obtain PTrC plans for composite number of lines. In this method 

we have to consider the incidence matrices of any two BIB designs. The Kronecker product 
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of these two matrices is obtained and is considered as an incidence matrix of a block design. 

Now, from each block of this design all possible triplet combinations are considered to make 

three-way crosses. The process is carried out for all the blocks and hence a PTrC plan is 

obtained. The method can be well understood through the example given below:  

Example 4.2.1.3.2: A PTrC plan for number of lines, 𝑁 = 12 and number of crosses 𝑇 =

216 can be obtained using two BIB designs, viz., Design 1 (3,3,2,2,1) and Design 2 

(4,6,3,2,1) as explained below:  

   Trt 1 Trt 2 Trt 3 

Blk 1 1 2  Blk 1 1 1 0 

Blk 2 1 3  Blk 2 1 0 1 

Blk 3 2 3  Blk 3 0 1 1 

 
Design 1: BIBD (3, 3, 2, 2, 1) 

  
Incidence matrix 

 

   Trt 1 Trt 2 Trt 3 Trt 4 

Blk 1 1 2  Blk 1 1 1 0 0 

Blk 2 1 3  Blk 2 1 0 1 0 

Blk 3 1 4  Blk 3 1 0 0 1 

Blk 4 2 3  Blk 4 0 1 1 0 

Blk 5 2 4  Blk 5 0 1 0 1 

Blk 6 3 4  Blk 6 0 0 1 1 

 
Design 2: BIBD (4, 6, 3, 2, 1) 

  
Incidence matrix 

 

Now, write down the block versus treatment incidence matrices of order 3 × 3 and 6 × 4 

respectively. The Kronecker product of these two matrices results in matrix of order 18 × 12, 

yielding the incidence matrix of a new incomplete design i.e., a rectangular design with 

parameters, 𝑣 = 12, 𝑏 = 18, 𝑟 = 6, 𝑘 = 4 , 𝜆1 = 3, 𝜆2 = 2, 𝜆3 = 1, 𝑛1 = 2, 𝑛2 = 3 and 

𝑛3 = 6. This is shown ahead: 
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 TREATMENTS   TREATMENTS 
B

L
O

C
K

S
 

1 1 0 0 1 1 0 0 0 0 0 0  B-1 1 2 5 6 

1 0 1 0 1 0 1 0 0 0 0 0  B-2 1 3 5 7 

1 0 0 1 1 0 0 1 0 0 0 0  B-3 1 4 5 8 

0 1 1 0 0 1 1 0 0 0 0 0  B-4 2 3 6 7 

0 1 0 1 0 1 0 1 0 0 0 0  B-5 2 4 6 8 

0 0 1 1 0 0 1 1 0 0 0 0  B-6 3 4 7 8 

1 1 0 0 0 0 0 0 1 1 0 0  B-7 1 2 9 10 

1 0 1 0 0 0 0 0 1 0 1 0  B-8 1 3 9 11 

1 0 0 1 0 0 0 0 1 0 0 1  B-9 1 4 9 12 

0 1 1 0 0 0 0 0 0 1 1 0  B-10 2 3 10 11 

0 1 0 1 0 0 0 0 0 1 0 1  B-11 2 4 10 12 

0 0 1 1 0 0 0 0 0 0 1 1  B-12 3 4 11 12 

0 0 0 0 1 1 0 0 1 1 0 0  B-13 5 6 9 10 

0 0 0 0 1 0 1 0 1 0 1 0  B-14 5 7 9 11 

0 0 0 0 1 0 0 1 1 0 0 1  B-15 5 8 9 12 

0 0 0 0 0 1 1 0 0 1 1 0  B-16 5 7 10 11 

0 0 0 0 0 1 0 1 0 1 0 1  B-17 6 8 10 12 

0 0 0 0 0 0 1 1 0 0 1 1  B-18 7 8 11 12 

Incidence matrix  Design 3: PBIB Rectangular Design 

(12,18,6,4,3,2,1) 

 

Now making all the possible three-way crosses from each block the following PTrC plan can 

be obtained for 12 lines involving 216 crosses with a degree of fractionation 0.27:  

(1×2)×5 (2×3)×10  (1×2)×6  (2×3)×11  (1×5)×6  

(1×3)×5  (2×4)×10  (1×3)×7  (2×4)×12  (1×5)×7  

(1×4)×5  (3×4)×11  (1×4)×8  (3×4)×12  (1×5)×8  

(2×3)×6  (5×6)×9  (2×3)×7  (5×6)×10  (2×6)×7  

(2×4)×6  (5×7)×9  (2×4)×8  (5×7)×11  (2×6)×8  

(3×4)×7  (5×8)×9  (3×4)×8  (5×8)×12  (3×7)×8  

(1×2)×9  (6×7)×10  (1×2)×10  (6×7)×11  (1×9)×10  

(1×3)×9  (6×8)×10  (1×3)×11  (6×8)×12  (1×9)×11  
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(1×4)×9  (7×8)×11  (1×4)×12  (7×8)×12  (1×9)×12  

(2×10)×11  (2×5)×6  (6×9)×10  (3×6)×7  (7×10)×11  

(4×10)×12  (3×5)×7  (7×9)×11  (4×6)×8  (8×10)×12  

(4×11)×12  (4×5)×8  (8×9)×12  (4×7)×8  (8×11)×12  

Here, it should be noted that along with every cross of the type (𝑖, 𝑗, 𝑘) crosses of the types 

(𝑖, 𝑘, 𝑗) and (𝑗, 𝑘, 𝑖) are not shown in the plan and hence there are only 72 crosses. 

List of design 

A list of parameters PTrC plans constructed using Kronecker product method alongwith the 

efficiency factors have been given in the Table 4.2.1.3.3. 

Table 4.2.1.3.3 List of triallel cross plans using kronecker product  

𝑵 𝑻 𝒇 𝒓𝒉 𝒓𝒇 𝐕̅𝐡𝐚𝐥𝐟(𝒉𝒊 − 𝒉𝒋)̂  𝐕̅𝐟𝐮𝐥𝐥(𝒈𝒊 − 𝒈𝒋)̂  𝑬𝒉 𝑬𝒇 

9  108  0.43  24 12 0.1083  0.1833  0.9116  0.9427  

12  180  0.27  36 18 0.0686  0.1206  0.9063  0.9382  

15  360  0.26  48 24 0.0504  0.0903  0.8993  0.9321  

18  540  0.22  60 30 0.0421  0.0795  0.8753  0.9124  

20  720  0.21  72 36 0.0385  0.0654  0.8612  0.9009  

4.2.2 Tetra-allele crosses with sca effects 

Tetra-allele crosses are commonly used in animal and plant breeding experiments to study the 

various genetic properties especially on the gca effects of the lines involved or the sca effects 

of the various crosses. Tetra-allele cross experiment provides us more information regarding 

the combining abilities and the hybrids developed based on them are found to be more stable 

and consistent in performance due to broad genetic base. 

Model and experimental setup 

The model for tetra-allele cross experiments differs due to sca effects. A full model with sca 

involves estimation of sca effects upto third order alongwith gca effects. A restricted model 

may involve sca effects or may drop sca effects totally. 

4.2.2.1 Restricted model including lower order sca effects  

Since the second order and third order sca effects are negligible as compared to the first order 

sca effects these can be dropped from the model. Then for 𝑦𝑖𝑗𝑘𝑙, we can have the following 

representation with the conditions on 𝑔𝑖’s as stated before: 
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            𝑦𝑖𝑗𝑘𝑙 = 𝑦̅ + 𝑔𝑖 + 𝑔𝑗 + 𝑔𝑘 + 𝑔𝑙 + 𝑠𝑖𝑗𝑠𝑖𝑘 + 𝑠𝑖𝑙 + 𝑠𝑗𝑘 + 𝑠𝑗𝑙 + 𝑠𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙,       (4.2.2.1.1) 

 

where 𝑦̅ is the average effect of the treatments, {𝑔𝛼}, 𝛼 = 𝑖, 𝑗, 𝑘, 𝑙, represents the gca effects, 

{𝑠𝛼𝛽}, (𝛼, 𝛽) ∈ (𝑖, 𝑗, 𝑘, 𝑙) represents the first order sca effects, 𝑒𝑖𝑗𝑘𝑙 is the random errors, and  

           𝑔1 + 𝑔2 +⋯+ 𝑔𝑁 = 0 or ∑ 𝑔𝑖
𝑁
𝑖=1 = 0, 

           𝑠1𝑖 +⋯+ 𝑠(𝑖−1)𝑖 + 𝑠𝑖(𝑖+1) +⋯+ 𝑠𝑖𝑁 = 0, and ∑ 𝑠𝛼𝛽𝛼𝛽 = 0,                       (4.2.2.1.2) 

for every (𝛼, 𝛽) ∈ (𝑖, 𝑗, 𝑘, 𝑙), 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙, 𝑖 < 𝑗, 𝑘 < 𝑙 , 𝑖, 𝑗, 𝑘, 𝑙 = 1,2, … , 𝑁. 

4.2.2.2 Estimates of combining abilities 

Consider that the tetra-allele crosses of the type, are arranged in the order (1, 2, 3, 4), 

… , (1, 2, 3, 𝑙), … , (1, 2, 𝑘, 𝑙), … , (1, 𝑗, 𝑘, 𝑙), … , (𝑖, 𝑗, 𝑘, 𝑙), … , {(𝑁 − 3), (𝑁 − 2), (𝑁 − 1), 𝑁}, 

(𝑖, 𝑗, 𝑘, 𝑙);  𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙;   𝑖 < 𝑗;  𝑘 < 𝑙 ;  𝑖, 𝑗, 𝑘, 𝑙 = 1,2,… , 𝑁. It should be noted that along 

with every cross of the type (𝑖, 𝑗, 𝑘, 𝑙) crosses of the types (𝑖, 𝑘, 𝑗, 𝑙) and (𝑖, 𝑙, 𝑗, 𝑘) are also 

included in the experiment, simultaneously. Let 𝒈 = (𝑔1, 𝑔2, … , 𝑔𝑁)′ be an 𝑁 × 1 vector of 

gca effects, 𝒚 and 𝒔 be 𝑁 × 1 vectors whose elements are {𝑦𝑖𝑗𝑘𝑙} and {𝑠𝛼𝛽}, respectively. Let 

us define a matrix 𝑾 of order 𝑁 × 𝑇 with rows indexed by the line numberings as 

1, 2, …𝑚,…𝑁 and, the columns by the crosses, in same order as described earlier, of the 

types (𝑖, 𝑗, 𝑘, 𝑙), including the crosses of the types (𝑖, 𝑘, 𝑗, 𝑙) and (𝑖, 𝑙, 𝑗, 𝑘) also, 

simultaneously. Then, the {𝑚, (𝑖, 𝑗, 𝑘, 𝑙)}th entry of 𝑾 takes a value 1 if 𝑚 ∈ (𝑖, 𝑗, 𝑘, 𝑙) and 0, 

otherwise. The followings results are obtained: 

   𝑾𝑾′ =
(𝑁−2)(𝑁−3)

2
{(𝑁 − 4)𝑰𝑁 + 3𝑱𝑁}, 

 (𝑾𝑾′)−1 =
2

(𝑁−2)(𝑁−3)(𝑁−4)
{𝑰𝑁 −

3

4(𝑁−1)
𝑱𝑁}, 

             𝑾𝟏𝑇 =
(𝑁−1)(𝑁−2)(𝑁−3)

2
𝟏𝑁 and 𝑾′𝟏𝑁 = 4𝟏𝑇.                                            (4.2.2.2.1) 

where 𝑰𝑁 is an identity matrix of order 𝑁, 𝑱𝑵 = 𝟏𝑵𝟏𝑵
′  and 𝟏𝑵 is an 𝑁 × 1 column vector of 

unities. Now, these results can be used to represent the cross (𝑖, 𝑗, 𝑘, 𝑙) effect as 

 𝒚 = 𝑦 ̅𝟏𝑇 +𝑾
′𝒈 + 𝒔 + 𝒆, with                                                                     (4.2.2.2.2) 
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            𝟏𝑁
′ 𝒈 = 0, 𝑾′𝒔 = 𝟎,                                                                                        (4.2.2.2.3) 

 and random error vector 𝒆.                                                                        

Premultiplying (4.2.2.2.2) by 𝑾 and using (4.2.2.2.1) and (4.2.2.2.3) we get 

 𝒈̂ = 𝑨𝒚, where 

 𝑨 = (𝑾𝑾′)−1𝑾−
1

4𝑇
𝑱𝑁×𝑇, 

     =
2

(𝑁−2)(𝑁−3)(𝑁−4)
{𝑾 −

4

𝑁
𝑱𝑁×𝑇}, and                                                      (4.2.2.2.4) 

  𝒔̂ = 𝑩𝒚, where 

 𝑩 = 𝑰𝑇 −
2

(𝑁−2)(𝑁−3)(𝑁−4)
{𝑾′𝑾−

12

(𝑁−1)
𝑱𝑇}.                                            (4.2.2.2.5)  

Also, we have   

 𝑨𝟏𝑇 = 𝑩𝟏𝑇 = 𝟎, 𝑨𝑩′ = 𝑩𝑨′ = 𝟎, 𝑟𝑎𝑛𝑘(𝑨) = 𝑁 − 1 and 

  𝑟𝑎𝑛𝑘(𝑩) = 𝑇 − 𝑁.                                                                                       (4.2.2.2.6) 

Hence, 𝒈 represents contrasts pertaining to gca effect with ( 𝑁 − 1)degrees of freedom and, 𝒔 

for sca effects with (𝑇 − 𝑁) degrees of freedom. From (4.2.2.2.6), it can be verified that the 

contrasts representing 𝒈 are orthogonal to those representing 𝒔. It is important to note here 

that for number of lines 𝑁 = 5, 𝒔 = 𝟎. Hence, it is considered that 𝑁 > 5 throughout. 

4.2.2.3 Orthogonal tetra-allele cross designs 

Consider an arrangement of  𝑇 crosses, each replicated 𝑟𝑖 times such that 𝑟1 + 𝑟2 +⋯+ 𝑟𝑇 =

𝑣, in a block design setup with 𝑏 blocks of size 𝑘 (≥ 2). The fixed effect model incorporating 

both gca and sca effects is  

            𝑦𝑖𝑗𝑘 = 𝑦̅ + 𝜏𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗𝑘,                                                                              (4.2.2.3.1) 

where 𝑦𝑖𝑗𝑘 is the response from 𝑘𝑡ℎ(𝑘 = 1, 2, … , 𝑟𝑖) replication of 𝑖𝑡ℎ (1, 2, … , 𝑇) cross from 

𝑗𝑡ℎ (1,2,… , 𝑏) block, 𝑦̅ is the general mean effect, 𝜏𝑖 is the 𝑖𝑡ℎ cross effect, 𝛽𝑗 is the 𝑗𝑡ℎ block 
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effect and 𝑒𝑖𝑗𝑘 is the random error. The model can also be represented in matrix notation as 

follows: 

 𝒚 = 𝑦̅𝟏 + ∆𝟏
′ 𝝉 + ∆2

′ 𝜷 + 𝒆,                                                                            (4.2.2.3.2) 

where, 𝒚 is a 𝑣 × 1 vector of observations, 𝑦̅ is the general mean effect, 𝟏 is the 𝑣 × 1 vector 

of unity, ∆𝟏
′  is the observation-cross incidence matrix of order 𝑣 × 𝑇, 𝝉 is 𝑇 × 1 vector of 

cross effects, ∆2
′  is the observation-block incidence matrix of order 𝑣 × 𝑏, 𝜷 is 𝑏 × 1 vector 

of block effects and 𝒆 is 𝑣 × 1 vector of random error. Also, 𝑵 = ∆2∆1
′  is the  𝑏 × 𝑇 

incidence matrix of blocks versus crosses and 𝑴 = 𝑾𝑵 = 𝑾∆2∆1
′  is the 𝑁 × 𝑏 lines versus 

blocks incidence matrix. Here, our main interest will be in the estimation of contrasts 

pertaining to the gca effects of various lines while considering sca effects along with the 

block effects as nuisance factors in the aforesaid model. Under this model set up, we will be 

deriving conditions for block designs such that gca effects can be estimated independently 

from the sca effects, after eliminating the blocks effects.  

Now, we can have the following definition: 

Definition 1: Under a general block design set up for a usual fixed effects model 

incorporating both gca and sca effects, an orthogonal tetra-allele cross design can be defined 

as a block design which allows the estimation of contrasts pertaining to gca effects free from 

contrasts pertaining to sca effects, after eliminating the block effects. 

The problem for finding orthogonal designs for tetra-allele crosses can be simplified if one 

starts by taking a complete set of orthonormal contrasts. Let us take two complete sets of 

orthonormal contrasts viz. 𝑳1𝒚 and 𝑳2𝒚 corresponding to 𝒈 and 𝒔, respectively. Now, using 

(4.2.2.2.3) and (4.2.2.2.6) we have the following results: 

              𝑳1𝑳1
′ = 𝑰𝑁−1, 𝑳2𝑳2

′ = 𝑰𝑇−𝑁, 𝑳1𝑳2
′ = 𝟎,                                                        (4.2.2.3.3) 

   𝓡(𝑳1) = 𝓡(𝑨),𝓡(𝑳2) = 𝓡(𝑩),                                                                (4.2.2.3.4) 

where for a matrix 𝑿, 𝓡(𝑿) denotes the row span of 𝑿. Moreover, the results further obtained 

are not restricted for a specific choice of set of orthonormal contrasts corresponding to 𝒈 and 
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𝒔, respectively. Let 𝑿1 be a (𝑁 − 1) × 𝑁 matrix such that (
1

√𝑁
𝟏𝑁
′

𝑿1
) is an orthogonal matrix 

and 𝑿2 be a (𝑇 − 𝑁) × 𝑇 matrix satisfying 

 𝑿2𝑿2
′ = 𝑰𝑇−𝑁 and 𝑿2𝑾′ = 𝟎.                                                                       (4.2.2.3.5) 

Hence, using (4.2.2.3.1) and (4.2.2.3.5) following results can be obtained: 

            𝑿1𝟏𝑁 = 𝟎, 𝑿1𝑿1
′ = 𝑰𝑁−1, 𝑿2𝟏𝑇 = 𝟎.                                                          (4.2.2.3.6) 

Now, consider any two matrices 𝑿1 and 𝑿2 satisfying (4.2.2.3.5) and (4.2.2.3.6), then 

corresponding to these we can express 𝑳1 and 𝑳2 in the following form: 

𝑳1 =
√2

√(𝑁−2)(𝑁−3)(𝑁−4)
𝑿1𝑾,𝑳2 = 𝑿2,                                              (4.2.2.3.7) 

where 𝑳1 and 𝑳2 are satisfying (4.2.2.3.3) and (4.2.2.3.4) with  

 𝑳1
′ 𝑳1 =

2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

16

𝑁
𝑱𝑇).                                                     (4.2.2.3.8) 

Now, under the usual setup of a block design 𝑑, the joint information matrix for (
𝑳1
𝑳2
) 𝒚 is 

obtained as  

            𝑪𝑗𝑜𝑖𝑛𝑡 = [
𝑳1𝑪𝑑𝑳1

′ 𝑳1𝑪𝑑𝑳2
′

𝑳2𝑪𝑑𝑳1
′ 𝑳2𝑪𝑑𝑳2

′
]                                                                         (4.2.2.3.9) 

where 𝑪𝑑 = 𝑹𝑑 −
1

𝑘
𝑵𝑑𝑵𝑑

′ , 𝑹𝑑 = 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2, … , 𝑟𝑇) is the diagonal matrix of replications of 

the tetra-allele crosses under the design 𝑑 and 𝑵𝑑 is the incidence matrix of crosses versus 

blocks. Here, 𝑪𝑑 is the information matrix of the general block design 𝑑 where treatments are 

nothing but the 𝑇 number of tetra-allele crosses, hence we have 𝑪𝑑𝟏𝑇 = 𝟎. As discussed 

earlier regarding orthogonality in Definition 1, and shown later in Lemma 1, to estimate 

𝑳1𝑪𝑑𝑳1
′  and 𝑳2𝑪𝑑𝑳2

′  orthogonally the off diagonal components must vanish and we must 

have 

              𝑳1𝑪𝑑𝑳2
′ = 𝟎.                                                                                               (4.2.2.3.10) 

If we use the supposition from (4.2.2.3.7), then this is equivalent to 
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   𝑿1𝑾𝑪𝑑𝑿2
′ = 𝟎.                                                                                         (4.2.2.3.11) 

Let the information matrix related to 𝑳1𝒚 be 𝑪𝑔𝑑. Then, we can prove the following results: 

Lemma 1. Under a design 𝑑, and 𝑳1 and 𝑳2satisfying (4.2.2.3.3) and (4.2.2.3.4) we get that 

(a) 𝑳1𝑪𝑑𝑳1
′ − 𝑪𝑔𝑑 is a non-negative definite (n.n.d) matrix, and 

(b) 𝑪𝑔𝑑 = 𝑳1𝑪𝑑𝑳1
′ , if and only if 𝑳1𝑪𝑑𝑳2

′ = 𝟎. 

Proof: Consider the matrices 𝑳1and 𝑳2, then it can be easily established that the rows of 

[𝑳1
′ 𝑳2

′ ]′ form an orthonormal basis of the orthogonal complement of 𝓡(𝟏𝑇
′ ) in the 𝑇-

dimensional Euclidean space. Using (4.2.2.3.9) we can easily obtain 𝑪𝑔𝑑 = 𝑳1𝑪𝑑𝑳1
′ −

𝑳1𝑪𝑑𝑳2
′ (𝑳2𝑪𝑑𝑳2

′ )−𝑳2𝑪𝑑𝑳1
′ , where (𝑳2𝑪𝑑𝑳2

′ )− is the generalized inverse of 𝑳2𝑪𝑑𝑳2
′ . Hence,  

              𝑳1𝑪𝑑𝑳1
′ − 𝑪𝑔𝑑 = 𝑳1𝑪𝑑𝑳2

′ (𝑳2𝑪𝑑𝑳2
′ )−𝑳2𝑪𝑑𝑳1

′ .                                          (4.2.2.3.12) 

If 𝑟𝑎𝑛𝑘(𝑪𝑑) = 𝑡, and as we know that 𝑪𝑑 is a n.n.d. matrix, there exist a 𝑁 × 𝑡 matrix 𝑮 of 

full column rank, such that 𝑪𝑑 = 𝑮
′𝑮. Then, (4.2.2.3.12) can be expressed in the form 

               𝑳1𝑪𝑑𝑳1
′ − 𝑪𝑔𝑑 = 𝑳1𝑮

′𝑝𝑟(𝑮𝑳2
′ )𝑮𝑳1

′ ,                                                         (4.2.2.3.13) 

where 𝑝𝑟(𝑮𝑳2
′ ) = 𝑮𝑳2

′ (𝑳2𝑮
′𝑮𝑳2

′ )
−
𝑳2𝑮

′ refers to the projection on to the column span of  

𝑮𝑳2
′ . Since 𝑝𝑟(𝑮𝑳2

′ ) is n.n.d., it can be easily established that 𝑳1𝑪𝑑𝑳1
′ − 𝑪𝑔𝑑 is n.n.d. Hence 

we proved Lemma 1(a). 

Now, using (4.2.2.3.13) it can be established that for 𝑳1𝑪𝑑𝑳1
′ = 𝑪𝑔𝑑, we must have 

𝑳1𝑮
′𝑮𝑳2

′ (𝑳2𝑮
′𝑮𝑳2

′ )
−
𝑳2𝑮

′𝑮𝑳1
′ = 𝟎, which is equivalent to 𝑳1𝑮

′𝑮𝑳2
′ (𝑳2𝑮

′𝑮𝑳2
′ )
−
= 𝟎 or 

𝑳1𝑮
′𝑝𝑟(𝑮𝑳2

′ )𝑮𝑳1
′ = 𝟎 which is equivalent to 𝑳1𝑮

′𝑝𝑟(𝑮𝑳2
′ ) = 𝟎. Hence we get 𝑳1𝑮

′𝑮𝑳2
′ = 𝟎 

or 𝑳1𝑪𝑑𝑳2
′ = 𝟎, which proves Lemma 1(b). 

Before proceeding further, let us prove the following results which will be needed further to 

prove Lemma 3. 

Lemma 2: Let 𝑳1 and 𝑳2 be defined as above. Then we have the following results: 

(a) 𝑳1
′ 𝑳1 =

2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

16

𝑁
𝑱𝑇). 
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(b) 𝑳2
′ 𝑳2 = 𝑰𝑇 −

2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

12

(𝑁−1)
𝑱𝑇). 

(c) 𝑳1
′ 𝑳1 + 𝑳2

′ 𝑳2 = 𝑰𝑇 −
1

𝑇
𝑱𝑇. 

Proof: Let us consider a matrix 𝑳 = [

𝒍1
′

𝒍2
′

⋮
𝒍𝑟
′

], rows of which forms an orthonormal basis of 

𝓡(𝑮), where 𝑮 is symmetric, idempotent and 𝑟𝑎𝑛𝑘(𝑮) = 𝑟. Let 𝛀 is a diagonal matrix with 

diagonal elements being the 𝑟 distinct non-zero eigenvalues of 𝑮.  Thus, a spectral 

decomposition of 𝑮 will lead us to the following: 

     𝑳′𝛀𝑳 = 𝑮. 

Since 𝑮 is an idempotent and symmetric matrix, the eigenvalues can take values either zero 

or one. Thus, we get that the diagonal elements of 𝛀 are only unities, which gives us                                                                                 

                𝑳′𝑳 = 𝑮.                                                                                                    (4.2.2.3.14) 

Let 𝑨∗ =  𝑾′𝑨. As we know that 𝑾′ is having full column rank, thus 𝓡(𝑨∗) = 𝓡(𝑨). Thus 

using (4.2.2.3.3) and (4.2.2.3.4) we find that the rows of 𝑳1 forms an orthonormal basis of 

𝓡(𝑨∗) where 𝑨∗ is symmetric and idempotent. Hence, using (4.2.2.3.14) it can be easily 

established that 𝑳1
′ 𝑳1 = 𝑨

∗ =  𝑾′𝑨, which can be further simplified using (4.2.2.2.1) and 

(4.2.2.2.4) to yield 𝑳1
′ 𝑳1 = 𝑨

∗ = 𝑾′𝑨 =
2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

16

𝑁
𝑱𝑇), which proves 

Lemma 2(a). Similarly, we find that the rows of 𝑳2 forms an orthonormal basis of 

𝓡(𝑩)where 𝑩 is symmetric and idempotent. Hence, using (4.2.2.3.14) it can be easily 

established that 𝑳2
′ 𝑳2 = 𝑩, which can be further simplified using (4.2.2.2.1) and (4.2.2.2.4) to 

yield 𝑳2
′ 𝑳2 = 𝑩 = 𝑰𝑇 −

2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

12

(𝑁−1)
𝑱𝑇), which proves Lemma 2(b). 

Adding the results of Lemma 2(a) & Lemma 2(b) we prove Lemma 2(c). 

Now using these results following lemma will be proved. 

Lemma 3: The following conditions are equivalent to each other: 

(a) 𝑳1𝑪𝑑𝑳2
′ = 𝟎, 

(b) 𝑳1
′ 𝑳1𝑪𝑑 = 𝑪𝑑𝑳1

′ 𝑳1and 

(c) 𝑾′𝑾𝑪𝑑 = 𝑪𝑑𝑾′𝑾. 
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Proof: Let 𝑳1
′ 𝑳1𝑪𝑑 = 𝑪𝑑𝑳1

′ 𝑳1.  

Then, 𝑳1𝑪𝑑𝑳2
′ = 𝑳1𝑳1

′ 𝑳1𝑪𝑑𝑳2
′   

  = 𝑳1𝑪𝑑𝑳1
′ 𝑳1𝑳2

′ = 𝟎, which proves Lemma 3(a). 

Now, suppose that 𝑳1𝑪𝑑𝑳2
′ = 𝟎.  

Then, 𝑳1𝑪𝑑𝑳2
′ 𝑳2 = 𝟎, and using (c) of Lemma 2 we get  

           𝑳1𝑪𝑑 (𝑰𝑇 −
1

𝑇
𝑱𝑇 − 𝑳1

′ 𝑳1) = 0,  

             ⇒ 𝑳1𝑪𝑑 = 𝑳1𝑪𝑑𝑳1
′ 𝑳1 

             ⇒ 𝑳1
′ 𝑳1𝑪𝑑 = 𝑳1

′ 𝑳1𝑪𝑑𝑳1
′ 𝑳1. 

Now, since 𝑳1
′ 𝑳1𝑪𝑑𝑳1

′ 𝑳1 is symmetric, we get 

𝑳1
′ 𝑳1𝑪𝑑 = (𝑳1

′ 𝑳1𝑪𝑑)
′ = 𝑪𝑑𝑳1

′ 𝑳1, which proves Lemma 3(b). 

Now, as we have 𝑳1
′ 𝑳1𝑪𝑑 = 𝑪𝑑𝑳1

′ 𝑳1 

         ⇒
2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

16

𝑁
𝑱𝑇) 𝑪𝑑 = 𝑪𝑑

2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

16

𝑁
𝑱𝑇)  

         ⇒  𝑾′𝑾𝑪𝑑 = 𝑪𝑑𝑾′𝑾, which proves Lemma 3(c). 

4.2.2.4 Optimal tetra-allele cross designs 

Our first step in the search for optimal designs for tetra-allele cross experiment will be 

finding an upper bound to the trace of information matrix 𝑪𝑔𝑑, represented by 𝑡𝑟(𝑪𝑔𝑑). Let 𝒟 

be the class of designs under which contrasts pertaining to gca effects, 𝑳1𝒚 is estimable. 

Now, using the result of Lemma 1(a), for any design, 𝑑 ∈ 𝒟, 𝑳1𝑪𝑑𝑳1
′ − 𝑪𝑔𝑑 is n.n.d., thus we 

have 

            Trace (𝑪𝑔𝑑) =   𝑡𝑟(𝑪𝑔𝑑) ≤ 𝑡𝑟(𝑳1𝑪𝑑𝑳1
′ ) = 𝑡𝑟(𝑪𝑑𝑳1

′ 𝑳1), [using Lemma 3(b)] and  

    = 𝑡𝑟(𝑪𝑑{
2

(𝑁−2)(𝑁−3)(𝑁−4)
(𝑾′𝑾−

16

𝑁
𝑱𝑇)}) [using Lemma 2(a)] 

               =
2

(𝑁−2)(𝑁−3)(𝑁−4)
𝑡𝑟(𝑪𝑑𝑾′𝑾) 
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               =
2

(𝑁−2)(𝑁−3)(𝑁−4)
𝑡𝑟 (𝑹𝑑𝑾′𝑾−

1

𝑘
𝑵𝑑𝑵𝑑

′ 𝑾′𝑾). 

Now, 𝑡𝑟(𝑵𝑑𝑵𝑑
′ 𝑾′𝑾)  

   = 𝑡𝑟(𝑾𝑵𝑑𝑵𝑑
′ 𝑾′)  

   = 𝑡𝑟(𝑴𝑑𝑴𝑑
′ )  

   = ∑ ∑ 𝑚𝑑𝑖𝑗
2𝑏

𝑗=1
𝑁
𝑖=1 ,  

where 𝑴𝑑 = 𝑾𝑵𝑑 = (𝑚𝑑𝑖𝑗) is the 𝑁 × 𝑏 lines versus blocks incidence matrix. We can find 

that 

 ∑ ∑ 𝑚𝑑𝑖𝑗
𝑏
𝑗=1

𝑁
𝑖=1 = 4𝑏𝑘, 

and since {𝑚𝑑𝑖𝑗} can take only integral values, 

 ∑ ∑ 𝑚𝑑𝑖𝑗
2𝑏

𝑗=1
𝑁
𝑖=1 ≥ 𝑏{4𝑘(2𝑥 + 1) − 𝑁𝑥(𝑥 + 1)},  

where 𝑥 = ⌊
4𝑘

𝑁
⌋ and ⌊ ⌋ denotes the greatest integer function. Also, 

           𝑡𝑟(𝑹𝑑𝑾
′𝑾) = 4𝑡𝑟(𝑹𝑑) =  4𝑏𝑘, 

since each diagonal element of 𝑾′𝑾equals 4. Thus, 

 𝑡𝑟(𝑪𝑔𝑑) ≤  
2

(𝑁−2)(𝑁−3)(𝑁−4)
{4𝑏𝑘 −

𝑏

𝑘
(4𝑘(2𝑥 + 1) − 𝑁𝑥(𝑥 + 1))},  

or this can be simplified as 

     𝑡𝑟(𝑪𝑔𝑑) ≤  
2𝑏

𝑘(𝑁−2)(𝑁−3)(𝑁−4)
{4𝑘(𝑘 − 2𝑥 − 1) + 𝑁𝑥(𝑥 + 1))} = 𝜃.                  (4.2.2.4.1) 

The expression in (4.2.2.4.1) is proved in similar lines to Theorem 2.1 (which gives a lower 

bound to the trace of information matrix so that a block design is universal optimal) from Das 

et al. (1998). Now, it can be seen that 𝑡𝑟(𝑪𝑑𝑾
′𝑾) = 𝑡𝑟(𝑾𝑪𝑑𝑾′), and 𝑾𝑪𝑑𝑾′ is the 

information matrix of the block design where lines are regarded as treatments rather than 

crosses. Now, another important result is given below. 

Theorem 4.2.2.4: Suppose there exists a design 𝑑0 ∈ 𝒟 such that 



70 
 

 
 

(a) 𝑾′𝑾𝑪𝑑0 = 𝑪𝑑0𝑾
′𝑾, and 

 

(b) 𝑾𝑪𝑑0𝑾
′ =

(𝑁−2)(𝑁−3)(𝑁−4)

2(𝑁−1)
𝜃 (𝑰𝑁 −

1

𝑁
𝑱𝑁), where 𝜃 > 0. 

Then, 𝑑0 is universally optimal in the competing class of designs 𝒟 for making inference 

regarding 𝑳1𝒚. 

Proof: Let 𝑪𝑔𝑑0 be the information matrix related to 𝑳1𝒚 under the design 𝑑0. Hence, using 

(a) of Theorem 4.2.2.4, Lemma 1(b) and Lemma 3, we arrive at 

 𝑪𝑔𝑑0 = 𝑳1𝑪𝑑0𝑳1
′ .  

Since, we have 

            𝑳1𝑪𝑑0𝑳1
′ =

2

(𝑁−2)(𝑁−3)(𝑁−4)
𝑿1𝑾𝑪𝑑0𝑾

′𝑿1
′ ,  

thus using (b) it is easy to show that 

            𝑳1𝑪𝑑0𝑳1
′ =

1

(𝑁−1)
𝜃𝑿1 (𝑰𝑁 −

1

𝑁
𝑱𝑁)𝑿1

′   

= 
1

(𝑁−1)
𝜃𝑿1𝑿1

′  = 
1

(𝑁−1)
𝜃𝑰𝑁−1. Thus, we get 

                 𝑪𝑔𝑑0 =
1

(𝑁−1)
𝜃𝑰𝑁−1.                                                                                  (4.2.2.4.2) 

From (4.2.2.4.1) it is obvious that for every design 𝑑 ∈ 𝒟, 

                 𝑡𝑟(𝑪𝑔𝑑) ≤  𝜃,                                                                                            (4.2.2.4.3) 

and using (4.2.2.4.2), we have 

                 𝑡𝑟(𝑪𝑔𝑑0) = 𝑡𝑟 (
1

(𝑁−1)
𝜃𝑰𝑁−1) = 𝜃.                                                            (4.2.2.4.4) 

As we can see from (4.2.2.4.4) that the information matrix, 𝑪𝑔𝑑0 is nothing but an identity 

matrix multiplied by a constant and from (4.2.2.4.3) and (4.2.2.4.4) we can easily say that 

𝑡𝑟(𝑪𝑔𝑑0) is maximized here to achieve the upper bound. Hence, our claim for universal 
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optimality of the design 𝑑0 is in agreement with results from Kiefer (1975), Sinha and 

Mukerjee (1982) and Das and Dey (2004). 

Now, we can derive a more general condition, which is equivalent to the conditions in 

Theorem 4.2.2.4. 

Lemma 4: The conditions described in Theorem 4.2.2.4 are equivalent to the following 

generalized result: 

                𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾−

4

𝑁
𝑱𝑁×𝑇).                                                                (4.2.2.4.5) 

Proof: Suppose 𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾−

4

𝑁
𝑱𝑁×𝑇) holds. Then  

               𝑾𝑪𝑑0𝑾
′ =

1

(𝑁−1)
𝜃 (𝑾−

4

𝑁
𝑱𝑁×𝑇)𝑾

′  

                   =  
(𝑁−2)(𝑁−3)(𝑁−4)

2(𝑁−1)
𝜃 (𝑰𝑁 −

1

𝑁
𝑱𝑁), and  

               𝑾′𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾′𝑾−

16

𝑁
𝑱𝑇),  

which is symmetric, i.e. 𝑾′𝑾𝑪𝑑0 = 𝑪𝑑0𝑾
′𝑾.  

Thus, 

            𝑾′𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾′𝑾−

16

𝑁
𝑱𝑇) ⇒ Theorem 4.2.2.4. 

Conversely, suppose Theorem 4.2.2.4 holds true. Then, using (b) part of Theorem 4.2.2.4, we 

can have 

            𝑾𝑪𝑑0𝑾
′𝑾 =

(𝑁−2)(𝑁−3)(𝑁−4)

2(𝑁−1)
𝜃 (𝑰𝑁 −

1

𝑁
𝑱𝑁)𝑾.  

Now using (a) part of Theorem 4.2.2.4, we have 

            𝑾𝑾′𝑾𝑪𝑑0 =
(𝑁−2)(𝑁−3)(𝑁−4)

2(𝑁−1)
𝜃 (𝑾 −

4

𝑁
𝑱𝑁×𝑇) 

            ⇒ 𝑾𝑪𝑑0 =
(𝑁−2)(𝑁−3)(𝑁−4)

2(𝑁−1)
𝜃(𝑾𝑾′)−𝟏 (𝑾 −

4

𝑁
𝑱𝑁×𝑇)  
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                  = 
(𝑁−2)(𝑁−3)(𝑁−4)

2(𝑁−1)
𝜃

2

(𝑁−2)(𝑁−3)(𝑁−4)
{𝑰𝑁 −

3

4(𝑁−1)
𝑱𝑁} (𝑾 −

4

𝑁
𝑱𝑁×𝑇)  

                  = 
1

(𝑁−1)
𝜃 (𝑾−

4

𝑁
𝑱𝑁×𝑇).  

So, we have, 𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾−

4

𝑁
𝑱𝑁×𝑇) and thus 

Theorem 4.2.2.4 ⇒ 𝑾′𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾′𝑾−

16

𝑁
𝑱𝑇). 

4.2.2.5 Designs satisfying the conditions 

After establishing the orthogonality and optimality conditions for general block designs 

involving tetra-allele cross experiments, the problem remains is to search a class of designs 

that satisfy the conditions of Theorem 4.2.2.4. for this purpose, we state and prove the 

following lemmas and theorems: 

Lemma 5: To ensure the estimability of 𝑳1𝒚 under a design 𝑑 ∈ 𝒟, whether for a blocked or 

unblocked set up, it is necessary that every cross (treatment) must appear at least once in the 

design. 

Proof: We will try to prove this by method of contradiction. If 𝑳1𝒚 is estimable under a 

design 𝑑 ∈ 𝒟, and if possible let us consider that a cross, say (1,2,3,4) is not present in the 

design 𝑑. Now, it can be easily seen that 𝓡(𝑳1) ⊂ 𝓡(𝑪𝑑), and the first column of 𝑪𝑑 consists 

of zeros and so the first column of 𝑳1 are also zeros. Here, arises a contradiction.  

To prove it, let us consider that the first column of 𝑳1 is a null vector. Then, the first column 

of 𝑳1
′ 𝑳1is a null vector, which means that by using (a) of Lemma 2, the first column of 

(𝑾′𝑾−
16

𝑁
𝑱𝑇)is a null vector. This means that the first element of the first column of 𝑾′𝑾 

is 
16

𝑁
. But, by the definition of 𝑾, the first element of the first column of 𝑾′𝑾 equals to 4, 

which leads to contradiction, since 𝑛 > 4. 

The result from Lemma 5 leads us to the statement that, under our stated model the smallest 

design under which 𝑳1𝒚 is estimable is one in which each cross is exactly replicated once. 

Now, for a single replicate design 𝑑1, 
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               𝑪𝑑1 = 𝑰𝑇 −
1

𝑘
𝑵𝑑1𝑵𝑑1

′ .  

Thus, using 𝑾′𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾′𝑾−

16

𝑁
𝑱𝑇) we can easily get the result 

               𝑾𝑪𝑑1 = 𝑾(𝑰𝑇 −
1

𝑘
𝑵𝑑1𝑵𝑑1

′ ) =  
1

(𝑁−1)
𝜃 (𝑾 −

4

𝑁
𝑱𝑁×𝑇),  

which is equivalent to 

   (𝑁 − 1 − 𝜃)𝑾+
4𝜃

𝑁
𝑱𝑁×𝑇 = 

(𝑁−1)

𝑘
𝜃𝑾𝑵𝑑1𝑵𝑑1

′ .                                        (4.2.2.5.1) 

Now, for 𝑑1, 𝑵𝑑1
′ 𝑵𝑑1 = 𝑘𝑰𝑏. Hence, post multiplying (4.2.2.5.1) by 𝑵𝑑1and then simplifying 

it we get 

               𝑾𝑵𝑑1 = 𝑴𝑑1 =
4𝑘

𝑁
𝑱𝑁×𝑏.                                                                            (4.2.2.5.2) 

Thus we get that (4.2.2.5.1) ⇒ (4.2.2.5.2), where 𝑴𝑑1is the 𝑁 × 𝑏 lines versus blocks 

incidence matrix. From (4.2.2.5.2) we can interpret that each lines occurs 
4𝑘

𝑁
 times in each 

block. Now we will prove the converse. Suppose (4.2.2.5.2) holds, then  

 𝑾𝑵𝑑1𝑵𝑑1
′ =

4𝑘

𝑁
𝑱𝑁×𝑏𝑵𝑑1

′ = 
4𝑘

𝑁
𝟏𝑁(𝑵𝑑1𝟏𝑏)

′ =
4𝑘

𝑁
𝑱𝑁×𝑇.                             (4.2.2.5.3) 

It should be noted that if (4.2.2.5.2) holds, then 
4𝑘

𝑁
 must be an integer i.e., 𝑥 =

4𝑘

𝑁
 is an 

integer. In continuation we can show that 𝜃 = 𝑁 − 1. Hence, using (4.2.2.5.2) the right hand 

side of (4.2.2.5.1) equals 
4(𝑁−1)

𝑁
𝑱𝑁×𝑇 and thus by (4.2.2.5.3) it can be seen that (4.2.2.5.1) ⇒ 

(4.2.2.5.2). Thus these results can be summarized in Theorem 4.2.2.5. 

Theorem 4.2.2.5: For a single replicate design 𝑑1, 𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾−

4

𝑁
𝑱𝑁×𝑇) holds if 

and only if  

              𝑾𝑵𝑑1 = 𝑴𝑑1 =
4𝑘

𝑁
𝑱𝑁×𝑏. 

Now, let us consider a general equireplicate design, 𝑑2. The information matrix for such a 

design will be 𝑪𝑑2 = 𝑟𝑰𝑇 −
1

𝑘
𝑵𝑑2𝑵𝑑2

′ , where 𝑟 denotes the number of replications of crosses 
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under the design 𝑑2 and 𝑵𝑑2denotes the 𝑇 × 𝑏 crosses versus blocks incidence matrix of the 

design 𝑑2.  

Thus, in this case 

 𝑾𝑪𝑑0 =
1

(𝑁−1)
𝜃 (𝑾−

4

𝑁
𝑱𝑁×𝑇) ⇔ (𝑟(𝑁 − 1) − 𝜃)𝑾+

4𝜃

𝑁
𝑱𝑁×𝑇 

                         =
(𝑁−1)

𝑘
𝑾𝑵𝑑2𝑵𝑑2

′ .                                                                            (4.2.2.5.4) 

In order to proceed further, first the following lemma needs to be proved. 

Lemma 6: The 𝑇 × 𝑇 matrix 𝑸 = [
𝑾
𝑿2
] is nonsingular. 

Proof: The result can be easily established as 𝑸 = [
𝑾
𝑿2
], hence 

 𝑸𝑸′ = [
𝑾𝑾′ 𝑾𝑿2

′

𝑿2𝑾
′ 𝑿2𝑿2

′
]  

         = [
(𝑁−2)(𝑁−3)

2
{(𝑁 − 4)𝑰𝑁 + 3𝑱𝑁} 𝟎

𝟎′ 𝑰𝑇−𝑁
],  

So 𝑸 is a full rank square matrix i.e., nonsingular. Hence, the result is proved. 

Now, since 𝑸 is a non-singular matrix of order 𝑇 × 𝑇, and we have 𝑇 × 𝑏 matrix 𝑵𝑑2, which 

means that the column span of 𝑵𝑑2 is a subspace of the column span of 𝑸′, which means that 

there exist matrices 𝒀1 and 𝒀2 of order 𝑁 × 𝑏 and (𝑇 − 𝑁) × 𝑏 respectively, such that 

                𝑵𝑑2 = 𝑾
′𝒀1 + 𝑿2

′ 𝒀2.                                                                                 (4.2.2.5.5) 

Now, pre-multiplication with 𝟏𝑁
′  in (4.2.2.5.5) and further simplification gives        

   𝑘𝟏𝑏
′ = 𝟏𝑇

′ 𝑵𝑑2 

             = 𝟏𝑇
′ 𝑾′𝒀1 + 𝟏𝑇

′ 𝑿2
′ 𝒀2 

             = 𝟏𝑇
′ 𝑾′𝒀1 =

(𝑁−1)(𝑁−2)(𝑁−3)

2
𝟏𝑁
′ 𝒀1, hence we have 
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               𝟏𝑁
′ 𝒀1 =

2𝑘

(𝑁−1)(𝑁−2)(𝑁−3)
𝟏𝑏
′ . 

Pre-multiplication with 𝑾 and post multiplication 𝟏𝑏 in (4.2.2.5.5) gives us 

 𝑟𝑾𝟏𝑇 = 𝑾𝑵𝑑2𝟏𝑏 

             = 𝑾𝑾′𝒀1𝟏𝑏 +𝑾𝑿2
′ 𝒀2𝟏𝑏  

                       = 𝑾𝑾′𝒀1𝟏𝑏, which gives more simple form as 

             𝒀1𝟏𝑏 = 𝑟(𝑾𝑾′)−𝟏𝑾𝟏𝑁, which is further simplified using (4.2.2.2.1) as 

 𝒀1𝟏𝑏 =
𝑟

4
𝟏𝑁.  

At last, we have, 

 𝑟𝟏𝑇 = 𝑵𝑑2𝟏𝑏 

                     = 𝑾′𝒀1𝟏𝑏 + 𝑿2
′ 𝒀2𝟏𝑏  

                     = 𝑾′ (
𝑟

4
𝟏𝑁) + 𝑿2

′ 𝒀2𝟏𝑏  

          = 𝑟𝟏𝑇 + 𝑿2
′ 𝒀2𝟏𝑏, which gives 

 𝑟𝟏𝑇 = 𝑟𝟏𝑇 + 𝑿2
′ 𝒀2𝟏𝑏, which on pre-multiplication with 𝑿2 gives 

𝑟𝑿2𝟏𝑇 = 𝑟𝑿2𝟏𝑇 + 𝑿2𝑿2
′ 𝒀2𝟏𝑏, implying that 

 𝒀2𝟏𝑏 = 𝟎. 

The results discussed here lead to a new Lemma. 

Lemma 7: For a single replicate design, the result discussed in (4.2.2.5.4) is equivalent to 

                       𝒀1𝒀2
′ = 𝟎, and                                                                                     (4.2.2.5.6) 

𝒀1𝒀𝟏
′ =

2𝑘

(𝑁−1)(𝑁−2)(𝑁−3)(𝑁−4)
{(𝑟(𝑁 − 1) − 𝜃)𝑰𝑁 −

(3𝑟𝑁−4𝜃)

4𝑁
𝑱𝑁}. (4.2.2.5.7) 

Proof: If we pre-multiply (4.2.2.5.5) by 𝑾 we get 
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            𝑾𝑵𝑑2 = 𝑾𝑾
′𝒀1 +𝑾𝑿𝟐

′ 𝒀2 = 𝑾𝑾
′𝒀1, which further gives 

            𝑾𝑵𝑑2𝑵𝑑2
′ = 𝑾𝑾′𝒀1(𝒀1

′𝑾+𝒀2
′ 𝑿2).                                                          (4.2.2.5.8) 

Let us consider that (4.2.2.5.4) hold true. Then we have  

            (𝑟(𝑁 − 1) − 𝜃)𝑾+
4𝜃

𝑁
𝑱𝑁×𝑇 = 

(𝑁−1)

𝑘
𝑾𝑵𝑑2𝑵𝑑2

′   

             =
(𝑁−1)

𝑘
𝑾𝑾′𝒀1(𝒀1

′𝑾+𝒀2
′ 𝑿2).                                                                   (4.2.2.5.9) 

Now, if we post-multiply (4.2.2.5.9) with 𝑿2
′  on both the sides and then using 𝑾𝑿2

′ = 𝟎, 

𝑱𝑁×𝑇𝑿2
′ = 𝟎, 𝑿2𝑿2

′ = 𝑰𝑇−𝑁, we get 

 𝟎 =
(𝑁−1)

𝑘
𝑾𝑾′𝒀1𝒀2

′ , which implies that 

             𝒀1𝒀2
′ = 𝟎,  

because 𝑾𝑾′ is a non-singular matrix. Hence proved (4.2.2.5.6). 

Similarly, if we post-multiply (4.2.2.5.9) with 𝑾′on both the sides, then 

             𝒀1𝒀1
′ = 

𝑘(𝑟(𝑁−1)−𝜃)

(𝑁−1)
(𝑾𝑾′)−1 +

4𝑘𝜃

𝑁(𝑁−1)
(𝑾𝑾′)−1𝑱𝑁×𝑇𝑾

′(𝑾𝑾′)−1,  

further simplification of which proves (4.2.2.5.7). 

In order to prove the converse part, let us assume that (4.2.2.5.5) and (4.2.2.5.6) holds true. 

Then, using (4.2.2.5.8) and (4.2.2.5.6), we get 

  
(𝑁−1)

𝑘
𝑾𝑵𝑑2𝑵𝑑2

′ =
(𝑁−1)

𝑘
𝑾𝑾′𝒀1(𝒀1

′ 𝑾+𝒀2
′ 𝑿2) 

                             =
(𝑁−1)

𝑘
𝑾𝑾′𝒀1𝒀1

′ 𝑾,  

which can be further simplified using (4.2.2.2.1) and (4.2.2.5.7) and the we get  

            
(𝑁−1)

𝑘
𝑾𝑾′𝒀1𝒀1

′ 𝑾 = [𝑟(𝑁 − 1) − 𝜃]𝑾+
4𝜃

𝑁
𝑱𝑁×𝑇,  

which is same as (4.2.2.5.4), hence proved the result.  
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All the results which follows (4.2.2.5.4) are derived to establish the following result in 

Lemma 8. 

Lemma 8: In order that the result established in Theorem 4.2.2.4 can be extended for the 

case of an equireplicate design 𝑑2, the following conditions must hold true: 

(a) The matrix must be of the form 𝑵𝑑2 = 𝑾
′𝒀1 + 𝑿2

′ 𝒀2 

(b) 𝒀1𝒀2
′ = 𝟎 

 

(c) 𝒀1𝒀1
′ = 

2𝑘

(𝑁−1)(𝑁−2)(𝑁−3)(𝑁−4)
[{𝑟(𝑁 − 1) − 𝜃}𝑰𝑁 −

(3𝑟𝑁−4𝜃)

4𝑁
𝑱𝑁] 

(d) 𝒀1𝟏𝑏 =
𝑟

4
𝟏𝑁, 𝟏𝑁

′ 𝒀1 =
2𝑘

(𝑁−1)(𝑁−2)(𝑁−3)
𝟏𝑏
′  and 𝒀2𝟏𝑏 = 𝟎. 

Now, from (4.2.2.5.4) it can be easily established that the design 𝑑2 is orthogonal and 

balanced for estimation of gca effects if  

 [𝑟(𝑁 − 1) − 𝜑]𝑾+
4𝜑

𝑁
𝑱𝑁×𝑇 = 

(𝑁−1)

𝑘
𝑾𝑵𝑑2𝑵𝑑2

′ ,                                       (4.2.2.5.8) 

where 𝜑 is any positive scalar. Also, when 𝜑 =  𝜃, then we can also claim for the optimality 

of the class of designs. Here, we can also say that if 

 𝑵𝑑2𝑵𝑑2
′ = 𝜇𝑾′𝑾+ 𝜎𝑱𝑁×𝑇, for some scalars 𝜇 and 𝜎 such that 

(𝑁 − 1)(16𝜇 + 𝑁𝜎) = 4𝑟𝑘, then (4.2.2.5.8) holds true. 

Now, if we consider the case of an equireplicate design 𝑑2, such that 

             𝑴𝑑2 = 𝑾𝑵𝑑2 =
4𝑘

𝑁
𝑱𝑁×𝑏. 

Then we can easily establish using (4.2.2.4.1) that  𝜃 = 𝑟(𝑁 − 1) and thus, (4.2.2.5.4) holds. 

Moreover, such an equireplicated design is universally optimal for estimating gca effects 

while including sca effect in the underlying model. 

4.2.2.6 Class of optimal tetra-allele cross designs 

A series of universally optimal family of designs, which satisfies the above mentioned 

conditions, can be obtained using MOLS. Consider 𝑁, the number of lines as a prime or 
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prime power. Out of total (𝑁 − 1) possible MOLS, consider any of the 
(𝑁−1)

2
 MOLS. 

Retaining the first four rows of each Latin square, 𝑁 number of crosses corresponding to each 

column can be made from each MOLS. Thus, the parameters of the developed class of design 

is 𝑇 =  
𝑁(𝑁−1)

2
, 𝑏 =

(𝑁−1)

2
, 𝑟, 𝑘 = 𝑁. It can be easily seen that for the given class of designs 

𝑴𝑑2 = 𝑾𝑵𝑑2 =
4𝑘

𝑁
𝑱𝑁×𝑏, hence this class of designs are universally optimal in the class of 

competing designs. 

Example 4.2.2.6: The method can be well understood by an example for 𝑁 = 6, 𝑏 = 3, 𝑘 =

7 and 𝑇 =  21. Considering 3 MOLS of order 7 chosen at random out of the total 6 possible 

MOLS of order 7, and retaining only first 4 rows of each, based on the symbols A, B, C, D, 

E, F and G as given below. 

MOLS I   MOLS II   MOLS III 

A B C D E F G  A B C D E F G  A B C D E F G 

B C D E F G A  C D E F G A B  D E F G A B C 

C D E F G A B  E F G A B C D  G A B C D E F 

D E F G A B C  G A B C D E F  C D E F G A B 

 

Now, considering the seven symbols as lines, from each LS a tetra-allele crosses can be made 

by taking the four lines of each column. The crosses made from each LS will be constituting 

a block. The final layout of the design so obtained is given below.  

Block 1 Block 2 Block 3 

(A×B)×(C×D) (A×C)×(E×G) (A×D)×(G×C) 

(B×C)×(D×E) (B×D)×(F×A) (B×E)×(A×D) 

(C×D)×(E×F) (C×E)×(G×B) (C×F)×(B×E) 

(D×E)×(F×G) (D×F)×(A×C) (D×G)×(C×F) 

(E×F)×(G×A) (E×G)×(B×D) (E×A)×(D×G) 

(F×G)×(A×B) (F×A)×(C×E) (F×B)×(E×A) 

(G×A)×(B×C) (G×B)×(D×F) (G×C)×(F×B) 
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4.3 Prediction of combining ability effects 

There are many situations where one wants to quantify the realization of an unobservable 

random variable. An example from breeding sector is that of predicting the genetic merit of a 

dairy bull from the milk yield capacity of his daughters. In a similar manner, predicting the 

yielding capacity of the cross from the sample of inbred lines is important for the breeders. 

Observations on some random variables are used to predict the value of some other related 

random variables that cannot be observed. The concept of BLUP is used for unbiased 

prediction of the yielding capacity of the crosses from the sample of inbred lines under mixed 

effects model. 

As the number of lines increases, it becomes impossible to conduct a complete tetra-allele 

cross due to limitations of experimental units and so one may consider partial tetra-allele 

cross experiment with some unobserved crosses for predicting the yielding capacities of all 

the possible tetra-allele crosses among 𝑁 inbred lines. Ignoring the sca effects, the yielding 

capacity of the cross (𝑖, 𝑗, 𝑘, 𝑙) is estimated by 𝑦̂ + 𝑓𝑖̂ + 𝑓𝑗̂ + 𝑓𝑘̂ + 𝑓𝑙̂, where {𝑓𝛼̂}, 𝛼 = 𝑖, 𝑗, 𝑘, 𝑙, 

are some predicted values of gca. 

 4.3.1 Model and experimental setup 

Consider a tetra-allele cross experiment being performed under unblocked design set up with 

𝑁 number of lines and 𝑇 crosses, such that each line occurs exactly 𝑝 times in the design 𝑑. 

Reconsidering the mixed effects model 𝒚 = 𝑿𝜽 + 𝒁𝒃 + 𝒆, explained earlier in Section 3.3.2 

of Chapter 3, to the situation of tetra-allele cross experiments, the model can be expressed as 

     𝒚 = 𝑦̅𝟏𝑁 +𝑾4
′ 𝒇 + 𝒆,                                                                                   (4.3.1.1) 

where 𝒚  is an  𝑇 × 1 vector of observations, 𝒇 is a 𝑁 × 1 vector of gca effects with 𝐸(𝒇) =

𝟎 and 𝐷(𝒇) = 𝑽𝒇 = 𝜎𝑓
2𝑰𝑁, 𝒆 is a 𝑇 × 1 vector of random errors with 𝐸(𝒆) = 𝟎 and 𝐷(𝒆) =

𝜎𝑒
2𝑰𝑇, and  𝑾𝟒 is an 𝑁 × 𝑇 incidence matrix with rows indexed by the line numbers 1,2, …𝑁 

and columns by the 𝑇 crosses such that the {𝑚, (𝑖, 𝑗, 𝑘, 𝑙)}th entry of 𝑾𝟒 takes a value 1 if 𝑚 ∈

(𝑖, 𝑗, 𝑘, 𝑙) and 0, otherwise. Thus we have 

              𝑾4
′ 𝑾4𝟏𝑇 = 𝑝𝑾4

′ 𝟏𝑇 = 4𝑝𝟏𝑁. 

Now, borrowing the results from the mixed effect model regarding BLUP, we have 

   𝐸(𝒚) = 𝑦̅𝟏𝑁, 



80 
 

 
 

  𝐷(𝒚 𝜎𝑓
2⁄ , 𝜎𝑒

2) = 𝜎𝑓
2𝑾4

′ 𝑾4 + 𝜎𝑒
2𝑰𝑇  = 𝑽𝒚, and                                              (4.3.1.2) 

              𝐶𝑜𝑣(𝒇, 𝒚) = 𝐶𝑜𝑣(𝒇, 𝑦̅𝟏𝑁 +𝑾4
′ 𝒇 + 𝒆 ) = 𝜎𝑓

2𝑾4 = 𝑪𝒇𝒚                                (4.3.1.3) 

4.3.2 Prediction of yielding capacity of crosses 

For the purpose of predicting the yielding capacity of tetra-allele crosses, following predictor 

has been considered 

   𝒘 = 𝑳′𝜽 + 𝒃 ≡ 𝑦̅𝟏𝑁 + 𝒇.                                                                               (4.3.2.1) 

Now, as discussed earlier the best linear unbiased predictor (BLUP) of 𝒘 is given as 

               𝒘̃ = 𝟏𝑁𝑦̅
0 + 𝑪𝒇𝒚𝑽𝒚

−𝟏(𝒚 − 𝟏𝑇𝑦̅
0)  

                                 = 𝟏𝑁𝑦̅
0 + 𝒇0                                                                                 (4.3.2.2) 

where 𝒇0 = 𝑪𝒇𝒚𝑽𝒚
−𝟏(𝒚 − 𝟏𝑇𝑦̅

0) and 

              𝑦̅0 = (𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑇

′ 𝑽𝒚
−𝟏𝒚 is the Generalised Least Square Estimate (GLSE) of  𝑦̅.  

4.3.3 Optimality of designs 

Consider the class of designs 𝒟(𝑁, 𝑇) under the usual unblocked setup involving 𝑇 tetra-

allele crosses based on 𝑁 lines. Then for a given design 𝑑 ∈ 𝒟(𝑁, 𝑇), the mean square 

prediction error, 

  𝑀𝑆𝐸(𝐵𝐿𝑈𝑃(𝒘), 𝑑) = 𝐸(𝒘 − 𝒘̃)′(𝒘 − 𝒘̃)  

= 𝐸{𝑡𝑟(𝒘 − 𝒘̃)′(𝒘 − 𝒘̃)}  

= 𝐸{𝑡𝑟(𝒘 − 𝒘̃)(𝒘 − 𝒘̃)′}  

= 𝑡𝑟{𝐸(𝒘 − 𝒘̃)(𝒘 − 𝒘̃)′}   

= 𝑡𝑟{𝐷(𝒘 − 𝒘̃)}. 

We can see that the 𝑀𝑆𝐸(𝐵𝐿𝑈𝑃(𝒘), 𝑑) depends on the design 𝑑. Thus, a design 𝑑𝑜𝑝𝑡 ∈

𝒟(𝑁, 𝑇) is said to be 𝐴-optimal over the competing class of designs 𝒟(𝑁, 𝑇) if 

          𝑀𝑆𝐸(𝐵𝐿𝑈𝑃(𝒘), 𝑑𝑜𝑝𝑡) = 
𝑚𝑖𝑛

𝑑 ∈ 𝒟(𝑁, 𝑇)
{𝑀𝑆𝐸(𝐵𝐿𝑈𝑃(𝒘), 𝑑)}                            (4.3.3.1) 
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Now, using the properties of BLUP, and  

          𝐶𝑜𝑣(𝑿, 𝒀) = 𝐶𝑜𝑣(𝒀, 𝑿), 

          𝐶𝑜𝑣(𝑦̅0𝟏𝑁, 𝒇
0) = 𝟎, 

          𝐷(𝒇0 − 𝒇) = 𝑽𝒇 − 𝐷(𝒇
0), and 

          𝐶𝑜𝑣(𝑦̅0𝟏𝑁, 𝒇) = 𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑇

′ 𝑽𝒚
−𝟏𝑪𝒇𝒚

′ , thus we can proceed as  

          𝑡𝑟{𝐷(𝒘 − 𝒘̃)} = 𝑡𝑟{𝐷(𝑦̅𝟏𝑁 + 𝒇 −  𝑦̅
0𝟏𝑁 − 𝒇

0)}  

                       = 𝑡𝑟[𝐷{(𝑦̅0𝟏𝑁 − 𝑦̅𝟏𝑁) + (𝒇
0 − 𝒇)}] 

          = 𝑡𝑟[𝐸(𝑦̅0𝟏𝑁 − 𝑦̅𝟏𝑁)(𝑦̅
0𝟏𝑁 − 𝑦̅𝟏𝑁)

′ + 𝐸(𝒇0 − 𝒇)(𝒇0 − 𝒇)′  }      

+ 𝐸(𝑦̅0𝟏𝑁 − 𝑦̅𝟏𝑁)(𝒇
0 − 𝒇)′ + 𝐸(𝒇0 − 𝒇)(𝑦̅0𝟏𝑁 − 𝑦̅𝟏𝑁)

′] 

          = 𝑡𝑟[𝐷(𝑦̅0𝟏𝑁) + 𝐷(𝒇
0 − 𝒇)} + 2𝐶𝑜𝑣(𝑦̅0𝟏𝑁, 𝒇

0 − 𝒇)]  

                       = 𝑡𝑟[𝐷(𝑦̅0𝟏𝑁) + 𝐷(𝒇
0 − 𝒇)} + 2𝐶𝑜𝑣(𝑦̅0𝟏𝑁, 𝒇

0 − 𝒇)]  

           = 𝑡𝑟{𝐷(𝑦̅0𝟏𝑁)} + 𝑡𝑟{𝐷(𝒇
0 − 𝒇)} −2𝑡𝑟{𝐶𝑜𝑣(𝑦̅0𝟏𝑁, 𝒇)}  

           = 𝑡𝑟{(𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑁

′ )} + 𝑡𝑟{𝑽𝒇 − 𝐷(𝒇
0)}   

                  −2𝑡𝑟{𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑇

′ 𝑽𝒚
−𝟏𝑪𝒇𝒚

′ } 

           = 𝑡𝑟{(𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑁

′ )} +  𝑡𝑟(𝑽𝒇) − 𝑡𝑟(𝑪𝒇𝒚𝑽𝒚
−𝟏𝑪𝒇𝒚

′ )     

                  + 𝑡𝑟(𝑪𝒇𝒚𝑽𝒚
−𝟏𝟏𝑇(𝟏𝑇

′ 𝑽𝒚
−𝟏𝟏𝑇)

−𝟏𝑇
′ 𝑽𝒚

−𝟏𝑪𝒇𝒚
′ )         

−2𝑡𝑟{𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑇

′ 𝑽𝒚
−𝟏𝑪𝒇𝒚

′ }.                                                             (4.3.3.2) 

Now, the first term of (4.3.3.2) can be further simplified and expressed as: 

               𝑡𝑟{(𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑁

′ )} = 
𝑁

𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇
                                                               (4.3.3.3) 

As the matrix 𝑽𝒚 is dependent on 𝑾4
′ 𝑾4, and we have to find the eigen vectors of  𝑾4

′ 𝑾4 

orthogonal to the vector of unity 𝟏𝑇, the following result will be helpful. 
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Let 𝑨 and 𝑩 be two positive definite matrices of order 𝑁, such that 𝑨𝑩 = 𝑩𝑨. Then there 

exists an orthogonal matrix 𝑷 = (𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵) such that 𝑷′𝑨𝑷 = 𝑫1, 𝑷′𝑩𝑷 = 𝑫2 where 

𝑫1 = 𝑑𝑖𝑎𝑔(𝜶1, 𝜶2, … , 𝜶𝑁) and 𝑫2 = 𝑑𝑖𝑎𝑔(𝜸1, 𝜸2, … , 𝜸𝑁), where 𝜶𝑖 and 𝜸𝑖 are the 

eigenvalues of 𝑨 and 𝑩, respectively, 𝑖 = 1,2, … , 𝑁. Then according to the definition of 

eigen vector 𝑨𝒑𝑖 = 𝜶𝑖𝒑𝑖 and 𝑩𝒑𝑖 = 𝜸𝑖𝒑𝑖, 𝑖 = 1,2, … ,𝑁. Then we have, (𝑨 + 𝑩)𝒑𝑖 =

(𝜶𝑖 + 𝜸𝑖)𝒑𝑖, 𝑖 = 1,2, … ,𝑁. 

Since, we have 

            𝑾4
′ 𝑾4𝟏𝑇 = 4𝑝𝟏𝑁, and 

           𝜎𝑓
2𝑾4

′ 𝑾4
𝟏𝑇

√𝑻
 = 4𝑝𝜎𝑓

2 𝟏𝑁

√𝑻
, we get 

            (𝜎𝑓
2𝑾4

′ 𝑾4 + 𝜎𝑒
2𝑰𝑇)

𝟏𝑇

√𝑻
 = (4𝑝𝜎𝑓

2 + 𝜎𝑒
2)

𝟏𝑁

√𝑇
,  

which means 𝒑1 =
𝟏𝑇

√𝑇
 is an eigen vector corresponding to the eigenvalue 𝝀1 = (4𝑝𝜎𝑓

2 + 𝜎𝑒
2). 

In the same way, if  𝒑2, 𝒑3, … , 𝒑𝑇 be the rest of (𝑇 − 1) orthonormal eigen vectors of 𝑽𝒚 

corresponding to eigenvalues 𝝀2, 𝝀3, … , 𝝀𝑇.  

Hence we can have, 

                 𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇 = 𝟏𝑇
′ [∑

𝒑𝑖𝒑𝑖
′

𝝀𝑖 

𝑇
𝑖=1 ]𝟏𝑇 

                  = 𝟏𝑇
′ [(4𝑝𝜎𝑓

2 + 𝜎𝑒
2)−1

𝟏𝑇

√𝑇

𝟏𝑇
′

√𝑇
+ ∑

𝒑𝑖𝒑𝑖
′

𝝀𝑖 

𝑇
𝑖=2 ]𝟏𝑇  

                  = 
𝑇

(4𝑝𝜎𝑓
2+𝜎𝑒

2)
.                                                                                                  (4.3.3.4) 

Thus,  𝑡𝑟{(𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑁

′ )} = 
𝑵(4𝑝𝜎𝑓

2+𝜎𝑒
2)

𝑇
                                                             (4.3.3.5) 

The second term of (4.3.3.2) can be simplified as  

            𝑡𝑟(𝑽𝒇) = 𝑡𝑟(𝜎𝑓
2𝑰𝑁) = 𝑁𝜎𝑓

2.                                                                                (4.3.3.6) 

Here, we consider 𝑾4𝑾4
′ = 𝑮 and as the non zero eigenvalues are same for 𝑾4𝑾4

′  and 

𝑾4
′ 𝑾4 and are given as 𝜆𝐺1 = 4𝑝, 𝜆𝐺2, ... , 𝜆𝐺𝑁 and thus 𝜆𝑖 = 𝜎𝑓

2𝜆𝐺𝑖 + 𝜎𝑒
2, for 𝑖 = 1,2, … ,𝑁 

and 𝜆𝑖 = 𝜎𝑒
2, for 𝑖 = 𝑁 + 1,2, … , 𝑇. 
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Now, consider the third term of (4.3.3.2), which can be expressed as 

 𝑡𝑟(𝑪𝒇𝒚𝑽𝒚
−𝟏𝑪𝒇𝒚

′ ) = 𝑡𝑟(𝜎𝑓
2𝑾4𝑽𝒚

−𝟏𝜎𝑓
2 𝑾4

′ )  

        = 𝜎𝑓
4𝑡𝑟(𝑾4𝑽𝒚

−𝟏𝑾4
′ )  

        = 𝜎𝑓
4𝑡𝑟(𝑾4

′ 𝑾4𝑽𝒚
−𝟏)  

        = 𝜎𝑓
2𝑡𝑟(𝑽𝒚 − 𝜎𝑒

2𝑰𝑇)𝑽𝒚
−𝟏  

                    = 𝜎𝑓
2𝑡𝑟(𝑰𝑇 − 𝜎𝑒

2𝑽𝑦
−1)  

                    = 𝜎𝑓
2[𝑇 −

𝜎𝑒
2

(4𝑝𝜎𝑓
2+𝜎𝑒

2)
− 𝜎𝑒

2∑
1

𝝀𝑖 

𝑇
𝑖=2 ] 

                    = 𝜎𝑓
2[𝑇 −

𝜎𝑒
2

(4𝑝𝜎𝑓
2+𝜎𝑒

2)
− 𝜎𝑒

2∑
1

𝜎𝑓
2𝝀𝐺𝑖+𝜎𝑒

2 

𝑁
𝑖=2 − 𝜎𝑒

2∑
1

𝜎𝑒
2 

𝑇
𝑖=𝑁+1 ]   

                    = 𝜎𝑓
2[𝑇 −

𝜎𝑒
2

(4𝑝𝜎𝑓
2+𝜎𝑒

2)
− ∑

𝜎𝑒
2

𝜎𝑓
2𝝀𝐺𝑖+𝜎𝑒

2 

𝑁
𝑖=2 − (𝑇 − 𝑁)]  

                    = 𝜎𝑓
2[𝑁 −

𝜎𝑒
2

(4𝑝𝜎𝑓
2+𝜎𝑒

2)
− ∑

𝜎𝑒
2

𝜎𝑓
2𝝀𝐺𝑖+𝜎𝑒

2 

𝑁
𝑖=2 ].                                                     (4.3.3.7) 

Now, the fourth term in (4.3.3.2) can be simplified as 

       𝑡𝑟(𝑪𝒇𝒚𝑽𝒚
−𝟏𝟏𝑇(𝟏𝑇

′ 𝑽𝒚
−𝟏𝟏𝑇)

−𝟏𝑇
′ 𝑽𝒚

−𝟏𝑪𝒇𝒚
′ )  

             = 𝑡𝑟(𝜎𝑓
2𝑾4𝑽𝒚

−𝟏𝟏𝑇(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑇

′ 𝑽𝒚
−𝟏𝜎𝑓

2 𝑾4
′ ) 

             = 𝜎𝑓
4𝑡𝑟(𝑾4

′ 𝑾4𝑽𝒚
−𝟏𝟏𝑇𝟏𝑇

′ 𝟏𝑇𝟏𝑇
′

(4𝑝𝜎𝑓
2+𝜎𝑒

2)𝑇
) ∕ (𝟏𝑇

′ 𝑽𝒚
−𝟏𝟏𝑇)   

             = 
𝜎𝑓
4(4𝑝𝜎𝑓

2+𝜎𝑒
2)

𝑇(4𝑝𝜎𝑓
2+𝜎𝑒

2)
𝑡𝑟(𝑾4

′ 𝑾4𝑽𝒚
−𝟏𝟏𝑇𝟏𝑇

′ )  

             = 
𝜎𝑓
2

𝑇
𝑡𝑟(𝑽𝒚 − 𝜎𝑒

2𝑰𝑇)𝑽𝒚
−𝟏𝟏𝑇𝟏𝑇

′ )  

             = 
𝜎𝑓
2

𝑇
𝑡𝑟[(𝑰𝑇 − 𝜎𝑒

2𝑽𝑦
−1)𝟏𝑇𝟏𝑇

′ ]  

             = 
𝜎𝑓
2

𝑇
(𝑇 − 𝜎𝑒

2𝑡𝑟(𝟏𝑇
′ 𝑽𝑦

−1𝟏𝑇))  
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             = 
𝜎𝑓
2

𝑇
(𝑇 − 𝜎𝑒

2 𝑇

(4𝑝𝜎𝑓
2+𝜎𝑒

2)
)  

             = 
4𝑝𝜎𝑓

4

4𝑝𝜎𝑓
2+𝜎𝑒

2.                                                                                                         (4.3.3.8) 

Finally the last term in (4.3.3.2) can be simplified as 

         2𝑡𝑟{𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑇

′ 𝑽𝒚
−𝟏𝑪𝒇𝒚

′ }  

             = 2𝑡𝑟{𝟏𝑁(𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇)
−𝟏𝑇

′ 𝑽𝒚
−𝟏𝜎𝑓

2 𝑾4
′ }  

             = 2𝜎𝑓
2𝑡𝑟(𝟏𝑇

′ 𝑽𝒚
−𝟏 𝑾4

′ 𝟏𝑁) 𝟏𝑇
′ 𝑽𝒚

−𝟏𝟏𝑇⁄  

             = 2𝜎𝑓
2𝑡𝑟(𝟏𝑇

′ 𝑽𝒚
−𝟏4𝟏𝑇) ∕ (𝟏𝑇

′ 𝑽𝒚
−𝟏𝟏𝑇)  

             = 8𝜎𝑓
2.                                                                                                               (4.3.3.9) 

Now, using the simplified results from (4.3.3.3) to (4.3.3.9) we can get the final expression as 

               𝑀𝑆𝐸(𝐵𝐿𝑈𝑃(𝒘), 𝑑𝑜𝑝𝑡)  

               = 
𝑵(4𝑝𝜎𝑓

2+𝜎𝑒
2)

𝑇
 + 𝑁𝜎𝑓

2 −𝜎𝑓
2[𝑁 −

𝜎𝑒
2

(4𝑝𝜎𝑓
2+𝜎𝑒

2)
− ∑

𝜎𝑒
2

𝜎𝑓
2𝝀𝐺𝑖+𝜎𝑒

2 

𝑁
𝑖=2 ] + 

4𝑝𝜎𝑓
4

4𝑝𝜎𝑓
2+𝜎𝑒

2 −8𝜎𝑓
2 

               = 
(4𝑁𝑝−7𝑇)𝜎𝑓

2+𝑁𝜎𝑒
2)

𝑇
 + 𝜎𝑒

2∑
1

𝝀𝐺𝑖+
𝜎𝑒
2

𝜎𝑓
2  

𝑁
𝑖=2 .                                                           (4.3.3.10) 

Minimizing 𝑀𝑆𝐸(𝐵𝐿𝑈𝑃(𝒘), 𝑑) means  minimizing the following 

          ∑
1

𝝀𝐺𝑑𝑖+
𝜎𝑒
2

𝜎𝑓
2  

𝑁
𝑖=2  = ∑

1

𝝀𝐺𝑑𝑖
∗  

𝑁
𝑖=2  (say). 

Now, we have 

           ∑ 𝝀𝐺𝑑𝑖
∗𝑁

𝑖=1  = ∑ (𝜆𝐺𝑑𝑖 +
𝜎𝑒
2

𝜎𝑓
2 )

𝑁
𝑖=1   

                           =  𝑁
𝜎𝑒
2

𝜎𝑓
2 + ∑ (𝜆𝐺𝑑𝑖 )

𝑁
𝑖=1   

                           = 𝑁
𝜎𝑒
2

𝜎𝑓
2 + 𝑡𝑟(𝑮𝑑)  
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                            = 𝑁
𝜎𝑒
2

𝜎𝑓
2 + 𝑡𝑟(𝑾4𝑾4

′ )  

                            = 𝑁
𝜎𝑒
2

𝜎𝑓
2 + 4𝑇.  

Since 𝜆𝐺𝑑1 = 4𝑝, we have 

             ∑ 𝝀𝐺𝑑𝑖
∗𝑁

𝑖=2 = (𝑁 − 1)
𝜎𝑒
2

𝜎𝑓
2 + 4(𝑇 − 𝑝). 

In order to attain a lower bound, we consider the AM-HM inequality for (𝑁 − 1) positive 

real numbers i.e. the eigenvalues 𝜆𝐺𝑑2
∗ , 𝜆𝐺𝑑3

∗ , … , 𝜆𝐺𝑑𝑖
∗ , … , 𝜆𝐺𝑑𝑁

∗  to attain the result 

              ∑
1

𝜆𝐺𝑑𝑖
∗

𝑁
𝑖=2 ≥ 

(𝑁−1)2

∑ 𝜆𝐺𝑑𝑖
∗𝑁

𝑖=2

, or 

              ∑
1

𝜆𝐺𝑑𝑖
∗

𝑁
𝑖=2  ≥

(𝑁−1)2

(𝑁−1)
𝜎𝑒
2

𝜎𝑓
2+4(𝑇−𝑝)

 ,  

equality being attained iff all 𝜆𝐺𝑑𝑖
∗ , 𝑖 = 2,… ,𝑁 are equal which is same condition as all 

𝜆𝐺𝑑𝑖, 𝑖 = 2,… , 𝑁 being equal.  

Thus, a design 𝑑𝑜𝑝𝑡 ∈ 𝒟(𝑁, 𝑇) is 𝐴-optimal for BLUP of  𝒘 = 𝑳′𝜽 + 𝒃 = 𝑦̅𝟏𝑁 + 𝒇, where 𝒇 

is a 𝑁 × 1 vector of gca effects with eigenvalues 𝜆𝐺𝑑𝑜𝑝𝑡𝑖
 = 𝜆 for 𝑖 = 2,… ,𝑁. 

4.4 Variance component estimates 

The variance components are of much interest as they are needed for the estimation of 

genetic parameters like heritability, genotypic and phenotypic correlations and repeatability. 

All these important parameters are some functions of variance components. The parameters 

are also needed for the prediction of breeding value as well as response due to various 

selection procedures. Animal breeders are interested in using these breeding techniques to 

increase the production of economically important products from farm animals (e.g., eggs, 

milk, butter, wool, tallow and bacon). 

4.4.1 Unbiased estimates of variance components 

The identity related to quadratic forms which can be used to obtain the unbiased estimates of 

variance components is 

 𝑿(𝑿′𝑿)−𝑿′ = 𝑿1(𝑿1
′ 𝑿1)

−𝑿1
′ + 𝑻2𝑿2(𝑿2

′ 𝑻2𝑿2)
−𝑿2

′ 𝑻2,  



86 
 

 
 

where 𝑻2= 𝑰 − 𝑿(𝑿′𝑿)−𝑿′ is an idempotent matrix. 

Reconsider the model for tetra-allele cross experiment 

   𝒚 = 𝑿𝜷 + 𝒆 =  𝒚 = 𝑦̅𝟏𝑁 +𝑾4
′ 𝒇 + 𝒆,                                                           (4.4.1.1) 

such that 𝑿 = [𝑿1 𝑿2] =  [𝟏𝑁 𝑾4
′ ] and 𝜷 = [

𝜷1
𝜷2
] =  [

𝑦̅
𝒇
]. 

For this model, the identity for the quadratic form can be used to obtain three quadratic forms, 

namely total corrected sum of squares (𝑆𝑆𝑇), sum of squares due to lines (𝑆𝑆𝐿) and sum of squares 

due to error (𝑆𝑆𝐸). Now, based on Henderson’s Method III (Searle et al., 1992), 𝑆𝑆𝑇 can be 

partitioned into 𝑆𝑆𝐿 and 𝑆𝑆𝐸 as 𝑆𝑆𝑇 = 𝑆𝑆𝐿 + 𝑆𝑆𝐸. Thus, 

              𝑆𝑆𝑇 = 𝒚
′𝑻1𝒚                                                                                                    (4.4.1.2) 

              𝑆𝑆𝐿 = 𝒚
′[𝑻1𝑾4

′ (𝑾4𝑻1𝑾4
′ )−𝑾4𝑻1]𝒚                                                             (4.4.1.3) 

              𝑆𝑆𝐸 = 𝒚
′𝑻0𝒚                                                                                                    (4.4.1.4) 

where 𝑻1 = 𝑰 −
𝟏𝟏′

𝑁
 and 𝑻0 =  𝑰 − (𝟏 𝑾4

′ )[(𝟏 𝑾4
′ )′ (𝟏 𝑾4

′ )]−(𝟏 𝑾4
′ )′. 

  𝐸(𝑆𝑆𝐿) = 𝜎𝑓
2𝑡𝑟[𝑻1𝑾4

′ 𝑾4] + 𝜎𝑒
2[𝑟𝑎𝑛𝑘(𝟏 𝑾4

′ )  − 𝑟𝑎𝑛𝑘(𝟏)]  

= 𝜎𝑓
2𝑡𝑟 [(𝑰 −

𝟏𝟏′

𝑇
 )𝑾4

′ 𝑾4] + 𝜎𝑒
2[𝑟𝑎𝑛𝑘(𝟏 𝑾4

′ )  − 𝑟𝑎𝑛𝑘(𝟏)] 

      = 𝜎𝑓
2𝑡𝑟 [𝑾4𝑾4

′ −
1

𝑇
(𝑾4𝟏)(𝑾4𝟏)

′] + 𝜎𝑒
2[𝑁 − 1] 

      = 𝜎𝑓
2𝑡𝑟(𝑮0) +  𝜎𝑒

2[𝑁 − 1].                                                                            (4.4.1.5) 

where 𝑮0 = [𝑮 −
1

𝑇
𝒑𝒑′ ]. 

     𝐸(𝑆𝑆𝐸) = (𝑇 − 𝑁)𝜎𝑒
2.                                                                                  (4.4.1.6) 

Thus, 𝐸 [
𝑆𝑆𝐿
𝑆𝑆𝐸

] = 𝑳(
𝜎𝑓
2

𝜎𝑒
2
) = 𝑳𝜎2.                                                                                              (4.4.1.7) 

where 𝑳 = [
𝑡𝑟(𝑮0) (𝑁 − 1)

0 (𝑇 − 𝑁)
] and  𝜎2 = (

𝜎𝑓
2

𝜎𝑒
2
).  
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Thus from (4.4.1.7) the unbiased estimator for 𝜎2 is obtained as 

                 𝜎2̂ = (
𝜎𝑓
2̂

𝜎𝑒
2̂
) =  𝑳−1 [

𝑆𝑆𝐿
𝑆𝑆𝐸

],                                                                                      (4.4.1.8) 

where  𝑳−1 =
1

(𝑇−𝑁)𝑡𝑟(𝑮0)
[
(𝑇 − 𝑁) −(𝑁 − 1)

0 𝑡𝑟(𝑮0)
]. 

Let  𝑻3 = 𝑻1𝑾4
′  

       = (𝑰 −
𝟏𝟏′

𝑁
)𝑾4

′  

                  = (𝑾4
′ −

𝟏𝒑′

𝑁
), and also we have 

          𝑾4𝑻1𝑾4
′  = 𝑾4 (𝑰 −

𝟏𝟏′

𝑁
)𝑾4

′   

                  = (𝑾4𝑾4
′ −

𝑾4𝟏(𝑾4𝟏)
′

𝑁
)  

                  = (𝑾4𝑾4
′ −

𝒑𝒑′

𝑁
)  

                  = (𝑮 −
𝒑𝒑′

𝑁
) = 𝑮0 (say).  

Thus, we can have 

           𝑆𝑆𝐿 = 𝒚
′[𝑻1𝑾4

′ (𝑾4𝑻1𝑾4
′ )
−
𝑾4𝑻1]𝒚 

                 = 𝒚′[𝑻3𝑮𝟎
−𝑻3

′ ]𝒚. 

Now, 𝑮0𝟏 = (𝑾4𝑾4
′ −

𝒑𝒑′

𝑁
) 𝟏 

                  = 𝑾4𝑾4
′ 𝟏 −

𝒑𝒑′

𝑁
𝟏 = 𝟎,  

which means that 𝑟𝑎𝑛𝑘(𝑮0) ≤ 𝑁 − 1, and since 𝑟𝑎𝑛𝑘(𝑾𝟒) = 𝑁, we get 𝑟𝑎𝑛𝑘(𝑮0) = (𝑁 −

1). 

 

 



88 
 

 
 

4.4.2 Variance of estimates 

In order to find the variances of estimates of the variance components we have to derive the 

dispersion matrix related to [
𝑆𝑆𝐿
𝑆𝑆𝐸

] as it is needed to study the sampling distribution of 𝜎2̂ in 

terms of variance and covariance.  

Consider the matrix, 𝑻4 = 𝑻3𝑮𝟎
−𝑻3

′ . Then using the results on dispersion of quadratic forms, 

under the assumption of normality, we get 

 𝑉𝑎𝑟(𝑆𝑆𝐿) = 𝑉𝑎𝑟(𝒚′𝑻3𝑮𝟎
−𝑻3

′ 𝒚) 

                   = 𝑉𝑎𝑟(𝒚′𝑻4𝒚)  

                   = 2𝑡𝑟(𝑻4𝑽𝒚)
2,  

                   = 2𝑡𝑟[𝑻3𝑮𝟎
−𝑻3

′ (𝜎𝑓
2𝑾4

′ 𝑾4 + 𝜎𝑒
2𝑰𝑇)]

2  

                   (where 𝑽𝒚= 𝐷(𝒚 𝜎𝑓
2⁄ , 𝜎𝑒

2) = 𝜎𝑓
2𝑾4

′ 𝑾4 + 𝜎𝑒
2𝑰𝑇) 

                     = 2𝑡𝑟[𝜎𝑓
4𝑻3𝑮𝟎

−𝑻3
′ 𝑾4

′ 𝑾4𝑻3𝑮𝟎
−𝑻3

′ 𝑾4
′ 𝑾4 + 𝜎𝑓

2𝜎𝑒
2𝑻3𝑮𝟎

−𝑻3
′ 𝑾4

′ 𝑾4𝑻3𝑮𝟎
−𝑻3

′  

                       +𝜎𝑓
2𝜎𝑒

2𝑻3𝑮𝟎
−𝑻3

′ 𝑻3𝑮𝟎
−𝑻3

′ 𝑾4
′ 𝑾4 + 𝜎𝑒

4𝑻3𝑮𝟎
−𝑻3

′ 𝑻3𝑮𝟎
−𝑻3

′ ].                           (4.4.2.1) 

Now, the first term in (4.4.2.1) is simplified as 

           2𝑡𝑟[𝜎𝑓
4𝑻3𝑮𝟎

−𝑻3
′ 𝑾4

′ 𝑾4𝑻3𝑮𝟎
−𝑻3

′ 𝑾4
′ 𝑾4]  

              = 2𝜎𝑓
4𝑡𝑟[𝑾4𝑻3𝑮𝟎

−𝑻3
′ 𝑾4

′ 𝑾4𝑻3𝑮𝟎
−𝑻3

′ 𝑾4
′ ]      

             = 2𝜎𝑓
4𝑡𝑟[(𝑾4𝑻3)𝑮𝟎

−(𝑾4𝑻3)
′(𝑾4𝑻3)𝑮𝟎

−(𝑾4𝑻3)
′] 

              = 2𝜎𝑓
4𝑡𝑟[𝑮0𝑮𝟎

−𝑮0𝑮0𝑮𝟎
−𝑮0]  

 = 2𝜎𝑓
4𝑡𝑟[𝑮𝟎

𝟐]. 

The second term in (4.4.2.1) is  

         2𝑡𝑟[𝜎𝑒
2𝑻3𝑮𝟎

−𝑻3
′ 𝑾4

′ 𝑾4𝑻3𝑮𝟎
−𝑻3

′ ]  

= 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑻3
′ 𝑻3𝑮𝟎

−𝑻3
′ 𝑾4

′ 𝑾4𝑻3𝑮𝟎
−] 
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             = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[(𝑻3
′ 𝑻3)𝑮𝟎

−(𝑾4𝑻3)
′(𝑾4𝑻3)𝑮𝟎

−]  

= 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑮0𝑮𝟎
−𝑮0𝑮0𝑮𝟎

−] 

             = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑮0𝑮0𝑮𝟎
−]  

             = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑮0𝑮𝟎
−𝑮0]  

             = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑮0]. 

The third term in (4.4.2.1) is expressed as  

       2𝑡𝑟[𝜎𝑓
2𝜎𝑒

2𝑻3𝑮𝟎
−𝑻3

′ 𝑻3𝑮𝟎
−𝑻3

′ 𝑾4
′ 𝑾4]  

            = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[(𝑾4𝑻3)𝑮𝟎
−(𝑻3

′ 𝑻3)𝑮𝟎
−(𝑾4𝑻3)

′] 

             = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑮0𝑮𝟎
−𝑮0𝑮𝟎

−𝑮0] 

            = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑮0𝑮𝟎
−𝑮0]  

            = 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟[𝑮0]. 

The fourth term in (4.4.2.1) is simplified as 

        2𝑡𝑟[𝜎𝑒
4𝑻3𝑮𝟎

−𝑻3
′ 𝑻3𝑮𝟎

−𝑻3
′ ]  

             = 2𝜎𝑒
4𝑡𝑟[(𝑻3

′ 𝑻3)𝑮𝟎
−(𝑻3

′ 𝑻3)𝑮𝟎
−]  

             = 2𝜎𝑒
4𝑡𝑟[𝑮0𝑮𝟎

−𝑮0𝑮𝟎
−]  

            = 2𝜎𝑒
4𝑡𝑟[𝑮0𝑮𝟎

−]  

            = 2𝜎𝑒
4𝑟𝑎𝑛𝑘[𝑮0]  

             = 2(𝑁 − 1)𝜎𝑒
4. 

Thus, final expression after substituting the results is  

        𝑉𝑎𝑟(𝑆𝑆𝐿) = 2[𝜎𝑓
4𝑡𝑟(𝑮𝟎

𝟐) + 2𝜎𝑓
2𝜎𝑒

2𝑡𝑟(𝑮0) + 2(𝑁 − 1)𝜎𝑒
4]                       (4.4.2.2) 

We see that 𝑾4𝑻0 = 0, and 𝑻4𝑻0 =  𝟎. Thus, we get 

         𝑻4𝑽𝒚𝑻0 = 𝑻4(𝜎𝑓
2𝑾4

′ 𝑾4 + 𝜎𝑒
2𝑰𝑇)𝑻0  
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         = 𝑻4(𝜎𝑓
2𝑾4

′ 𝑾4𝑻0 + 𝜎𝑒
2𝑰𝑇) = 0. 

Thus, we can get the following results 

          𝐶𝑜𝑣(𝑆𝑆𝐿 , 𝑆𝑆𝐸) = 𝐶𝑜𝑣(𝒚′𝑻4𝒚, 𝒚
′𝑻0𝒚)  

           = 2𝑡𝑟(𝑻4𝑽𝒚𝑻0𝑽𝒚) = 0.                                                                                         (4.4.2.3) 

          𝑉𝑎𝑟(𝑆𝑆𝐸)  =  𝑉𝑎𝑟(𝒚′𝑻0𝒚)  

          = 2𝑡𝑟(𝑻0𝑽𝒚)
2  

          = 2𝑡𝑟{𝑻0(𝜎𝑓
2𝑾4

′ 𝑾4 + 𝜎𝑒
2𝑰𝑇)𝑻0(𝜎𝑓

2𝑾4
′ 𝑾4 + 𝜎𝑒

2𝑰𝑇)}  

          = 2𝜎𝑒
4𝑡𝑟(𝑻0𝑻0)  

          = 2𝜎𝑒
4𝑡𝑟(𝑻0)  

          = 2(𝑇 − 𝑁)𝜎𝑒
4.                                                                                                     (4.4.2.4) 

The final dispersion matrix of 𝐷 (
𝑆𝑆𝐿
𝑆𝑆𝐸

)  is obtained as follows: 

       [
2[𝜎𝑓

4𝑡𝑟(𝑮𝟎
𝟐) + 2𝜎𝑓

2𝜎𝑒
2𝑡𝑟(𝑮0) + (𝑁 − 1)𝜎𝑒

4] 𝟎

𝟎 2(𝑇 − 𝑁)𝜎𝑒
4
].                              (4.4.2.5) 

The dispersion matrix related to (
𝜎𝑓
2̂

𝜎𝑒
2̂
) is given as 

           𝐷(𝜎2̂) = 𝐷 (
𝜎𝑓
2̂

𝜎𝑒
2̂
) 

                = 𝑳−1 [𝐷 (
𝑆𝑆𝐿
𝑆𝑆𝐸

)] (𝑳−1)′  

                = 2 (
𝒅11 𝒅12
𝒅21 𝒅22

),                                                                                                        (4.4.2.6) 

where 𝑑11= 
1

(𝑇−𝑁)(𝑡𝑟(𝑮0))
2 {
(𝑇 − 𝑁)(𝜎𝑓

4𝑡𝑟(𝑮𝟎
𝟐) + 2𝜎𝑓

2𝜎𝑒
2𝑡𝑟(𝑮0) + 𝜎𝑒

4)

+(𝑁 − 1)𝜎𝑒
4

}, 

𝑑12 = 𝑑21= −
(𝑁−1)𝜎𝑒

4

(𝑇−𝑁)𝑡𝑟(𝑮0)
  and 𝑑22 = 

𝜎𝑒
4

(𝑇−𝑁)
. 
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4.5 Robust designs for breeding experiments 

An optimal or efficient design for triallel or tetra-allele cross experiment may not allow the 

estimation of all elementary treatment contrasts or may become inefficient due to missing 

observation. Hence, it is much important to obtain robust designs against missing 

observation. The connectedness and efficiency criteria of robustness have been considered 

here to characterize robust designs involving triallel and tetra-allele crosses.  

Thus, a design for breeding experiments is said to be robust (considering the connectedness 

and efficiency criteria) against a missing observation, if remains connected and efficient even 

after the disturbances due to a missing observation. 

4.5.1 Robust designs for triallel cross experiments 

The robustness of designs involving triallel crosses against missing observation can be 

studied by investigating the connectedness and efficiency criteria of connectedness. Let the 

original design be denoted as 𝑑 and the residual design after the missing observation as 𝑑∗. 

Let  𝐂𝑑𝑔𝑐𝑎−ℎ𝑎𝑙𝑓
 and  𝐂𝑑𝑔𝑐𝑎−𝑓𝑢𝑙𝑙 are the information matrices related to half parents and that of 

full parents respectively under the original design 𝑑 and  𝐂𝑑∗𝑔𝑐𝑎−ℎ𝑎𝑙𝑓
 and  𝐂𝑑∗𝑔𝑐𝑎−𝑓𝑢𝑙𝑙 are the 

information matrices related to half parents and that of full parents for the residual design 𝑑∗. 

We consider the following usual model setup given in chapter III for triallel cross without sca 

effects: 

      𝒚 = 𝑦 ̅𝟏𝑇 +𝑾1
′ 𝒉 +𝑾2

′ 𝒈 + 𝒆, 

where 𝒉 and 𝒈 represents orthogonal treatment contrasts, both having (𝑁 − 1) degrees of 

freedom and can be used for obtaining orthogonal estimates of function of gca effects of half 

and full parents. 

4.5.1.1 Criterion of connectedness  

The design 𝑑  involving triallel cross is said to be robust against missing observation based 

on connectedness criterion if the residual design 𝑑∗ remains connected so that we can 

estimate all the elementary treatment contrasts pertaining to the  

 gca effect of first kind i.e. gca effect of half parents, and 

 gca effect of second kind i.e. gca effect of full parents. 

Thus a design 𝑑∗ will be fulfilling this criterion if 𝒉∗ and 𝒈∗ representing the new set of 

orthogonal treatment contrasts are having (𝑁 − 1) degrees of freedom. 
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4.5.1.2 Efficiency criterion 

A robust design involving triallel cross must be efficient pertaining to the gca effects of half 

as well as full parents. 

Efficiency criterion for half parents 

The efficiency of the design  𝑑∗ in comparison to the design 𝑑 can be calculated as  

                Eh = 
harmonic mean of non−zero eigenvalues of  𝐂𝑑∗𝑔𝑐𝑎−ℎ𝑎𝑙𝑓

harmonic mean of non−zero eigenvalues of  𝐂𝑑𝑔𝑐𝑎−ℎ𝑎𝑙𝑓

. 

Efficiency criterion for full parents 

The efficiency of the design  𝑑∗ in comparison to the design 𝑑 can be calculated as  

                  Ef  = 
harmonic mean of non−zero eigenvalues of  𝐂𝑑∗𝑔𝑐𝑎−𝑓𝑢𝑙𝑙

harmonic mean of non−zero eigenvalues of  𝐂𝑑𝑔𝑐𝑎−𝑓𝑢𝑙𝑙
. 

List of robust PTrC designs 

The designs for PTrC plans have been investigated for robustness using the connectedness 

and efficiency criteria and a list of robust designs against missing observation which are 

connected and are having efficiency more than equal to 80 percent is given in Tables 4.5.1.1 

to 4.5.1.4. These tables contain the parameters of the robust designs alongwith the degree of 

fractionation, efficiencies and the underlying method of construction used. There are two 

situations considered for both blocked and unblocked setup. In the first situation, 

corresponding to the missing cross other two crosses are also omitted to satisfy the structural 

symmetry property. In the second situation, all the crosses except the missing one are kept 

intact and the study is carried out.  

A list of robust PTrC designs under unblocked situation and maintaining SSP is given here in 

Table 4.5.1.1. The designs are having low degree of fractionation and high efficiencies. 

Table 4.5.1.1 Robust designs against a missing observation with SSP under unblocked 

situation 

S.No. N T f Eh Ef 
Design/Association scheme/ 

Method used for construction 

1 5 30 1.00 0.84 0.86 MOLS 

2 5 60 2.00 0.94 0.94 MOLS 

3 7 63 0.60 0.94 0.94 MOLS 
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4 7 126 1.20 0.98 0.98 MOLS 

5 10 30 0.08 0.99 0.92 Triangular Association Scheme 

6 10 90 0.25 0.95 0.96 Triangular Design 

7 11 165 0.33 0.98 0.98 MOLS 

8 11 330 0.67 0.99 0.99 MOLS 

9 13 39 0.05 0.99 0.95 Cyclic Association Scheme 

10 13 234 0.27 0.99 0.99 MOLS 

11 13 668 0.78 0.99 0.99 MOLS 

12 15 60 0.04 0.85 0.88 Triangular Association Scheme 

13 17 408 0.20 0.99 0.99 MOLS 

14 17 816 0.40 0.99 0.99 MOLS 

15 19 513 0.18 0.99 0.99 MOLS 

16 19 1026 0.35 0.99 0.99 MOLS 

17 21 105 0.03 0.94 0.95 Triangular Association Scheme 

18 23 759 0.14 0.99 0.99 MOLS 

19 23 1518 0.29 0.99 0.99 MOLS 

20 28 168 0.02 0.97 0.97 Triangular Association Scheme 

 

A list of robust PTrC designs under unblocked condition and without considering the SSP is 

given here in the Table 4.5.1.2. The efficiencies are slightly higher than the previous case 

where SSP was maintained. 

Table 4.5.1.2 Robust designs against a missing observation without SSP under 

unblocked situation 

S.No. N T f Eh Ef 
Design/Association scheme/ 

Method used for construction 

1 5 15 0.50 0.83 0.94 Cyclic Association Scheme 

2 5 30 1.00 0.95 0.95 MOLS 

3 5 60 2.00 0.98 0.98 MOLS 

4 7 63 0.60 0.98 0.98 MOLS 

5 7 126 1.20 0.99 0.99 MOLS 

6 10 30 0.08 0.92 0.92 Triangular Association Scheme 

7 10 90 0.25 0.99 0.98 Triangular Design 
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8 11 165 0.33 0.99 0.99 MOLS 

9 11 330 0.67 0.99 0.99 MOLS 

10 13 39 0.05 0.93 0.93 Cyclic Association Scheme 

11 13 234 0.27 0.99 0.99 MOLS 

12 13 668 0.78 0.99 0.99 MOLS 

13 15 60 0.04 0.97 0.97 Triangular Association Scheme 

14 17 408 0.20 0.99 0.99 MOLS 

15 17 816 0.40 0.99 0.99 MOLS 

16 19 513 0.18 0.99 0.99 MOLS 

17 19 1026 0.35 0.99 0.99 MOLS 

18 21 105 0.03 0.98 0.98 Triangular Association Scheme 

19 23 759 0.14 0.99 0.99 MOLS 

20 23 1518 0.29 0.99 0.99 MOLS 

21 28 168 0.02 0.99 0.99 Triangular Association Scheme 

 

A list of robust PTrC designs under blocked situation and maintaining SSP is provided here in 

Table 4.5.1.3. The designs are having low degree of fractionation and higher efficiencies.   

Table 4.5.1.3 Robust designs against a missing observation with SSP under blocked 

situation 

S.No. N b k T f Eh Ef 
Design/Association scheme/ 

Method used for construction 

1 5 2 15 30 1.00 0.81 0.84 MOLS 

2 5 4 15 60 2.00 0.93 0.93 MOLS 

3 7 3 21 63 0.60 0.93 0.94 MOLS 

4 7 6 21 126 1.20 0.97 0.97 MOLS 

5 8 2 24 48 0.29 0.88 0.90 Lattice Design 

6 9 9 12 108 0.43 0.95 0.96 Kronecker Product 

7 11 5 33 165 0.33 0.98 0.98 MOLS 

8 11 10 33 330 0.67 0.99 0.99 MOLS 

9 12 18 12 216 0.33 0.98 0.98 Kronecker Product 

10 13 3 52 156 0.18 0.98 0.98 BIBD 

11 13 6 39 234 0.27 0.98 0.99 MOLS-2 
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12 13 12 39 668 0.78 0.99 0.99 MOLS-1 

13 15 30 12 360 0.26 0.99 0.99 Kronecker Product 

14 17 8 51 408 0.20 0.99 0.99 MOLS-2 

15 17 16 51 816 0.40 0.99 0.99 MOLS-1 

16 18 2 180 360 0.15 0.99 0.99 Lattice Design 

17 19 9 57 513 0.18 0.99 0.99 MOLS-2 

18 19 18 57 1026 0.35 0.99 0.99 MOLS-1 

19 23 11 69 759 0.14 0.99 0.99 MOLS-2 

20 23 22 69 1518 0.29 0.99 0.99 MOLS-1 

A list of robust PTrC designs under a blocked situation without maintaining SSP is given here 

in Table 4.5.1.4. It can be seen that the efficiencies are slightly higher than the case where 

SSP is maintained. 

4.5.1.4 Robust designs against a missing observation without SSP under blocked 

situation 

S.No. N b k T f Eh Ef 
Design/Association scheme/  

Method used for construction 

1 5 2 15 30 1.00 0.95 0.95 MOLS 

2 5 4 15 60 2.00 0.98 0.98 MOLS 

3 7 3 7 21 0.20 0.86 0.86 BIBD 

4 7 3 21 63 0.60 0.98 0.98 MOLS 

5 7 6 21 126 1.20 0.99 0.99 MOLS 

6 8 2 24 48 0.29 0.97 0.97 Lattice Design 

7 9 9 12 108 0.43 0.99 0.99 Kronecker Product 

8 9 4 9 36 0.14 0.94 0.94 Lattice Design 

9 10 5 6 30 0.08 0.97 0.78 Triangular Design 

10 11 5 33 165 0.33 0.99 0.99 MOLS 

11 11 10 33 330 0.67 0.99 0.99 MOLS 

12 12 18 12 216 0.33 0.99 0.99 Kronecker Product 

13 13 3 52 156 0.18 0.99 0.99 BIBD 

14 13 6 39 234 0.27 0.99 0.99 MOLS 

15 13 12 39 668 0.78 0.99 0.99 MOLS 

16 15 30 12 360 0.26 0.99 0.99 Kronecker Product 
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17 17 8 51 408 0.20 0.99 0.99 MOLS 

18 17 16 51 816 0.40 0.99 0.99 MOLS 

19 18 2 180 360 0.15 0.99 0.99 Lattice Design 

20 19 9 57 513 0.18 0.99 0.99 MOLS 

21 19 18 57 1026 0.35 0.99 0.99 MOLS 

22 23 11 69 759 0.14 0.99 0.99 MOLS 

23 23 22 69 1518 0.29 0.99 0.99 MOLS 

 

4.5.2 Robust design for tetra-allele cross experiments 

In a similar manner, the robustness of designs involving tetra-allele crosses against missing 

observation can be studied by investigating the connectedness and efficiency criteria.  

List of robust PTeC designs 

Designs constructed for tetra-allele cross plan under blocked and unblocked situations has 

been considered and investigated for robustness against a missing observation. The list of 

robust designs alongwith the efficiencies is given in the Tables 4.5.2.1 and 4.5.2.2. The 

parameters of the designs alongwith the degree of fractionation and efficiencies have been 

tabulated. 

A list of robust PTeC designs against missing observations under unblocked situation is given 

in the Table 4.5.2.1.  

Table 4.5.2.1 Robust tetra-allele cross designs constructed using MOLS  

       against  a missing  observation under unblocked situation 

S.No. N T f E 

1 5 10 0.67 0.83 

2 7 21 0.20 0.93 

3 11 55 0.06 0.98 

4 13 78 0.04 0.98 

5 17 136 0.02 0.99 

6 19 171 0.01 0.99 

7 23 253 0.01 0.99 
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A list of robust PTeC under blocked situation is given in the Table 4.5.2.2. The designs are 

having low degree of fractionation alongwith higher efficiencies and thus, can be used in case 

an observation is missing without much loss of precision.  

Table 4.5.2.2 Robust tetra-allele cross designs constructed using MOLS 

 against a missing observation under blocked situation 

S.No. N b k T f E 

1 5 2 5 10 0.67 0.80 

2 7 3 7 21 0.20 0.92 

3 11 5 11 55 0.06 0.98 

4 13 6 13 78 0.04 0.98 

5 17 8 17 136 0.02 0.99 

6 19 9 19 171 0.01 0.99 

7 23 11 23 253 0.01 0.99 

 



 
 

 

Chapter-5                                                                      DISCUSSION 

 

5.1 Introduction 

The major objective of breeding is releasing new hybrids with enhanced genetic potential, 

which is based on information on general and specific combining abilities, information 

related to variance components and predictor of yielding capacities of crosses. Further, 

designs used for attaining these goals should be robust against disturbances like missing 

observation(s).  

In this study, optimal and efficient class of designs involving higher order crosses (triallel and 

tetra-allele) have been obtained considering a fixed effects model. Robustness of these 

designs against missing observation has also been studied. Further, under a random effects 

model set up, the Best Linear Unbiased Predictor (BLUP) for yielding capacity of cross has 

been obtained. The unbiased estimates of variance components alongwith sampling 

distribution have also been obtained. 

A brief discussion on various research findings related to methodology, designs obtained and 

their characterization properties is given here.  

5.2 Triallel and tetra-allele cross plans incorporating sca effects 

Under a fixed effects model including sca effects for triallel crosses, the estimates of general 

and specific combining abilities have been obtained. A class of designs for triallel crosses 

arranged in blocks has been obtained using triangular association scheme and information 

matrices, eigenvalues, variance factors, efficiency factors and degree of fractionation have 

been derived.  

Another method of constructing partial triallel cross designs has also been developed using 

various types of lattice designs viz., square, rectangular, circular and cubic lattice. This 

method gives designs for triallel crosses under blocked set up for a wide range of parameters. 

Both the proposed classes of designs are having low degree of fractionation with high 

efficiencies. The main restriction of first series of designs is that these designs are available 

only for cases where the number of lines is of the particular form 𝑁 =
𝑛(𝑛−1)

2
. The second 
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series is available for many combinations and can be used in conjunction with the first 

method to fill the gaps of designs not available for particular parameters.  

The third method, of constructing partial triallel cross plans is based on Kronecker product of 

incidence matrices. The incidence matrices of two BIB designs with small block sizes are 

used as input designs to construct designs with desired combination of parameters. The 

method is very simple and gives partial triallel cross plans. The plans obtained with this 

method are also having low degree of fractionation and high efficiencies and can be used 

when there is scarcity of resources. This method along with the other two methods can 

provide designs for almost all sets of parametric combinations. With an adequate knowledge 

of block designs, all the proposed crossing plans can easily be constructed. These plans can 

save a lot of resources and time of the breeders. A list of parameters and efficiency factor for 

the designs developed by these three methods is given in Tables 4.2.1.3.1 to 4.2.1.3.3 of 

Chapter 4.  

Under a restricted model including lower order sca effects for tetra-allele crosses, conditions 

of orthogonality have been derived for a block design such that the contrasts pertaining to the 

gca effects and sca effects are estimated free from each other, after eliminating the other 

nuisance factors. Conditions for universal optimality of block designs for tetra-allele cross 

experiments have been derived and various related results regarding the existence of optimal 

designs have been deduced. A method of construction of optimal block designs has been 

described and a class of optimal designs based on Mutually Orthogonal Latin Squares have 

been obtained. The proposed class of designs satisfy the conditions of optimality of 

equireplicated design for estimating gca effects while including sca effects in the underlying 

model. The existence of the above optimal class of designs does not mean that there are no 

other such classes but further work in this area is needed for determining more optimal 

classes of designs because this method is not for all ranges of parameters. 

5.3 Prediction of combining ability effects 

The Best Linear Unbiased Predictor (BLUP) for predicting the unobserved combining ability 

effects together with general mean effect in tetra-allele cross design has been obtained. For 

predicting the yielding capacity of the crosses from the sample of inbred lines, where 

observations are taken on some random variables and the value of some other related random 

variables that cannot be observed is to be predicted. BLUP is useful for unbiased prediction 
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of the yielding capacity of the crosses from the sample of inbred lines under random effects 

model. 

A lower bound of mean square error of prediction has been also derived which can be further 

used to find optimal designs regarding for prediction of yielding capacity of crosses. This 

bound can be used to characterize various classes of optimal designs. 

5.4 Variance components estimates 

The variance component estimates along with their large sample variances, using mixed 

linear model approach in tetra-allele crosses has been obtained using Henderson Method III.  

BLUP of the unobserved line effects are used for ranking the value of inbred lines, which will 

increase the productivity of future generation. But the prediction of line effects depends on 

good estimates of variance components related to line effects and error. Thus, variance 

components are of much interest for breeders. Besides this, the genetic parameter heritability 

on which the breeding policies depends is also a function of variance components. 

5.5 Robust design for breeding experiments 

Robustness of designs for triallel cross experiments have been investigated using 

connectedness and efficiency criteria against missing observation under unblocked situation 

(Table 4.5.1.1 of Chapter 4) and maintaining the structural symmetry property (SSP). The 

designs are connected when SSP is maintained, only if the number of lines is more than 5. 

Moreover, the designs are having good efficiencies for estimating the contrasts pertaining to 

gca effects of half as well as full parents. 

In another approach, the SSP is neglected and robustness of newly developed and previously 

available designs for triallel cross experiments have been investigated using connectedness 

and efficiency criteria against missing observation under unblocked situation and a list of 

such efficient designs has been given in Table 4.5.1.2. The main advantage over the previous 

one is that the designs can be used for lower number of lines also as they remain connected. 

Further, the efficiencies are much higher. 

Under blocked set up too, robustness of designs for triallel cross experiments with SSP has 

been investigated using connectedness and efficiency criteria against missing observation. 

The designs given in Table 4.5.1.3 can be advantageously used in the situation where the 
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number of lines or the crosses is high and thus homogeneity cannot be maintained. These 

designs, with smaller block sizes are more appropriate for the situation.  

Also, robustness of designs for triallel cross experiments have been investigated using 

connectedness and efficiency criteria against missing observation without accounting for SSP 

property. These designs are robust and efficient against a missing observation. A list of 

parameters of such designs alongwith the degree of fractionation and efficiencies can be seen 

in Table 4.5.1.4. 

Furthermore, robustness of  designs for tetra-allele cross experiments have been investigated 

using connectedness and efficiency criteria against missing observation under unblocked 

situation The designs are having low degree of fractionation alongwith high efficiency 

factors. These can be used as robust designs for tetra-allele cross experiments against a 

missing observation. These designs are catalogued in Table 4.5.2.1 alongwith efficiency 

factor. 

Again, under blocked situation, robustness designs for triallel cross experiments have been 

investigated using connectedness and efficiency criteria against missing observation. The 

designs given in Table 4.5.2.2 can be used with increased precision of estimates as we are 

getting designs with crosses arranged in blocks.  

Overall, Tables (4.5.1.1-4.5.1.4) and Tables (4.5.2.1-4.5.2.2) give lists of good efficient 

designs that are robust in performance, if an observation is missing, by any disturbance in the 

experiment. These designs are advocated to the breeders who deal with higher order crossing 

plans as in such trials, there is a fair chance of missing observation. 



 
 

 
 

SUMMARY AND CONCLUSIONS 

One of the major objectives of plant and animal breeding is to develop new hybrids with 

enhanced genetic potential. For this purpose information on combining abilities, variance 

component estimates alongwith their distributions, predictor of yielding capacities of crosses 

and robust designs are needed by the breeders. Triallel and tetra-allele crosses are considered 

for the investigatory study as they can provide more information on specific combining 

abilities as compared to diallel crosses and are having better individual as well as population 

buffering mechanisms due to wider genetic base.  

An introduction to importance of various types of designs used in breeding along with their 

merits and demerits has been given in Chapter I. The importance of using different types of 

models and their applications has been also described. In this chapter, the motivation under 

which the objectives are undertaken along with the scope of the thesis has been explained. 

In Chapter II of the thesis, a critical review of the research work related to the objectives has 

been given. Section wise review of research work related to triallel and tetra-allele cross 

designs, mating designs incorporating specific combining ability effects, prediction of 

combining ability effects, variance components estimates and robust design for breeding 

experiments has been elucidated. 

The material and methods related to the research work are described in the Chapter III of the 

thesis. In this chapter, various fixed effects models for triallel and tetra-allele cross 

experiments have been described. The random effects model for tetra-allele cross 

experiments without specific combining ability effects have been described which is to be 

used for the pupose of Best Linear Unbiased Prediction of yielding capacity of crosses and 

for variance components estimation. The definition of Best Linear Unbiased Predictor and its 

properties has been discussed. The concept of robustness along with the connectedness and 

efficiency criteria has been discussed and the procedure of investigating the robustness of 

designs against missing observation has been described. The various definitions and designs 

used in this thesis have been also given in this chapter.  

The first section of Chapter IV of this thesis dedicates to higher order mating designs 

including specific combining abililies. Under a fixed effects model including sca effects for 

triallel crosses, the estimates of general and specific combining abilities have been obtained. 

A class of designs for triallel cross experiments with crosses arranged in blocks have been 
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obtained and various characterization properties including information matrices, eigenvalues, 

variance factors, efficiency factors and degree of fractionation have been derived. Another 

two classes are obtained based on lattice designs and Kronecker product of incidence 

matrices. The main restriction of first method is that they are only available for a particular 

set of parameters but the other two methods are available for wide range of parameters. All 

the three methods are having low degree of fractionation alongwith higher efficiencies and 

can be used together to provide designs for almost all set of parametric combinations. Under 

a restricted model including lower order specific combining ability effects for tetra-allele 

crosses, the orthogonal estimates of general and specific combining ability effects under a 

block design set up have been obtained. A general method of construction of optimal block 

designs has been described and a class of design based on Mutually Orthogonal Latin Squares 

have been obtained. These designs along with lower degree of fractionation also satisfy the 

conditions of universal optimality of equireplicated designs for estimating gca effects, 

including sca effects in the model. In the second section of Chapter IV, the Best Linear 

Unbiased Predictor for predicting the unobserved combining ability effects together with 

general mean effect in tetra-allele cross design have been obtained. A lower bound of mean 

square error of prediction has been also derived which can be further used to find optimal 

designs. The third section of chapter IV deals with variance components. The variance 

component estimates along with their large sample variances, using mixed linear model 

approach in tetra-allele crosses has been obtained using Henderson Method III. In these two 

sections, a random effect model is used. In last section of Chapter IV robustness of designs 

for triallel and tetra-allele cross experiments have been investigated using connectedness and 

efficiency criteria against a missing observation under unblocked and blocked setup. These 

robust designs have been tabulated with efficiency factors. The list of efficient designs with 

lower degree of fractionation for triallel and tetra-allele cross experiments under blocked and 

unblocked setup can be used as robust designs against a missing observation. 

In Chapter V, a general discussion on various methodologies developed and designs obtained 

has been given.  Finally, the thesis concludes with a brief summary, abstract and 

bibliography. SAS codes have been provided in the Annexure after the bibliography.  

An attempt has been made to fill the larger gaps existing in literature. Considering the 

increasing popularity of higher order crosses among breeders, there is a need to obtain more 

classes of designs to meet their requirements.  A class of optimal design based on MOLS 

have been obtained. More classes of optimal designs are needed to be characterized. BLUP 
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for predicting the yielding capacity of crosses, variance component estimates along with their 

large sample variances, has been obtained under unblocked situation. Hence, there is a need 

to work for blocked situation. Robustness of designs has been investigated against a missing 

observation. There is need to investigate for other disturbances also.  



ABSTRACT 

The major objective of a breeding programme is to release new hybrids with enhanced 

genetic potential, which is based on information on general and specific combining abilities, 

information related to variance components and predictor of yielding capacities of crosses. 

Further, designs used for attaining these goals should be robust against disturbances like 

missing observation. Higher order crosses like triallel and tetra-allele crosses are considered 

as they, being genetically more viable and consistent performers, can provide more 

information on combining abilities. Under a fixed effects model including specific combining 

abilities, the estimates of combining abilities have been obtained for both triallel and tetra-

allele crosses. A method of construction of partial triallel crosses arranged in blocks has been 

obtained based on two-associate triangular association scheme alongwith the information 

matrices, eigenvalues, variance factors, efficiency factor and degree of fractionation. Another 

two methods of constructing partial triallel cross designs have also been obtained using 

various types of Lattice designs and Kronecker product of incidence matrices respectively. 

All these methods are efficient alongwith lower degree of fractionation. A class of orthogonal 

tetra-allele cross designs for estimating contrasts pertaining to general combining ability 

effects  has been obtained under a reduced model including lower order specific combining 

ability effects using mutually orthogonal Latin squares. The obtained class satisfies the 

condition of optimality for eqiureplicated designs for tetra-allele crosses and are having low 

degree of fractionation. Also, under a random effect model excluding specific combining 

ability effects for tetra-allele crosses, the Best Linear Unbiased Predictor (BLUP) for yielding 

capacity of cross has been obtained. A lower bound to mean square prediction error for 

characterizing optimal class of designs has been obtained. The lower bound so obtained is 

important in finding optimal designs. The unbiased estimates of variance components 

alongwith sampling distribution have been obtained following Henderson Method III. These 

parameters can be further used for obtaining the estimates of genetic parameters. The 

robustness of designs against missing observation using connectedness and efficiency criteria 

has been studied and a list of efficient robust designs for triallel and tetra-allele crosses has 

been tabulated. A list of robust and efficient designs with lower degree of fractionation is 

very much helpful for the breeders in situations of missing observation. Programs have been 

written in SAS [PROC IML] software for computing efficiency factor of the designs 

involving triallel crosses for estimating gca effects to investigate the robustness of designs 

against missing observation by calculating the canonical efficiency. 



सार 

प्रजनन का प्रमखु उदे्दश्य बढ़ी हुई आनुवंशिक क्षमता वाले सकंर जारी करना होता है, जो कक 
सामान्य एवं ववशिष्ट सयंोजन क्षमताओं की जानकारी, प्रसरण घटकों और क्रॉस की उपज 
क्षमता के पूववसचूक से सबंन्न्ित जानकारी पर आिाररत होता है। इसके अशतररक्त, इन लक्ष्यों 
को प्राप्त करने हेतु उपयोग की जाने वाली अशिकल्पनाएं लपु्त उवक्त जसैी अव्यवस्था के समक्ष 
मजबूत होनी चाकहए। वि-पथ एवं चार-पथ क्रॉस जसेै उच्च-स्तरीय क्रॉस, कि-पथ क्रॉस की 
तुलना मे आनुवांशिक रूप से अशिक जीवक्षम और न्स्थर प्रदिवन करने वाले होते हैं, सयंोजक 
क्षमता की अशिक जानकारी प्रदान करते हैं और व्यापक आनुवांशिक आिार होने के कारण 
व्यवक्तगत एवं जनसखं्या के रूप में बेहतर बफररंग तंि को प्रदशिवत करते हैं। ववशिष्ट सयंोजन 
क्षमताओं को सन्ममशलत कर एक शनन्ित प्रिाव मॉडल के अंतगवत वि-पथ एव ंचार-पथ क्रॉसों 
के शलए सयंोजन क्षमताओं के अनुमान ज्ञात ककए गए हैं। कि-सहिागी विकोणीय योजना पर 
आिाररत खडंों में व्यवन्स्थत आंशिक वि-पथ क्रॉसों की शनमावण ववशि के साथ में सचूना 
आव्यूह, आइगेन मलू्य, प्रसरण कारक, दक्षता कारक एव ंवविाजन की मािा प्राप्त की गई है। 
लकैटस अशिकल्पनाओं एवं व्यापकता आव्यूहों  के गुणन का प्रयोग कर आंशिक वि-पथ क्रॉसों 
की अन्य दो शनमावण ववशियााँ िी प्राप्त की गई हैं। शनचले क्रम की  ववशिष्ट सयंोजन क्षमताओं 
को सन्ममशलत कर एक कमतर मॉडल के अतंगवत चार-पथ क्रॉसों के शलए सामान्य सयंोजन 
क्षमताओं से सबंन्न्ित कंट्रास्टों के अनुमान हेत ुओथोगोनल चार-पथ क्रॉस अशिकल्पनाओं की 
एक इष्टतम श्रणेी प्राप्त की गई है। ववशिष्ट सयंोजन क्षमताओं को छोड़ कर एक अशनयशमत-
प्रिाव मॉडल के अतंगवत चार-पथ क्रॉसों के शलए उपज की छमता हेतु BLUP प्राप्त ककया गया 
है। अशिकल्पनाओं के इष्टतम वगों के वविेषीकरण हेतु MSE के शलए एक न्यून सीमा िी 
प्राप्त की गई है। अशनयशमत-प्रिाव मॉडल के अतंगवत हेंडरसन ववशि III का प्रयोग कर सैंपशलगं 
ववतरण सकहत प्रसरण घटकों के शनष्पक्ष अनमुान प्राप्त ककए गए हैं। सन्युक्तता एव ंदक्षता 
मापदंड का प्रयोग कर लपु्त-उवक्त की न्स्थशत में अशिकल्पनाओं की मजबूती ज्ञात की गई है 
एवं वि-पथ एवं चार-पथ क्रॉसों के शलए ऐसी मजबूत अशिकल्पनाओं को तशलकाबद्ध िी ककया 
गया है। SAS [PROC IML] सॉफ्टवेयर में सामान्य सयंोजन क्षमताओं से सबंन्न्ित कंट्रास्टों 
के अनुमान हेतु दक्षता कारक एवं लपु्त उवक्त की न्स्थशत में अशिकल्पनाओं की मजबूती ज्ञात 
करने के शलए कनोशनकल दक्षता कारक के पररकलन हेतु प्रोग्राम शलखे गए हैं ।  
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Annexure-I 
 

SAS code for computing variance factors of the design involving triallel crosses for estimating 

gca effects for half parents as well as full parents under unblocked set-up 

 

Data Triallel; 

input line1 line2 line3; 

cards; 

1 2 5 

1 3 6 

1 4 7 

2 3 8 

2 4 9 

3 4 10 

1 5 2 

1 6 3 

1 7 4 

5 6 8 

; 

run; 

prociml; 

usetriallel; 

read all into cross; 

print xx; 

k=max(cross[ ,1]); 

kk=max(cross[ ,2]); 

l=max(k,kk); 

ll=comb(l,2); 

print l; 

printll; 

m=j(nrow(cross),1,1); 

print cross; 

x=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

do j=1toncol(cross)-1; 

if cross[i,j]>0then 

x[k,cross[i,j]]=1; 

end; 

k=k+1; 

end; 

x=x/2; 

print x; 

z=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

if cross[i,3]>0then 
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z[k,cross[i,3]]=1; 

k=k+1; 

end; 

z=z; 

print z; 

x2=m; 

c11=(x`*x)-(x`*x2)*ginv(x2`*x2)*(x2`*x); 

c12=(x`*z)-(x`*x2)*ginv(x2`*x2)*(x2`*z); 

c22=(z`*z)-(z`*x2)*ginv(x2`*x2)*(x2`*z); 

c_mat=(c11||c12)//(c12`||c22); 

*print c_mat; 

c_halfparent=c11-c12*ginv(c22)*c12`; 

c_fullparent=c22-c12`*ginv(c11)*c12; 

printc_halfparent; 

printc_fullparent; 

l=nrow(c_halfparent); 

ll=comb(nrow(c_halfparent),2); 

contrast=j(ll,l,0); 

k=1; 

doi=1to l-1; 

do j=ito l-1; 

contrast[k,i]=1; 

contrast[k,j+1]=-1; 

k=k+1; 

end; 

end; 

*print contrast; 

varcov_halfparent=contrast*ginv(c_halfparent)*contrast`; 

varcov_fullparent=contrast*ginv(c_fullparent)*contrast`; 

printvar_halfparent; 

printvar_fullparent; 

var_halfparent=j(ll,1,0); 

doi= 1toll; 

var_halfparent[i,1]=varcov_halfparent[i,i]; 

end; 

ave_var_halfparent=var_halfparent[+, ]/nrow(var_halfparent); 

printvar_halfparent; 

printave_var_halfparent; 

var_fullparent=j(ll,1,0); 

doi= 1toll; 

var_fullparent[i,1]=varcov_fullparent[i,i]; 

end; 

printvar_fullparent; 

ave_var_fullparent=var_fullparent[+, ]/nrow(var_fullparent); 

printave_var_fullparent; 

quit; 

 



 

 

Annexure-II 
 

SAS code for computing canonical efficiency factor of the design involving triallel crosses for 

estimating gca effects for half parents as well as full parents under blocked set-up. 

 

%let r1=6;/*replication of half parents*/ 

%let r2=3;/*replication of full parents*/ 

dataTriallel; 

input Block line1 line2 line3; 

cards; 

1 1 2 3 

1 4 5 6 

1 7 8 9 

1 10 11 12 

1 13 14 15 

1 16 17 18 

1 19 20 21 

1 22 23 24 

1 25 26 27 

1 1 3 2 

; 

run; 

prociml; 

usetriallel; 

read all into xx; 

/*print xx;*/ 

cross=xx[ ,2]||xx[ ,3]||xx[ ,4]; 

m=j(nrow(cross),1,1); 

/*print cross;*/ 

x=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

do j=1toncol(cross)-1; 

if cross[i,j]>0then 

x[k,cross[i,j]]=1; 

end; 

k=k+1; 

end; 

z=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

if cross[i,3]>0then 

z[k,cross[i,3]]=1; 

k=k+1; 

end; 

block=j(nrow(xx[ ,1]),max(xx[ ,1]),0); 

k=1; 

doi=1tonrow(xx[ ,1]); 

if xx[i,1]>0then 

block[k,xx[i,1]]=1; 

k=k+1; 

end; 

x2=m||block; 

c11=(x`*x)-(x`*x2)*ginv(x2`*x2)*(x2`*x); 
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c12=(x`*z)-(x`*x2)*ginv(x2`*x2)*(x2`*z); 

c22=(z`*z)-(z`*x2)*ginv(x2`*x2)*(x2`*z); 

c_mat=(c11||c12)//(c12`||c22); 

c_halfparent=c11-c12*ginv(c22)*c12`; 

c_fullparent=c22-c12`*ginv(c11)*c12; 

l=nrow(c_halfparent); 

ll=comb(nrow(c_halfparent),2); 

contrast=j(ll,l,0); 

k=1; 

doi=1to l-1; 

do j=ito l-1; 

contrast[k,i]=1; 

contrast[k,j+1]=-1; 

k=k+1; 

end; 

end; 

ginv_hp=ginv(c_halfparent); 

ginv_fp=ginv(c_fullparent); 

varcov_halfparent=contrast*ginv(c_halfparent)*contrast`; 

varcov_fullparent=contrast*ginv(c_fullparent)*contrast`; 

var_halfparent=j(ll,1,0); 

doi= 1toll; 

var_halfparent[i,1]=varcov_halfparent[i,i]; 

end; 

ave_var_halfparent=var_halfparent[+, ]/nrow(var_halfparent); 

var_fullparent=j(ll,1,0); 

doi= 1toll; 

var_fullparent[i,1]=varcov_fullparent[i,i]; 

end; 

ave_var_fullparent=var_fullparent[+, ]/nrow(var_fullparent); 

eigH=eigval(c_halfparent); 

printeigH; 

eigF=eigval(c_fullparent); 

printeigF; 

eigH1=eigH[loc(eigH>0.0000001),];/*positive eigen values*/ 

eigF1=eigF[loc(eigF>0.0000001),];/*positive eigen values*/ 

eigH2=eigH1/&r1; 

eigF2=eigF1/&r2; 

eigH3=1/eigH2; 

eigF3=1/eigF2; 

CanEffFacH=nrow(eigH3)/sum(eigH3); 

CanEffFacF=nrow(eigF3)/sum(eigF3); 

printCanEffFacH; 

printCanEffFacF; 

 

quit; 

 

 

 

 

 
 

 



 

 

Annexure-III 
 

SAS code for computing efficiency of the disturbed design involving triallel crosses for 

estimating gca effects for half parents as well as full parents under unblocked set-up to 

investigate the robustness of designs against missing observation using the connectedness and 

efficiency criteria. 

 

Data Triallel; 

input line1 line2 line3; 

cards; 

 

1 2 8 

2 3 8 

3 4 8 

4 5 8 

5 6 8 

6 7 8 

7 1 8 

1 3 8 

3 5 8 

5 7 8 

; 

 

run; 

 

proc iml; 

use triallel; 

read all into cross; 

/*print xx;*/ 

k=max(cross[ ,1]); 

kk=max(cross[ ,2]); 

l=max(k,kk); 

ll=comb(l,2); 

 

*print l; 

*print ll; 

 

m=j(nrow(cross),1,1); 

 

/*print cross;*/ 

 

x=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

do j=1toncol(cross)-1; 

if cross[i,j]>0then 

x[k,cross[i,j]]=1; 

end; 

k=k+1; 

end; 

 

*print x; 
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z=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

if cross[i,3]>0then 

z[k,cross[i,3]]=1; 

k=k+1; 

end; 

 

*print z; 

 

x2=m; 

c11=(x`*x)-(x`*x2)*ginv(x2`*x2)*(x2`*x); 

c12=(x`*z)-(x`*x2)*ginv(x2`*x2)*(x2`*z); 

c22=(z`*z)-(z`*x2)*ginv(x2`*x2)*(x2`*z); 

c_mat=(c11||c12)//(c12`||c22); 

 

*print c_mat; 

 

c_halfparent=c11-c12*ginv(c22)*c12`; 

c_fullparent=c22-c12`*ginv(c11)*c12; 

 

*print c_halfparent; 

*print c_fullparent; 

 

l=nrow(c_halfparent); 

ll=comb(nrow(c_halfparent),2); 

contrast=j(ll,l,0); 

k=1; 

doi=1to l-1; 

do j=ito l-1; 

contrast[k,i]=1; 

contrast[k,j+1]=-1; 

k=k+1; 

end; 

end; 

 

*print contrast; 

 

varcov_halfparent=contrast*ginv(c_halfparent)*contrast`; 

varcov_fullparent=contrast*ginv(c_fullparent)*contrast`; 

 

*print var_halfparent; 

*print var_fullparent; 

 

var_halfparent=j(ll,1,0); 

doi= 1toll; 

var_halfparent[i,1]=varcov_halfparent[i,i]; 

end; 

ave_var_halfparent=var_halfparent[+, ]/nrow(var_halfparent); 

 

*print var_halfparent; 

*print ave_var_halfparent; 

 

var_fullparent=j(ll,1,0); 

doi= 1toll; 
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var_fullparent[i,1]=varcov_fullparent[i,i]; 

end; 

 

*print var_fullparent; 

ave_var_fullparent=var_fullparent[+, ]/nrow(var_fullparent); 

*print ave_var_fullparent; 

 

eig=eigval(c_halfparent); 

eig1=eig[loc(eig>0.0000001),];/*positive eigen values*/ 

hm_half_1=harmean(eig1); 

print hm_half_1; 

eig=eigval(c_fullparent); 

eig1=eig[loc(eig>0.0000001),];/*positive eigen values*/ 

hm_full_1=harmean(eig1); 

print hm_full_1; 

 

/**********CHECKING Robustness (without changing the number of crosses)*****/ 

/* Enter the number of crosses to be deleted*/ 

 

editTriallel; 

delete all 

where((line1=1&&line2=2&&line3=8)|(line1=2&&line2=8&&line3=1)|(line1=8&&line2=1&&line3

=2));   /*change the lines to see the robustness*/ 

closeTriallel; 

usetriallel; 

read all intocross_n; 

k=max(cross_n[ ,1]); 

kk=max(cross_n[ ,2]); 

l=max(k,kk); 

ll=comb(l,2); 

 

*print l; 

*print ll; 

 

m_n=j(nrow(cross_n),1,1); 

x_n=j(nrow(cross_n),max(cross_n),0); 

k=1; 

doi=1tonrow(cross_n); 

do j=1toncol(cross_n)-1; 

ifcross_n[i,j]>0then 

x_n[k,cross_n[i,j]]=1; 

end; 

k=k+1; 

end; 

 

*print x_n; 

 

z_n=j(nrow(cross_n),max(cross_n),0); 

k=1; 

doi=1tonrow(cross_n); 

ifcross_n[i,3]>0then 

z_n[k,cross_n[i,3]]=1; 

k=k+1; 

end; 

 



A-8 

 

*print z_n; 

x2_n=m_n; 

c11_n=(x_n`*x_n)-(x_n`*x2_n)*ginv(x2_n`*x2_n)*(x2_n`*x_n); 

c12_n=(x_n`*z_n)-(x_n`*x2_n)*ginv(x2_n`*x2_n)*(x2_n`*z_n); 

c22_n=(z_n`*z_n)-(z_n`*x2_n)*ginv(x2_n`*x2_n)*(x2_n`*z_n); 

c_mat_n=(c11_n||c12_n)//(c12_n`||c22_n); 

 

*print c_mat_n; 

 

c_halfparent_n=c11_n-c12_n*ginv(c22_n)*c12_n`; 

c_fullparent_n=c22_n-c12_n`*ginv(c11_n)*c12_n; 

eig_n=eigval(c_halfparent_n); 

eig1_n=eig_n[loc(eig_n>0.0000001),];/*positive eigen values*/ 

hm_half_1_n=harmean(eig1_n); 

print hm_half_1_n; 

eig_n=eigval(c_fullparent_n); 

eig1_n=eig_n[loc(eig_n>0.0000001),];/*positive eigen values*/ 

hm_full_1_n=harmean(eig1_n); 

print hm_full_1_n; 

Robustness_half=hm_half_1_n/hm_half_1; 

Robustness_full=hm_full_1_n/hm_full_1; 

printRobustness_halfRobustness_full; 

quit; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Annexure-IV 
 

SAS code for computing canonical efficiency of the disturbed design involving triallel crosses for 

estimating gca effects for half parents as well as full parents under blocked set-up to investigate 

the robustness of designs against missing observation using the connectedness and efficiency 

criteria. 

 

Data Triallel; 

input Block line1 line2 line3; 

cards; 

1 1 2 3 

1 2 3 4 

1 3 4 5 

1 4 5 6 

1 5 6 7 

1 6 7 8 

1 7 8 9 

1 8 9 10 

1 9 10 11 

1 10 11 12 

; 

 

run; 

  

proc iml; 

usetriallel; 

read all into xx; 

 

/*print xx;*/ 

 

cross=xx[ ,2]||xx[ ,3]||xx[ ,4]; 

m=j(nrow(cross),1,1); 

 

/*print cross;*/ 

 

x=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

do j=1toncol(cross)-1; 

if cross[i,j]>0then 

x[k,cross[i,j]]=1; 

end; 

k=k+1; 

end; 

 

*print x; 

z=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

if cross[i,3]>0then 

z[k,cross[i,3]]=1; 

k=k+1; 

end; 
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*print z; 

 

block=j(nrow(xx[ ,1]),max(xx[ ,1]),0); 

k=1; 

doi=1tonrow(xx[ ,1]); 

if xx[i,1]>0then 

block[k,xx[i,1]]=1; 

k=k+1; 

end; 

 

*print block; 

 

x2=m||block; 

c11=(x`*x)-(x`*x2)*ginv(x2`*x2)*(x2`*x); 

c12=(x`*z)-(x`*x2)*ginv(x2`*x2)*(x2`*z); 

c22=(z`*z)-(z`*x2)*ginv(x2`*x2)*(x2`*z); 

c_mat=(c11||c12)//(c12`||c22); 

 

*print c_mat; 

 

c_halfparent=c11-c12*ginv(c22)*c12`; 

c_fullparent=c22-c12`*ginv(c11)*c12; 

 

*print c_halfparent; 

*print c_fullparent; 

 

eig=eigval(c_halfparent); 

printeig; 

eig1=eig[loc(eig>0.0000001),];/*positive eigen values*/ 

hm_half_1=harmean(eig1); 

print hm_half_1; 

 

eig=eigval(c_fullparent); 

eig1=eig[loc(eig>0.0000001),];/*positive eigen values*/ 

hm_full_1=harmean(eig1); 

 

print hm_full_1; 

 

 

/**********CHECKING Robustness (without changing the number of crosses)*****/ 

 

/* Enter the number of crosses to be deleted*/ 

Edit Triallel; 

delete all 

where((line1=1&&line2=2&&line3=3)|(line1=1&&line2=3&&line3=2)|(line1=2&&line2=3&&line3

=1));   /*change the lines to see the robustness*/ 

closeTriallel; 

usetriallel; 

read all intoxx_n; 

 

/*print xx_n;*/ 

 

cross_n=xx_n[ ,2]||xx_n[ ,3]||xx_n[ ,4]; 

m_n=j(nrow(cross_n),1,1); 
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*print cross_n; 

 

x_n=j(nrow(cross_n),max(cross_n),0); 

k=1; 

doi=1tonrow(cross_n); 

do j=1toncol(cross_n)-1; 

ifcross_n[i,j]>0then 

x_n[k,cross_n[i,j]]=1; 

end; 

k=k+1; 

end; 

 

*print x_n; 

 

z_n=j(nrow(cross_n),max(cross_n),0); 

k=1; 

doi=1tonrow(cross_n); 

ifcross_n[i,3]>0then 

z_n[k,cross_n[i,3]]=1; 

k=k+1; 

end; 

 

*print z_n; 

 

block_n=j(nrow(xx_n[ ,1]),max(xx_n[ ,1]),0); 

k=1; 

doi=1tonrow(xx_n[ ,1]); 

ifxx_n[i,1]>0then 

block_n[k,xx_n[i,1]]=1; 

k=k+1; 

end; 

 

*print block_n;  

 

x2_n=m_n||block_n; 

c11_n=(x_n`*x_n)-(x_n`*x2_n)*ginv(x2_n`*x2_n)*(x2_n`*x_n); 

c12_n=(x_n`*z_n)-(x_n`*x2_n)*ginv(x2_n`*x2_n)*(x2_n`*z_n); 

c22_n=(z_n`*z_n)-(z_n`*x2_n)*ginv(x2_n`*x2_n)*(x2_n`*z_n); 

c_mat_n=(c11_n||c12_n)//(c12_n`||c22_n); 

*print c_mat_n; 

c_halfparent_n=c11_n-c12_n*ginv(c22_n)*c12_n`; 

c_fullparent_n=c22_n-c12_n`*ginv(c11_n)*c12_n; 

 

eig_n=eigval(c_halfparent_n); 

eig1_n=eig_n[loc(eig_n>0.0000001),];/*positive eigen values*/ 

hm_half_1_n=harmean(eig1_n); 

 

print hm_half_1_n; 

 

eig_n=eigval(c_fullparent_n); 

eig1_n=eig_n[loc(eig_n>0.0000001),];/*positive eigen values*/ 

hm_full_1_n=harmean(eig1_n); 

 

print hm_full_1_n; 

 



A-12 

 

Robustness_half=hm_half_1_n/hm_half_1; 

Robustness_full=hm_full_1_n/hm_full_1; 

 

Print Robustness_halfRobustness_full; 

rankh1 = round (trace(ginv(c_halfparent)*c_halfparent)); 

print rankh1; 

rankf1 = round (trace(ginv(c_fullparent)*c_fullparent)); 

print rankf1; 

rankh2 = round (trace(ginv(c_halfparent_n)*c_halfparent_n)); 

print rankh2; 

rankf2 = round (trace(ginv(c_fullparent_n)*c_fullparent_n)); 

print rankf2; 

 

quit; 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Annexure-V 
 

SAS code for computing canonical efficiency of the disturbed design involving tetra-allele 

crosses for estimating gca effects under blocked set-up to investigate the robustness of designs 

against missing observation using the connectedness and efficiency criteria. 

 

Data Tetrallele; 

input block line1 line2 line3 line4; 

cards; 

1 1 2 3 4 

1 1 3 2 4 

1 1 4 2 3 

1 1 2 3 5 

1 1 3 2 5 

1 1 5 2 3 

1 1 2 4 5 

1 1 4 2 5 

1 1 5 2 4 

1 1 3 4 5 

; 

run; 

prociml; 

useTetrallele; 

read all into xx; 

cross=xx[ ,2]||xx[ ,3]||xx[ ,4]||xx[ ,5]; 

m=j(nrow(cross),1,1); 

x1=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

do j=1toncol(cross); 

if cross[i,j]>0then 

x1[k,cross[i,j]]=1; 

end; 

k=k+1; 

end; 

block=j(nrow(xx[ ,1]),max(xx[ ,1]),0); 

k=1; 

doi=1tonrow(xx[ ,1]); 

if xx[i,1]>0then 

block[k,xx[i,1]]=1; 

k=k+1; 

end; 

*print block; 

x2=m||block; 

*print x1 x2; 

 

c_mat=(x1`*x1)-(x1`*x2)*ginv(x2`*x2)*(x2`*x1); 

printc_mat; 

eig=eigval(c_mat); 

eig1=eig[loc(eig>0.0000001),];/*positive eigen values*/ 

hm=harmean(eig1); 

printhm; 



A-14 

 

 

/**********CHECKING Robustness (without changing the number of crosses)*****/ 

 

/* Enter the number of crosses to be deleted*/ 

editTetrallele; 

delete all where(line1=1&&line2=2&&line3=3&&line4=4);   /*change the lines to see the 

robustness*/ 

closeTetrallele; 

useTetrallele; 

read all intoxx_n; 

cross_n=xx_n[ ,2]||xx_n[ ,3]||xx_n[ ,4]||xx_n[ ,5]; 

*print cross_n; 

m_n=j(nrow(cross_n),1,1); 

x1_n=j(nrow(cross_n),max(cross_n),0); 

k=1; 

doi=1tonrow(cross_n); 

do j=1toncol(cross_n); 

ifcross_n[i,j]>0then 

x1_n[k,cross_n[i,j]]=1; 

end; 

k=k+1; 

end; 

*print x1; 

block_n=j(nrow(xx_n[ ,1]),max(xx_n[ ,1]),0); 

k=1; 

doi=1tonrow(xx_n[ ,1]); 

ifxx_n[i,1]>0then 

block_n[k,xx_n[i,1]]=1; 

k=k+1; 

end; 

*print block_n; 

x2_n=m_n||block_n; 

*print x1_n x2_n; 

 

c_mat_n=(x1_n`*x1_n)-(x1_n`*x2_n)*ginv(x2_n`*x2_n)*(x2_n`*x1_n); 

printc_mat_n; 

eig=eigval(c_mat_n); 

eig1=eig[loc(eig>0.0000001),];/*positive eigen values*/ 

hm_n=harmean(eig1); 

printhm_n; 

Robustness=hm_n/hm; 

print Robustness; 

 

quit; 

 

 

 

 

 

 

 



 

 

Annexure-VI 
 

 

SAS code for computing information matrices related to gca effects under blocked set-up for 

tetra-allele crosses. 

 

Data Tetrallele; 

input block line1 line2 line3 line4; 

cards; 

1 1 2 3 4 

1 5 6 7 8 

2 1 3 5 7 

2 2 4 6 8 

3 1 2 3 4 

3 5 6 7 8 

4 1 3 5 7 

4 2 4 6 8 

 

; 

run; 

prociml; 

useTetrallele; 

read all into xx; 

cross=xx[ ,2]||xx[ ,3]||xx[ ,4]||xx[ ,5]; 

m=j(nrow(cross),1,1); 

x1=j(nrow(cross),max(cross),0); 

k=1; 

doi=1tonrow(cross); 

do j=1toncol(cross); 

if cross[i,j]>0then 

x1[k,cross[i,j]]=1; 

end; 

k=k+1; 

end; 

block=j(nrow(xx[ ,1]),max(xx[ ,1]),0); 

k=1; 

doi=1tonrow(xx[ ,1]); 

if xx[i,1]>0then 

block[k,xx[i,1]]=1; 

k=k+1; 

end; 

*print block; 

x2=m||block; 

 

*print x1 x2; 

 

c_mat=(x1`*x1)-(x1`*x2)*ginv(x2`*x2)*(x2`*x1); 

 

printc_mat; 

 

quit; 
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