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CHAPTER I 

INTRODUCTION 

1.1 Background 

Contribution of agriculture in total Gross Domestic Product (GDP) is relatively low in the 

developed countries i.e. (1%), but it raises to 15% for the developing countries like India 

(The World Bank, 2018). In India, around 60-70% of total population directly or indirectly 

depend on agriculture and allied sectors. The contribution of agriculture and its allied 

sectors to the Indian economy is inescapable. Given the importance of agricultural 

commodity prices on food security and its large negative economic and social effects, 

understanding the dynamics of agricultural commodity prices is vital. The prices of 

agricultural commodities are determined by a variety of factors, including adverse weather 

conditions, natural disasters, shifts in demand and supply (e.g., due to agricultural policy 

changes) etc. Such variables cannot be quantified by the same norm, and have different 

effects on various agricultural commodities in various wholesale markets, which further 

makes the forecasting of agricultural commodity prices extremely challenging.  

Agricultural products are characterized by means of enormous price fluctuations. 

Agricultural commodities price volatility create a level of uncertainty which increases 

risks for farmers, traders, consumers and governments as they need greater human 

resource skills to manage markets in a volatile state. The effect of volatility in agricultural 

commodities prices become more severe in underdeveloped and developing countries like 

India where poor households may suffer food scarcity problems. There is emerging 

consensus that the global food system is becoming more vulnerable and susceptible to 

occurrences of extreme price volatility (FAO, 2011). After the food price crisis of 2007–

2008, the level and volatility of staple food prices have increased by more than 50% 

(Brummer et al., 2016). To mitigate the agricultural commodity price volatility, it is 

necessary to understand its causes, patterns and impacts on the farmers and consumers. 

Modelling agricultural commodity price volatility helps to forecast the absolute 

magnitude, in fact, the entire distribution of price changes. Such forecasts are extensively 
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utilized in risk management, derivative pricing and hedging, portfolio selection, among 

other financial activities. 

1.2 Forecasting Agriculture Price 

Modelling and forecasting of agricultural commodity prices are different from others non-

farm commodity prices due to its seasonality of production, adverse weather conditions 

and biological nature of production. In the literature, there are mainly two basic 

approaches of forecasting viz. structural and time series models. The structural forecasting 

models proceed from the first principles of consumer and producer theory to identify the 

demand and supply schedules and the equilibrium prices resulting from their intersection. 

Due to computational and data demands of structural price forecasting, it is generally far 

exceed than what are routinely available in the developing countries. Contemporary 

parsimonious form of agriculture price forecasting relies mainly on time series modelling. 

During the last few decades, so much effort has been devoted to the development and 

improvement of time series forecasting models. Initially, exponential smoothing 

techniques were used for the extrapolating of univariate time series data. After the 

publication of ‘Time Series Analysis: Forecasting and Control’ by Box and Jenkins 

(1970), the Autoregressive Integrated Moving Average (ARIMA) model became a most 

common and widely used method for forecasting. For the fitting of ARIMA model, they 

provided a systematic three-stage procedure viz. identification, estimation and 

diagnostics. When a stationary time series follows ARMA process, then its values depends 

on the past values and also the error term is related to its pasts. Due to this feature, ARIMA 

model is preferred for short term forecasting. The ARIMA model and its extensions have 

been heavily used in the agriculture price forecasting in last few decades. However, it can 

only capture linear patterns of time series, which is not always satisfactory for complex 

real world problems.  

1.3 Structural Break  

In time series analysis, factors such as major changes in technology like introduction of 

genetically modified crops as well as implementation of new economic policy etc. causes 

structural break(s) in the parameters of forecasting models. Structural break is being 



I n t r o d u c t i o n  | 3 

 

 
 

commonly observed in many economic and agricultural time series data. In the statistical 

term, we can define structural break as a permanent change in the parameter vector of the 

model. A key question that arises in the context of forecasting is how future values of the 

time-series of interest might be affected by structural breaks. Generally, we consider the 

case where such breaks are exogenous, in the sense that they were determined by events 

outside the model under study. We also usually assume that such breaks were 

unanticipated given the historical data upto that point. Such structural breaks pose a 

formidable challenge to economic forecasting and it is the main source of forecast failure 

(Clements and Hendry, 1998).  

Detection of structural breaks is a critical empirical activity, for the obvious reason that if 

such breaks are ignored then econometric relations are misspecified, from which 

numerous problems may flow. Detection of structural breaks in a series is now a 

researchable issue let that be single or multiple. For single break point, one can use 

centered cumulative sum of squares algorithm or the AtMost One Change Point (AMOC) 

algorithm. The algorithm for detection of multiple change points in a series was first given 

by Inclan and Tiao (1994) in the form of Iterated Cumulative Sum of Squares (ICSS). 

Another efficient algorithm for multiple change points detection has been developed as 

Pruned Exact Linear Time (PELT) by Killick et al. (2012). 

1.4 Time Series Volatility Models 

To model non-constant conditional variance of financial series, Engle (1982) proposed 

Autoregressive Conditional Heteroscedasticity (ARCH) model. The generalization of the 

ARCH model, which is popularly known as Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model was proposed by Bollerslev (1986). The following 

steps may be considered for the building of a volatility model: 

 Specify a mean equation  

 Use the residuals of the mean equation to test for ARCH effects 

 Specify a volatility model if ARCH effects are statistically significant 

 Check the fitted model carefully and refine it if necessary 
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In order to forecast price volatility, ARCH and GARCH models are extensively used due 

to its good performance in capturing the time-varying features of the data (Perales 2009, 

Lama et al. 2016). However, the standard GARCH model is intrinsically symmetric, and 

the forecasting results may be biased when skewed time series are considered (Franses 

and Dijk, 1996). To solve this problem, some nonlinear and asymmetric GARCH models 

are proposed for volatility forecasting, like gjrGARCH model by Glosten et al. (1993) and 

eGARCH model by Nelson (1991).  

In all the above-mentioned models it is assumed that the GARCH process is stationary 

(white noise process for which the weak stationarity assumption holds) and only captures 

time-varying conditional variances that are not highly irregular. However, financial 

markets are occasionally hit by rather some extreme events that causes large disturbances. 

Events such as financial crises, flash crashes and market disruptions, etc. can impact the 

series and lead to sharp breaks in the unconditional variance and thus violate the 

assumptions for the GARCH process. Failure to accommodate this in the model may have 

serious effects on the forecasting abilities of the model. Upward bias in the degree of 

persistence in the estimated GARCH model can be caused by failure to accommodate 

structural breaks in the model, which was shown by Diebold (1986), Lamoureux and 

Lastrapes (1990), and  Hillebrand (2005).  

To solve this issue, regime switching models are employed to forecast price volatility. Cai 

(1994), Hamilton and Susmel (1994) and  Gray (1996) introduced the regime switching 

process into the GARCH model, in order to consider potential structural breaks which is 

popularly known as Markov-Switching GARCH models. In the Markov-Switching 

GARCH models (MS-GARCH), parameters are changes over time according to a discrete 

latent (i.e., unobservable) variable. These models can adapt quickly to variations in the 

unconditional variance, which improves the volatility predictions (Ardia, 2008). Haas et 

al. (2004) did the further extension of the MS-GARCH model of Gray (1996). Markov-

switching GARCH models allow for different GARCH behavior in each regime to capture 

the difference in the variance dynamics of low and high-volatility periods. 
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1.5 Long Memory Process  

In the modelling of some agricultural price and macroeconomic data series, high 

persistence over relatively long periods of time and dependence structure across time play 

an important role. These data series are characterized by distinct, but non-periodic, 

cyclical patterns and are behavioral in such a way that current values are affected not only 

by immediate past values, but also by values from periods of time. There has been growing 

interest in capturing such a feature referred to as long memory. A time series has a long 

memory, whenever the dependence between apart events diminishes very slowly as the 

number of lags increases. The first attempt to parameterize the long memory character 

represented as memory parameter d was proposed by Granger and Joyeux (1980). In 

certain empirical contexts, Granger and Joyeux (1980) coupled the concept of long 

memory and fractional integration to provide theoretical explanation for the hyperbolic 

decay of the correlogram.  

Consider a stochastic process, 𝑋𝑡 is written in a simple generalization of a random walk, 

𝑋𝑡 = (1 − 𝐿)−𝑑𝜖𝑡 

and the process 𝜖𝑡 ∈ 𝐼(0), i.e. an i.i.d. with zero mean and finite variance series. When 

𝑑 = 0, 𝑋𝑡 = 𝜖𝑡 and thus 𝑋𝑡 is weakly autocorrelated. For 𝑑 > 0,  𝑋𝑡 is strongly dependent 

and referred to as persistent, while when 𝑑 < 0,  𝑋𝑡 is negatively dependent and referred 

to as anti-persistent. The term (1 − 𝐿)−𝑑 can be defined by the binomial expansion and 

only exists for −
1

2
< 𝑑 <

1

2
  

(1 − 𝐿)−𝑑 = ∑
Γ(𝑗 + 𝑑)

Γ(𝑑)Γ(𝑗 + 1)
𝐿𝑗

∞

𝑗=0

 

where Γ(∙) is the gamma function. The Autocorrelation Function (ACF) of 𝑋𝑡 can be 

expressed by using Stirling’s formula, 

𝜌𝑘~𝐶𝑘2𝑑−1𝑎𝑠 𝑘 → ∞ 

where C is a positive constant. The summary of time series characteristics related to the 

long memory parameter d is given in Table 1.1.  
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Table 1.1: Characteristics of long memory time series  

𝒅 Series Memory ACF 

𝑑 ∈ (−0.5,0) Stationary fractional Anti-persistant Hyperbolic 

𝑑 = 0 Stationary Short memory Exponential 

𝑑 ∈ (0, 0.5) Stationary fractional Long memory Hyperbolic 

𝑑 ∈ (0.5, 1) Non-stationary fractional Long memory Hyperbolic 

𝑑 = 1 Unit root Infinite memory Linear 

 

Recently, there has been a rise of interest in the possibility of confusing long memory and 

structural breaks. Perron (1989) showed that structural breaks and unit roots (d=1) are 

easily confused, for example a stationary process contaminated with structural breaks, 

tests of the null hypothesis of a unit root in the process are biased towards non rejection. 

This phenomenon has already been shown to apply in the context of the long memory as 

well. When a stationary short memory process is contaminated by structural breaks in 

level, the estimate of d is biased away from zero and the ACF exhibits a slow rate of decay 

(Granger and Hyung, 2004). 

1.6 Artificial Intelligence (AI) Models  

Artificial Intelligence is a branch of applied science that improves the performance of a 

machine or model by providing the power to mimic like human brain for solving complex 

problems. These AI models have better performance compared to the traditional models 

in case of nonlinear pattern due to the self-adaptive and data driven nature. A frequently 

used artificial intelligence model for forecasting agricultural price is the Artificial Neural 

Network (ANN). ANN contains three layers namely input layer, one or more hidden or 

middle layers and output layer. It is non-linear, nonparametric, data driven self-adaptive 

method with a few a priori assumption about the data series. ANN can learn from 

experience and have ability to infer about the unseen part of the population even if the 

sample data is noisy and incomplete. Hence, it is suitable for forecasting agricultural price 

series, which is inherently noisy and nonlinear in nature.  
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ANN is a powerful data-driven algorithm to capture the complex patterns present in the 

data series. However, a major challenge encountered by the ANN is the requirement of 

iterative tuning of model parameters and overfitting of the model. To overcome these 

limitations of ANN, Huang et al. (2006) proposed Extreme Learning Machine (ELM) 

model. ELM is based on single-hidden layer feedforward neural networks (SLFNs) which 

randomly chooses hidden nodes and analytically determines the output weights of SLFNs. 

It has good generalization performance and fast learning speed compared to the ANN.  

1.7 Hybrid Time Series Models 

In order to achieve desired and accurate forecast, hybridization of existing forecasting 

models is an important technique. Hybridization is generally performed due to the lack of 

the comprehensive individual model in capturing various patterns in the data, 

concurrently. Hybrid time models combines the strength of each individual models. The 

main advantages of hybrid models are as follows:  

 Improve forecast accuracy due to comprehensive pattern detection and modeling. 

 Reduce the risk of using inappropriate model due to the combination of forecasts. 

 Simplify the procedure of model selection due to the use of different components. 

1.8 Co-integration Analysis 

Granger (1981) shown that macroeconomic models containing nonstationary variables 

can be constructed in such a way that the results are both statistically sound and 

economically meaningful. Granger has achieved this breakthrough by introducing the 

concept of co-integrated variables. Co-integration is an econometric concept, which 

mimics the existence of a long-run equilibrium relationship among economic time series. 

If two or more series are themselves nonstationary, but a linear combination of them is 

stationary, then they are said to be co-integrated (Engle and Granger, 1987).  

1.8.1 Engle-Granger Method for Testing Co-integration 

Suppose that two variables 𝑌𝑡 and 𝑋𝑡 are integrated of order 1 and we want to determine 

whether there exists an equilibrium relationship between these two variables. Engle and 

Granger (1987) proposed a four step procedure to determine if two I(1) variables are co-

integrated of order CI(1,1). 
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Step-1: Pretest the variables for their order of integration 

The first step in the analysis is to pretest each variable to determine its order of integration. 

For the co-integration analysis, each variable should be integrated of the same order. If 

both variables are stationary, it would not be necessary to proceed since standard time 

series methods apply to stationary variables and if the variables are integrated of different 

orders, it should be concluded that they are not co-integrated. 

Step-2: Estimation of long-run equilibrium relationship  

If, both variables 𝑌𝑡 and 𝑋𝑡 are I(1), then estimate the long-run equilibrium relationship in 

the form 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡                                                                                                 

If the variables are co-integrated, an ordinary least squares regression yields a super-

consistent estimator of the co-integrating parameters 𝛽0 and 𝛽1.   

Step-3: Estimate the Error Correction Model (ECM) 

If the variables are co-integrated, the residuals from the equilibrium regression can be 

used to estimate the error correction model. 

Step-4: Assess model adequacy 

There are several procedures available that determine whether the estimated error-

correction model is appropriate or not.  

Disadvantages of Engle-Granger procedure  

In this method it is possible to find that one regression indicates that selected variables are 

co-integrated, but when the order of variables get reversed it indicates no co-integration. 

This method has no systematic procedure for the separate estimation of the multiple co-

integrating vectors. 

1.8.2 Johansen Co-integration 

In order to overcome the limitations of Engle-Granger method of co-integration, Johansen 

(1988) proposed test for presence of multiple co-integrating vectors, which is multivariate 

generalization of the Dickey-Fuller test. Johansen test of co-integration allows the 

researcher to test restricted version of the co-integrating vector(s) and speed of adjustment 

parameters. The first step of Johansen test involves the determination of co-integrating 
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rank, that is, the number of co-integrating relations. Johansen derived the maximum 

likelihood estimator using sequential tests for determining the number of cointegrating 

vectors. Two statistics, namely ‘trace statistic’ and ‘maximum eigenvalue statistic’ are 

used for testing the hypothesis. The trace statistic tests the null hypothesis of r 

cointegrating vectors against the alternative hypothesis of K (number of variables) co-

integrating vectors. If 0r , it means that there is no relationship among the variables. 

The maximum eigenvalue statistic, on the other hand, tests the null hypothesis of r co-

integrating vectors against the alternative hypothesis of (r + 1) co-integrating vectors. 

1.9 Motivation of the Study 

High levels of volatility persistence may be spurious if there are structural breaks or 

regime shifts in the volatility process (Lamoureux and Lastrapes, 1990). This biased 

persistence of volatility indicates that the current information will still impose significant 

impacts on the conditional variance forecast for all horizons because of the very close to 

permanent influence on volatility. The standard GARCH models fail to account such 

biased persistence of volatility. Therefore, to obtain more robust estimates of conditional 

volatility, it would require a more general class of GARCH model that allows for 

structural breaks as part of the data generating process. 

It is being increasingly evident from the time series literature that the presence of long 

memory in the data can be easily confused with structural break. Wrongly accounting for 

one when the other is present or acknowledging only one when both are present may lead 

to serious forecast failure. Given that it is often difficult to distinguish between the two, it 

is desirable to establish forecast methods that are robust to structural change and also 

appropriately account for long memory persistence. 

The equilibrium relationship among nonstationary economic variables is often 

characteristic of structural breaks. Standard co-integration tests such as Engle-Granger 

test or Johansen co-integration test have low power under a co-integration relationship 

with structural breaks. Therefore, testing for co-integration in the presence of structural 

breaks is important for examining the equilibrium relationship among economic variables. 
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Keeping these research gaps in mind, following objectives have been formulated for the 

present investigation:  

1. To develop and empirically evaluate GARCH type model for agriculture price 

forecasting in the presence of structural breaks 

2. To assess the performance of long memory forecasting models with structural 

breaks for agriculture prices 

3. To investigate co-integrated time series in the presence of structural break for 

agriculture prices 

1.10 Orientation of the Thesis 

Chapter 1 gives the brief idea about the structural breaks and its effects on the forecasting 

performance of the volatility and long memory models. The brief overview of co-

integration, ANN and ELM models are also described in this chapter. The review of 

literature related to various time series models in the presence of structural break are 

discussed in the chapter 2. Chapter 3 describes the detail discussion of structural breaks 

and its detection techniques, volatility models, long memory models and co-integration 

with structural break, and proposed methodology.  Overall results of proposed hybrid 

models and the inference of the obtained results are presented in the chapter 4. Chapter 5 

summarizes the overall obtained results of the present study. Finally, the thesis is 

concluded with abstracts (english and hindi both) followed by appendix and bibliography. 

 



CHAPTER II  

REVIEW OF LITERATURE 

Empirical evidence suggests that many macroeconomic and financial time series are 

subject to occasional structural breaks. Structural breaks in the parameters of forecasting 

models could arise from factors such as major changes in the economic policy, 

introduction of new variety, etc. Here, an effort is made to review popular time series 

volatility models, long memory models and co-integration analysis with structural breaks.  

Box and Jenkins (1970) proposed a comprehensible, versatile, iterative three-stage cycle 

of time series model development, which includes (i) identification, (ii) estimation, and 

(iii) verification. This approach is popularly known as Box–Jenkins methodology.   

Granger and Joyeux (1980) and Hosking (1981) introduced Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) model. They examined long memory process 

through a parametric tool. They showed that ARFIMA model is good for capturing the 

long range dependency existing in the dataset by using differencing parameter (d) which 

is non-integer in contrary to the Box-Jenkins methodology which permits only integer 

value. 

Booth et al. (1982) proposed a statistical tool for testing the presence of long memory in 

any time-series data called Hurst exponent (H). They used it to empirically investigate the 

behaviour of forex during the latest experiences with both flexible and fixed rates. More 

specifically, they tested the possible presence of long-term dependency in the exchange 

rate of the French franc, British pound, and German mark. 

Engle (1982) developed the class of Autoregressive Conditional Heteroscedastic (ARCH) 

model in order to explain the dynamic fluctuations in conditional variance of a time series. 

Conditional variance was used as a deterministic function of past returns.  

Geweke and Porter-Hudak (1983) proposed GPH estimator for the estimation of Long-

memory parameter d. They developed an estimator of the parameter of ARFIMA model 

by regressing log periodogram on the deterministic regressor.  
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Helms et al. (1984) applied rescaled range (R/S) analysis for testing the presence of long 

memory. In addition, they showed empirically that their method is more efficient in 

forecasting the prices of soybean. Their hypothesis of testing was that the changes in price 

for chosen commodities futures contracts are not dependent on earlier price changes. 

Bollerslev (1986) generalized ARCH model in which conditional variance is also a linear 

function of its own lags. This model was able to overcome the deficiencies of the 

previously proposed ARCH model. 

Engle and Granger (1987) introduced the concept of co-integration for analysis of the 

long-run equilibrium relationship between economic variables. 

Johansen (1988) proposed multivariate generalization of the Dickey-Fuller test for testing 

the presence of multiple co-integrating vectors. This test of co-integration permit the 

researcher to test the restricted version of the vector(s) and swiftness of adjustment 

parameters. 

Lamoureux and Lastrapes (1990) demonstrated the effect of structural breaks in volatility 

process by introducing deterministic shifts in the variance and find marked reduction in 

the degree of volatility persistence relative to standard GARCH models. 

Cheung (1993) discovered that in long run forecasting, Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) models and Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) do not have much success rate. They used three 

different tests i.e. Modified Rescaled Range (MRR) test, Geweke-Porter-Hudak (GPH) 

test and two Lagrange Multiplier (LM) type tests for fractional integration. They reported 

that GPH and MRR tests were robust to autoregressive and heteroscedasticity 

components. 

Allen (1994) observed that initially conventional methodologies of economics for price 

forecasting had major occupancies but later comparison and adoption of more accurate 

forecast methods have been started for time series observations.  He pointed out the issue 

of little emphasis on the accuracy of models rather than explanation.  He also commented 

that the principles underlying time series models like Autoregressive Conditional 

Heteroscedasticity (ARCH) model and its generalized form as the GARCH model assume 
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that there are periods of relative high and low volatility, though the underlying 

unconditional variance remains unchanged. 

Clements and Hendry (1995) considered the implications for forecast accuracy of 

imposing unit roots and cointegrating restrictions in linear systems of I(1) variables in 

levels, differences, and cointegrated combinations. 

Robinson (1995) introduced an LM test to test nonstationarity as null hypothesis in the 

form of unit root. The Robinson’s test was more robust than the other tests based on AR 

alternatives. Besides, the author has also shown that asymptotically the test is most 

powerful against a wide class of alternative hypothesis. At last, he showed that the test 

statistic is a chi-square distribution asymptotically. 

Donaldson and Kamstra (1996) used ANN to combine time series forecasts of stock 

market volatility from the Japan, USA, Canada and the UK. They found that combining 

with nonlinear ANNs generally produces more accurate forecasts compare to the linear 

combination. They also highlighted the superiority of the ANN, because of its flexibility 

to account for potentially complex nonlinear relationships.   

Gray (1996) proposed a generalized regime switching model in which first-order Markov 

process with state-dependent transition probabilities governs the switching between 

regimes.  

Malliaris and Urrutia (1996) discovered that the agricultural futures contracts including 

Corn, Oats, Soybeans, Wheat, Soybean meal, and Soybean oil were correlated after 

examining their interrelationships. Similarly, Dawson and White (2002) applied the co-

integration analysis to discover any sort of relationships among Barley, Coffee, Cocoa, 

Wheat, Sugar and futures, however they identified only one such relationship which was 

between Wheat and Barley. 

Donaldson and Kamstra (1997) applied the GARCH-NN models to model of stock market 

volatility for New York, London, Tokyo and Toronto. They reported that the nonlinear 

model was semiparametric and was better than the other traditional models in both in-

sample and out-of-sample performance. 
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Clements and Hendry (1998) argued that structural breaks pose a formidable challenge to 

economic forecasting and it as the main source of forecast failure. 

Diebold and Inoue (2001) were the pioneers in studying the analysis of both structural 

break and long memory together and showed the way how one misinterprets structural 

break as the long memory. They have displayed analytically that how stochastic regime 

switching can be easily confused with the long memory, also asymptotically, so far as 

only a “small” magnitude of regime switching take place. They have reported that the long 

memory and regime switching are closely related to each other. In addition, they have 

given an evidence of improvement of their concept by considering numerous 

environments, like using a simple mixture model, Hamilton’s (1989) Markov-switching 

model and Engle and Smith’s (1999) stochastic permanent break model. 

Fong and See (2002) employed a Markov Regime-Switching (MRS) approach for 

GARCH-dynamics, and abrupt changes in both mean and variance for modelling of the 

conditional volatility of crude-oil prices. Their result showed that the regime-switching 

model performed better than other non-switching models. 

Gil-Alana (2002) has proposed a joint test which is an altered version of Robinson’s test 

and it tests the fractional integration order and the necessity of structural break at the 

known point of time together. The test was applied to the yearly GDP of US. The results 

of the test revealed that the integration of order greater than 1 is required for raw time-

series data and at the same time a slope dummy must be introduced in the regression model 

in consideration with the break due to World War II.  

Zhang (2003) developed a hybrid model by combining both ARIMA and Neural Network 

(NN) model for forecasting a time series. He established that the recommended hybrid 

methodology has improvement over the unique strength of individual ARIMA and ANN 

models in both linear and nonlinear modelling. 

Man (2003) discussed the usefulness of ARMA models having low order with fractionally 

differenced ARFIMA (0, d, 0) structure, −0.5<d<0.5, in the prediction of time series 

containing long memory. He argued that for short term prediction, a suitably adjusted 

ARMA (2, 2) model can yield competitive forecasts. Statistical evaluation showed that its 
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prediction error variance is at the most 0.6% higher at one step ahead, and at most 2.8% 

higher up to 10 steps ahead in comparison to the true model. The predictability of the 

model is also calculated and matched with that of the ARFIMA (0, d, 0). For empirical 

illustration, they forecasted the consumer price index of US and inflation rates for four 

different countries using both the adjusted ARMA (2, 2) and ARFIMA (0, d, 0).  Using 

an out-of-sample prediction mean square errors as evaluating criterion, the empirical 

results suggested that the ARMA(2, 2) outperformed the ARFIMA (0, d, 0) in forecasts 

of up to 100 steps ahead. 

Ai et al. (2006) fitted a partial equilibrium model using quarterly inventory and harvest 

data of Barley, Wheat, Corn, Oats and Soybeans collected from January, 1957 to 

September, 2002. They found that there was no such excessive co-movement as it was 

claimed and much of the co-movements were due to common trends in supply and demand 

factors. 

Aiolfi and Timmermann (2006) developed a novel four-stage method for forecasting 

purpose. At first stage, models were sorted into clusters on the basis of their past 

performance. Then at second stage, forecasts were pooled within each cluster and at third 

stage the optimal forecast combination for these clusters were estimated and followed by 

shrinkage towards equal weights. This method worked well empirically for out-of-sample 

forecasting. 

Yu et al. (2006) investigated the interrelationship among crude oil prices and vegetable 

oils including Soybean, Rapeseed, Sunflower, and Palm oil used for biodiesel production. 

In addition, they applied co-integration analysis to examine the interdependence among 

the vegetable oils only. They discovered only one cointegrating vector among the selected 

vegetable oils and crude oil. Besides, they also found that the crude oil price shocks did 

not have a substantial impact on altering vegetable oil prices. 

Tsangari (2007) used the exchange rates for three countries relative to US dollar: Mexico 

(Peso), South Korean (Won) and the United Kingdom (British Pound) for developing an 

alternative methodology for combining different forecast models. The study revealed that 

neither ANN nor GARCH was able to capture volatility efficiently but their combination 

was found superior. 
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Clark and McCracken (2009) discussed situation when linear models are subject to 

structural change by giving logical, Monte Carlo and practical evidence on combining 

rolling and recursive forecasts. They used the trade-off between bias and variance for 

getting optimum configuration and concluded by their Monte Carlo experiments and many 

empirical examples that combination of the recursive scheme and the rolling scheme can 

often result improvements in forecast accuracy relative to forecasts made using individual 

scheme with a fixed window width. 

Che and Wang (2010) developed a hybrid model called SVRARIMA model for 

forecasting purpose, which is nonlinear and nonstationary in nature. The SVR model of 

the hybrid model was used to capture the nonlinearity and then the ARIMA method was 

used for the estimation of the residual of the regression. They applied the method to predict 

decontrolled electricity data. The empirical results indicated that SVRARIMA model 

outperformed the other models. 

Natanelov et al. (2011) applied Johansen co-integration technique for co-integration 

analysis between agricultural commodity future market price and crude oil future market 

price. The commodities selected were Cocoa, Coffee, Corn, Soybeans, Wheat and Rice 

prices. They found that parallel movement between Cocoa, Wheat and Gold pairs and 

crude oil exist for the last two decades, indicating strong linkages between these markets 

and crude oil. 

Ghosh et al. (2011) applied AR-GARCH model in modeling and forecasting of the rainfall 

data. Their study comprised of finding the formulae and estimate the out-of-sample 

forecasts and its error variance up to three-steps ahead. The study showed that the Periodic 

autoregressive (PAR) model with AR-GARCH errors outperformed the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model with respect to modeling 

as well as forecasting performance. 

Bildirici and Ersin (2012) analysed the family of regime switching GARCH neural 

network models, which allowed the generalization of Markov Switching type regime 

switching GARCH models to MS-GARCH-NN models by incorporating with neural 

network architectures with different dynamics. They also investigated the forecasting 

capabilities of these models.  
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Jha et al. (2012) applied multivariate co-integration approach to examine the relationship 

between energy and agricultural GDP of India from 1980 to 2005. They recognized the 

direct and robust relationship between both of them using the co-integration analysis.  

Rosa and Vasciaveo (2012) tried to analyse the interactions among the prices of selected 

agricultural commodities in United States and Italy by applying the time series analysis 

method. The null hypothesis was that the volatility increase in the commodities prices is 

caused by the crude oil prices. For the empirical analysis, the data of commodity spot price 

of Wheat, Soybean and Corn in US and Italy and crude oil price were collected. The results 

suggested: i) there is an influence of the oil price on the selected commodities of the US 

markets; ii) there is co-integration between US and Italian commodities and thus the 

distinctive price condition; iii) no clear proof of causality between crude oil and Italian 

commodities, indicating that the volatility in oil is directly transmitted to the US market 

only whereas indirectly to the Italian one.  

Jha (2013) examined the relationship between energy and agricultural production for some 

states of India. The study shown that states like Punjab and Haryana having high-

productivity use more than seven-times energy as compared to the states like Odisha 

(4GJ/ha) having low-productivity. The paper also revealed that the energy-intensive 

inputs was used higher on marginal farms in compare to large farms. 

Wang et al. (2013) shown that an ARFIMA process subjected to a break in mean and a 

shift in the long memory parameter can be approximately model by an Autoregressive 

(AR) model using an information criteria (AIC or Mallows’ 𝐶p) to choose the order of the 

approximated AR model. The perception of theoretical analysis is supported by Monte 

Carlo experiments, through which they have found that their proposed method gives a 

substantial improvement over the existing methodology in terms of better out-of-sample 

forecasting performance. They have also mentioned that the main reason for the success 

of the proposed forecasting methodology which is ignorance of inaccurate estimation of 

break dates. 
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Chaabane (2014) developed a hybrid model combining least square SVM and ARFIMA. 

He used the hybrid model to forecast the electricity market price. He came to the 

conclusion of better prediction accuracy of the hybrid model. 

Jha and Sinha (2014) compared ANN and ARIMA model for agricultural price series 

forecasting. The suggested time-delay neural network (TDNN) model as a feed-forward 

neural network can handle nonlinearity feature of dataset very well. They studied and 

investigated the TDNN model on monthly wholesale price of oilseeds of India and 

concluded that this model performed better than the linear models. 

Paul (2014) and Paul et al. (2014) applied ARFIMA model for the prediction of 

agricultural commodity price series. They demonstrated that the model performed well in 

terms of both variability explanation and prediction. 

Bildirici and Ersin (2015) assessed a new set of nonlinear models by combining the 

forecasting abilities of multilayer perceptron (MLP) and radial basis function (RBF)  

neural networks with GARCH models and at last this model is augmented by LSTAR type 

nonlinear econometric models given by Terasvirta (1994). The LSTAR-LST-GARCH-

MLP and LSTAR-LST-GARCH-RBF family models aim at modeling both the 

conditional mean processes and the conditional variance at a time with STAR type 

nonlinearity, which capture the regimes shifting with logistic transition functions. 

Therefore, at the first stage, they modelled crude oil prices with GARCH models with 

fractional integration and asymmetric power terms. Second stage was the introduction of 

LSTAR to the baseline models. At the third stage, the resulted LSTAR-LST-GARCH 

models were finally augmented with MLP and RBF neural networks. 

Chen et al. (2015) developed a general GARCH method to predict volatility using those 

returns which are sampled at a higher frequency than the horizon of prediction. They 

called them High Frequency Data-Based Projection-Driven GARCH, or HYBRID-

GARCH models. In addition, they examined the theoretical properties and statistical 

inference of the developed models. Their illustration showed that the developed models 

were superior in out-of-sample forecasting. 
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Paul et al. (2015a) combined AR and Fractionally Integrated GARCH (FIGARCH) and 

used them for forecasting lentil’s spot price. They suggested through their results that the 

discussed model can be used as another approach for price series forecasting. 

Paul et al. (2015b) applied ARFIMA-FIGARCH model for the modeling and then 

forecasting of volatility with long memory in India’s agricultural commodities price 

series. They showed that there is a clear and strong evidence of occurrence of long 

memory in lentil’s spot price and thus by considering the big role of long memory, the 

forecasting performance evaluated with less percentage error. 

Salisu and Olako (2015) examined three ways to model oil price–US stock nexus. First, 

they employed the VARMA–AGARCH model introduced by McAleer et al. (2009) 

within the perspective of BEKK framework using Brent and West Texas Intermediate 

(WTI) and S&P stocks as proxies for oil market and US stock market, respectively. 

Secondly, they modified the model by including endogenously determined structural 

break. Third, they used the adopted model to calculate optimal portfolio hedge and weight 

ratios between oil price and US stocks taking data on the break date. Their empirical 

evidence suggested a significant return spillover from stock market to oil market and 

bidirectional shock spillover between the two markets. 

Zhang and Goh (2015) developed a hybrid method based on decomposition and ensemble 

approach for crude oil price forecasting. They employed the ensemble empirical mode 

decomposition (EEMD) method for decomposition of raw series into many intrinsic mode 

functions (IMFs) and the residual term. After that, the least square support vector machine 

combined with the particle swarm optimization (LSSVM–PSO) method and the GARCH 

model were developed to model and forecast the nonlinear and time-varying components 

of those IMFs, respectively. At last, each of the forecasted component are added as the 

final forecasted results. 

Lama et al. (2016) evaluated the forecasting performance of time-delay neural network 

and GARCH models for the volatility forecasting using monthly price series of edible oils 

in domestic and international markets. They also investigated the performance of the 

combined GARCH-ANN model.  
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Maciel et al. (2016) developed an evolving fuzzy-GARCH modelling technique to 

forecast asset returns of stock market. The technique aimed to account for volatility from 

GARCH approach and volatility clustering and identification of nonlinear time series from 

evolving fuzzy systems. 

Chen et al. (2017) applied the two deep learning models that are the deep belief network 

and the recurrent neural network for modelling the dynamics of the crude oil price 

movement. They constructed a hybrid model by combining the ARMA model forecasts 

and the deep learning model forecasts. 

Gopal and Ramasamy (2017) developed a hybrid model for the prediction of one-day 

future price for the stocks MSFT, Goldman Sachs, Apple, and JP Morgan. They used the 

Markov switching model together with radial basis function (RBF) network for prediction. 

Besides, they also forecasted the buying/selling strategy and this explored the risk of 

investment and the trading performance.  

Jebli and Youssef (2017) examined the effect of co-integration and Granger causality on 

Tunisian economy. They examined short and long-run relationships among per capita 

carbon dioxide (CO2) emissions, renewable and non-renewable energy consumption, real 

gross domestic product (GDP), agricultural value added (AVA) and trade openness ratio 

in Tunisia. The Johansen-Juselius test showed bidirectional causalities of long-run 

between all selected variables.  

Kristjanpoller and Hernandez (2017) developed a hybrid neural network model with 

GARCH-type models, to forecast volatility of the returns from the prices of gold, silver 

and copper.   

Kumar and Jha (2017) applied Johansen co-integration approach in order to examine the 

co-movement and causality between agricultural commodities price series and energy. 

Zhang and Zhang (2017) developed a hybrid forecasting method based on exponential 

GARCH, the hidden Markov and least squares support vector machine (LSSVM), and the 

performance is compared with that of GARCH and other forecasting methods. Their 

results indicated that the proposed hybrid method outperformed others for crude oil price 

volatility in terms of forecasting accuracy criteria. 

https://www.tandfonline.com/author/Ben+Jebli%2C+Mehdi
https://www.tandfonline.com/author/Ben+Youssef%2C+Slim
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Zhao et al. (2017) developed an ensemble approach using deep learning. In this approach, 

bootstrap aggregation (bagging) was used to generate multiple data sets from single data 

set and then Stacked Denoising Autoencoders (SDAE) were applied on each generated 

for training and testing. SDAEs is a deep learning tool which was used here to model the 

complex and nonlinear relationships of crude oil price with its factors.  

Chai et al. (2018) combined some forecast approaches that capture diverse fluctuation 

features present in crude oil series, like change points, trend decomposition, regime-

switching, time-varying determinants, and the nonlinearity of model setting. At first stage, 

product partition model-K-means (PPM-KM) model was used to capture change points in 

the price sequence. Next stage, consisted a time-varying transition probability Markov 

regime switching (TVTP-MRS) model in order to capture the regime-switching 

characteristic. Then, Bayesian model averaging (BMA) was used to filtrate important 

determinants at each regime. Finally, the time series model TVP-STSM was used to 

decompose the sequence, capture the coefficients in “volatile upward” regime, and predict 

the oil price. 

Johansen and Nielsen (2018) examined the nonstationary co-integration in a time series 

data. They revealed that likelihood function of the fractional co-integrated vector 

autoregressive (CVAR) model has some asymptotic properties.   

Gaetano (2018) developed three combination schemes that consider structural breaks in 

the variance of a GARCH (1, 1) model. They were obtained by averaging forecasts of 

different estimation obtained on rolling on fixed window. The first scheme used the equal 

weights to average the individual forecasts; the second scheme simply allotted heavier 

weights to forecasts using latest information and the third trimmed a fixed fraction of the 

lowest and highest individual forecasts. 

Khashei and Hajirahimi (2018) combined the Multilayer Perceptrons (MLPs) and the 

ARIMA methodology and developed many different hybrid models. They selected a time 

series comprising of both linear as well as nonlinear components for fitting the model. 

Their conclusion was that ANN-ARIMA model had superior performance in forecasting 

accuracy. 
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Choudhury et al. (2019) developed a hybrid model by combining EMD and ANN for price 

index of potato in India. Their empirical results suggested that the EMD-ANN model is 

the best methodology for price forecasting.  

David et al. (2019) studied the co-integration between ethanol and some agricultural 

commodity price series. They also showed that how this relationship can affect the 

prediction ability and the efficiency of the co-integrated price series. 

Garcia and Kristjanpoller (2019) examined the performance of a set of time series models 

such as ARIMA and GARCH, Artificial Neural Networks (ANN) as well as Fuzzy 

Inference Systems (FIS) and hybrid specifications of both. Genetic Algorithm was used 

to see the adaptability characteristic of these models in exogenous variables, configuration 

parameters and window size at the same time. They also examined the out-of-sample 

forecasting performance on the basis of Heteroskedasticity-adjusted Mean Squared Error 

(HMSE).  

Lin et al. (2020) proposed a hybrid forecast model to forecast crude oil price on 

considering the long memory, heavy-tail distribution, asymmetric, nonlinear and non-

stationary characteristics of crude oil price. They showed empirically that the proposed 

hybrid model WPD–EMD–ARMA–FIGARCH-M achieves significant effect during 

periods of extreme incidents. 

Torre-Torres et al. (2020) used Markov-Switching GARCH (MS-GARCH) models in an 

active trading algorithm for corn and soybean future markets. Their results suggested that 

the Gaussian Markov-Switching GARCH model is the most appropriate to generate extra 

returns (from a passive investment strategy) in the corn market and the t-Student Markov-

Switching GARCH is the best one for soybean trading.  



CHAPTER III  

MATERIALS AND METHODS 

In this chapter, various time series models relevant to the present study are described in 

detail. The chapter starts with an overview of the data sets used in the study. In the 

subsequent sections, data diagnostic tests, structural break, GARCH type models, long 

memory models and co-integration analysis are described in detail. A short description 

of model evaluation techniques are given in the last section. 

3.1 Data Sets 

Under the three objectives of the present study, we considered different types of 

situation for the modelling and forecasting of agricultural price in the presence of 

structural break(s). Accordingly, we used three different data sets to accomplish three 

objectives. In the first objective, to evaluate the forecasting performance of the proposed 

time series volatility model, we used three different agricultural commodity price series 

viz. weekly Potato price of Delhi market, international monthly Groundnut oil price and 

international monthly Palm oil price. Potato price (₹/q) data of Delhi market are 

obtained from website of National Horticultural Research and Development Foundation 

(NHRDF) (http://nhrdf.org/en-us/). In the website of NHRDF, actually daily data are 

available, so we collected daily data for the period 1st January 2005 to 31st December 

2019, and further converted it into weekly data. The monthly price ($/mt) series of 

international Groundnut oil and Palm oil are obtained from World Bank Pink Sheet 

(https://www.worldbank.org/en/research/ commodity-markets) for the period January 

1980 to December 2019. 

In the second objective, to assess the performance of long memory models in the 

presence of structural break(s), we used daily Mustard price (₹/q) data of Agra and 

Bharatpur market. Generally, long memory property are found in daily price data and it 

is very difficult to find this property in weekly or monthly agricultural price series. Daily 

Mustard price series of Agra and Bharatpur market are obtained from Agricultural 

http://nhrdf.org/en-us/
https://www.worldbank.org/en/research/%20commodity-markets
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Marketing Information Network (AGMARKNET), (https://agmarknet.gov.in/) website, 

for the period 1st January 2016 to 31st January 2020.  

For the investigation of co-integrated time series in the presence of structural break as in 

the final objective of the study, we have taken major four Potato markets of India viz. 

Agra, Bangalore, Delhi and Mumbai. The monthly Potato price data of these markets 

were collected from National Horticultural Research and Development Foundation 

(NHRDF) (http://nhrdf.org/en-us/) website for the period January 2005 to December 

2019.    

3.2 Data Diagnostic Tests 

3.2.1 Stationarity and Unit Root Tests 

A stationary time series is one whose properties do not depend on the time at which the 

series is observed. Therefore, time series with trends, or with seasonality, are not 

stationary i.e. the trends and seasonality will influence the time series value at different 

times. In other words, a stochastic process is stationary if the mean and variance are 

constant over time and covariance between two time points depends only on the distance 

of the lags between the two time periods and not on the actual time that the covariances 

are computed. The effect of an exogenous shock on a stationary series is relatively short-

lived, meaning that we would expect spikes in the series to be followed by the series 

quickly reverting back to an equilibrium value. If the exogenous shocks were short-

lived, we would expect the series to move up or down, but to revert quickly to a mean 

value. In literature, to test the stationarity of the data, unit root tests like Dickey-Fuller 

(DF) test, Augmented Dickey-Fuller (ADF) test, Phillips-Perron (PP) test, KPSS test 

(Kwiatkowski, Perron, Schmidt, and Shin, 1992), etc. has been used. In this study, 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests have been used to test 

the stationarity of the data. 

(A) Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) Test 

Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) test are two most common 

tests for a unit root process. For a time series 𝑋𝑡 , (𝑡 = 1, … , 𝑇), an autoregressive 

process can be written as 

https://agmarknet.gov.in/
http://nhrdf.org/en-us/
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𝑋𝑡 = 𝜌𝑋𝑡−1 + 𝜖𝑡                                                                                            (3.2.1) 

Now, rewrite the equation 3.2.1 by subtracting 𝑋𝑡−1 from each side of the equation 

Δ𝑋𝑡 = 𝛾𝑋𝑡−1 + 𝜖𝑡                                                                                          (3.2.2) 

where 𝛾 = (𝜌 − 1). Now, testing (𝜌 = 1)  is the same as testing for (𝛾 = 0). 

There are three versions of the Dickey-Fuller test, each with their own set of critical 

value t-test tables. The following regressions may also be used to test for a unit root: 

Δ𝑋𝑡 = 𝜇 +  𝛾𝑋𝑡−1 + 𝜖𝑡                                                                                  (3.2.3) 

Δ𝑋𝑡 = 𝜇 + 𝛾𝑋𝑡−1 + 𝛽1𝑡 + 𝜖𝑡                                                                         (3.2.4) 

The equation 3.2.2 is a pure random walk model, the equation 3.2.3 is a random walk 

with a drift, and the equation 3.2.4 is a random walk with a drift and a deterministic time 

trend. 

Augmented Dickey-Fuller test is similar to the Dickey-Fuller test but allows for 

additional autoregressive terms, while taking those terms into consideration for unit root 

testing. The Dickey-Fuller test uses ordinary least squares (OLS) to generate 𝛾, it 

assumes 𝜖𝑡 is independent and identically distributed, but if a higher order 

autoregressive process exists, autocorrelation will remain in the residuals and this violate 

OLS assumption, leading to poor estimates of 𝛾. The ADF test allows for heterogeneity 

and serial correlation in the errors. The ADF test for the general 𝑝𝑡ℎ order autoregressive 

process is  

Δ𝑋𝑡 = 𝜇 + 𝛾𝑋𝑡−1 + ∑ 𝜁𝑖Δ𝑋𝑡−𝑖+1
𝑝
𝑖=2 + 𝜖𝑡                                                      (3.2.5) 

where 𝛾 = −(1 − ∑ 𝛽𝑖
𝑝
𝑖=1 ) and 𝜁𝑖 = − ∑ 𝛽𝑗

𝑝
𝑗=1  

In Augmented Dickey-Fuller test, the null hypothesis of unit root (𝛾 = 0) is tested 

against the alternative of stationarity. 

(B) Phillips-Perron (PP) Test 

Phillips and Perron (1988) introduced the non-parametric test for the null hypothesis of a 

unit root that explicitly allows for weak dependence and heterogeneity of the error 
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process, which is popularly known as Phillips-Perron test (PP test). They consider the 

following two test regressions: 

𝑋𝑡 = 𝜇 + 𝜌𝑋𝑡−1 + 𝜖𝑡                                                                                     (3.2.6) 

𝑋𝑡 = 𝜇 + 𝜌𝑋𝑡−1 + 𝛽 (𝑡 −
1

2
𝑇) + 𝜖𝑡                                                              (3.2.7) 

For equation 3.2.6, Phillips and Perron (1988) defined following test statistics: 

𝑍(𝜌̂) = 𝑇(𝜌̂ − 1) − 𝜆̂ 𝑚̅𝑋𝑋⁄                                                                           (3.2.8) 

𝑍(𝜏𝜌̂) = (
𝑠̂

𝜎̂𝑇𝑙
) 𝑡𝜌̂ − 𝜆̂′𝜎̂𝑇𝑙/𝑚̅𝑋𝑋

1

2                                                                      (3.2.9) 

𝑍(𝜏𝜇̂) = (
𝑠̂

𝜎̂𝑇𝑙
) 𝑡𝜇̂ − 𝜆̂′𝜎̂𝑇𝑙𝑚𝑋/𝑚̅𝑋𝑋

1

2 𝑚𝑋𝑋

1

2                                                        (3.2.10)       

 𝑚̅𝑋𝑋 = 𝑇−2 ∑(𝑋𝑡 − 𝑋̅)2, 𝑚𝑋𝑋 = 𝑇−2 ∑ 𝑋𝑡
2, 𝑚𝑋 = 𝑇−3/2 ∑ 𝑋𝑡 and 𝜆̂ =

1

2
(𝜎̂𝑇𝑙

2 − 𝑠̂2), 

where 𝑠̂2 is the residuals sample variance, 𝜆̂′ = 𝜆̂ 𝜎̂𝑇𝑙
2⁄  and  𝑡𝜌̂, 𝑡𝜇̂ are t ratios of 𝜌̂ and  𝜇̂, 

respectively. The long-run variance 𝜎̂𝑇𝑙
2  is estimated as 

𝜎̂𝑇𝑙
2 = 𝑇−1 ∑ 𝜖𝑡̂

2𝑇
𝑡=1 + 2𝑇−1 ∑ 𝑤𝑠𝑙

𝑙
𝑠=1 ∑ 𝜖𝑡̂𝜖𝑡̂−𝑠

𝑇
𝑡=𝑠+1                                     (3.2.11) 

where 𝑤𝑠𝑙 = 1 − 𝑠/(𝑙 + 1). 

Similarly, to test regression with a linear time trend included as in equation 3.2.7, the 

following test statistics are defined:  

𝑍(𝜌̃) = 𝑇(𝜌̃ − 1) − 𝜆̃/𝑀                                                                             (3.2.12) 

𝑍(𝑡𝜌̃) = (
𝑠̃

𝜎̃𝑇𝑙
) 𝑡𝜌̃ − 𝜆̃′𝜎̃𝑇𝑙/𝑀

1

2                                                                      (3.2.13) 

𝑍(𝑡𝜇̃) = (
𝑠̃

𝜎̃𝑇𝑙
) 𝑡𝜇̃ − 𝜆̃′𝜎̃𝑇𝑙𝑚𝑋/𝑀

1

2(𝑀 + 𝑚𝑋
2 )

1

2                                              (3.2.14) 

𝑍(𝑡𝛽̃) = (
𝑠̃

𝜎̃𝑇𝑙
) 𝑡𝛽̃ − 𝜆̃′𝜎̃𝑇𝑙 (

1

2
𝑚𝑋 − 𝑚𝑡𝑋) /(𝑀/12)

1

2𝑚̅𝑋𝑋

1

2                             (3.2.15) 

where 𝑚𝑡𝑋 = 𝑇−5/2 ∑ 𝑡𝑋𝑡 
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The critical values of these Z statistics are similar to those of the Dickey-Fuller type 

tests.  

3.2.2 Test of Linearity 

Under the null hypothesis of linearity, the residuals should be independent for a 

correctly specified linear model. Any deviation from independence in the residuals 

indicates inadequacy of the model, including the linearity assumption. This is the basic 

idea behind various nonlinearity tests. To test the linearity of the time series data, 

nonparametric methods like Ljung–Box statistics of squared residuals, the bispectral 

test, Brock, Dechert, and Scheinkman (BDS) test, etc. and parametric methods like 

RESET test (Ramsey, 1969), F tests of  Tsay (1989), etc. have been proposed. In this 

study, BDS test has been used to test the linearity of agricultural price data. 

BDS Test 

Brock, Dechert, and Scheinkman (1987) proposed a test statistic, commonly known as 

BDS test, to detect the independent and identically distributed (i.i.d.) assumption of a 

time series. The basic idea of the BDS test is to make use of a “correlation integral” 

popular in chaotic time series analysis. Given a k-dimensional time series 𝑋𝑡 and 

observations {𝑋𝑡}𝑡=1
𝑇𝑘 , define the correlation integral as 

𝐶𝑘(𝛿) = lim
𝑇𝑘→∞

2

𝑇𝑘(𝑇𝑘−1)
∑ 𝐼𝛿(𝑋𝑖, 𝑋𝑗)𝑖<𝑗                                                          (3.2.16) 

where 𝐼𝛿(𝑋𝑖, 𝑋𝑗) is an indicator variable, which is equal to one if ‖𝑋𝑖 −  𝑋𝑗‖ < 𝛿, and 

zero otherwise, where ‖∙‖ is the supnorm. The correlation integral measures the fraction 

of data pairs of {𝑋𝑡} that are within a distance of δ from each other. Consider next a time 

series 𝑥𝑡. Construct k-dimensional vectors 𝑋𝑡
𝑘 = (𝑥𝑡, 𝑥𝑡+1, … , 𝑥𝑡+𝑘−1)′, which are called 

k histories. The idea of the BDS test is to treat a k history as a point in the k-dimensional 

space. If {𝑋𝑡}𝑡
𝑇 are indeed i.i.d. random variables, then the k-histories {𝑋𝑡}𝑡

𝑇𝑘 should 

show no pattern in the k-dimensional space. Consequently, the correlation integrals 

should satisfy the relation 𝐶𝑘(𝛿) = [𝐶1(𝛿)]𝑘. Any departure from the prior relation 

suggests that 𝑥𝑡 are not i.i.d. 
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Now define 

𝐶𝑙(𝛿, 𝑇) =
2

𝑇𝑘(𝑇𝑘−1)
∑ 𝐼𝛿(𝑋𝑖

∗, 𝑋𝑗
∗)𝑖<𝑗 , 𝑙 = 1, 𝑘,                                                         (3.2.17) 

where 𝑇𝑙 = 𝑇 − 𝑙 + 1 and 𝑋𝑖
∗ = 𝑥𝑖   𝑖𝑓 𝑙 = 1 and 𝑋𝑖

∗ = 𝑋𝑖
𝑘   𝑖𝑓 𝑙 = 𝑘. 

Under the null hypothesis that {𝑥𝑖} are i.i.d. with a nondegenerated distribution function 

𝐹(∙), Brock, Dechert, and Scheinkman (1987) show that 𝐶𝑘(𝛿, 𝑇) → [𝐶1(𝛿)]𝑘 with 

probability 1; as 𝑇 → ∞ for any fixed k and δ. Furthermore, the statistic √𝑇{𝐶𝑘(𝛿, 𝑇) −

[𝐶1(𝛿, 𝑇)]𝑘} is asymptotically distributed as normal with mean zero and variance: 

𝜎𝑘
2(𝛿) = 4(𝑁𝑘 + 2 ∑ 𝑁𝑘−𝑗𝐶2𝑗 + (𝑘 − 1)2𝐶2𝑘 − 𝑘2𝑁𝐶2𝑘−2𝑘−1

𝑗=1 )             (3.2.18) 

where 𝐶 = ∫[𝐹(𝑧 + 𝛿) − 𝐹(𝑧 − 𝛿)]𝑑𝐹(𝑧) and 𝑁 = ∫[𝐹(𝑧 + 𝛿) − 𝐹(𝑧 − 𝛿)]2𝑑𝐹(𝑧). 

𝐶1(𝛿, 𝑇) is a consistent estimate of 𝐶, and 𝑁 can be consistently estimated by 

𝑁(𝛿, 𝑇) =
6

𝑇𝑘(𝑇𝑘−1)(𝑇𝑘−2)
∑ 𝐼𝛿(𝑥𝑡, 𝑥𝑠)𝐼𝛿(𝑥𝑠, 𝑥𝑢)𝑡<𝑠<𝑢                                  (3.2.19) 

The BDS test statistic is then defined as 

𝐷𝑘(𝛿, 𝑇) =
√𝑇{𝐶𝑘(𝛿,𝑇)−[𝐶1(𝛿,𝑇)]𝑘}

𝜎𝑘(𝛿,𝑇)
                                                                   (3.2.20) 

where 𝜎𝑘(𝛿, 𝑇) is obtained from 𝜎𝑘(𝛿) when 𝐶 and 𝑁 are replaced by 𝐶1(𝛿, 𝑇) and 

𝑁(𝛿, 𝑇), respectively. 

3.2.3 ARCH-LM Test 

ARCH-LM test is used to test for the presence of heteroscedasticity in the squared 

residuals. Let 𝜖𝑡 = 𝑋𝑡 − 𝛼𝑋𝑡−1 be the residual series of an autoregressive process. To 

check for conditional heteroscedasticity, the squared residual series 𝜖𝑡
2 is used, which is 

also known as the ARCH effects. Two tests are available for it. In the first test, apply the 

usual Ljung–Box statistics 𝑄(𝑚) to the 𝜖𝑡
2 series. The null hypothesis of the test statistic 

is that the first m lags of ACF of the 𝜖𝑡
2 series are zero. The second test for conditional 

heteroscedasticity is the Lagrange multiplier test of Engle (1982). This test is equivalent 

to the usual F statistic for testing 𝛽𝑖 = 0, (𝑖 = 1, … 𝑚) in the linear regression 

𝜖𝑡
2 = 𝛽0 + 𝛽1𝜖𝑡−1

2 + ⋯ + 𝛽𝑚𝜖𝑡−𝑚
2 + 𝜀𝑡, 𝑡 = 𝑚 + 1, … , 𝑇                         (3.2.21) 
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where 𝜀𝑡 denotes the error term, m is a pre-specified positive integer, and T is the sample 

size. 

Let 𝑆𝑆𝑅0 = ∑ (𝜖𝑡
2 − 𝜔̅)2𝑇

𝑡=𝑚+1 , where 𝜔̅ =
1

𝑇
∑ 𝜖𝑡

2𝑇
𝑡=1  is the sample mean of 𝜖𝑡

2, and 

𝑆𝑆𝑅1 = ∑ 𝜀𝑡̂
2𝑇

𝑡=𝑚+1  where 𝜀𝑡̂ is the least squares residual of the prior linear regression. 

Then under 𝐻0 

𝐹 =
(𝑆𝑆𝑅0−𝑆𝑆𝑅1)/𝑚

𝑆𝑆𝑅1/(𝑇−2𝑚−1)
                                                                                       (3.2.22) 

which follows an F distribution with degrees of freedom m and 𝑇 − 2𝑚 − 1. 

3.3 Detection of Structural Break(s)  

A structural break(s) occurs when an entire series is no longer characterized by the same 

underlying process, and instead, there are two (or more) distinct subsamples of the 

observations, each of which is characterized by a different underlying process. These 

breaks can result either from an observed event, or from an unobserved combination of 

factors. The presence of structural break(s) has long been conjectured in the agricultural 

price data. The trigger of such structural breaks may involve with the implementation of 

new economic policy, introduction of new varieties, etc. Induced by these major factors, 

the “shocks” may trigger an abrupt shift in the mean or variance structure, which cause 

parameters inconsistency of the model. Ignoring such factors may lead to biased 

forecast. To test the structural break(s) in the time series data several test have been 

proposed, of which few tests are described in the following subsections: 

3.3.1 Bai and Perron (2003) Test 

Consider a system of linear regression equations, for a data series 𝑋𝑡, 𝑡 = 1, … , 𝑇, in 

which a set of segments determined by the locations of potential structural breaks, 

namely, [𝑇1, … 𝑇𝑚] with m being the number of potential breaks: 

𝑋𝑡 = 𝜑𝑡
′𝛽 + 𝜙𝑡

′𝛿1
′ + 𝜖𝑡, 𝑡 = 1, … , 𝑇1 

𝑋𝑡 = 𝜑𝑡
′𝛽 + 𝜙𝑡

′𝛿2
′ + 𝜖𝑡, 𝑡 = 𝑇1 + 1, … , 𝑇2 

⋮ 
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𝑋𝑡 = 𝜑𝑡
′𝛽 + 𝜙𝑡

′𝛿𝑚+1
′ + 𝜖𝑡, 𝑡 = 𝑇𝑚 + 1, … , 𝑇 

where 𝑋𝑡 represents a segment of observations in each equation from the total series 

𝑋𝑡, 𝑡 = 1, … , 𝑇.  𝜑𝑡
′  and 𝜙𝑡

′  are two vectors of covariates, with dimensions of 𝑝 × 1 and 

𝑞 × 1 respectively. The former has a dimension of 𝑝 × 1, indicating the start of one 

segment; while the latter is of 𝑞 × 1, 𝑞 = 1, … , 𝑇, and it indicates the end of that 

segment. The coefficients 𝛽 and 𝛿𝑖
′, 𝑖 = 1, … , 𝑚 + 1 are obtained by minimizing the sum 

of squared residuals ∑ ∑ [𝑋𝑡 − 𝜑𝑡
′𝛽 − 𝜙𝑡

′𝛿1
′].

𝑡=𝑇𝑖−1+1
𝑇𝑖

𝑚+1
𝑖=1  The estimates of the position of 

structural breaks are [𝑇̅1, … , 𝑇̅𝑚], which makes the smallest sum of these minimized sum 

of squared residuals obtained in each segment.  

Bai and Perron (2003) developed different methods to test each partition choice to find 

the breaks. One is through a Supremum F-test with the null hypothesis of no break 

versus the alternative of the presence of break with a number of a fixed positive finite 

integer. The number of breaks in this case needs to be identified in advance. Another 

approach is through a double maximum procedure, with the null hypothesis of no break 

and the alternative of an unspecified number of breaks. This approach consists of two 

tests, one is called the U D max test with all weights equal to unity, and the other is the 

W D max test with varying weights. The last approach is known as the sequential test, 

with the null hypothesis of m break(s) against m+1 break(s).  

3.3.2 Lagrange Multiplier Test of Andrews (1993) 

Andrews (1993) proposed a structural break test based on the Lagrange Multiplier (LM) 

to locate a one-time unknown change point in non-linear parametric models. Consider an 

econometric model that fits to time series 𝑋𝑡, 𝑡 = 1, … , 𝑇 with parameter vector 𝝋𝒕; 

define 𝜔 as the location of a potential break near the known events with 𝜔 ∈ (0,1); take 

[𝜔𝑇], where [∙] is the integer part operator, as the proportion of sample observations 

before the break occurs at the [𝜔𝑇]th observation. In this way, the model parameters 

before and after the break then become 𝜑1 for 𝑡 = 1, … , [𝜔𝑇] and 𝜑2 for 𝑡 = [𝜔𝑇] +

1, … , 𝑇 respectively. Thus the null hypothesis of no structural break with alternative 

being the presence of such at [𝜔𝑇] in the parameter are formulated as below: 

𝐻0 = 𝝋𝒕 = 𝝋𝟎 
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and 

𝐻1: 𝝋𝒕 = {
𝜑1(𝜔), 𝑓𝑜𝑟 𝑡 = 1, … , [𝜔𝑇]

𝜑2(𝜔), 𝑓𝑜𝑟 𝑡 = [𝜔𝑇] + 1, … , 𝑇
 

In particular, for a normal linear regression model, if the location of structural break is 

known, the LM test that is constructed under the above hypotheses is equivalent to F 

test, which is also referred to as Chow test (Chow, 1960) in the literature. 

Moreover, under the null hypothesis of no structural break, there is only one set of the 

parameter vector and it can be estimated via maximum likelihood; when there is one 

structural break, in other words, 𝐻1 is true, and the location of it is known at [𝜔𝑇] in a 

non-linear model, then the LM test statistic 𝐿𝑀(𝜔) is calculated as below: 

𝐿𝑀(𝜔) =
𝑇

𝜔(1−𝜔)
𝒈̅𝟏𝑻(𝝋,̂ 𝜔)′𝑺𝑻

−𝟏𝑫𝑻(𝑫𝑻
′ 𝑺𝑻

−𝟏𝑫𝑻)
−1

𝑫𝑻
′ 𝑺𝑻

−𝟏𝒈̅𝟏𝑻(𝝋,̂ 𝜔)          (3.3.1) 

where 

𝒈̅𝟏𝑻(𝝋,̂ 𝜔) =
1

𝑇
∑ 𝑔(𝑋𝑡; 𝝋̂)𝜔𝑇

𝑡=1                                                                         (3.3.2) 

𝑺𝑻 =
1

𝑇
∑ [𝑔(𝑋𝑡; 𝝋̂) − 𝒈̅𝑻(𝝋̂)]𝜔𝑇

𝑡=1 [𝑔(𝑋𝑡; 𝝋̂) − 𝒈̅𝑻(𝝋̂)]′                                (3.3.3) 

𝑫𝑻 =
1

𝑇
∑

∂(𝑋𝑡;φ)

∂𝜑̂′
𝑇
𝑡=1                                                                                         (3.3.4) 

In equation 3.3.2, 𝑔(𝑋𝑡; 𝝋̂) = ∂𝑙𝑜𝑔𝑓(𝑋𝑡; 𝝋̂)/ ∂𝝋̂ is the score in terms of the partial 

derivative of the log density with respect to the parameter vector 𝝋̂. 𝑫𝑻 in equation 3.3.4 

is the restricted estimator that is used to construct weight matrices for LM test statistics. 

The 𝐿𝑀(𝜔) statistic asymptotically follows a chi-squared distribution with degree of 

freedom equals to the number of parameters in the model. 

3.3.3 Iterative Cumulative Sum of Squares of Inclan and Tiao (1994)  

Consider a series of uncorrelated random variables 𝑋𝑡, 𝑡 = 1, … , 𝑇 with mean 0 and 

variance 𝜎𝑡
2, 𝑡 = 1, … , 𝑇. Define the following expression: 

𝐷𝑘 = 𝐶𝑘 𝐶𝑇 − 𝑘 𝑇⁄⁄ , 𝑘 = 0,1,2, … , 𝑇                                                           (3.3.5) 
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𝐷𝑘 is the centred and normalized cumulative sum of squares; 𝐶𝑘+1 = ∑ 𝑋𝑡
2, 𝑘 =𝑘

𝑖=1

0,1,2, … , 𝑇 is the cumulative sum of 𝑘 + 1 squares of the data observations. The 

underlying concept of this Iterated Cumulative Sums of Squares (ICSS) algorithm of 

Inclan and Tiao (1994) is to assume the variability of 𝜎𝑡
2, 𝑡 = 1, … , 𝑇 is made of constant 

𝜎𝑡
2 at different time periods over the whole sample period T. In other words, the variance 

stays constant for some time, until it takes up a new value at 𝑘∗; the variance then stays 

at this new value for some other time until another variance value occurs. It is then said 

that one structural break has occurred at 𝑘∗. Within this context, the construction of 𝐷𝑘 

in expression 3.3.5 will oscillate around zero until the occurrence of a structural break, 

where 𝐷𝑘 varies away distinguishably from zero. Therefore, an IT test is developed to 

find the variation of 𝐷𝑘 that is statistically significant, which takes the form as below: 

𝐼𝑇 = 𝑚𝑎𝑥√𝑇 2⁄ |𝐷𝑘|                                                                                     (3.3.6) 

where √𝑇 2⁄  is to standardize the distribution. Under a null hypothesis of no structural 

break against the alternative of presence of one break, when IT exceeds the critical value 

at a selected confidence level, one structural break is detected in the variance or 

volatility of this data series. In order to find multiple unknown breaks in the whole 

series, an iterative scheme is specifically designed to systematically search for change 

points by applying the IT test to sub-samples created consecutively after a possible 

change point is identified. 

3.3.4 Pruned Exact Linear Time (PELT) Algorithm 

The PELT algorithm (Killick et al., 2012) uses a standard approach of detecting 

structural breaks through minimization of costs. In order to find multiple change points 

in the data, the PELT algorithm is first applied to the whole data series and iteratively 

and independently to each partition until no further structural breaks are detected. The 

main assumption of the PELT algorithm is that the numbers of structural breaks 

increases linearly with the increase of data set, i.e. the breaks are spread throughout the 

data and are not restricted to particular one portion of the data.  It is based on the 

algorithm of Jackson, et al. (2005), which has aims to minimize: 
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∑ [𝐶(𝑋𝜏𝑖−1+1, … , 𝑋𝜏𝑖
) + 𝛽𝑚+1

𝑖=1 ], where 𝐶 denotes the cost function for the 𝑖𝑡ℎ segment 

and β is a penalty to guard against the over fitting. 

In the PELT algorithm, optimal partitioning method of Jackson, et al. (2005) is modified 

by pruning. This algorithm combines the optimal partitioning and pruning to achieve 

exact and efficient computational cost. The optimal segmentation,   

𝐹(𝑛) = min
𝜏

{∑ [𝐶(𝑋𝜏𝑖−1+1, … , 𝑋𝜏𝑖
) + 𝛽𝑚+1

𝑖=1 ]}                                               (3.3.7) 

Conditioning on the last break point, 𝜏𝑚 and calculating the optimal segmentation of the 

data up to that breakpoint gives, 

𝐹(𝑛) = min
𝜏𝑚

{min
𝜏/𝜏𝑚

∑ [𝐶(𝑋𝜏𝑖−1+1, … , 𝑋𝜏𝑖
) + 𝛽𝑚+1

𝑖=1 ] + 𝐶(𝑋𝜏𝑚+1, … , 𝑋𝑛)}       (3.3.8) 

This could equally be repeated for the second to last, third to last and so on, break 

points. 

3.4 Volatility Models with Structural Break(s) 

3.4.1 Auto-regressive Integrated Moving Average (ARIMA) Model 

In some applications, the Auto-regressive (AR) or Moving Average (MA) models 

become cumbersome because one may need a higher order model with many parameters 

to adequately describe the dynamic structure of the data. To overcome this difficulty, the 

Auto-regressive Moving Average (ARMA) models are introduced. Basically, an ARMA 

model combines the ideas of AR and MA models into a compact form so that the 

number of parameters used is kept small, achieving parsimony in parameterization.  

A stationary time series 𝑋𝑡 follows an ARMA(1,1) process if it satisfies: 

𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝜙0 + 𝜖𝑡 − 𝜃1𝜖𝑡−1                                                                   (3.4.1) 

where 𝜖𝑡 is a white noise series. The left-hand side of the equation 3.4.1 is the 

autoregressive component of the model and the right-hand side gives the moving 

average component. 

If the ARMA model is extended by allowing the AR polynomial to have 1 as a 

characteristic root, the model will then become the well known Autoregressive 
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Integrated Moving Average (ARIMA) model. An ARIMA model is said to be unit root 

nonstationary because its AR polynomial has a unit root. In other words, a time series 𝑋𝑡 

is said to be an ARIMA(p, 1, q) process if the series 𝑍𝑡 = 𝑋𝑡 − 𝑋𝑡−1 = (1 − 𝐵)𝑋𝑡 

follows a stationary and invertible ARMA(p, q) model. The price series are generally 

believed to be nonstationary, but the return series, 𝑟𝑡 = 𝑙𝑛(𝑋𝑡) − 𝑙𝑛(𝑋𝑡−1), is stationary. 

In this case, the log price series is unit root nonstationary and hence can be treated as an 

ARIMA process. 

Box–Jenkins Methodology 

The aim of this methodology is to find the most appropriate ARIMA(p, d, q) model and 

to use it for forecasting. It uses an iterative six-stage scheme: 

(I) Identification of the differentiation order d  

The first step for the fitting of ARIMA model is to check the stationarity of the series. 

ADF test and PP test are performed to see the presence of unit root in the data series. 

(II) Identification of the order p and q 

If data series is stationary then we plot Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF). Here ACF plot helps to decide the parameter 𝑞 and 

PACF plot helps to decide the parameter 𝑝.  

(iii) Estimation of the parameters  

When we write our ARMA(p, q) or ARIMA(p, d, q) model after testing stationary of 

data series, we have different 𝜙𝑖(𝑖 = 1,2, … , 𝑝), 𝜃𝑗(𝑗 = 1,2, … , 𝑞) model’s parameters 

are unknown . So our next work is to estimate these unknown parameters. There are 

different technique to estimate these parameters like Ordinary Least Square (OLS) 

technique, likelihood method, etc. 

(IV) Validation (Residual diagnostic) 

In the validation step, we examine the residuals. For a satisfactory model, the residuals 

should be white noise. The correlograms are evaluated, and portmanteau tests are used to 

assess if the residuals are near enough to white noise. 
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(V) Choice of a model 

If many models pass the validation test, selection criteria may be used, the most 

common being the Akaike Information Criteria (AIC) and Bayesian Information Criteria 

(BIC). The predictive properties of the models can be considered in complementing 

these criteria. Hence the theory of parsimony would lead one to select the simplest 

model, the one with the fewest parameters. 

 (VI) Forecasting 

After considering all the above steps, we find a best suited model for our time series data 

and it can be used for forecasting purpose.  

3.4.2 Generalized Auto-regressive Conditional Heteroscedasticity (GARCH) Model 

Generalized Auto-regressive Conditional Heteroscedasticity (GARCH) models have 

been widely applied to model the volatility of agricultural commodity prices. Introduced 

by Bollerslev (1986), GARCH provides a more flexible lag structure of the ARCH 

(Engle, 1982) type models. For the return series 𝑟𝑡, the standard GARCH (p, q) can be 

written as:  

𝑟𝑡 = 𝜇 + 𝜖𝑡,   𝜖𝑡|𝐼𝑡−1~𝑁(0, 𝜎𝑡
2)                                                                     (3.4.2) 

𝜖𝑡 = 𝑧𝑡√𝜎𝑡
2,   𝑧𝑡 ~ 𝑁(0,1)                                                                            (3.4.3) 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑡𝜖𝑡−1

2 +𝑞
𝑡=1 ∑ 𝛽𝑡𝜎𝑡−1

2𝑝
𝑡=1                                                            (3.4.4)                             

𝜎𝑡
2 is the conditional variance, with 𝜔 > 0, 𝛼𝑡 > 0 and 𝛽𝑡 > 0 to ensure the positivity of 

𝜎𝑡
2. 𝑧𝑡 is an independent and identically distributed error term with zero mean and unit 

variance. When 𝑝 = 0, then equation 3.4.4 becomes an ARCH (q) process. The volatility 

persistence is measured by the sum of 𝛼𝑡 and 𝛽𝑡; the more it approaches unity the 

greater the persistence of shocks to the volatility. Moreover, GARCH (1,1) is recognised 

to perform quite sufficiently when forecasting volatility. (Hansen and Lunde, 2005). 

Consider the GARCH (1,1) process, the equation 3.4.4 can be rewrite as: 

𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝛼𝜎𝑡−1

2 − 𝛼𝜎𝑡−1
2                                                  (3.4.5) 

𝜎𝑡
2 = 𝜔 + 𝛼(𝜖𝑡−1

2 − 𝜎𝑡−1
2 ) + (𝛼 + 𝛽)𝜎𝑡−1

2                                                     (3.4.6) 



36 | M a t e r i a l s  a n d  M e t h o d s   

 

Let 𝜐𝑡−1 = 𝜖𝑡−1
2 − 𝜎𝑡−1

2  represent the shock, and 𝜆 = 𝛼 + 𝛽, then 

𝜎𝑡
2 = 𝜔 + 𝛼𝜐𝑡−1 +  𝜆𝜎𝑡−1

2                                                                              (3.4.7) 

Continue decomposing 𝜎𝑡−1
2  in the form shown in equation 3.4.7 and then replace 𝜎𝑡−1

2  

in equation 3.4.7 with its new form in the following manner: 

𝜎𝑡−1
2 = 𝜔(1 + 𝜆 + 𝜆2 + 𝜆3 + ⋯ ) + 𝛼(𝜐𝑡−1 + 𝜆𝜐𝑡−2 + 𝜆2𝜐𝑡−3 + ⋯ )         (3.4.8) 

𝜎𝑡−1
2 = 𝜔

1−𝜆𝑡

1−𝜆
+ 𝛼(𝜐𝑡−1 + 𝜆𝜐𝑡−2 + 𝜆2𝜐𝑡−3 + ⋯ )                                        (3.4.9) 

In equation 3.4.9, 𝜔
1−𝜆𝑡

1−𝜆
=

𝜔

1−𝜆
  is the unconditional variance when 𝜆 < 1. When 𝜆 = 1, 

the variance contains a unit root, thus the process has no unconditional variance and is 

defined as an integrated GARCH or I-GARCH process (Engle and Bollerslev, 1986). 

Furthermore, it can also be noticed from equation 3.4.9 that, the effect imposed by the 

shock on the conditional variance 𝜎𝑡
2 relies on the degree of 𝜆; that is to say, the larger 

the sum of 𝛼 and 𝛽, the longer the shock lasts, i.e. the more persistent of the volatility. 

Therefore, the persistence of volatility for a certain shock is calculated by the sum of α 

and β. Lamoureux and Lastrapes (1990) pointed out that high levels of volatility 

persistence may be spurious if there are structural breaks or regime shifts in the volatility 

process. More explicitly, this biased persistence of volatility indicates that the current 

information will still impose significant impacts on the conditional variance forecast for 

all horizons because of the very close to permanent influence on volatility. Lamoureux 

and Lastrapes (1990) demonstrate this structural break in volatility process by 

introducing deterministic shifts in the variance and find that this results to a marked 

reduction in the degree of volatility persistence relative to standard GARCH models. 

They suggested that to obtain more robust estimates of conditional volatility would 

require a more general class of GARCH models that allows for regime shifts as part of 

the data generating process. 

3.4.3 Markov Switching GARCH Model 

Hamilton and Susmel (1994), Cai (1994), and Gray (1996) introduced the Markov 

Switching GARCH models. These models have many common features. First, it allows 

for the conditional variance process to switch stochastically between a finite number of 
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regimes. Second, the timing of regime switch is usually assumed to be governed by a 

first-order Markov process. The transition probability of the Markov process determines 

the probability that volatility will switch to another regime, and thus the expected 

duration of each regime. Transition probabilities may be constant or a time-varying 

function of exogenous variables.  

For a return series 𝑟𝑡, consider a model: 

𝑟𝑖𝑡 = 𝜇𝑖𝑡 + 𝜖𝑖𝑡                                                                                              (3.4.10) 

𝜖𝑖𝑡⃓Φ𝑡−1 ~ 𝑁(0, 𝜎𝑖𝑡
2),     𝑖 = 0,1  𝑠𝑡𝑎𝑡𝑒𝑠,                                                    (3.4.11) 

where 𝜇𝑖𝑡 and 𝜎𝑖𝑡
2  are the conditional mean and conditional variance, respectively and 

both of which are allowed to switch between two regimes. Φ𝑡−1 denote the information 

up to time (𝑡 − 1) and 𝜎𝑖,𝑡
2 = 𝑣𝑎𝑟(𝜖𝑡⃓ 𝑠𝑡 = 𝑖, Φ𝑡−1 ). Cai (1994) considers an ARCH(q) 

model:  

𝜎𝑖,𝑡
2 = 𝜔0 + 𝜔1𝑖 + ∑ 𝛼𝑗𝜖𝑡−𝑗

2𝑞
𝑗=1 , 𝑖 = 0,1                                                    (3.4.12) 

Hamilton and Susmel (1994) proposed the switching regime ARCH (SWARCH(q)) 

model: 

𝜎𝑖,𝑡
2 = 𝜆𝑖𝜂𝑡 = 𝜆𝑖(𝑐 + ∑ 𝛼𝑗𝜍𝑡−𝑗

2𝑞
𝑗=1 ),    𝑖 = 0,1                                              (3.4.13) 

The conditional variances of equation 3.4.12 have left shifts, but those of equation 

3.4.13 have different scales. Cai (1994)  and Hamilton and Susmel (1994) models are 

very special forms of regime switching conditional variances. 

However it is not straightforward to expand the above two models to account for lagged 

conditional variances. It is observed that the conditional variance 𝜎𝑖,𝑡
2  depends on 

𝜎𝑖,𝑡−1
2 , it is determined not only by 𝑠𝑡 but also by 𝑠𝑡−1 due to the presence of 𝜎𝑖,𝑡−1

2 . The 

dependence of 𝜎𝑖,𝑡−1
2  on 𝜎𝑖,𝑡−2

2  then implies that 𝜎𝑖,𝑡
2  must also be affected by the value of 

𝑠𝑡−2,  and so on. Accordingly, the conditional variance at time t is determined by the 

realization of (𝑠𝑡, 𝑠𝑡−1, … , 𝑠1) which has 2𝑡 possible values.  This property of "path 

dependency" will result in a very complex model and make intractable estimation of the 
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model. Gray (1996) circumvents this problem by postulating that 𝜎𝑖,𝑡
2  depends on 𝜎𝑡

2 =

𝐼𝐸(𝜖𝑡
2|Φ𝑡−1), the sum of 𝜎𝑖,𝑡

2   weighted by the prediction probability IP(𝑠𝑡 = 𝑖 | 𝛷𝑡−1).  

𝜎𝑖,𝑡
2 = 𝜔𝑖 + ∑ 𝛼𝑖,𝑗𝜖𝑡−𝑗

2𝑞
𝑗=1 + ∑ 𝛽𝑖,𝑗

𝑝
𝑗=1 𝜎𝑡−𝑗

2 ,   𝑖 = 0,1                                   (3.4.14) 

  𝜎𝑡
2 = 𝜎0,𝑡

2 IP(𝑠𝑡 = 0 | 𝛷𝑡−1) + 𝜎1,𝑡
2 IP(𝑠𝑡 = 1 | 𝛷𝑡−1)                                  (3.4.15) 

It is important to note from equation 3.4.14 that 𝜎𝑖,𝑡
2  are no longer path dependent 

because both 𝜎0,𝑡−𝑗
2  and 𝜎1,𝑡−𝑗

2  have been used to from 𝜎𝑡−𝑗
2 . So the conditional variance 

can be determined without taking into account all possible values of (𝑠𝑡, 𝑠𝑡−1, … , 𝑠1). 

Compare to the Cai (1994) and Hamilton and Susmel (1994) models, the switching 

GARCH model of Gray (1996) does not impose any constraint on these parameters and 

allows all the GARCH parameters to switch.  

Regime switching is assumed to be driven by a first-order Markov process with 

transition probability: 

𝑃𝑟[𝑠𝑡 = 0⃓ 𝑠𝑡 = 0] = 𝑃 

𝑃𝑟[𝑠𝑡 = 1⃓ 𝑠𝑡 = 0] = 1 − 𝑃 

𝑃𝑟[𝑠𝑡 = 1⃓ 𝑠𝑡 = 1] = 𝑄 

𝑃𝑟[𝑠𝑡 = 0⃓ 𝑠𝑡 = 1] = 1 − 𝑄 

3.4.4 Artificial Neural Network (ANN)  

Unlike traditional forecasting approaches, ANN are able to adapt nonlinearity and 

approximate complex relationships without extensive data or knowledge. ANN is 

loosely based on the structure of neurons in the brain. ANN is non-linear, 

nonparametric, data-driven and self-adaptive approaches as opposed to the model-based 

non-linear methods. ANN is capable of performing non-linear modeling without prior 

knowledge about the relationship between input and output data. One significant 

advantage of neural network models over other classes of nonlinear model is that ANN 

is a universal approximators which can approximate any continuous function with a 

desired accuracy. A neural network can be formed more accurately by using either long-

term or short-term memory, depending on the retention time, into the structure of a static 
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network. For time series data forecasting we use some form of short-term memory to 

make neural network dynamic. One simple way of building short–term memory into the 

structure of a neural network is through the use of time delay, which can be 

implemented at the input layer of the neural network. Such architecture is a time-delay 

neural network (TDNN) that has been used for the present study. Figure 3.1 represents 

the general form of time-delay neural network.   

3.4.4.1 Architecture of Neural Network 

Artificial Neural Network consists of a set of connected neurons (cells). The neurons 

receive information from either input cells or other neurons and perform some kind of 

transformation of the input and transmit the outcome to other neurons to output cells. The 

neural networks are built from layers of neurons connected so that one layer receives 

input from the preceding layer of neurons and passes the output on to the subsequent 

layer.   

ANN consists of many neuron which are connected through weights. Accordingly 

different layers i.e. input, hidden, output layer and different nodes (input, hidden, output 

nodes) in every neural network has a different design. To design an ANN, we have to 

determine following things-  
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(1) Number of input, hidden and output layer   

According to Zhang et al. (1998) there is no clear-cut guidelines to fix these components 

before construction of a neural network. By trial-error method we can construct a best 

neural network for current situation. A lot of research has been done in different field of 

neural network. It was found that for a univariate time series data to form a typical ANN, 

mainly one input, one output and one or at most two hidden layers are sufficient. 

(II) Number of input, hidden, output node 

The number of input node are equal to number of time lagged observation used to find out 

data pattern. If we use too few or too many time lagged observation then it may effect 

either learning or accuracy of neural network. So here we always use AR(p) to find out 

number of time lagged observations. Forecasting performance of a neural network always 

affected due to hidden nodes. To find a best network, the best way is trial-and-error 

approach. To avoid over fitting some thumb rule also given by different researcher like 

Lippmann (1987) used 2𝑛 + 1 and Tang (1993) used  𝑛 hidden nodes, where 𝑛 is number 

of input node. The number of output node is equal to forecasting horizon. All layer’s 

nodes are interconnected with each other from one layer to other layer respectively. Each 

node’s output is a function of weighted sum of their inputs. Here we also use an activation 

function which transform input to output according to their relationship. When a 𝑖𝑡ℎnode 

𝑛𝑖 is connected with preceding layer’s nodes 𝑛𝑗 , 𝑗 = 1,2, … , (𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑙𝑎𝑦𝑒𝑟), 

than 𝑖𝑡ℎ node get some input value 𝑣𝑖 i.e.                             

𝑣𝑖 = ∑ 𝑤𝑖𝑗 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑗  𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑑𝑒
𝑗=1 + 𝑏𝑖                                                           (3.4.16) 

where 𝑤𝑖𝑗 is connection weight between 𝑖𝑡ℎ node and 𝑗𝑡ℎ node, 𝑏𝑖 is bias for 𝑖𝑡ℎ node. 

3.4.4.2 Activation function 

There is some activation function or transfer function which convert net input value of a 

node to output for a particular node. Here mainly two activation function required one for 

hidden layer and another for output layer. Here in our research work we use sigmoid or 

logistic function for a hidden node 𝑛𝑖 in hidden layer i.e. 𝑓(𝑣𝑖) =
1

1+𝑒−𝑣𝑖
  and identity 

function for output layer i.e.  

                ∅(𝑜𝑖) = {
1, 𝑜𝑖 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where 𝑜𝑖 is net output for 𝑖𝑡ℎ output node 

3.4.4.3 Training algorithm  

The neural network training algorithm is used to improve forecasting accuracy. Training 

algorithm usually update the weights of a neural network. Due to updation of different 

weights we find a local optimum solution for a nonlinear problem. There are different 

methods which are used to find an optimum solution but no one guarantee to find out a 

global optimum solution for a given time series data. Most commonly method which is 

used for training is backpropagation (BP) algorithm. BP uses steepest descent method to 

find out weights for a neural network. It use supervised learning algorithm to find out 

more accurate weights. After finalize architecture of neural network it will used to 

predict the univariate time series. 

So by using general expression for 𝑦̂𝑡 at time 𝑡, a TDNN with single hidden layer is 

given by (Jha and Sinha, 2014) - 

𝑦̂𝑡 = 𝑔(𝛼0 + ∑ 𝛼𝑗𝑓(𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑦𝑡−𝑖
𝑝
𝑖=1 )𝑞

𝑗=1 )               

where 

𝑦̂𝑡 is the predicted value for 𝑦𝑡 at time 𝑡 

𝑝  input and 𝑞 hidden nodes  

𝑖, 𝑗 is 𝑖𝑡ℎ node of input layer, 𝑗𝑡ℎnode of hidden layer respectively 

𝑦𝑡−𝑖 ; (𝑖 = 1,2, … 𝑝) are network input nodes 

𝛽𝑖𝑗 ( 𝑗 = 1, 2,   .   .  . , 𝑞) refer the weight connection  between neuron 𝑖𝑡ℎ and 

𝑗𝑡ℎ 

𝛼𝑗   Refer the weight between 𝑗𝑡ℎ neuron of hidden node and output node. 

𝛼0 𝑎𝑛𝑑 𝛽0𝑗 are bias term for output layer and 𝑗𝑡ℎ hidden node  

𝑓 and g are respectively hidden and output layer activation function, mainly 

logistic 𝑓(𝑣𝑗) =
1

1+𝑒
−𝑣𝑗

 and  𝑔 as identity function   

3.4.5 Extreme Learning Machine (ELM) 

Extreme learning machine (ELM) developed by Huang et al. (2006) is the state-of-art 

novel machine learning algorithm for Single Layer Feedforward Neural Network 

(SLFN). Consequently the ELM model has been widely used for the solution of 
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estimation problems in many different fields and is now gaining attention within the 

financial time series. The ELM model is easy to use and no parameters need to be tuned 

except the predefined network architecture, thus avoiding many complications faced by 

the gradient-based algorithms such as learning rate, learning epochs, and local minima. 

Importantly the ELM model has also been proven to be a faster algorithm compared 

with other conventional learning algorithms such as backpropagation (BP) or support 

vector machines (SVM). In the ELM approach most of the training is accomplished in 

time span of seconds or at least in minutes in large complex applications which are not 

easily achieved by using the traditional neural network models.  

ELM was proposed for ‘‘generalized’’ single-hidden layer feedforward networks where 

the hidden layer need not be neuron alike (Huang et al., 2006). The output function of 

ELM for generalized SLFN is  

𝑓𝐿(𝑿) = ∑ 𝜷𝑖ℎ𝑖(𝑿) = 𝒉(𝑿)𝜷𝐿
𝑖=1                                                                 (3.4.17) 

where 𝜷 = [𝜷1, … , 𝜷𝐿]𝑇 is the output weight vector between the hidden layer of L nodes 

to the 𝑚 ≥ 1 output nodes, and 𝒉(𝑿) = [ℎ1(𝑿), … , ℎ𝐿(𝑿)] is ELM nonlinear feature 

mapping, e.g., the output (row) vector of the hidden layer with respect to the input 𝑿. 

ℎ𝑖(𝑿) is the output of the 𝑖𝑡ℎ hidden node output. The output functions of hidden nodes 

may not be unique. Different output functions may be used in different hidden neurons.  

In particular, in real applications ℎ𝑖(𝑿) can be 

ℎ𝑖(𝑿) = 𝐺(𝒂𝑖,  𝑏𝑖, 𝑿),        𝒂𝑖 ∈ 𝑹𝑑,  𝑏𝑖 ∈ R                                                (3.4.18) 

where 𝐺(𝒂, 𝑏, 𝑿) (with hidden node parameters (a, b)) is a nonlinear piecewise 

continuous function satisfying ELM universal approximation capability theorems 

(Huang,  et al., 2006). 

Basically, ELM trains an SLFN in two main stages:  

(1) random feature mapping and  

(2) linear parameters solving.  

In the first stage, ELM randomly initializes the hidden layer to map the input data into a 

feature space by some nonlinear mapping functions. The nonlinear mapping functions in 
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ELM can be any nonlinear piecewise continuous functions. In ELM, the hidden node 

parameters (a, b) are randomly generated (independent of the training data) according to 

any continuous probability distribution instead of being explicitly trained, leading to 

remarkable efficiency compared to traditional back propagation neural networks. In the 

second stage of ELM learning, the weights connecting the hidden layer and the output 

layer, denoted by β, are solved by minimizing the approximation error in the squared 

error sense: 

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚   ‖𝑯𝛽 − 𝑻‖2                                                                               (3.4.19) 

where  

H is the hidden layer output matrix (randomized matrix):  

𝑯 = [
𝒉(𝑿1)

⋮
𝒉(𝑿𝑁)

] = [
ℎ1(𝑿1) … ℎ𝐿(𝑿1)

⋮ ⋮ ⋮
ℎ1(𝑿𝑁) ⋯ ℎ𝐿(𝑿𝑁)

]                                                  (3.4.20) 

and T is the training data target matrix: 

𝑇 = [
𝑡1

𝑇

⋮
𝑡𝑁

𝑇
] = [

𝑡11 … 𝑡1𝑚

⋮ ⋮ ⋮
𝑡𝑁1 ⋯ 𝑡𝑁𝑚

]                                                                       (3.4.21) 

where ‖∙‖ denotes the Frobenius norm.  

The optimal solution is given by:  

𝛽∗ = 𝑯𝜏𝑻                                                                                                     (3.4.22) 

where 𝑯𝝉 denotes the Moore–Penrose generalized inverse of matrix H.  

Generalization performance:  

ELM aims to reach better generalization performance by reaching both the smallest 

training error and the smallest norm of output weights: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  ‖𝛽‖𝑝
𝜎1 + 𝐶‖𝐻𝛽 − 𝑇‖𝑝

𝜎2                                                            (3.4.23) 

where 𝜎1 > 0,  𝜎2 > 0,   𝑝, 𝑞 = 0,
1

2
, 1,2, … , +∞ 
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The first term in the objective function is a regularization term which controls the 

complexity of the learned model. Huang, et al. (2012) especially studied the stability and 

generalization performance of ELM with 𝜎1 = 𝜎2 = 𝑝 = 𝑞 = 2:  

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚   

1

2
‖𝜷‖2 +

𝐶

2
∑ ‖𝑒𝑖‖

2𝑁
𝑖=1            𝑠. 𝑡.   𝒉(𝑿𝑖)𝛽 = 𝒕𝑖

𝑇 − 𝒆𝑖
𝑇 ,    𝑖 = 1, … , 𝑁.  (3.4.24) 

By substituting the constraints of above equation into its objective function, we obtain 

the following equivalent unconstrained optimization problem: 

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚  𝐿𝐸𝐿𝑀 =  

1

2
‖𝜷‖2 +

𝐶

2
‖𝑻 − 𝑯𝜷‖2                                               (3.4.25) 

If H has more rows than columns (N > L), which is usually the case where the number 

of training patterns is larger than the number of the hidden neurons, we have the 

following closed form solution for β: 

𝜷∗ = (𝑯𝑇𝑯 +
𝑰

𝐶
)

−1

𝑯𝑇𝑻                                                                             (3.2.26) 

where I is an identity matrix of dimension L. If the number of training patterns is less 

than the number of hidden neurons (N < L), then H will have more columns than rows, 

so 

𝜷∗ = 𝑯𝑇 (𝑯𝑯𝑇 +
𝐼

𝐶
)

−1

𝑻                                                                            (3.2.27) 

where, I is an identity matrix of dimension N. 

3.4.6 Hybrid MS-GARCH – ELM Methodology 

In order to propose the methodology for agricultural price volatility forecasting, we 

follow the following procedure: 

Step-1 

We apply the logarithmic transformation to stabilize the variance of the data. 

Logarithmic transformation is a special case of Box-Cox transformation when 𝜆 = 0. To 

make the series stationary, we take first difference as 𝑙𝑛𝑋𝑡 − 𝑙𝑛𝑋𝑡−1, also known as 

return in the financial term. We divide the whole data in to training and testing sets. Last 

12 observations are taken in the testing set and remaining data are used as training set.   
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Step-2 

After logarithmic transformation and taking the first difference of the series, we find the 

ARMA structure of the differenced series based on the autocorrelation function, partial 

autocorrelation function and AIC value of the estimated model.  

Step-3  

Given the ARMA structure of the differenced series, we determine the residual series 

(actual observations minus predicted values) and square them to create a new variable 

‘esquare’. The ‘esquare’ series is taken as input variable for the Artificial Neural 

Network (ANN) and Extreme Learning Machine (ELM) model. 

Step-4  

We examine the heteroskedastic structure of the residuals. To test the ARCH effect in 

the residual series, we used Engle’s Lagrange Multiplier test. If the ARCH effect are 

present in the residual series, then apply MS-GARCH model for the modelling and 

forecasting of conditional variance.  

Step-5 

We build ANN and ELM model by using ‘esquare’ series as an input variable. Since the 

‘esquare’ is comparable to the conditional variance from the best GARCH model or MS-

GARCH model. When, we design a robust ELM model, it is very important to consider 

important factors such as number of input nodes (which are the lags), number of nodes 

in the hidden layer, selection of best training algorithm and the activation function, and 

the number of output nodes. These factors are selected in such a way that the optimum 

model ensures the smallest generalization error and best performance assessment 

matrices. 

Step-6 

At last, we combine the forecast of the conditional variance from the fitted MS-GARCH 

as well as squared residuals from ELM using non parametric Nadaraya–Watson kernel 

weight function.  
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3.5 Long Memory Model and Structural Break 

3.5.1 Defining Long Memory Process 

Let 𝑋𝑡(𝑡 = 0,1,2, … ) be a stationary time series process and the autocorrelation function 

(ACF) of the time series with a time lag 𝑘 of is given as  

𝜌𝑘 = 𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡−1)/𝑣𝑎𝑟(𝑋𝑡)                                                                        (3.5.1) 

The series 𝑋𝑡 is said to have short memory if the autocorrelation coefficient at lag 𝑘 

approaches to zero as 𝑘 tends to infinity, i.e. 𝑙𝑖𝑚𝑘→∞𝜌𝑘 = 0.  

A standard formal definition of different types of linear dependence structures is given 

as follows: 

Let 𝑋𝑡 is a stationary process with autocovariance function 𝛾𝑋(𝑘) and spectral density 

𝑓𝑋(𝜆) = (2𝜋)−1 ∑ 𝛾𝑋(𝑘) exp(−𝑖𝑘𝜆)    (𝜆 ∈ [−𝜋, 𝜋])∞
𝑘=−∞                          (3.5.2) 

𝑓𝑋(𝜆) = 𝐿𝑓(𝜆)|𝜆|−2𝑑                                                                                     (3.5.3) 

where 𝐿𝑓(𝜆) ≥ 0 is a symmetric function that is slowly varying at zero. Then 𝑋𝑡 is said 

to exhibit (linear)  

a) Long-range dependence if 𝑑 ∈ (0,
1

2
)  

b) Intermediate dependence if 𝑑 = 0 𝑎𝑛𝑑 lim
𝜆→0

𝐿𝑓(𝜆) = ∞ 

c) Short-range dependence if  𝑑 = 0 𝑎𝑛𝑑 lim
𝜆→0

𝐿𝑓(𝜆) = 𝑐𝑓 ∈ (0, ∞) 

d) Antipersistence if  𝑑 ∈ (− 
1

2
, 0) 

For a 𝑋𝑡~𝐼(1) series, the ACF declines linearly, and for a stationary 𝑋𝑡~𝐼(0) process, 

the ACF declines exponentially so that observations separated by a long time span may 

be regarded as independent. However, some empirically observed time series share 

neither of these characteristics, even though they are transformed to stationary by 

suitable differencing. These time series still exhibit a dependence between distant 

observations, and as the number of lags increases, dependence between apart events 

decreases very slowly. Such type of time series process is known as fractionally 

integrated process or long memory process. According to McLeod and Hipel (1978), a 
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process is said to possess a long memory if lim
𝑇→∞

∑ |𝜌𝑘|𝑇
𝑘=−𝑇  is non-finite. It is equivalent 

to stating that the spectral density of a long memory process becomes unbounded at low 

frequencies. For long memory processes, decaying of ACF occur at much slower rate 

(hyperbolic rate) which is consistent with 𝜌𝑘 ≈ 𝐶𝑘2𝑑−1, as 𝑘 increases indefinitely, 

where C is a constant and 𝑑 is the long memory parameter. The autocorrelation function 

of a long memory process exhibits persistency structure which is neither consistent with 

an I(1) process nor an I(0) process.  

According to Beran (1995), a stationary long memory process has the following 

qualitative and quantitative properties:  

(A) Qualitative properties  

i. The observations of the time series data tends to stay either high level or low 

level for long period 

ii. When we examine time plot of the series, then there seem to be cycles or local 

trends at short time periods. However, looking at the whole series, there is no 

apparent persisting trend or cycle.  

iii. Overall, the series looks stationary. 

(B) Quantitative properties:  

i. The variance of the sample mean seems to decay to zero at a slower rate than 

1 𝑛⁄ , in more appropriate  proportional to 𝑛−𝛼 for some 0 < 𝛼 < 1. 

ii. If the logarithm of periodogram 𝐼(𝜆) is plotted against the logarithm of 

frequency, it seems to be scattered around a straight line having negative slope 

3.5.2 Testing of Long Memory Parameter 

One of the primary interests in the literature of time series with long memory properties 

is to estimate the unknown parameter d that describes the long memory properties or the 

low frequency behaviour of the spectral density function 𝑓𝑋(𝜆). Two major classes of 

estimation methods are used for long memory testing i.e. parametric estimation and 

semiparametric estimation. For the parametric estimation, a complete parametric model 

such as Autoregressive Fractionally Integrated Moving Average (ARFIMA) model is 
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built that expresses autocovariance 𝛾𝑋(𝑘) for all 𝑘, or the spectral density function 𝑓𝑋(𝜆) 

for all 𝜆, as a parameteric function of the parameters d and unknown scale factors. In 

contrast, the semi-parametric estimation is only interested in the memory parameter d 

and do not require the modelling of a complete set of the autocovariances. Parametric 

long memory estimation is computationally expensive and subject to misspecification. 

On the other hand, semi-parametric estimation consider d as the main parameter and 

avoid difficulties over the specifications of other parameters. Apart from parametric and 

semiparametric methods, some heuristic approach like R/S statistic (Hurst, 1951), 

visualizing ACF plot, variance plot, etc. and nonparametric methods like wavelet 

methodology (Jensen, 1999) are also used for the testing of long memory in the data 

series. 

3.5.2.1 Rescaled Range Statistic (R/S statistic) 

Hurst (1951) proposed the rescaled range statistic (R/S statistic) for detecting the 

presence of long-term memory. This descriptive statistics is defined as 

𝑅 𝑆⁄ =
1

𝑠𝑇
[ max

1≤𝑘≤𝑇
∑ (𝑋𝑗 − 𝑋̅) − min

1≤𝑘≤𝑇
∑ (𝑋𝑗 − 𝑋̅)𝑘

𝑗=1
𝑘
𝑗=1 ]                               (3.5.4) 

where 𝑠𝑇 is the usual maximum likelihood standard deviation estimator, 

 𝑠𝑇 = [
1

𝑇
∑ (𝑋𝑗 − 𝑋̅)

2𝑇
𝑗=1 ]

1

2
 .                                                                            (3.5.5) 

This measure is always non-negative because the deviations from the sample mean 𝑋̅ 

sum up to zero. Hence, the maximum of the partial sums will always be positive, and 

likewise the minimum will always be negative. Hurst (1951) showed that the probability 

limit 

plim
𝑇→∞

{𝑇−𝐻 (
𝑅 𝑆⁄

𝑠𝑡
)} = 𝑐𝑜𝑛𝑠𝑡.                                                                           (3.5.6) 

H is known as Hurst coefficient it is estimated as 

𝐻̂ =
log (𝑅 𝑆⁄ )

log (𝑇)
                                                                                                   (3.5.7) 
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A short-memory process is associated with a value of 𝐻 =
1

2
, and estimated values 

greater than 
1

2
 are taken as hindsight for long-memory behavior. Therefore, the 

differencing parameter d can be estimated as 𝑑̂ = 𝐻̂ −
1

2
 

3.5.2.2 GPH Estimate 

An efficient method for estimating d was proposed by Geweke and Porter-Hudak 

(1983). They provided a semi-parametric estimator of d in the frequency domain. They 

consider as a data-generating process (1 − 𝐿)𝑑𝑋𝑡 = 𝜖𝑡 where 𝜖𝑡 ~ 𝐼(0). This process 

can be represented in the frequency domain 

𝑓𝑋(𝜆) = 1 − exp (−𝑖𝜆)|−2𝑑𝑓𝜖(𝜆)                                                                  (3.5.8) 

where 𝑓𝑋(𝜆) and 𝑓𝜖(𝜆) assign the spectral densities of 𝑋𝑡 and 𝜖𝑡, respectively. Equation 

(3.5.8) can be transformed to 

𝑙𝑜𝑔{𝑓𝑋(𝜆)} = {4𝑠𝑖𝑛2 (
𝜆

2
)}

−𝑑

+ 𝑙𝑜𝑔{𝑓𝜖(𝜆)},                                                 (3.5.9) 

𝑙𝑜𝑔{𝑓𝑋(𝜆𝑗)} = 𝑙𝑜𝑔{𝑓𝜖(0)} − 𝑑𝑙𝑜𝑔 {4𝑠𝑖𝑛2 𝜆𝑗

2
} + 𝑙𝑜𝑔 {

𝑓𝜖(𝜆𝑗)

𝑓𝜖(0)
}                      (3.5.10) 

The test regression is then a regression of the ordinates of the log spectral density on a 

trigonometric function of frequencies, 

𝑙𝑜𝑔{𝐼𝑋(𝜆𝑗)} = 𝛽1 + 𝛽2𝑙𝑜𝑔 {4𝑠𝑖𝑛2 𝜆𝑗

2
} + 𝜈𝑗 ,                                                 (3.5.11) 

where 𝐼𝑋(𝜆𝑗) be the periodogram of 𝑋𝑡 with Fourier frequencies 𝜆𝑗 = 2𝜋𝑗/𝑇, 𝑗 =

1, … , 𝑚.   𝜈𝑗 = 𝑙𝑜𝑔 {
𝑓𝜖(𝜆𝑗)

𝑓𝜖(0)
} is an error term, m is the number of periodogram ordinates 

which will be used in regression and T is the number of observations. The error term is 

assumed to be i.i.d. with zero mean and variance  
𝜋

6
 . The estimated order of fractional 

differencing is equal to 𝑑̂ = −𝛽̂2. Its significance can be tested with either the usual t 

ratio distributed as Student t or one can set the residual variance equal  
𝜋

6
 . A third 

possibility would be to choose 𝑚 such that the estimated standard error of the regression 

is approximately equal to √𝜋 6⁄  . 
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3.5.2.3 Local Whittle Estimation 

Local Whittle (LW) estimator for testing long memory was first proposed by Kunsch 

(1987) and further developed by Robinson (1995). This estimator represents 

approximately a maximum likelihood estimation in the frequency domain, since for 

larger T 

𝐼𝑋(𝜆𝑗)~𝑒𝑓𝑋(𝜆𝑗)−1
                                                                                          (3.5.12) 

The likelihood function is, 

𝐿{𝐼𝑋(𝜆𝑗), … , 𝐼𝑋(𝜆𝑚), 𝜃} = ∏
1

𝑓𝜃(𝜆𝑗)

𝑚
𝑗=1 𝑒−𝐼𝑋(𝜆𝑗)𝑓𝑋(𝜆𝑗)−1

                               (3.5.13) 

where 𝜃 = (𝐶, 𝑑) is the parameter vector. The log-likelihood function becomes, 

𝑙(𝜃) = ∑ [−𝑙𝑜𝑔𝑓𝜃(𝜆𝑗) −
𝐼𝑋(𝜆𝑗)

𝑓𝜃(𝜆𝑗)
]𝑚

𝑗=1                                                             (3.5.14) 

In the neighbourhood of zero frequency we obtain, 

𝐿(𝑑, 𝐶) = ∑ [𝑙𝑜𝑔𝐶 − 2𝑑 𝑙𝑜𝑔(𝜆𝑗) +
𝐼𝑋(𝜆𝑗)

𝐶𝜆𝑗
−2𝑑]𝑚

𝑗=1                                            (3.5.15) 

𝜕𝑙(𝐶,𝑑)

𝜕𝐶
= ∑ [

1

𝐶
+

𝐼𝑋(𝜆𝑗)

𝐶𝜆𝑗
−2𝑑]𝑚

𝑗=1                                                                            (3.5.16) 

𝐶̂ = 𝑚−1 ∑ [
𝐼𝑋(𝜆𝑗)

𝜆𝑗
−2𝑑 ]𝑚

𝑗=1                                                                                   (3.5.17) 

Inserting 𝐶̂ for 𝐶 in equation 3.5.15 and by minimisation, the local Whittle estimator can 

be written as, 

𝑑̂𝐿𝑊 = arg 𝑚𝑖𝑛 (𝑙𝑜𝑔 [𝑚−1 ∑ [
𝐼𝑋(𝜆𝑗)

𝜆𝑗
−2𝑑 ]𝑚

𝑗=1 ] − 2𝑑𝑚−1 ∑ log (𝜆𝑗)𝑚
𝑗=1 )           (3.5.18) 

Robinson (1995) showed the Local Whittle estimator is consistent for 𝑑 ∈  (−0.5, 0.5). 

However, its consistency depends on the bandwidth m, which satisfy 
1

𝑚
+

𝑚

𝑇
→ 0 as 𝑇 →

∞. The LW estimator is more desirable due to its nice asymptotic properties, underlying 

mild assumptions and the likelihood interpretation. Robinson (1995 also showed that 
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√𝑚(𝑑̂𝐿𝑊 − 𝑑) → 𝑁(0,
1

4
)                                                                             (3.5.18) 

3.5.2.4 The Exact Maximum Likelihood (EML) 

Consider the following ARFIMA (p, d, q) process,  

Φ(𝐿)(1 − 𝐿)𝑑𝑋𝑡 = Ψ(𝐿)𝜖𝑡                                                                         (3.5.19) 

where Φ(𝐿) and Ψ(𝐿) are the polynomials 

Φ(𝐿) = 1 − ∑ 𝜙𝑗𝐿𝑗𝑝
𝑗=1                                                                                 (3.5.20) 

and 

Ψ(𝐿) = 1 + ∑ Ψ𝑗𝐿𝑗𝑞
𝑗=1                                                                                 (3.5.21)  

involving autoregressive and moving average coefficients of order p and q respectively 

and 𝜖𝑡 is a white noise process. Now assume 𝑋 = (𝑋1, … , 𝑋𝑇)′ follows a normal 

distribution with 𝑋~𝑁(0, Σ). The EML procedure allows for simultaneous estimation of 

both the long memory parameter and ARMA parameters. The maximum likelihood 

objective function is expressed as, 

𝑙𝐸(Φ, Ψ, 𝑑; 𝑋) = −
𝑇

2
𝑙𝑜𝑔|Σ| −

1

2
𝑋′Σ−1𝑋                                                     (3.5.22) 

As a result, the EML estimator of d can be derived as, 

𝑑̂𝐸𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥 [−
𝑇

2
𝑙𝑜𝑔|Σ| −

1

2
𝑋′Σ−1𝑋]                                                 (3.5.23) 

3.5.3 Long Memory versus Structural Break 

Understanding the difference between true and spurious long memory is of great 

importance for many agricultural price modelling. There is ambiguity over long memory 

and structural changes. The long memory process indicates constant unconditional 

volatility, while the structural change implies a dramatic shift in unconditional volatility 

and thus a structural break model is more plausible. Usually, time series with slowly 

decaying empirical autocorrelation functions are modeled as fractionally integrated 

processes. However, several authors point out that other data generating processes such 

as nonlinear time varying coefficient models, random level shift processes, 
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STOPBREAK models, and markov switching models can generate similar 

autocovariance features (Diebold and Inoue, 2001; Granger and Hyung, 2004). The 

existing literature on long memory and structural breaks suggests testing for long 

memory and structural breaks separately and then estimating a long memory model with 

breaks, after concluding for the existence of long memory and structural breaks.  

Perron and Qu (2010) derived the properties of the periodogram of processes with short 

memory and structural break. They found that for low frequencies the effect of the shifts 

dominates the behavior of the spectral density and the implied value of d is one. For 

larger frequencies, on the other hand, the short memory component is dominant and the 

implied d is zero. These findings explain the sensitivity of semiparametric d-estimators 

with respect to the bandwidth choice. Therefore, Perron and Qu (2010) proposed a test 

statistic based on the difference between memory parameters estimated with different 

bandwidths. The same results on the spectral density of level shift processes are used by 

Qu (2011), who derives a score-type test that is based on the derivative of the local 

Whittle likelihood function to test true versus spurious long memory process. Simulation 

studies conducted by Qu (2011) and Leccadito et al. (2015) showed that against a wide 

range of alternatives the Qu test has the best power among the tests suggested so far. So, 

in this study to distinguish between true and spurious long memory process we used Qu 

test (Qu, 2011).  

For the time series 𝑋𝑡 , (𝑡 = 1, … , 𝑇) with spectral density 𝑓𝑋(𝜆) at frequency 𝜆. Then 

the null hypothesis of the Qu test is as follows: 

𝐻0: 𝑋𝑡 is stationary with 𝑓𝑋(𝜆) ≅ 𝐺𝜆−2𝑑  𝑎𝑠 𝜆 → 0+  𝑤𝑖𝑡ℎ 𝑑 ∈ (−1 2⁄ , 1 2⁄ ) 𝑎𝑛𝑑 𝐺 ∈

(0, ∞) 

The statistic is based on the local Whittle likelihood function written as 

𝑊 = sup
𝑟∈[𝜀,1]

(∑ 𝜈𝑗
2𝑚

𝑗=1 )
−1

2⁄
|∑ 𝜈𝑗

𝑚𝑟
𝑗=1 (

𝐼𝑗

𝐺(𝑑̂)𝜆𝑗
−2𝑑̂

− 1)|                                    (3.5.24) 

where 𝑑̂ is the local Whittle estimate of d using m frequency components and ε is a 

small trimming parameter.  
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3.5.4 Autoregressive Fractionally Integrated Moving Average (ARFIMA) Model 

For modeling time series in presence of long memory, first of all Granger and Joyeux 

(1980) proposed Autoregressive Fractionally Integrated Moving Average (ARFIMA) 

model. Fractional integration is a generalization of integer integration. Normally a time 

series is assumed to be integrated with order zero or one but in the case of fractional 

integration method, the parameter may take any fractional value from 0 to 1. For 

example, an autoregressive moving average process integrated of order 𝑑 (ARFIMA(p, d, 

q)) can be represented as  

𝜙(𝐵)𝑋𝑡 = (1 − 𝐵)−𝑑𝜃(𝐵)𝜖𝑡                                                                      (3.5.25) 

where 𝜖𝑡 is an i.i.d. random variable having zero mean and constant variance, 𝐵 denotes 

the lag operator, 𝜙(𝐵) and 𝜃(𝐵) denote finite Autoregressive (AR) and Moving 

Average (MA) polynomials in the lag operator of order p and q respectively having roots 

outside the unit circle.  

For parameter value 𝑑 = 0 the process is stationary; for 0 < 𝑑 < 0.5 the process is said 

to have long memory. For the range −0.5 < 𝑑 < 0, the sum of absolute values of its 

autocorrelations tends to a constant. In this case, the process exhibits negative 

dependency between distant observations and is therefore termed “anti-persistent” or to 

have “intermediate memory”. It can be shown that the ACF of long memory processes 

declines hyperbolically instead of exponentially as would be the case for stable 

ARMA(p, q) models. The speed of the decay depends on the parameter value d. For 

instance, given a fractional white noise process ARFIMA(0, d, 0), Granger and Joyeux 

(1980) and Hosking (1981) have proved that the autocorrelations are given by  

𝜌𝑘 =
Γ(𝑘+𝑑)Γ(1−𝑑)

Γ(𝑘−𝑑+1)Γ(𝑑)
                                                                                         (3.5.26) 

3.5.6 Proposed Hybrid Methodology 

To model the long memory property in the time series data, ARFIMA model has been 

widely used in the literature, and have very good performance compare to the ARIMA 

model. However, it is not able to capture the non-linear property of the data. On the 

other hand, to capture the nonlinear properties in the data, we generally used nonlinear 
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model like ANN, ELM, etc. ELM have good generalization power compare to the ANN 

and avoid over fitting problem. So, in this study we used ELM model to capture 

nonlinear patterns in the data. Both ARFIMA and ELM models have achieved successes 

in their own linear and nonlinear domains respectively. However, none of them is a 

universal model that is suitable for all conditions.  Since, it is very difficult to know the 

characteristics of the data completely in a real world problem. Therefore, for the 

practical use, hybrid methodology that has both linear and nonlinear modeling 

capabilities can be a good strategy. Accordingly, we postulate that the time series data 

𝑋𝑡 can be decomposed into linear and nonlinear components. 

𝑋𝑡 = 𝐿𝑡 + 𝑁𝑡                                                                                                (3.5.27) 

where, 𝑋𝑡 is the time series data under consideration, 𝐿𝑡 is the linear autoregressive 

component, and 𝑁𝑡 is the nonlinear component. To account the structural break present 

in the series, we estimate ARFIMA model with dummy variable. For this, first we detect 

the structural break in the data and accordingly put dummy variable as a regressor. 

Therefore, ARFIMA with dummy variable can take care of both long memory and 

structural break present in the data. Accordingly, to fit the linear component of the data 

series, we used ARFIMA model with dummy variable and obtained the residuals. To 

check the existence nonlinear component in the residuals, we employed BDS test. If 

there is the evidence of non-linearity then residuals are modelled using Extreme 

Learning Machine. Let 𝑒𝑡 is the residual at time t from the ARFIMA model with dummy 

variable, then 

𝑒𝑡 = 𝑋𝑡 − 𝐿̂𝑡                                                                                                 (3.5.28) 

where, 𝐿̂𝑡 is the forecast of ARFIMA model with dummy variable at time t. With k input 

nodes, ELM model for residuals will be  

𝑒𝑡 = 𝑓(𝑒𝑡−1, 𝑒𝑡−2, … , 𝑒𝑡−𝑘) + 𝜖𝑡                                                                  (3.5.29) 

where, f is a nonlinear function and 𝜖𝑡 is a random error. Let forecast from the nonlinear 

component at time t be 𝑁̂𝑡, then the combined forecast will be  

𝑋̂𝑡 = 𝐿̂𝑡 + 𝑁̂𝑡                                                                                                (3.5.30) 
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Hence, the proposed hybrid method would exploit the strength of both ARFIMA and 

ELM models. 

3.6 Co-integration with Structural Break 

3.6.1 Co-integration and Error Correction Models (ECM) 

Granger (1981) introduced the idea of co-integration into the literature, and Engle and 

Granger (1987) published the general case in their seminal paper. The concept behind 

co-integration is to find a linear combination of two I(d)-variables that will produce a 

variable with a lower order integration. More formally, co-integration can be defined as 

“The components of the vector 𝑿𝒕 are said to be cointegrated of order d, b, denoted 

𝑿𝒕 ~ 𝐶𝐼(𝑑, 𝑏) if (a) all components of 𝑿𝒕 are I(d) and (b) a vector 𝜶(≠ 0) exists so that 

𝜖𝑡 = 𝜶′𝑿𝒕 ~ 𝐼(𝑑 − 𝑏), 𝑏 > 0. The vector 𝜶 is called the co-integrating vector”.  

The great concern among researchers in this path-breaking development is mostly 

explained by the fact that stable, long-run relationships can now be identified among 

non-stationary variables. Consider the case of d = 1, b =1; i.e., the components in the 

vector 𝑿𝒕 are all integrated of order one, but if a linear combination 𝜶 of these exists, 

then the resultant series 𝜖𝑡 is integrated of order zero. Even though the individual series 

are non-stationary, the co-integrating vector binds them to each other. In the term of 

economics, deviations from a long- equilibrium direction may be possible, but these 

errors are characterized by a mean reversion to its stable long-run equilibrium. 

To estimate the co-integrating vector 𝜶 and to model the dynamic behavior of I(d) 

variable, Engle and Granger (1987) proposed a two-step estimation technique. In the 

first step, a regression of the variables in the set of I(1) is run, 

𝑌𝑡 = 𝛼1𝑋𝑡,1 + 𝛼2𝑋𝑡,2 + ⋯ + 𝛼𝑘𝑋𝑡,𝐾 + 𝜖𝑡    𝑓𝑜𝑟 𝑡 = 1, … , 𝑇                         (3.6.1) 

where 𝜖𝑡 is an error term. The estimated (𝐾 + 1) co-integrating vector 𝜶̂ is given by 

𝜶̂ = (1, −𝜶̂∗)′, where 𝜶̂∗ = (𝛼̂1, … , 𝛼̂𝐾)′. Hence, the co-integrating vector is normalized 

to the regressand. Engle and Granger (1987) have shown that the co-integrating vector 

can be consistently estimated in this static regression but with a finite sample bias of 

magnitude 𝑂𝑝(𝑇−1). Because the usual convergence rate in the I(0) case is only 
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𝑂𝑝(𝑇−1/2), Stock (1987) termed the OLS estimation of the co-integrating vector as 

“superconsistent”. Incidentally, although the co-integrating vector can be 

superconsistently estimated, Stock has shown that the limiting distribution is non-

normal; hence, as in the case of spurious regressions, the typical t and F statistics are not 

applicable.  

In the second step, an error-correction model (ECM) is specified. Here, the bivariate 

case in which two cointegrated variables 𝑌𝑡 and 𝑋𝑡, each I(1), are considered. The 

general specification of an ECM is as follows: 

∆𝑌𝑡 = 𝜓0 + 𝛾1𝜖𝑡̂−1 + ∑ 𝜓1,𝑖Δ𝑋𝑡−𝑖
𝑘
𝑖=1 + ∑ 𝜓2,𝑖Δ𝑌𝑡−𝑖 + 𝜀1,𝑡

𝑙
𝑖=1                      (3.6.2) 

∆𝑋𝑡 = 𝜉0 + 𝛾2𝜖𝑡̂−1 + ∑ 𝜉1,𝑖Δ𝑌𝑡−𝑖
𝑘
𝑖=1 + ∑ 𝜉2,𝑖Δ𝑋𝑡−𝑖 + 𝜀2,𝑡

𝑙
𝑖=1                         (3.6.3) 

where 𝜖𝑡̂ is the error from the static regression in equation 3.6.1, and 𝜀1,𝑡 and 𝜀2,𝑡 are 

white noise processes. The error correction model in equation 3.6.2 states that changes 

in 𝑌𝑡 are explained by their own past value, lagged changes of 𝑋𝑡, and the error from the 

long-run equilibrium in the previous period. The value of the coefficient 𝛾1 determines 

the speed of adjustment and should be negative in sign. Otherwise the system would 

diverge from its long-run equilibrium path. Incidentally, one is not restricted to 

including the error from the previous period only. It can be any lagged value as 

equations 3.6.2 and 3.6.3 are still balanced as 𝜖𝑡̂−1 is stationary and 𝜖𝑡̂−𝑘 with 𝑘 > 1 is 

also stationary. It can be inferred from these equations and the static regression, Granger 

causality will occur in at least one direction in the case of two co-integrated I(1)-

variables, i.e. at least one variable can help forecast the other. 

3.6.2 Systems of Co-integrated Variables 

Campbell and Perron (1991) have defined co-integration in a broader sense as follows: 

An (𝐾 × 1) vector of variables 𝒀𝒕 is said to be cointegrated if at least one non zero n-

element vector 𝜷𝒊 exists such that 𝜷𝒊
′𝒀𝒕 is trend stationary. 𝜷𝒊 is called a co-integrating 

vector. If r such linearly independent vectors 𝜷𝒊(𝑖 = 1, … , 𝑟) exist, we say that 𝒀𝒕 is 

cointegrated with cointegrating rank r. We then define the (𝐾 × 𝑟) matrix of co-
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integrating vectors 𝜷 = (𝜷𝟏, … , 𝜷𝒓). The r elements of the vector 𝜷′𝒀𝑡 are trend-

stationary, and 𝜷 is called the cointegrating matrix. 

This definition is broader than the one by Engle and Granger in the sense that now it is 

no longer required that each individual series be integrated of the same order. For 

example, some or all series can be trend-stationary. If 𝒀𝒕 contains a trend-stationary 

variable, then it is trivially co-integrated and the co-integrating vector is the unit vector 

that selects the stationary variable. On the other hand, if all series are trend-stationary, 

then the system is again trivially co-integrated because any linear combination of trend-

stationary variables yields a trend-stationary variable. 

Let us consider the vector autoregression model of order p 

𝒀𝑡 = 𝚷1𝒀𝑡−1 + ⋯ + 𝚷𝑝𝒀𝑡−𝑝 + 𝝁 + 𝚽𝑫𝑡 + 𝜺𝑡 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇                  (3.6.4) 

where 𝒀𝑡 assigns the (𝐾 × 1) vector of series at period t, the matrices 𝚷𝑖(𝑖 = 1, … , 𝑝) 

are the (𝐾 × 𝐾)  coefficient matrices of the lagged endogenous variables, 𝝁 is a (𝐾 × 1) 

vector of constants, and 𝑫𝑡 is a vector of non-stochastic variables such as seasonal 

dummies or intervention dummies. The (𝐾 × 1) error term 𝜺𝑡 is assumed to be i.i.d. as 

𝜺𝑡 ~ 𝑁(𝟎, 𝚺)  

From equation (3.6.4), two versions of a VECM can be delineated. In the first form, the 

levels of 𝒀𝑡 enter with lag 𝑡 − 𝑝: 

Δ𝒀𝑡 = 𝚪1Δ𝒀𝑡−1 + ⋯ + 𝚪𝑝−1Δ𝒀𝑡−𝑝+1 + 𝚷𝒀𝑡−𝑝 + 𝝁 + 𝚽𝑫𝑡 + 𝜺𝑡 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  (3.6.5) 

𝚪𝑖 = −(𝐈 − 𝚷1 − ⋯ − 𝚷𝑖)  𝑓𝑜𝑟 𝑖 = 1, … , 𝑝 − 1,                                         (3.6.6a) 

𝚷 = −(𝐈 − 𝚷1 − ⋯ − 𝚷𝑝),                                                                         (3.6.6b) 

where I is the (𝐾 × 𝐾) identity matrix. As can be seen from Equation (3.6.6a), the 

𝚪𝑖(𝑖 = 1, … , 𝑝 − 1) matrices contain the cumulative long-run impacts; hence, this 

specification is termed the long-run form. Please note that the levels of 𝒀𝑡 enter with lag 

𝑡 − 𝑝. 

The other VECM specification is of the form 
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Δ𝒀𝑡 = 𝚪1Δ𝒀𝑡−1 + ⋯ + 𝚪𝑝−1Δ𝒀𝑡−𝑝+1 + 𝚷𝒀𝑡−𝑝 + 𝝁 + 𝚽𝑫𝑡 + 𝜺𝑡 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇(3.6.7a) 

𝚪𝑖 = −(𝚷𝑖+1 + ⋯ + 𝚷𝑝)  𝑓𝑜𝑟 𝑖 = 1, … , 𝑝 − 1,                                          (3.6.7b) 

𝚷 = −(𝐈 − 𝚷1 − ⋯ − 𝚷𝑝).                                                                          (3.6.7c) 

The 𝚷 matrix is the same as in the first specification. However, the 𝚪𝑖 matrices now 

differ in the sense that they measure transitory effects; hence, this form of the VECM is 

termed the transitory form. Furthermore, the levels of the components in 𝒀𝑡 enter lagged 

by one period. Incidentally, as will become evident, inferences drawn on 𝚷 will be the 

same regardless of which specification is chosen, and the explanatory power is the same. 

As per assumption, the individual components of  𝒀𝑡 are at most I(1)-variables. 

Therefore, the left-hand side of the VECM is stationary. Besides lagged differences of 

𝒀𝑡, the error-correction term 𝚷𝒀𝑡−𝑝 or, depending on the specification of the VECM, 

𝚷𝒀𝑡−1 appears. This term must be stationary, too; otherwise the VECM will not balance. 

The question now is, what kind of conditions must be given for the matrix 𝚷 such that 

the right hand side is stationary? Three cases must be considered, 

(i) rank(𝚷) = 𝐾 

(ii) rank(𝚷) = 0 

(iii) rank(𝚷) = 𝑟 < 𝐾 

where 𝑟𝑎𝑛𝑘() assigns the rank of a matrix. In the first case, all 𝐾 linearly independent 

combinations must be stationary. This can only be the case if the deviations of 𝒀𝑡 around 

the deterministic components are stationary. Equations (3.6.5) and (3.6.7) represent a 

standard VAR-model in levels of 𝒀𝑡. In the second case, in which the rank of 𝚷 is zero, 

no linear combination exists to make 𝚷𝒀𝑡 stationary except for the trivial solution. 

Hence, this case would correspond to a VAR-model in first differences. The interesting 

case is the third one, in which 0 < 𝑟𝑎𝑛𝑘(𝚷) = 𝑟 < 𝐾. Because the matrix does not have 

full rank, two (𝐾 × 𝑟) matrices 𝛂 and 𝛃 exist such that 𝚷 = 𝛂𝛃′. Hence, 𝛂𝛃′𝒀𝑡−𝑝 is 

stationary, and therefore the matrix-vector product 𝛃′𝒀𝑡−𝑝 is stationary. The r linear 

independent columns of β are the co-integrating vectors, and the rank of Π is equal to 
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the co-integration rank of the system 𝒀𝑡. That is, each column represents one long-run 

relationship between the individual series of 𝒀𝑡. However, the parameters of the 

matrices α and β are undefined because any non-singular matrix 𝚮 would yield 

𝛂𝚻(𝛃𝚮−𝟏)′ = 𝚷. It implies that only the co-integration space spanned by β can be 

determined. The obvious solution is to normalize one element of β to one. The elements 

of α determine the speed of adjustment to the long-run equilibrium. It is referred to as 

the loading or adjustment matrix. 

Johansen (1988), Johansen (1991) and Johansen and Juselius (1990) developed 

maximum-likelihood estimators of these co-integration vectors for an autoregressive 

process as in Equations (3.6.4) through (3.6.7). Their approach uses canonical 

correlation analysis as a means to reduce the information content of T observations in 

the K-dimensional space to a lower-dimensional one of r co-integrating vectors. Hence, 

the canonical correlations determine the extent to which the multicollinearity in the data 

will allow such a smaller r-dimensional space. To do so, 2𝐾 auxiliary regressions are 

estimated by OLS: Δ𝒀𝑡 is regressed on lagged differences of 𝒀𝑡. The residuals are 

termed 𝑹0𝑡. In the second set of auxiliary regressions, 𝒀𝑡−𝑝 is regressed on the same set 

of regressors. Here, the residuals are assigned as 𝑹1𝑡. The 2𝐾 residual series of these 

regressions are used to compute the product moment matrices as 

𝑺̂𝑖𝑗 =
1

𝑇
∑ 𝑹𝑖𝑡𝑹𝑗𝑡

′𝑇
𝑡=1  with 𝑖, 𝑗 = 0,1                                                               (3.6.8) 

Johansen (1991) showed that the likelihood-ratio test statistic of the null hypothesis that 

there are at most r co-integrating vectors is 

−2 ln(𝑄) = −𝑇 ∑ (1 − 𝜆̂𝑖),𝑛
𝑖=𝑟+1                                                                    (3.6.9) 

where 𝜆̂𝑟+1, … , 𝜆̂𝑝 are the 𝑛 − 𝑟 smallest eigenvalues of the equation 

|𝝀𝑺̂11 − 𝑺̂10𝑺̂00
−1𝑺̂01| = 0                                                                             (3.6.10) 

For ease of computation, the (𝐾 × 𝐾) matrix 𝑺̂11 can be decomposed into the product of 

a non-singular (𝐾 × 𝐾) matrix C such that 𝑺̂11 = 𝐂𝐂′. Equation (3.6.10) would then 

accordingly be written as 
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|𝝀𝐈 − 𝐂−1𝑺̂10𝑺̂00
−1𝑺̂01𝐂′−1| = 0                                                                    (3.6.11) 

where I assigns the identity matrix and |∙| denotes determinant. 

Johansen (1988) has tabulated critical values for the test statistic in Equation (3.6.9) for 

various quantiles and up to five co-integration relations; i.e., 𝑟 = 1, … ,5. This statistic 

has been named the trace statistic. 

Besides the trace statistic, Johansen and Juselius (1990) have suggested the maximal 

eigenvalue statistic defined as  

−2 ln(𝑄; 𝑟|𝑟 + 1) = −𝑇𝑙𝑛(1 − 𝜆̂𝑟+1)                                                        (3.6.12) 

Once the cointegration rank r has been determined, the cointegrating vectors can be 

estimated as 

𝛃̂ = (𝝊̂1, … , 𝝊̂𝑟)                                                                                            (3.6.13) 

where 𝝊̂𝑖 are given by 𝝊̂𝑖 = 𝐂′−1𝒆𝑖 and 𝒆𝑖 are the eigenvectors to the corresponding 

eigenvalues in Equation (3.6.11). Equivalent to this are the first r eigenvectors of 𝝀̂ in 

equation (3.6.10) if they are normalized such that 𝐕̂′𝑺̂11𝐕̂ = 𝐈 with 𝐕̂ = (𝝊̂1, … , 𝝊̂𝑘). 

The adjustment matrix α is estimated as 

𝜶̂ = −𝑺̂01𝛃̂(𝛃̂′𝑺̂11𝛃̂)
−1

= −𝑺̂01𝛃̂                                                               (3.6.14) 

The estimator for α is dependent on the choice of the optimizing β. The estimator for the 

matrix Π is given as 

𝚷̂ == −𝑺̂01𝛃̂(𝛃̂′𝑺̂11𝛃̂)
−1

𝛃̂′ = −𝑺̂01𝛃̂𝛃̂′                                                    (3.6.15) 

Finally, the variance-covariance matrix of the K-dimensional error process 𝜺𝒕 is given as 

𝚺̂ = 𝑺̂00 − 𝑺̂01𝛃̂𝛃̂′𝑺̂10 = 𝑺̂00 − 𝛂̂𝛂̂′                                                            (3.6.16) 

3.6.3 VECM and Structural Break 

The pitfalls of falsely concluding non-stationarity in the data can also be encountered in 

the case of VECM. The structural break may causes wrongly acceptance co-integration 
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relationship. Lutkepohl et al. (2004) proposed a procedure for estimating a VECM in 

which the structural break is a simple shift in the level of the process and the break date 

is estimated first. Next, the deterministic part, including the size of the shift, is 

estimated, and the data are adjusted accordingly. Finally, a Johansen-type test for 

determining the cointegration rank can be applied to these adjusted series. 

Lutkepohl et al. (2004) assume that the (𝐾 × 1) vector process 𝒀𝑡 is generated by a 

constant, a linear trend, and level shift terms 

𝒀𝑡 = 𝝁0 + 𝝁1𝑡 + 𝜹𝑑𝑡𝜏 + 𝑿𝑡                                                                        (3.6.17) 

Where 𝑑𝑡𝜏 is a dummy variable defined by 𝑑𝑡𝜏 = 0 for 𝑡 < 𝜏 and 𝑑𝑡𝜏 = 1 for 𝑡 ≥ 𝜏. The 

shift assumes that the shift point 𝜏 is unknown and is expressed as a fixed fraction of the 

sample size, 

𝜏 = [𝑇𝜆]  with 0 < 𝜆 ≤ 𝜆 ≤ 𝜆̅ < 1                                                             (3.6.18) 

where 𝜆 and 𝜆̅ define real numbers and [.] defines the integer part. The meaning of 

equation 3.6.18 is that the shift might occur neither at the very beginning nor at the very 

end of the sample. Furthermore, it is assumed that the process {𝑿𝒕} can be represented as 

a VAR(p) and that the components are at most I(1) and cointegrated with rank r. 

The estimation of the break point is based on the regressions 

𝒀𝑡 = 𝝂0 + 𝝂1𝑡 + 𝜹𝑑𝑡𝜏 + 𝑨1𝒀𝑡−1 + ⋯ + 𝑨𝑝𝒀𝑡−𝑝 + 𝝐𝑡𝜏 for 𝑡 = 𝑝 + 1, … , 𝑇          (3.6.19) 

where 𝑨𝑖 with 𝑖 = 1, … , 𝑝 assign the (𝐾 × 𝐾) coefficient matrices and 𝝐𝑡 is the spherical 

𝐾-dimensional error process. It should be noted that other exogenous regressors, like 

seasonal dummy variables, can also be included in Equation (3.6.19). 

The estimator for the break point 𝜏̂ is then defined as 

𝜏̂ = arg min det
𝜏∈ℷ

(∑ 𝜖𝑡̂𝜏
𝑇
𝑡=𝑝+1 𝜖𝑡̂𝜏

′ )                                                                 (3.6.20) 

where ℷ = [𝑇𝜆, 𝑇𝜆̅] and 𝜖𝑡̂𝜏 are the least-squares residuals of Equation (3.6.19). The 

integer count of the interval ℷ = [𝑇𝜆, 𝑇𝜆̅]  determines how many regressions have to be 

run with the corresponding step dummy variables 𝜹𝑑𝑡𝜏 and how many times the 
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determinant of the product moment matrices of  𝜖𝑡̂𝜏 have to be calculated. The minimal 

one is the one that selects the most likely break point. 

Once the break point 𝜏̂ is estimated, the data are adjusted according to 

𝑿̂𝑡 = 𝒀𝑡 − 𝝁̂0 − 𝝁̂1𝑡 − 𝜹̂𝑑𝑡𝜏̂                                                                        (3.6.21) 

3.7 Evaluating Forecast Accuracy 

1) Root Mean Squared Error (RMSE) 

Mean squared error is the average of squared errors. For 𝑛 test set it is calculated as- 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1                                            (3.7.1) 

The RMSE is obtained by taking square root of MSE 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1                                  (3.7.2) 

where 𝑦𝑡 and 𝑦̂𝑡 are the actual and predicted value respectively and n is the number of 

observations.  

2) Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|𝑛

𝑡=1                                                                                  (3.7.3) 

3) Correct Directional Change (CDC) 

𝐶𝐷𝐶 =
1

𝑛
∑ 𝑎𝑡 × 100𝑛

𝑡=1                                  (3.7.4) 

where, 𝑎𝑡 = {
1, 𝑖𝑓 [𝑦𝑡+1 − 𝑦𝑡][𝑦̂𝑡+1 − 𝑦̂𝑡] ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This statistic indicates the direction of change. Larger the value of CDC greater is the 

change.  

4) Theil U- Statistic (U) 

𝑈 =
√

1

𝑛
∑ (𝑦𝑡−𝑦̂𝑡)2𝑛

𝑡=1

[√
1

𝑛
∑ 𝑦𝑡

2𝑛
𝑡=1 +√

1

𝑛
∑ 𝑦̂𝑡

2𝑛
𝑡=1 ]

                                                             (3.7.5) 

This statistic is scale independent. The value of U ranges between 0 and 1 and value 

close to 0 indicates efficient model. 



CHAPTER IV 

RESULTS AND DISCUSSION 

This chapter contains the comprehensive findings and discussion of the research work 

carried out to accomplish three specific objectives of the study. The chapter is divided 

into three main sections as per the objectives of the current investigation. For better 

understanding, results of these investigations are presented in tabular and graphical form 

and explanation of each table and figure is discussed wherever required.    

4.1 Results of Volatility Models with Structural Break 

Unprecedented variability or volatility in the agricultural commodity prices creates 

much uncertainty and risk for all market participants, and makes both short-term and 

long-term planning difficult. Often volatility is assumed same as risk, but the fact is, risk 

deals only with negative price shocks while volatility takes care of both negative and 

positive shocks. To estimate the volatility huge numbers of non-linear parametric and 

non-parametric models have been developed. A major issue with the prediction of 

volatility is the presence of structural break in the data. In this section, first we assess 

some existing methods and then propose a hybrid method for agricultural price volatility 

forecasting in the presence of structural break by combining the Markov Switching 

GARCH (MS-GARCH) model with Extreme Learning Machine (ELM) model.  

4.1.1 Data Description 

For the present study, weekly Potato price (₹/q) of Delhi market and monthly 

international price ($/mt) of Groundnut oil and Palm oil has been used. The daily data of 

Potato price of Delhi market are obtained from National Horticultural Research and 

Development Foundation (NHRDF) (http://nhrdf.org/en-us/) website for the period 1st 

January 2005 to 31st December 2019, and then converted to weekly data. International 

monthly Groundnut oil and Palm oil price from January 1980 to December 2019, are 

obtained from World Bank Commodity price available at official website 

(https://www.worldbank.org/en/research/commodity-markets). In this study, we applied 

http://nhrdf.org/en-us/
https://www.worldbank.org/en/research/commodity-markets
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the natural choice of logarithmic transformation to the data to stabilize the variance, and 

have taken first difference to the log transformed data to form a stationary return series. 

The data sets are divided into training and testing sets. Last 12 observations are taken as 

testing set whereas remaining data are used for the training of the model.   

Table 4.1 summarizes the descriptive statistics for the weekly Potato price of Delhi 

market from Jan-2005 to Dec-2019, International monthly Groundnut oil and Palm oil 

price series from Jan-1980 to Dec-2019. The mean value of Potato price series of Delhi 

market is ₹808.7 per quintal whereas 1103.60 $/mt and 581.80 $/mt for International 

Groundnut and Palm oil price series respectively. The positive skewness indicates that 

all the three price series are distributed with an asymmetric tail extending towards 

positive values. Each series has excess kurtosis compared to the normal distribution. 

Moreover, neither of the price series is normally distributed as indicated by the values of 

Jarque-Bera normality test. 

Table 4.1: Descriptive statistics of Delhi weekly Potato price (Jan-2005 to Dec-

2019), International monthly Groundnut oil and Palm oil price (Jan-1980 to Dec-

2019)  

 Delhi Potato Int. Groundnut oil Int. Palm oil 

Mean 808.70 1103.60 581.80 

Std. Dev. 419.45 438.86 238.10 

Minimum 225.20 445.00 197.00 

Maximum 2669.00 2502.20 1377.20 

CV (%) 51.86 39.78 40.92 

Skewness 1.43 1.00  0.97 

Kurtosis 5.61  3.93  3.75 

Jarque-Bera test (p-value) <0.01 <0.01  <0.01 

Note: Potato price (₹/q), Groundnut oil and Palm oil price ($/mt)  
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Figure 4.1a: Time plot of weekly Potato price of Delhi market (Jan-2005 to Dec-2019) 

 

Figure 4.1b: Time plot of international monthly Groundnut oil price (Jan-1980 to Dec-2019) 

 

Figure 4.1c: Time plot of international monthly Palm oil price (Jan-1980 to Dec-2019) 
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4.1.2 Test for Stationarity, Linearity and Structural Break 

To test the stationarity of the data series under consideration, we used Augmented-

Dickey-Fuller (ADF) and Phillip-Perron (PP) tests, which provide the presence or 

absence of unit root in the data series. For both ADF and PP test, null hypothesis is 

presence of unit root in the data, which means data is non-stationary and alternative 

hypothesis being data series is generated from a stationary process. The results of both 

tests are reported in Table 4.2 for all the three price series. According to ADF and PP 

test results, all the series were non-significant at 5% level of significance i.e. all the 

series are non-stationary at level. However, on first difference, both the tests were found 

to be highly significant at 1% level of significance.  

Table 4.2: Unit root tests  

Price Series  Augmented Dickey-

Fuller  Test 

Phillip-Perron Test 

t-statistic p-value t-statistic p-value 

Delhi Potato Level -1.22  0.24 -4.42 0.20 

1st difference -13.03  <0.001 -547.00  <0.001  

International 

Groundnut oil 

Level -0.63    0.45 -0.74    0.52 

1st difference -12.76  <0.001 -260.00  <0.001 

International 

Palm oil 

Level -0.98   0.32 -1.79    0.42 

1st difference -16.23  <0.001 -304.00  <0.001 

We also employed Brock-Decher-Scheikman (BDS) test, to check the linearity 

characteristics of the price series. In this test, by using any linear econometric model, 

data is detrended first to remove linear structure and test whether the remaining residuals 

are independent or not, according to which we have to accept or reject the null 

hypothesis. If residuals are independent then we don’t reject the null hypothesis which 

means data series is linear, and if residuals are not independent then we have to reject 

the null hypothesis which means data series is nonlinear. The detail results of the BDS 

test are presented in the Table 4.3. Here probability value is less than 0.01 for both the 

embedding dimensions, which shows that all three price series are nonlinear at 1% level 

of significance. 
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Table 4.3: Brock-Decher-Scheikman (BDS) test results 

 

Series 

 Embedding dimension  

Conclusion  2 3 

Epsilon Statistic p-value Statistic p-value 

 

Delhi 

Potato 

0.5𝜎 112.96 ˂ 0.001 174.76 ˂ 0.001  

Non Linear 𝜎 69.31 ˂ 0.001 80.17 ˂ 0.001 

1.5𝜎 53.71 ˂ 0.001 55.05 ˂ 0.001 

2𝜎 48.30 ˂ 0.001 46.53 ˂ 0.001 

Int. 

Groundnut 

oil 

0.5𝜎 145.41      ˂ 0.001 250.02      ˂ 0.001  

Non Linear 𝜎 71.84      ˂ 0.001 86.20       ˂ 0.001 

1.5𝜎 48.83       ˂ 0.001 50.48       ˂ 0.001 

2𝜎 40.62 ˂ 0.001 39.16 ˂ 0.001 

Int. Palm 

oil 

0.5𝜎 140.49       ˂ 0.001 235.33       ˂ 0.001  

Non Linear 𝜎 67.16      ˂ 0.001 80.31       ˂ 0.001 

1.5𝜎 48.01       ˂ 0.001 49.66        ˂  0.001 

2𝜎 42.12 ˂ 0.001 40.81 ˂ 0.001 

Recent studies have established that structural breaks could severely affect the 

results of volatility models. Structural break detection is the problem of determining the 

point at which a series of observations change its statistical properties. For identification 

of structural break in the variance, over years several algorithms have been proposed 

like binary segmentation, Iterated Cumulative Sum of Squares (ICSS) algorithm, Pruned 

Exact Linear Time (PELT) algorithm, etc.  The PELT algorithm has been developed by 

Killick et. al. (2012), and it has several advantages over other algorithm. So, in this 

study, to check the structural break in the series PELT algorithm is used.  The plots of 

return series along with break points are presented in the Figure 4.2. It demonstrates that 

all series have at least one structural break in their unconditional variance dynamics.  
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Figure 4.2: Test of structural breaks using PELT algorithm 

4.1.3 Fitting of the ARIMA model 

(a) Identification of the AR and MA order  

The most important method to diagnose the time series properties of data is the 

correlogram. The correlogram is a graph that presents one of two statistics: the 

Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF). The 

Potato price of Delhi market 

Int. Groundnut oil price 

Int. Palm oil price 
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ACF measures the correlation between 𝑋𝑡 and 𝑋𝑡+𝑘, where k is the number of lead 

periods into the future. The PACF is the correlation between 𝑋𝑡 and 𝑋𝑡+𝑘 after removing 

the effect of the intermediate observations. To understand the statistical properties, the 

ACF and PACF are estimated for each price return series. Figure 4.3 and Figure 4.4 

shows the ACF and PACF for each price return series respectively. The autoregressive 

parameter (p) is determined by the PACF value and moving average parameter (q) is 

determined by the ACF value.  

 

 

 

Figure 4.3: Autocorrelation Function (ACF) of return series  

Potato price of Delhi market 

Int. Groundnut oil price 

Int. Palm oil price 
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Figure 4.4: Partial Autocorrelation Function (PACF) of return series  

(b) Estimation of the Parameters  

From the visual inspection of the ACF and PACF in the Figures 4.3 and 4.4, it appears 

to be some low-order AR or MA processes are occurring in the data. However, we 

cannot have a confirmative structure of the model based on the correlograms.  So, we 

Potato price of Delhi market 

Int. Groundnut oil price 

Int. Palm oil price 
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move to the estimation of the model. The parameters are estimated through maximum 

likelihood function such that an overall measure of errors is minimized or the likelihood 

function is maximized. We begin by proposing some simple models of each series, and 

then move to higher order model to assess model fit and adequacy. We have tried all 

possible combinations of p and q from order 0 to 3. Based on the minimum AIC value 

and parsimony of the model, the best model is selected. The details of the best-selected 

ARIMA model for each series are given in the Table 4.4. It is found that there is 

seasonal component in international Groundnut price series, but it is not present in the 

other two series.  

Table 4.4: Parameter estimates of the ARIMA model on the return series  

Series Model Parameters  AIC 

  AR-1 AR-2 MA-1 SMA-1 SMA-1  

Delhi 

Potato 

ARIMA(1,0,1) 0.72 

(0.07)  

NA -0.50 

(0.08) 

NA NA -474.03 

Int. 

Groundnut 

oil 

ARIMA(1,0,1) 

(1,0,1)[12] 

0.25   

(0.10)   

NA 0.23 

(0.10)    

-0.04  

(0.46)   

0.11 

(0.32) 

-496.07 

Int. Palm 

oil 

ARIMA(2,0,1) 0.18  

(0.11)    

-0.18  

(0.05)   

0.23 

(0.10) 

NA NA -249.90 

(c) Residual Diagnostic  

The plot of the residuals and squared residuals are given in the Figure 4.5 and 4.6 

respectively, for each price series. Before applying the test for ARCH effect to the 

residual series, we check ‘goodness of fit’ of the ARIMA model. For this, we inspect the 

autocorrelation function of the residuals. The ACF of the residuals in Figure 4.7 shows 

that there are some small spikes are present in the plots. To confirm the autocorrelation 

in the residuals, we employed Ljung-Box test. The details of the Ljung-Box test are 

presented in the Table 4.5. The null hypothesis of no correlation in the series of Ljung-

Box test  is not rejected for long lags, which indicates there is no autocorrelation in the 

residuals.  
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Figure 4.5: Time plot of residuals series 

Int. Palm oil price 

Potato price of Delhi market 

Int. Groundnut oil price 
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Figure 4.6: Time plot of squared residuals series  

Int. Palm oil price 

Potato price of Delhi market 

Int. Groundnut oil price 
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Figure 4.7: ACF plot of residuals of the fitted ARIMA model 

However, results of Ljung-Box test show, residuals are statistically uncorrelated 

but they seem to be not identically distributed from visual inspection of the plot of the 

residuals in Figure 4.5 that is, the residuals are not independent and identically 

Int. Palm oil price 

Potato price of Delhi market 

Int. Groundnut oil price 
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distributed through time. There is a tendency that small (large) absolute values of the 

residual process are followed by other small (large) values of unpredictable sign, which 

is a common behaviour of GARCH processes. Granger and Andersen (1978) pointed out 

that some of the series modelled by Box and Jenkins (1970) exhibit autocorrelated 

squared residuals even though the residuals themselves doesn’t seems to be 

autocorrelated over time. Therefore, they suggested that the ACF of the squared 

residuals could be useful in identifying nonlinear pattern. Bollerslev (1986) mentioned 

that the ACF and PACF of squared process are important in checking and identifying 

GARCH behaviour. Figure 4.8 and Figure 4.9  show the ACF and PACF of the squared 

residual series of the best fitted ARIMA model for each price series. It indicates, 

although the residuals seem to be uncorrelated, the squared residual series are 

autocorrelated. In other words, we can say variance of residual series is conditional on 

its past history i.e. the residual series may exhibit an ARCH effect. In this study, to 

check statistically ARCH effect in the process, we used Engle’s Lagrange Multiplier 

test. The detail results of the Engle’s Lagrange Multiplier test are given in the Table 4.6. 

The rejection of null hypothesis of ‘No ARCH effect’ at long lags provides strong 

evidence for the existence of ARCH effect in series under consideration.    

  Table 4.5: Ljung-Box test results for residuals  

 Delhi Potato Int. Groundnut oil Int. Palm oil 

Order Statistic p-value Statistic p-value Statistic p-value 

06 01.85 0.93 02.15 0.90 01.00 0.98 

12 07.33 0.83 14.57 0.26 03.29 0.96 

18 21.16 0.27 24.03 0.15 08.10 0.90 

24 28.22 0.25 38.98 0.04 19.04 0.74 

 

Table 4.6: Engle’s Lagrange Multiplier test results for the ARCH effect  

 Delhi Potato Int. Groundnut oil Int. Palm oil  

Order Statistic p-value Statistic p-value Statistic p-value 

4 435.6 <0.001 1017 <0.001 284.1 <0.001 

8 207.6 <0.001 482 <0.001 116.8 <0.001 

12 131.5 <0.001 304 <0.001 72.8 <0.001 

16 95.3 <0.001 201 <0.001 47.3 <0.001 

20 74.0  <0.001 155 <0.001 37.1 <0.001 

24 58.8 <0.001 115 <0.001 28.7 <0.001 
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Figure 4.8: ACF plot of squared residuals of the fitted ARIMA model 

Int. Palm oil price 

Potato price of Delhi market 

Int. Groundnut oil price 
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Figure 4.9: PACF plot of squared residuals of the fitted ARIMA model 
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Int. Groundnut oil price 
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4.1.4 Fitting of GARCH model  

As mentioned earlier, the squared residuals from all three series exhibited 

heteroscedastic structure. Therefore, to model ARCH effect of the residual series, 

GARCH model is fitted to all the three residuals series. Under the GARCH(p, q) model 

structure, the conditional variance of the residuals at time t, depends on the squared 

residuals in the previous q time steps, and the conditional variance in the previous p time 

steps. Since GARCH models can be treated as ARMA process for squared residuals, the 

order of GARCH can be determined with the method for selecting the order of ARMA 

process, and model selection criteria, such as Akaike Information Criterion (AIC) can be 

used for selecting the appropriate model. In this study, GARCH models are estimated 

using maximum likelihood. The log-likelihood function is computed from the product of 

all conditional densities of the prediction errors. For all the three series, GARCH(1,1) 

model was identified to be the best model on the basis of in-sample performance. The 

estimates of the parameters of the GARCH (1,1) model along with their standard errors 

in brackets for individual series are given in Table 4.7.  

Table 4.7: Parameter estimates of the best fitted GARCH model 

Series Model Omega Alpha1 Beta1 

Delhi Potato 

price 

GARCH(1,1) 0.02 

(0.01) 

0.21 

(0.06) 

0.53 

(0.13) 

Int. Groundnut 

oil 

GARCH(1,1) 0.89 

(0.35) 

0.23 

(0.06) 

0.76 

(0.05) 

Int. Palm oil GARCH(1,1) 0.22 

(0.11) 

0.10 

(0.03) 

0.85 

(0.04) 

 

4.1.5 Markov switching GARCH model 

Plots of the residuals in Figure 4.5 clearly show that large peaks are more frequent at the 

starts, and at some places at the middle of the series. This indicates that the conditional 

variance is time varying according to a regime switching specification. In this study, we 

used two state Markov switching GARCH model. We tried all possible combination of 

three-variance model specification namely "sGARCH", "eGARCH", "gjrGARCH" and 

three distribution specification namely "norm", "std", "snorm" for each series. Based on 
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the minimum AIC value of the in-sample performance, we select the best combination 

of variance models and distributions (Table 4.8). The models are estimated through 

maximum likelihood estimation technique. The detail results of the parameter estimates 

are presented in the Table 4.9a, Table 4.9b, and Table 4.9c for the Potato price of Delhi 

market, International Groundnut oil and International Palm oil price series respectively. 

Parameter estimates show that the evolution of the volatility process is heterogeneous 

across two regimes.  

Table 4.8: Best variance model and distribution specification of MS-GARCH model 

Series Variance Specification Distribution Specification 

Delhi Potato price (sGARCH, eGARCH) (norm, std) 

Int. Groundnut oil (sGARCH, gjrGARCH) (norm, std) 

Int. Palm oil (sGARCH, gjrGARCH) (norm, norm) 

 

Table 4.9a: Parameter estimates of the MS-GARCH model for Potato price of 

Delhi market 

Parameter Estimate  Std. Error p-value 

Alpha0_1 0.01 0.01 0.04 

Alpha1_1 0.11 0.08 0.02 

Beta_1 0.31 0.18 <0.001 

Alpha0_2 0.01 0.01 <0.001 

Alpha1_2 0.10 0.01 0.02 

Beta_2 0.81 0.07 0.03 

P_1_1 0.78 0.06 <0.001 

P_2_1 0.23 0.08 <0.001  

 

Table 4.9b: Parameter estimates of the MS-GARCH model for international 

Groundnut oil price series 

Parameter Estimate  Std. Error p-value 

Alpha0_1 0.01 0.001 <0.001 

Alpha1_1 0.02 0.01 0.03 

Beta_1 0.97 0.01 0.02 

Alpha0_2 0.21 0.02 <0.001 

Alpha1_2 0.15 0.01 <0.001 
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Beta_2 0.81 0.01 0.05 

P_1_1 0.77 0.02 <0.001 

P_2_1 0.08 0.02 <0.001 

 

Table 4.9c: Parameter estimates of the MS-GARCH model for international Palm 

oil price series 

Parameter  Estimate  Std. Error p-value 

Alpha0_1 0.17 0.04 0.04 

Alpha1_1 0.05 0.01 <0.001 

Beta_1 0.91 0.01 <0.001 

Alpha0_2 0.39 0.05 0.02 

Alpha1_2 0.08 0.04 0.02 

Beta_2 0.85 0.06 <0.001 

P_1_1 0.95 0.11 <0.001 

P_2_1 0.09 0.07 <0.001 

 

4.1.6 Artificial Neural Network Training and Forecasting 

With the advancement and evolution of the soft-computing technologies, artificial 

intelligence techniques have emerged in the price volatility forecasting to enhance the 

capacity in handling the significant randomness and non-stationarity in the data. Various 

Artificial Neural Network (ANN) methods have successfully been applied in the 

agricultural price volatility forecasting (Lama et al. 2016, Wu at al. 2017). When, we 

design a robust ANN based forecasting model, it is very important to consider pertinent 

factors such as number of input nodes, number of hidden layers, number of nodes per 

hidden layer, selection of best training algorithm and the activation function, and the 

number of output nodes. These factors are selected in such a way that the optimum 

model ensures the smallest generalization error and best performance assessment 

matrices. The number of hidden layers influences the complexity level of the input-

output relationship. Using too many layers can cause overfitting, while too few leads to 

under-fitting. As neural networks, being a universal approximation can map any non-

linear function with one hidden layer given sufficient number of nodes at hidden layer 

and adequate data points for training. Accordingly, in this study, the ANN with one 

hidden layer has been used.  
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There is no ‘rule-of-thumb’ to determine the number of input nodes, which are lagged 

observation of the same variable. In the literature, it is suggested that input nodes can be 

determined with the help of PACF. Therefore, we tried 2 to 10 input nodes for each 

series. The optimum input nodes for Potato price of Delhi market, international 

Groundnut oil, and international Palm oil price were 7, 4 and 6 respectively. The 

optimum number of nodes at hidden layer improves the out-of-the sample forecasting 

ability and avoids the over-fitting problem. If we use too few hidden nodes then it will 

lead to under-fitting, while too many nodes will lead to overfitting of the model. The 

number of hidden nodes is determined with help of experimentation. We varied the 

number of hidden nodes from 2 to 15 with basic cross validation method. For Potato 

price of Delhi market, International Groundnut oil, and International Palm oil price, the 

optimum number of hidden nodes were found 9, 8 and 8 respectively (Table 4.10). The 

number of replication is taken to be 50 for each series.   

4.1.7 Extreme Learning Machine Training and Forecasting 

Extreme Learning Machine (ELM) is based on the improvement of the conventional 

single layer feed forward neural network with excellent generalization performance 

(Xiong et al., 2018).  In ELM, input weights and biases are randomly generated, and its 

output weights are analytically calculated. The critical idea behind ELM is to transform 

difficult issues arising from nonlinear optimization, like the optimal determination for 

input weights, hidden layer biases, output weights, to a simple least square problem of 

deciding the optimal output weights. It means the users do not have to consider all the 

input weights and the hidden layer biases as long as the norm of weights is small 

enough, while the output weights are the only issue has to take care. This idea is 

completely different from the classic iterative learning techniques.  

The basic architecture of the Extreme Learning Machine is almost similar to the ANN 

model. Therefore, similar to the ANN, for designing the ELM model three layers were 

used to build the architecture for forecasting agricultural price volatility. The number of 

input nodes is determined by the partial autocorrelation function. The number of output 

nodes is set as one, as the iterated strategy is used for implementing the multi-step-ahead 

forecasting. A logistic sigmoid function is selected as the activation function. As 
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discussed above, ELM randomly determines the input weights and hidden biases, which 

do not require any tuning in the training process. Thus, once these parameters are 

randomly generated in advance, the number of hidden nodes is determined in a trial-

error fashion. We thereby construct fourteen ELM models with various numbers of 

hidden nodes (varying from 2 to 15). Each ELM model is trained repeatedly 50 times on 

the estimation samples, and then, the average MSE of each ELM is calculated on the 

testing set. The ELM that yields the smallest average MSE value is selected as the best 

model. By doing so, the optimal number of hidden nodes ELM for Potato price of Delhi 

market, International Groundnut oil, and International Palm oil price, are 8, 9 and 7 

respectively.   

Table 4.10: Neuronal arrangements for the ELM and the ANN models 

Series Model Neuron structure 

Delhi Potato ANN 7 – 9 – 1  

ELM 7 – 8 – 1  

Int. Groundnut oil ANN 4 – 8 – 1  

ELM 5 – 9 – 1  

Int. Palm oil ANN 6 – 8 – 1  

ELM 6 – 7 – 1  

  

4.1.8 Proposed MS-GARCH – ELM model  

There are ample evidence that the parameters of time series models fitted to economic 

time series changes over time (Stock and Watson, 1996; Aiolfi and Timmermann 2006). 

According to Timmermann (2006), model instability as an important determinant of 

forecasting performance and a potential reason for hybrid models. Moreover, it becomes 

necessary to use hybrid model because individual model may not handle the inherent 

data patterns like non-stationarity and non-linearity simultaneously. In order to develop 

a hybrid model based on Extreme Learning machine (ELM) and Markov Switching 

GARCH (MS-GARCH) model for agricultural price volatility forecasting, we have 

employed parallel hybrid structure introduced by Bates and Granger (1969).  

Motivated by the work of Lamoureux and Lastrapes (1990), in which he has shown the 

simple GARCH model tends to significantly overestimate volatility persistence in the 
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presence of structural breaks, Hamilton and Susmel (1994) proposed MS-GARCH 

model. In this model, the parameters switches from one regime to another according to 

an unobservable process that is assumed to follow a first-order Markov process. MS-

GARCH model removes the bias of GARCH effects by allowing the coefficient on the 

unconditional volatility level to switch between regimes. The specification of MS-

GARCH model allows periods of low and high unconditional volatility to be clearly 

identified, and it is robust against changes in market conditions and structural breaks. In 

view of the above advantages of MS-GARCH model in capturing volatility in the data 

under the assumption of structural break, we select it as one of the prominent candidate 

model in the hybridization process.  

A frequently used machine-learning algorithm in the price volatility forecasting is the 

artificial neural network. ANN is a powerful and flexible data-driven algorithm designed 

to capture and represent non-linear and complex relationships present in the data. 

However, a big challenge encountered by the ANN is the need for iterative tuning of 

model parameters, slow learning rate and over fitting of the model. To overcome these 

problems, Huang (2006) proposed Extreme Learning Machine (ELM), which is based on 

single-hidden layer feedforward neural networks. ELM provides good generalization 

performance at very fast learning speed. Therefore, to capture the nonlinearity in the 

data with good generalization, we select ELM as another candidate model. 

In this study, we adopt weighting scheme based on non-parametric smoothing 

techniques, in which for determining the optimum weights for the weighted average is 

based on kernels. In the kernel-based technique, the functional form of the weight 

function is not assumed to be known and it is non-linear. In addition, it is not assumed 

that the forecasting errors of the individual forecasting models are serially or cross 

uncorrelated. We make individual predictions of the squared residual series of ARMA 

process, both in the training and testing sets. Hence, we have in-sample and out-of-

sample forecast value. The forecast of the conditional variance from the fitted MS-

GARCH as well as squared residuals from ELM for each series were combined using 

Nadaraya–Watson kernel weight function. We used Gaussian kernel, which determines 

the shape of the kernel weights. The size of the weight is parameterized by the 

bandwidth, h. The bandwidth is chosen such that there is a trade-off between bias and 
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variance. The smaller bandwidth provide weights more concentrated around the forecast 

series. We employed cross validation and the leave-one-out method to estimate the 

bandwidth for each series. The forecasting ability of individual as well as hybrid models 

were assessed though Root mean squared error (RMSE), Theil U-statistic and Correct 

Directional Statistics (CDS). We take four individual model viz. GARCH, MS-GARCH, 

ANN and ELM along with the hybrid model for the evaluation of the performance. We 

evaluate the forecasting performance of the each model for both in-sample (training set) 

and out-of-sample (testing set). The detail results of in-sample evaluation and out-of-

sample evaluation are presented in the Table 4.11 and Table 4.12 respectively for three 

price series. The results revealed that the both in-sample and out-of-sample, the 

proposed hybrid model outperform the individual models in all cases, since it has 

consistently lower RMSE and Theil-U and higher CDC value. The performance of the 

MS-GARCH model is better compare to the GARCH model, it may be due to MS-

GARCH model capture the regime shift in the data. In the line of the earlier previous 

study of the forecasting agricultural price volatility as Lama et al. (2016), this study also 

confirm that the performance of the ANN model is better than the GARCH model. 

However, the overall performance of the ELM is better or at par compared to the ANN.      

Table 4.11: In-sample forecasting performance of GARCH, ANN, ELM, MS-

GARCH and Hybrid model 

 GARCH ANN ELM MS-GARCH Hybrid 

Delhi Potato price series  

RMSE 7.45 5.56 5.02 6.20 4.60 

CDC 59.20 63.93 63.90 62.00 65.29 

Theil-U 0.37 0.33 0.33 0.34 0.28 

Int. Groundnut oil price  

RMSE 2.04 1.30 1.25 1.50 1.15 

CDC 63.76 65.32 65.87 64.90 66.12 

Theil-U 0.31 0.28 0.27 0.30 0.25 

Int. Palm oil price  

RMSE 8.34 6.40 5.90 6.90 5.40 

CDC 47.36 50.19 51.26 49.50 53.17 

Theil-U 0.41 0.35 0.35 0.37 0.35 

Note: RMSE value should be multiplied by 10-3 
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Table 4.12: Out-of-sample forecasting performance of GARCH, ANN, ELM, MS-

GARCH and Hybrid model 

 GARCH ANN ELM MS-GARCH Hybrid 

Delhi Potato price series  

RMSE 69.21 60.36 56.84 62.23 55.71 

CDC 52.34 55.40 55.30 54.22 57.78 

Theil-U 0.45 0.40 0.41 0.42 0.38 

Int. Groundnut oil price  

RMSE 18.54 14.90 14.30 15.50 13.85 

CDC 56.24 59.13 59.90 58.56 61.40 

Theil-U 0.39 0.35 0.34 0.36 0.34 

Int. Palm oil price  

RMSE 42.52 35.58 36.67 37.50 35.12 

CDC 43.14 46.21 46.97 45.32 46.50 

Theil-U 0.50 0.47 0.46 0.47 0.44 

Note: RMSE value should be multiplied by 10-2 

4.2 Results of Long Memory models with structural break 

4.2.1 Data Description and Stochastic Properties 

For the present investigation, daily mustard price (₹/q) of Agra and Bharatpur market 

from 1st January 2016 to 31st January 2020, are collected from Agricultural Marketing 

Information Network (AGMARKNET), (https://agmarknet.gov.in/) website. The time 

plot of the mustard price series of Agra and Bharatpur markets are provided in Figure 

4.10a and Figure 4.10b respectively. The descriptive statistics of the mustard price for 

both markets are reported in the Table 4.13. The average mustard price of Agra and 

Bharatpur markets are 3696 ₹/q and 3735 ₹/q respectively.  There is not much difference 

in the average price of Agra and Bharatpur market, this can be due to the fact that both 

are production markets of mustard. Table 4.13 indicates, the value of Standard 

Deviation, Minimum, Maximum, Coefficient of variation, Skewness and Kurtosis are 

slightly higher in the Bharatpur market compare to the Agra market. Jarque-Bera test 

result shows that both series are not normally distributed. In this study, to stabilize the 

variance, we applied logarithmic transformation to the data.  

https://agmarknet.gov.in/
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Figure 4.10a: Time plot of daily Mustard price of Agra market (01/01/2016 to 

31/01/2020) 

 

Figure 4.10b: Time plot of daily Mustard price of Bharatpur market (01/01/2016 to 

31/01/2020) 

Table 4.13: Descriptive statistics of Agra and Bharatpur market Mustard price 

series (01/01/2016 to 31/01/2020) 

 Agra Bharatpur 

Mean (₹/q) 3696.00  3735.00  

Std. Dev. (₹/q) 322.71 355.21 

Minimum (₹/q) 3110.00 3143.00 

Maximum (₹/q) 4500.00 4630.00 

CV (%) 8.71 9.40 
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Skewness 0.46 0.69 

Kurtosis 2.07 2.62 

Jarque-Bera test (p value) <0.001 <0.001 

(Source: Agricultural Marketing Information Network (AGMARKNET), https://agmarknet.gov.in/) 

The Autocorrelation Function (ACF) of the mustard price series of Agra and Bharatpur 

markets are shown in Figure 4.11a and Figure 4.11b respectively. Autocorrelation 

functions of both series are highly persistent over long lag and decaying very slowly 

towards zero (Hyperbolic rate), which indicates the possible presence of long memory 

properties in the data.  

For selecting an appropriate technique for modelling and forecasting of the data, it is 

important to check whether the time series data under consideration is linear or not. If 

there is a solid evidence of nonlinearity in the dynamics of the data generating process, 

then in addition to linear models, nonlinear models should also be tried for forecasting of 

the data. To test the linearity of the series, we used Brock-Decher-Scheikman (BDS) 

test. The detail results of the BDS test are given in the Table 4.14, which indicates both 

price series are non-linear. In other words, if linear model is applied to mustard price 

series of both markets then some hidden structure is left unaccounted in the residuals of 

the fitted model. Thus, non-linear model can be more suitable for the forecasting of 

mustard price of both markets.   

 

Figure 4.11a: ACF plot of Mustard price of Agra market 

https://agmarknet.gov.in/
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Figure 4.11b: ACF plot of Mustard price of Bharatpur market 

Table 4.14: Brock-Decher-Scheikman (BDS) test results 

 

Series 

 Embedding dimension  

Conclusion  2 3 

Epsilon Statistics p-value Statistics p-value 

 

Agra 

0.5𝜎 314.52     ˂ 0.001 576.00      ˂ 0.001  

Non Linear 𝜎 184.88      ˂ 0.001 234.48      ˂ 0.001 

1.5𝜎 129.24    ˂ 0.001 141.53    ˂ 0.001 

2𝜎 102.41 ˂ 0.001 102.57 ˂ 0.001 

 

Bharatpur 

0.5𝜎 217.86     ˂ 0.001 399.58     ˂ 0.001  

Non Linear 𝜎 116.44       ˂ 0.001 145.03       ˂ 0.001 

1.5𝜎 90.87     ˂ 0.001 97.56     ˂ 0.001 

2𝜎 79.10 ˂ 0.001 78.31 ˂ 0.001 

 

4.2.2 Test for Long Memory and Structural Breaks 

Long memory is a notable empirical feature of many financial time series data. Testing 

for long memory property is an important task since any evidence of long memory 

would support the use of long memory based models such as ARFIMA, ARFIMA-

FIGARCH, etc. To test the long memory, we employ the semiparametric GPH (Geweke 

and Porter-Hudak, 1983) test to the mustard price of both markets. The obtained results 

are reported in Table 4.15.  The GPH estimate of fractional integration parameter (d) are 

0.14 and 0.16 for Agra and Bharatpur market respectively and are significant at 5% level 

of significance. To test the possible structural breaks in mustard price series in the mean, 
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we used PELT algorithm. Figure 4.12 shows the plot of the price series along with the 

break point detected through the PELT algorithm. It is found that there are three break 

points in the Agra market and two break points in the Bharatpur market (Table 4.15).   

Table 4.15: Results of GPH long memory test and change point detection  

 Agra Bharatpur 

d 0.14* 0.16* 

Break points 08/02/17, 26/04/18, 02/03/19 06/02/17, 20/04/18 

(* Significant at 5% level of significance) 

 

 

Figure 4.12: Plot of change point detection using PELT algorithm 

Long memory and structural breaks are often confused. Several study shows that 

structural breaks can generate a spurious long memory component in the time series data 

(Granger and Hyung, 2004; Choi and Zivot, 2007). Therefore, we also investigated the 

possibility of possible spurious long memory in the data series. To test true long memory 

Agra market 

Bharatpur market 
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against spurious long memory, we used Qu test (Qu, 2011). The test statistics of Qu test 

were 0.80 and 0.84 for Agra market and Bharatpur market respectively, and both are not 

significant at 5% level of significance. The results of Qu test confirms the presence of 

true long memory in both the series.  

4.2.3 Proposed Hybrid Model based on ARFIMA with dummy variable and ELM 

The proposed methodology for the modelling and forecasting long memory process with 

structural break is motivated by the fact that agricultural price data often contain both 

linear and non-linear pattern and no single model is capable to capture all patterns 

present in the data. A parsimonious technique to model long-term behaviour of a time 

series data is by means of an Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) model. ARFIMA model is a parametric way of capturing long memory 

dynamics (Granger and Joyeux, 1980; Hosking, 1981). However, ARFIMA model can 

capture only the linear component present in the data series. To capture the non-linear 

pattern in the data series, we employed an artificial intelligence technique Extreme 

Learning Machine (ELM). To account the effect of structural break, ARFIMA model is 

estimated with dummy variable as a regressor. The proposed method exploits the 

strength and feature of ARFIMA model as well as Extreme Learning Machine. The 

hybrid model is constructed in a sequential manner, first ARFIMA model with dummy 

variable is applied to the original data series and then its residuals are modelled using 

extreme learning machine. 

ARFIMA (p, d, q) is specified by the orders of the autoregressive (p) and the moving 

average (q) parts of the model, along with the non-integer order of differencing (d). The 

parameters are estimated through maximum likelihood function such that an overall 

measure of errors is minimized.  We employed the ‘trial and error’ technique as one 

effort to minimize the risks of model misspecification. We adopted the Akaike’s 

information criterion (AIC) to determine the appropriate model. The parameter estimates 

of the best-fitted model are presented in the Table 4.16 for both markets. We found 

ARFIMA (1, 0.11, 1) and ARFIMA (1, 0.13, 1) are the most adequate model for the 

Agra and Bharatpur market respectively, based on the AIC value and the concept of 

model parsimony.  
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Table 4.16: Parameter estimates of best-fitted ARFIMA model with dummy 

variable 

Series Parameter Estimate S.E p-value AIC 

 

Agra 

µ 0.01 0.01 0.54  

3255.88 AR – 1  0.15 0.09 0.08 

MA – 1  -0.39 0.07 0.03 

xreg 0.07 0.02 0.04 

d 0.11 0.06 0.01 

 

Bharatpur 

µ -0.001 0.04 0.66  

3066.07 AR – 1  0.11    0.13 0.05 

MA – 1  -0.36     0.17 0.03 

xreg 0.06 0.03 0.03 

d 0.13 0.10 0.02 

In the next step, residuals are extracted from the best-fitted ARFIMA model. 

Plots of the residuals obtained from the ARFIMA model are presented in the Figure 

4.13. The ACF and PACF plots of the residuals are given in the Figure 4.14 and Figure 

4.15 respectively. To assess the existence of non-linear pattern in the residuals, BDS test 

is applied. The detail results of BDS test on the residuals are given in the Table 4.17, 

indicate that null hypothesis of iid is rejected at 1% level of significance. The BDS test 

results suggest, non-linear patterns exist in the residuals of the selected ARFIMA model. 

Therefore, the obtained residuals are modelled through a non-linear Extreme Learning 

Machine (ELM) model. In order to find the best extreme learning machine architecture 

of the residuals, we tested all possible combinations of 1–7 input nodes and 2–10 hidden 

nodes and each combination was trained 50 times. The average mean square error of 

each ELM model is calculated on the testing set. The ELM that yields the smallest 

average MSE value is selected as the best model. Finally, the number of optimal input 

nodes and hidden nodes were found to be 5 and 7 respectively for Agra market. For the 

Bharatpur market, three input nodes and five hidden nodes were found to be optimal. 

Finally, the forecasted value of the ARFIMA with dummy variable and ELM model are 

summed to get the forecast of the hybrid model.  
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Figure 4.13 Plot of the residuals obtained from the fitted ARFIMA model with 

dummy variable 

Table 4.17: Brock-Decher-Scheikman (BDS) test results on the residuals 

 

Series 

 Embedding dimension  

Conclusion  2 3 

Epsilon Statistics Probability Statistics Probability 

 

Agra 

0.5𝜎 8.50 ˂ 0.001 10.92 ˂ 0.001  

Non Linear 𝜎 7.90 ˂ 0.001 9.40 ˂ 0.001 

1.5𝜎 7.05 ˂ 0.001 7.98 ˂ 0.001 

2𝜎 6.31 ˂ 0.001 6.61 ˂ 0.001 

 

Bharatpur 

0.5𝜎 7.27     ˂ 0.001 7.67     ˂ 0.001  

Non Linear 𝜎 7.59     ˂ 0.001 7.87      ˂ 0.001 

1.5𝜎 8.29      ˂ 0.001 8.26      ˂ 0.001 

2𝜎 8.77 ˂ 0.001 8.12 ˂ 0.001 

 

Agra market 

Bharatpur market 
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Figure 4.14 ACF plots of the residuals 

 

 

Figure 4.15 PACF plots of the residuals 

Agra market 

Agra market 

Bharatpur market 

Bharatpur market 
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To evaluate the forecasting performance of the proposed hybrid methodology, we carry 

out forecasting experiments using ARFIMA with dummy variable and a pure ELM 

model. In the process of fitting pure ELM to the original data set, we found 6 – 7 – 1 and 

4 – 6 – 1 are the optimal architecture for the Agra and Bharatpur market respectively. 

Using the RMSE and MAE, in sample forecast evaluation results are reported in Table 

4.18 and out of sample forecast evaluation are given in the Table 4.19. It shows that the 

proposed hybrid model outperforms all other competing techniques in terms of 

prediction accuracy. The forecasting performance of ELM model is better compare to 

the ARFIMA with dummy variable.  

Table 4.18: In-sample forecasting performance of ARFIMA with dummy variable, 

ELM and Hybrid model 

 ARFIMA model with 

dummy variable 

ELM Model Hybrid Model 

Agra 

RMSE 1.02 0.42 0.28 

MAE 0.93 0.44 0.19 

Bharatpur 

RMSE 1.18 0.49 0.37 

MAE 0.84 0.34 0.29 

Note: All RMSE and MAE values should be multiplied by 10-3 

Table 4.19: Out-of-sample forecasting performance of ARFIMA with dummy 

variable, ELM and Hybrid model 

 ARFIMA model with 

dummy variable 

ELM Model Hybrid Model 

Agra 

RMSE 89.67 31.32 23.56 

MAE 73.62 21.87 17.31 

Bharatpur 

RMSE 96.65 45.81 36.23 

MAE  90.43 41.89 30.74 

Note: All RMSE and MAE values should be multiplied by 10-3 
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4.3 Results of Co-integration with Structural Break 

In this section, we investigated the spatial market integration across four major Potato 

markets viz. Agra, Bangalore, Delhi and Mumbai. Johansen’s multivariate co-integration 

approach has been applied to identify the possible market integration. As we know, 

structural break can mislead the test results of co-integration. Accordingly, co-

integration among these markets were investigated in the absence and presence of 

structural break.  

4.3.1 Data sets and Descriptive Statistics  

The data used in the empirical analysis comprises monthly wholesale prices (rupees per 

quintal, ₹/q) of Potato of Agra, Bangalore, Delhi and Mumbai markets for the period 

January, 2005 to December, 2019. Identification of important markets has been based on 

arrival data of last five years as well as availability of the data. The wholesale prices of 

Potato series were obtained from National horticultural research and development 

foundation (NHRDF) (http://nhrdf.org/en-us/) website. The time plot of all the series are 

depicted in Figure 4.16, which clearly indicate the non-stationarity behaviour of a 

typical Potato price data.  

 

Figure 4.16: Time plot of monthly Potato wholesale prices of major markets 

http://nhrdf.org/en-us/
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The basic descriptive statistics for all the four markets price series is presented in Table 

4.20. The mean price of Potato for the period of January 2005 to December 2019 for the 

major four markets across India was the lowest at ₹643.43 per quintal in Agra market. It 

may be due to Agra is a production market and remaining three are consumption 

markets (Table 4.20). The highest average price was recorded at ₹1111.43 per quintal in 

Bangalore market. The minimum price was recorded in Agra market, at price of ₹147 

per quintal whereas the maximum price was recorded in Bangalore market, at price of 

₹2480 per quintal. Coefficient of variation (CV), a crude measure of volatility, indicates 

that Mumbai market has the lowest price volatility which is represented by 34.56% 

compared to 56.13% in Agra market, which has the highest price volatility. The price 

series of all markets appear to follow non-normal distribution and are leptokurtic in 

nature. Large fluctuations in the prices of a commodity may result in switching over of 

farmers to some other crops. The stable price level of Potato will provide incentives to 

the farmers to increase the production and adapt to new technology, which stabilizes the 

farm income.  

Table 4.20: Descriptive statistics of monthly Potato wholesale prices of different 

markets (January 2005 to December 2019)  

Market Obser

vation 

No. 

Mean 

(₹/q) 

Std. Dev. 

(₹/q) 

Minimu

m 

(₹/q) 

Maxi

mum 

(₹/q) 

CV 

(%) 

Kurt

osis 

Jarque-

Bera 

p-

value 

Agra 180 643.43 361.19 147 2086 56.13 5.74 116.15 <0.001 

Bangalore 180 1111.43 417.19 414 2480 37.53 4.24 43.15 <0.001 

Delhi 180 783.98 406.67 245 2467 51.87 6.11 131.22 <0.001 

Mumbai 180 996.49 344.44 394 2167 34.56 4.11 40.03 <0.001 

4.3.2 Test for Stationarity 

While investigating market integration, the first step is to check for the evidence of non-

stationarity of data in order to confirm that co-integration approach is the appropriate 

method. In this study to check the non-stationarity of the price series, we used ADF test 

and PP test (Table 4.21). At level, we have found that all the major Potato price series 

were non-stationary according to the Augmented Dickey Fuller (ADF) and Philips-

Perron (PP) test results as indicated in table 4.21. It reveals that series has time 

dependent statistical properties, which may be stochastic or deterministic. Augmented 

Dickey Fuller (ADF) and Philips-Perron (PP) test showed that the price series become 
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stationary when first differencing is done.  It indicates that the price series were suitable 

for co-integration analysis.  

Table 4.21: Unit root test using the Augmented Dickey-Fuller and Phillip-Perron 

tests 

Series  Augmented Dickey-

Fuller   

Phillip-Perron Test 

t-statistic p-value t-statistic p-value 

Agra 

 

Level -1.55 0.11 -1.24 0.19 

1st difference -8.55 <0.001 -7.90 <0.001 

Bangalore Level -0.63 0.44 -0.27 0.58 

1st difference -5.60 <0.001 -12.23 <0.001 

Delhi Level -1.72 0.08 -1.69 0.08 

1st difference -8.00 <0.001 -6.76 <0.001 

Mumbai Level -0.96 0.29 -0.57 0.46 

1st difference -8.75 <0.001 -8.53 <0.001 

4.3.3 Determination of Co-integration Rank 

To check for co-integration among different Potato markets, a test for a suitable lag 

length to be included in the co-integration analysis was performed. Results of co-

integration tests are quite sensitive to lag length included in the model. The number of 

lags is selected by applying Schwarz’s information criterion (SIC). A Vector 

Autoregression (VAR) on the differenced series was conducted and lags length of the 

model with the least SIC values chosen as the appropriate lag length for the co-

integration test. The interpretation of lag as, for example Agra and Bangalore markets, 

the pre estimation lag selection criteria indicates the average maximum 2 lag for the 

model. It indicates the maximum time for price to be transmitted from one Potato market 

(Agra) to the other (Bangalore) in the long run or to move into long run equilibrium is 

about two (2) month at most.  

In this study, in order to identify a possible co-integration among selected major Potato 

markets, we have used Johansen multivariate co-integration technique. Johansen (1991) 

proposed a two-step method to first determine the lag length using either an information 

criterion or a likelihood ratio test and then to determine the co-integrating rank (r) using 

a likelihood ratio test, such as the λ max test or the trace test. The detail results of 

Johansen co-integration rank test without taking into consideration of structural break 
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are given in the Table 4.22. The rejection of first null hypothesis (co-integrating rank 

𝑟 = 0) at 1% level of significance confirms the presence of co-integration in the system. 

In the second test (𝐻0: 𝑟 ≤ 1) and third test (𝐻0: 𝑟 ≤ 2) also the test statistic is more 

than the critical value, which means more than two co-integrating rank is present in the 

system. The final test for 𝐻0: 𝑟 ≤ 3 against 𝐻1: 𝑟 > 3 provides sufficient evidence for 

not rejecting the null hypothesis. Therefore, there are three co-integrating rank in the 

system, i.e. all the markets are co-integrated among themselves.  

Table 4.22: Johansen co-integration rank test result without structural break 

Null Hypothesis 

Co-integrating rank (r) 

Trace Statistic Critical Value at 

                      5 %                            1 % 

𝑟 = 0 125.64 48.28 55.43 

𝑟 ≤ 1 72.12 31.52 37.22 

𝑟 ≤ 2 31.72 17.95 23.52 

𝑟 ≤ 3 6.71 8.18 11.65 

However, researchers have been concerned with the effects that structural break may 

have on inference in models with co-integrated variables. Indeed, failure to detect and 

account the structural break can cause misspecification of the co-integrated system, 

which adversely affects inference procedure. If we account the structural break then the 

number of co-integrating rank (r) may change. Accordingly, in this study to test co-

integration in the presence of structural break, we follow the procedure of Lutkepohl et 

al. (2004). In this approach, first the deterministic trend is estimated and then the data 

are adjusted accordingly, and finally Johansen test is applied in the adjusted series. The 

detail results of the Johansen co-integration rank test with structural break are presented 

in the Table 4.23. The test results indicate that after accounting the structural break, the 

test statistic changes but overall conclusion on the number of co-integrating rank (r) in 

the system remains same. In other words, we can say that all the major Potato markets 

under consideration are co-integrated among themselves even after accounting structural 

break.  
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Table 4.23: Johansen co-integration rank test result with structural break 

Null Hypothesis 

Co-integrating rank (r) 

Trace Statistic Critical Value at 

              5 %                            1 % 

𝑟 = 0 143.43  45.20 51.60 

𝑟 ≤ 1 80.18  28.45 33.76 

𝑟 ≤ 2 43.43  15.83 19.85 

𝑟 ≤ 3 05.24   6.79 10.04 

For the further study, we paired each market, resulting into 6 bi-variate systems viz. 

Agra – Bangalore, Agra – Delhi, Agra – Mumbai, Bangalore – Delhi, Bangalore – 

Mumbai and Delhi – Mumbai.  Since the data series are integrated of the same order, co-

integration techniques can be used to determine whether a stable long-run relationship 

exists between each pair. The results of Johansen’s co-integration test for each pair 

markets are presented in Table 4.24 using the trace statistic and maximum eigen value 

statistic. The trace statistic and maximum eigen value statistic has resulted the same 

conclusion that all the six market pairs are co-integrated. In other words we can say that 

all the four selected Potato markets are well integrated and price signals are transferred 

from one market to the other to ensure efficiency. Thus, Johansen’s co-integration test 

has shown that even though the selected Potato markets in India are geographically 

isolated and spatially segmented, they are well-connected in terms of prices of Potato, 

demonstrating that the selected Potato markets have long-run price linkage across them. 

This means that, selected major Potato market prices in India move closely together in 

the long run although in the short run they may drift apart. This also indicates that the 

Potato marketing is an open market of which the forces of demand and supply are the 

determinant of the various market prices hence ensuring high efficiencies between 

spatial markets. 

Table 4.24: Bi-variate Johansen co-integration rank test results 

 𝝀𝒕𝒓𝒂𝒄𝒆 

Statistic 

Prob. 𝝀𝒎𝒂𝒙 Statistic Prob. 

Agra – Bangalore 

𝐻0: 𝑟 = 0 𝑣𝑠 𝐻1: 𝑟 ≥ 1 

𝐻0: 𝑟 ≤ 1 𝑣𝑠 𝐻1: 𝑟 ≥ 2 

30.57 

0.42 

<0.001 

0.576 

30.14 

0.42 

<0.001 

0.576 
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Agra – Delhi 

𝐻0: 𝑟 = 0 𝑣𝑠 𝐻1: 𝑟 ≥ 1 

𝐻0: 𝑟 ≤ 1 𝑣𝑠 𝐻1: 𝑟 ≥ 2 

27.54 

2.64 

<0.001 

0.122 

24.90 

2.64 

<0.001 

0.122 

Agra – Mumbai  

𝐻0: 𝑟 = 0 𝑣𝑠 𝐻1: 𝑟 ≥ 1 

𝐻0: 𝑟 ≤ 1 𝑣𝑠 𝐻1: 𝑟 ≥ 2 

22.17 

0.24 

<0.001 

0.682 

21.93 

0.24 

<0.001 

0.682 

Bangalore – Delhi  

𝐻0: 𝑟 = 0 𝑣𝑠 𝐻1: 𝑟 ≥ 1 

𝐻0: 𝑟 ≤ 1 𝑣𝑠 𝐻1: 𝑟 ≥ 2 

42.53 

0.49 

<0.001 

0.547 

42.04 

0.49 

<0.001 

0.547 

Bangalore – Mumbai  

𝐻0: 𝑟 = 0 𝑣𝑠 𝐻1: 𝑟 ≥ 1 

𝐻0: 𝑟 ≤ 1 𝑣𝑠 𝐻1: 𝑟 ≥ 2 

27.91 

0.43 

<0.001 

0.572 

27.48 

0.43 

<0.001 

0.571 

Delhi – Mumbai 

𝐻0: 𝑟 = 0 𝑣𝑠 𝐻1: 𝑟 ≥ 1 

𝐻0: 𝑟 ≤ 1 𝑣𝑠 𝐻1: 𝑟 ≥ 2 

33.57 

0.24 

<0.001 

0.682 

33.33 

0.24 

<0.001 

0.682 

 

4.3.4 Test for Causality 

Once co-integration between the markets is established it is of interest to analyze for 

causality of each co-integrating pair. Long run causality from the estimated Johansen 

VECM was analyzed through a likelihood ratio (LR) test by restricting the 

disequilibrium error term. The results of long-run causality are presented in Table 4.25, 

which shows that except Delhi → Agra and Delhi → Mumbai all the long-run causality 

tests are statistically significant.  

Table 4.25: Estimate of error correction term from ECM for different agricultural 

market  

Model  Regressors Parameter 

estimated 

t- test P-value 

Bangalore → Agra ECTt-1 -0.27 -3.33 <0.001 

Agra →  Bangalore ECTt-1 -0.26 -3.42 <0.001 

Delhi → Agra ECTt-1 0.09 1.01 0.308 

Agra →  Delhi ECTt-1 -0.62 -5.15 <0.001 

Mumbai → Agra ECTt-1 -0.29 -3.19 0.001 

Agra →  Mumbai ECTt-1 -0.15 -2.02 <0.001 
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Delhi → Bangalore ECTt-1 -0.15 -2.80 0.005 

Bangalore → Delhi ECTt-1 -0.32 -4.87 <0.001 

Mumbai → Bangalore ECTt-1 -0.24 -2.51 0.012 

Bangalore →  

Mumbai 

ECTt-1 -0.19 -2.03 0.043 

Mumbai → Delhi ECTt-1 -0.38 -5.11 <0.001 

Delhi →  Mumbai ECTt-1 -0.04 -0.87 0.382 

Note: A→B = A causes B 

In this study we found long-run bidirectional causality for the market pairs: Agra ↔ 

Bangalore, Agra ↔ Mumbai, Bangalore ↔ Delhi and Bangalore ↔ Mumbai, whereas 

for market pairs Agra → Delhi and Mumbai → Delhi have long-run unidirectional 

causality. To check short run causality, we applied Wald test. Table 4.26 represent 

results obtained from Wald test for different market pairs. According to the Wald test, 

there were short run unidirectional causalities between the market pairs: Bangalore → 

Agra, Agra → Mumbai, Mumbai → Bangalore and Delhi → Mumbai markets, meaning 

that a price change in the former market in each pair causes the price formation in the 

latter market in short run, whereas the price change in the latter market is not feed 

backed by the price change in the former market in each pair. There were short run 

bidirectional causalities for the market pairs: Agra ↔ Delhi and Bangalore ↔ Delhi.    

Table 4.26: Short run causality by Wald Test 

Model Chi suquare test P value 

Bangalore → Agra 6.21 0.044 

Agra →  Bangalore 4.76 0.092 

Delhi → Agra 59.08 <0.001  

Agra → Delhi 10.20 0.006 

Mumbai → Agra 1.86 0.394 

Agra →  Mumbai 22.22 <0.001  

Delhi → Bangalore 5.59 0.061 

Bangalore → Delhi 13.27 0.001 

Mumbai → Bangalore 6.79 0.033 

Bangalore →  Mumbai 2.72 0.255 

Mumbai → Delhi 4.24 0.115 

Delhi →  Mumbai 30.00 <0.001  
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Figure 4.17: Impulse response function for different markets 
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The best way to interpret the implications of the models for patterns of price 

transmission, causality and adjustment are to consider the time paths of prices after 

exogenous shocks, i.e. impulse responses. The impulse response function traces the 

effect of one standard deviation or one unit shock to one of the variables on current and 

future values of all the endogenous variables in a system over various time horizons. 

Impulse responses identify the responsiveness of the dependent variable which is 

(endogenous variables) in the models when a shock is put to the error term. The results 

of impulse response functions, given in Figure 4.17, show how and to what extent a 

standard deviation shock in one of the Potato markets affects the current as well as 

future prices in all the integrated markets over a period of ten months. 



CHAPTER V 

SUMMARY 

Agricultural commodities prices play a vital role in the affordability of food to consumers, 

as they directly affect their real income, especially among the small and marginal farming 

community, which spend a large proportion of their income on food. Predicting the prices 

of agricultural commodities accurately is very important for avoiding market risk, raising 

farm income and achieving macroeconomic control of the country. However, forecasting 

of agricultural commodities prices is a complex and difficult task due to its peculiar nature 

like seasonality, perishability, inelastic demand, etc. 

Over the past several decades, lot of efforts have been devoted to develop statistical and 

machine learning time series models for agriculture price forecasting. However, factors 

such as major changes in technology like introduction of genetically modified crops, 

implementation of new economic policy, etc. causes structural break in the parameters of 

forecasting models. In the agricultural price series data, such structural break is being 

commonly observed. These structural breaks raise a serious challenge for agricultural 

commodities price forecasting and it is a key source of forecast failure. In order to improve 

the forecast accuracy, hybridization of statistical model that account for structural breaks 

with artificial intelligence model is a good idea, because hybrid model can capture various 

patterns in the data, concurrently along with breaks.  

In view of the above, we studied three different contexts of structural break in agricultural 

time series data. In the first case, we considered time series volatility model and proposed 

a hybrid model based on Markov-Switching GARCH (MS-GARCH) and Extreme 

Learning Machine (ELM), for agricultural price volatility forecasting in the presence of 

structural break. Some agricultural price series contain long memory property i.e. 

dependence between apart events diminishes very slowly as the number of lags increases. 

Therefore, under second objective of the study, we developed a hybrid model based on 

ARFIMA with dummy variable and ELM in order to get accurate forecast of a long 
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memory process in the presence of structural break. Lastly, we also investigated co-

integrated price series in the presence of structural break for major potato markets in India.  

The thesis comprises of five chapters viz. introduction, review of literature, materials and 

methods, results and discussion, and summary followed by abstract (English and Hindi), 

appendix (which contains R source code to generate the results) and bibliography.  

Chapter I includes brief idea about the characteristics of agricultural price data, challenges 

in the agriculture price forecasting, and effect of structural break on the volatility models, 

long memory models and co-integrated time series models. A short introduction of 

artificial neural network, extreme learning machine and hybrid time series models are also 

presented in this chapter. The chapter ends with motivation and scope of this study.  

Chapter II covers the review of literature related to the structural breaks, time series 

volatility models, long memory models, co-integrated time series models, artificial 

intelligence models and hybrid time series models.  

Chapter III provides detail descriptions of the data and methodologies used in this study. 

The data diagnostic tests like test for stationarity, test for linearity, test for 

heteroscedasticity, test for long memory and detection of structural breaks have been 

described. This chapter also provide the details about time series volatility models, long 

memory models, co-integration analysis along with the proposed models.   

Chapter IV presents the results and discussion based on research work carried out to 

accomplish different objectives of the current study. The performance of the proposed 

hybrid MS-GARCH – ELM model for agricultural price volatility forecasting in the 

presence of structural break, is evaluated using three different agricultural commodity 

price series. The results of the study demonstrated the superiority of the proposed hybrid 

MS-GARCH – ELM model over individual models. Empirical results of long memory 

process in the presence of structural break show that the forecasting performance of the 

proposed hybrid model based on ARFIMA with dummy variable and ELM is better than 

the existing models. The results of overall co-integration test indicated that different 

potato markets in India are well integrated and have long-run price association across 

them, which revealed that the potato markets have high efficiency. In other words, we can 



106 | S u m m a r y  

 

say that even though the selected potato markets in India are geographically isolated and 

spatially segmented, they are well connected in terms of prices of potato, demonstrating 

that the selected potato markets have long-run price linkage across them. 

Following future prospective can be suggested: 

 For the agricultural price volatility forecasting, the proposed model can be further 

improved by using deep learning algorithm like LSTM, etc. 

 ARFIMA-FIGARCH with structural break can be studied for the long memory 

process 

 Fractional co-integration with structural breaks can also be considered 



ABSTRACT 

 

Accurate price forecasting of agricultural commodities is very important for raising income 

of the farmers as well as for avoiding market risk. However, due to biological nature of 

production of agricultural commodities, forecasting of their prices become a challenging 

task. These challenges become more severe when structural breaks are present in the 

observed agricultural price series due to factors like major changes in technology, sudden 

changes in economic policy, etc. In this study, an effort has been made to account for the 

structural break along with the other complex patterns like non-stationarity, non-linearity, 

long memory and cointegration present in the agricultural price series.. Generally, single 

model may not be able to capture all complex patterns present in the data series 

concurrently. Therefore, to capture various complex patterns in the data along with 

structural break, hybridization of statistical model that account for structural break with 

artificial intelligence model has been done. Accordingly, for agricultural price volatility 

forecasting in the presence of structural break, a hybrid model based on Markov-Switching 

GARCH (MS-GARCH) and Extreme Learning Machine (ELM) is proposed. The 

performance of the proposed hybrid MS-GARCH–ELM model is evaluated on the weekly 

potato price of Delhi market, monthly international Groundnut oil and Palm oil price series, 

and it is found that the proposed model outperformed its counterparts. Empirical results of 

agricultural price series that contain long memory property with structural break show that 

the forecasting performance of the proposed hybrid model based on ARFIMA with dummy 

variable combined with ELM is better than the individual model. Further, the effect of 

structural break in the co-integrated system has also been evaluated. Accordingly, spatial 

market integration among major Potato markets in India are investigated in the absence 

and presence of structural break. The overall co-integration test results indicated that 

selected potato markets in India are well integrated and have long-run price association 

across them. 

 



   

सार 

 

किसानों िी आय बढाने और बाजार िे जोखिम से बचने िे लिए िृषि वस्तुओं िे मूल्य 
िा सही पूवाानुमान बहुत महत्वपूर्ा है। हािांकि, िृषि वस्तुओं िे उत्पादन िी जैषवि प्रिृतत 
िे िारर्, इनिी िीमतों िा पूवाानुमान एि चनुौतीपूर्ा िाया बन जाता है। ये चनुौततयां 
तब और गंभीर हो जाती हैं, जब प्रेक्षित आिड़ों में स्रक्चरि ब्रेि मौजूद होते हैं। टेक्नोिॉजी 
में बड़ ेबदिाव, आर्थाि नीतत में अचानि बदिाव आदद, टाइम सीरीज़ डटेा में स्रक्चरि 
ब्रेि िा िारर् बनता है। इस तरह िे स्रक्चरि ब्रेि िृषि मूल्य श्ृंििा में अक्सर पाए 
जाते हैं और यह पूवाानुमान षवफिता िा एि स्रोत हो सिता है। इस अध्ययन में, िृषि 
मूल्य श्ृिंिा में मौजूद नॉन-स्टेसनररटी और नॉन-लितनयररटी जैसे अन्य जदटि पैटना िे 
साथ स्रक्चरि ब्रेि िो ध्यान में रिते हुए अस्स्थर मूल्य श्ृिंिा, िंबी स्मतृत गुर् िे 
साथ मूल्य श्ृिंिा और सह-एिीिृत मूल्य श्ृिंिा िो मॉडि िरने िा प्रयास किया गया 
है। एि व्यस्क्तगत मॉडि समवती रूप से डटेा श्ृिंिा में मौजूद सभी जदटि पैटना िो 
िैप्चर िरने में सिम नहीं होता है। इसलिए, स्रक्चरि ब्रेि िे साथ डटेा में षवलभन्न 
जदटि पैटना िो पिड़ने िे लिए, सांस्ययिीय मॉडि और िृत्रिम बुद्र्िमत्ता मॉडि िा 
संिरर् किया गया है। तदनुसार, िृषि मूल्य में अस्स्थरता िा पूवाानुमान िरने िे लिए 
मािोव-स्स्वर्चगं गाचा (एमएस-गाचा) मॉडि तथा ईस्क्स्रम ितनाग मशीन (ईएिएम) पर 
आिाररत एि संिर मॉडि िा प्रस्ताव किया गया है। प्रस्ताषवत हाइत्रब्रड MS-GARCH-
ELM मॉडि िे प्रदशान िा मूल्यांिन ददल्िी बाजार िे आिू िी िीमत, अतंरराष्ट्रीय 
मूंगफिी तेि और पाम तेि िी मूल्य श्ृिंिा पर किया गया है, और यह पाया गया है कि 
प्रस्ताषवत मॉडि िा पूवाानुमान सभी व्यस्क्तगत मॉडि से सटीि है। िृषि मूल्य श्ृंििा 
स्जसमे िॉन्ग लममोरी िे गुर् होते हैं, डमी चर िे साथ ARFIMA और ELM पर आिाररत 
प्रस्ताषवत हाइत्रब्रड मॉडि िा प्रदशान अन्य मॉडि िे तुिना मे बेहतर पाया गया है। इस 
अध्ययन में, सह-एिीिृत प्रर्ािी में स्रक्चरि ब्रेि िे प्रभाव िा मूल्यांिन िरने िा भी 
प्रयास किया गया है। तदनुसार, भारत िे प्रमुि आिू बाजारों िे बीच स्रक्चरि ब्रेि िी 
अनुपस्स्थतत और उपस्स्थतत में स्थातनि बाजार एिीिरर् िी जांच िी गयी है। 



 
 

APPENDIX 

R code to generate the results 

# ipak function: install and load multiple R packages. 

# check to see if packages are installed. Install them if they are not, then load them into 

the R session. 

#if(!require(changepoint)){ 

#install.packages('changepoint') 

#} 

ipak <- function(pkg){ 

  new.pkg <- pkg[!(pkg %in% installed.packages()[ ,"Package"])] 

  if (length(new.pkg))  

    install.packages(new.pkg, dependencies = TRUE) 

  sapply(pkg, require, character.only = TRUE) 

} 

# usage 

packages <- c("tseries", "forecast", "rmgarch", "rugarch", "quantmod", "MSGARCH", 

"neuralnet", "changepoint", "aTSA", "nnfor", 

              "moments","portes") 

ipak(packages) 

# Load multiple packages 

Packages <- c("tseries", "forecast", "rmgarch","rugarch","quantmod", "MSGARCH", 

"neuralnet", "changepoint", "aTSA", "nnfor", 

              "moments", "portes") 

lapply(Packages, library, character.only = TRUE) 

#######################################################################

# 

# Import Data from copied file of Excel 

data=read.table(file = "clipboard", sep = "\t", header = TRUE) 

#data<-read.csv(choose.files()) 
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data_ts<-ts(data) 

# To make data into time series 

data_ts<-ts(data, frequency = 12, start = c(1980, 1)) 

head(data_ts) 

tail(data_ts) 

plot(data_ts, xlab="Time (Month)", ylab="Price ($/mt)", col="black") 

#chartSeries(data_ts,  theme = chartTheme("white")) 

# For return series 

data_log<-log(data_ts) # Natural Log of the data series 

data_rt<- diff(data_log) # Difference of the log series  

data_rt<- 100*data_rt 

plot(data_rt) 

data_rt<- periodReturn(data_ts) 

data_df<- diff(data_ts) 

plot(data_df) 

# Seasonal Plot 

#ggseasonplot(data_ts, year.labels=F, year.labels.left=F, ylab("Price (Rs/Qtl)")) 

# Summary statistics of the data 

length(data_ts) # No. of observations 

summary(data_ts) # Summary Statistics 

cv(data_ts) # Coefficient of variation 

sd(data_ts) # Standard deviation 

skewness(data_ts) # Skewness 

kurtosis(data_ts) # Kurtosis 

jarque.bera.test(data_ts) # Test for normality 

bds.test(data_ts) # Test for linearity 

# ADF test for stationarity 

adf.test(data_ts) 
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adf.test(data_df) 

adf.test(data_log) 

adf.test(data_rt) 

# PP test for Stationarity 

pp.test(data_ts) 

pp.test(data_df) 

pp.test(data_log) 

pp.test(data_rt) 

# For Portmonteau test install package "portes" 

BoxPierce(resid,lags = 6) 

BoxPierce(resid,lags = 12) 

BoxPierce(resid,lags = 18) 

BoxPierce(resid,lags = 24) 

# Auto correlation function 

Acf(data_rt, lag.max = 50) 

Acf(data_rt, lag.max=100) 

# Partial auto correlation functions 

Pacf(data_rt, lag.max = 50) 

Pacf(data_rt,lag.max=40) 

####################################################### 

# Test of structural Break in Variance (PELT algorithm) 

data_pelt<- as.numeric(data_rt) 

soya.pelt <- cpt.var(data_pelt, method = "PELT", minseglen = 10) 

plot(soya.pelt, xlab = "Time", ylab="Log Return") 

logLik(soya.pelt) 

print(soya.pelt) 

################################################################ 

# To make ARMA structure 
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# Finding the order of ARIMA model 

fit<- auto.arima(data_rt)  

fit 

accuracy(fit) 

# Fitting of ARMA model 

fit_arma<-arima(data_rt,order=c(2,0,1), seasonal = list(order=c(0,0,0),period=NA)) 

fit_arma<- Arima(data_rt, order = c(1, 0, 1),include.mean = FALSE, 

                  seasonal = c(0, 0, 0))                            

#checkresiduals(fit_arma) 

fit_arma 

accuracy(fit_arma) 

# To obtained residuals from ARMA Model 

resid<-fit_arma$residuals # It is taken as input variable for GARCH and MSGARCH 

plot(resid, ylab="Residuals") 

resid_sqr<- (resid)^2 # It is taken as input variable for ANN and ELM 

plot(resid_sqr, ylab="Squared Residuals") 

# Obtaining the ACF plot of Squared Residuals 

Acf(resid,lag.max=150) 

residacf<-Acf(resid_sqr,lag.max=150)  

# Obtaining the PACF plot of squared residual 

residpacf<-Pacf(resid_sqr,lag.max=50) 

# ARCH LM Test 

arch.test(fit_arma) 

# The ARCH Engle's test is constructed based on the fact that if the residuals  

#(defined as e[t]) are heteroscedastic, the squared residuals (e^2[t]) are autocorrelated. 

#######################################################################

## 

#GARCH model using ruGarch package 

# Specification of GARCH model 
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# Model Forecasting Performance of GARCH model 

# Training set 

data_trn<- ts(data_rt[1:467], frequency = 12, start = c(1980, 2)) 

data_trn_resid<- ts(resid[1:467], frequency = 12, start = c(1980, 2)) 

#data_trn_resid<- ts(resid[1:712]) 

data_trn_residsq<- ts(resid_sqr[1:467], frequency = 12, start = c(1980, 2)) 

#data_trn_residsq<- ts(resid_sqr[1:712]) 

# Test set  

data_test<- ts(resid_sqr[468:479], frequency = 12, start = c(2019, 1)) 

tail(data_test) 

#garch_spec<- ugarchspec() 

#data_trn<- ts(data_rt[1:712]) 

#data_test<- ts(resid_sqr[712:724]) 

#garch_spec 

garch_spec<-ugarchspec(variance.model = list(model = "sGARCH",  

                                             garchOrder = c(1, 1),  

                                 submodel = NULL, external.regressors = NULL,  

                                 variance.targeting = FALSE),  

           mean.model = list(armaOrder = c(1, 1), include.mean = FALSE,  

                             archm = FALSE,  

                             archpow = 1, arfima = FALSE,  

                             external.regressors = NULL, archex = FALSE),  

           distribution.model = "norm", start.pars = list(), fixed.pars = list()) 

# Model Estimation 

garch_fit<- ugarchfit(spec=garch_spec, data= data_trn) 

garch_fit 

#garch_spec 

paste("Element in the @fit slot") 
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names(garch_fit@fit) 

paste("Element in the @model slot") 

names(garch_fit@model) 

# Estimated conditional variance 

est_var<- ts(garch_fit@fit$var) 

est_var<-ts(est_var, frequency = 12, start = c(1980, 2)) 

plot(est_var, ylab="Variance") 

lines(resid_sqr) 

#plot(est_res2, ylab="Squared Res/ Variance", col=1) 

#lines(est_var, col=2) 

#est_var 

# Estimated residuals 

#est_res<- garch_fit@fit$residuals 

#est_res<-ts(est_res, frequency = 12, start = c(1960, 2)) 

#plot(est_res, ylab="Residuals") 

# Estimated squared residuals 

#est_res2<- (garch_fit@fit$residuals)^2 

#est_res2<-ts(est_res2, frequency = 12, start = c(1980, 2)) 

 

# Forecasting 

fcast<- ugarchforecast(garch_fit, n.ahead=12) 

fcast 

# garch_fcast contains two slots @model and @forecast 

paste("Element in the @forecast slot") 

names(fcast@forecast) 

 

fcast_sigma<- fcast@forecast$sigmaFor 

fcast_sigma.sq<- (fcast_sigma)^2 
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plot(fcast_sigma, xlab="Time", ylab="Sigma", col="red") 

fcast_garch<- ts(fcast_sigma.sq, frequency = 12, start = c(2019, 1)) 

plot(fcast_garch, xlab="Time", ylab="Sigma", col="red") 

plot(resid_sqr, ylab="Squared Res/ Variance", col=1) 

lines(est_var, col=2) 

lines(fcast_garch, col=3) 

#fcast_garch<- ts(fcast_sigma.sq) 

# RMSE and MAPE 

rmse_garch=sqrt(mean((data_test-fcast_garch)^2)) 

rmse_garch 

mape_garch=(mean((abs(data_test-fcast_garch))/data_test))*100 

mape_garch 

plot(data_test) 

lines(fcast_garch, col="green") 

# Load the data 

# Model specification  

ms2.garch.n <- CreateSpec(variance.spec = list(model = "sGARCH"), 

 distribution.spec = list(distribution = "norm"), 

 switch.spec = list(K = 2)) 

# Maximum Likelihood Estimation of MS-GARCH model 

fit.ml <- FitML(spec = ms2.garch.n, data = dem2gbp) 

summary(fit.ml) 

# MCMC Estimation of MS-GARCH model 

set.seed(1234) 

fit.mcmc <- FitMCMC(spec = ms2.garch.n, data = dem2gbp) 

library(coda) 

summary(fit.mcmc) 

# Forecasting  
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pred <- predict(fit.ml, nahead = 5, do.return.draw = TRUE) 

pred$vol 

pred$draw[, 1:4] 

# Value at Risk and Expected Shortfall 

risk <- Risk(fit.ml, alpha = c(0.01, 0.05), nahead = 5) 

risk$VaR 

risk$ES 

#To extract the in-sample conditional volatility  

Volatility() 

#Latent states 

states() 

#To simulate  

simulate(fit.ml, nsim = 2, nahead = 4, nburn = 500) 

#To compute the predictive density 

PredPdf() 

# the probability integral transform  

PIT() 

# Estimation of Long memory model with structural Break 

# check to see if packages are installed. Install them if they are not, then load them into 

the R session. 

ipak <- function(pkg){ 

  new.pkg <- pkg[!(pkg %in% installed.packages()[ ,"Package"])] 

  if (length(new.pkg))  

    install.packages(new.pkg, dependencies = TRUE) 

  sapply(pkg, require, character.only = TRUE) 

} 

# usage 

packages <- c("tseries", "forecast", "LongMemoryTS", "rugarch", "changepoint", 

"aTSA", 
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              "moments","portes") 

ipak(packages) 

# Load multiple packages 

Packages <- c("tseries", "forecast", "LongMemoryTS", "rugarch", "changepoint", 

"aTSA", 

              "moments","portes") 

lapply(Packages, library, character.only = TRUE) 

#######################################################################

# 

# Import Data from copied file of Excel 

data=read.table(file = "clipboard", sep = "\t", header = TRUE) 

#data<-read.csv(choose.files()) 

x=read.table(file = "clipboard", sep = "\t", header = TRUE) 

x=ts(x) 

# To make data into time series 

data_ts<- ts(data) 

head(data_ts) 

tail(data_ts) 

plot(data_ts, xlab="Time", ylab="Price (Rs/q)", col="green") 

#chartSeries(data_ts,  theme = chartTheme("white")) 

data_df<- diff(data_ts) 

data_df_sq<- (data_df)^2 

# For return series 

data_log<-log(data_ts) # Natural Log of the data series 

data_rt<- diff(data_log) # Difference of the log series  

plot(data_rt) 

data_rt_sq<- (data_rt)^2 

# Seasonal Plot 

#ggseasonplot(data_ts, year.labels=F, year.labels.left=F, ylab("Price (Rs/Qtl)")) 
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# Summary statistics of the data 

length(data_ts) # No. of observations 

summary(data_ts) # Summary Statistics 

sd(data_ts) # Standard deviation 

skewness(data_ts) # Skewness 

kurtosis(data_ts) # Kurtosis 

jarque.bera.test(data_ts) # Test for normality 

bds.test(data_ts) # Test for linearity 

 

# ADF test for stationarity 

adf.test(data_ts) 

adf.test(data_log) 

# PP test for Stationarity 

pp.test(data_ts) 

pp.test(data_log) 

# For Portmonteau test install package "portes" 

BoxPierce(data_log,lags = 6) 

BoxPierce(data_log,lags = 12) 

BoxPierce(data_log,lags = 18) 

BoxPierce(data_log,lags = 24) 

####################################################### 

# Auto correlation function 

Acf(data_rt, lag.max = 40) 

Acf(data_rt_sq, lag.max=40) 

# Partial auto correlation functions 

Pacf(data_rt, lag.max = 40) 

Pacf(data_rt_sq,lag.max=40) 

################################################# 
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# Long memory test 

gph(data_rt, 60) 

gph(data_rt_sq, 60) 

ELW(data_rt, 75) 

ELW(data_rt_sq, 75) 

####################################################### 

# Two packages for test of structural break "changepoint" and "strucchange" 

# Test of structural Break in Variance (PELT algorithm) 

data_pelt<- as.numeric(data_ts) 

cpt_mean<- cpt.mean(data_pelt, penalty = "None", method = "BinSeg", Q=3, test.stat = 

"Normal", class = "TRUE", param.estimates = "TRUE") 

plot(cpt_mean, xlab = "Time", ylab="Price ($/mt)") 

logLik(cpt_mean) 

print(soya.pelt) 

cpt_variance<- cpt.var(data_pelt, penalty = "None", method = "PELT", Q=3, test.stat = 

"Normal", class = "TRUE", param.estimates = "TRUE") 

plot(cpt_variance, xlab = "Time", ylab="Price ($/mt)") 

 

v1.man=cpt.mean(data_pelt,method='PELT',penalty='Manual',pen.value='2*log(1000)', 

minseglen=200) 

plot(v1.man, xlab = "Time", ylab="Price ($/mt)") 

 

m1.cusum=cpt.var(data_pelt, method = "PELT") 

plot(m1.cusum, xlab = "Time", ylab="Price ($/mt)") 

soya.pelt <- cpt.mean(data_pelt, method = "AMOC") 

plot(soya.pelt, xlab = "Time", ylab="Price ($/mt)") 

logLik(soya.pelt) 

print(soya.pelt) 
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######################################################## 

# Test for Long memory in the data   #### "LongMemoryTS" 

library(fracdiff) 

T<-1000 

m<-floor(1+T^0.5) 

m 

d=0.4 

series<-fracdiff.sim(n=T, d=d)$series 

gph(data_rt_sq, 50) 

ELW(data_rt_sq, 50) 

elw 

Qu.test(data_rt, 50) 

######################################################## 

 

# Fitting of ARIMA model 

aic_mat<-matrix(nrow=3,ncol=3) 

rownames(aic_mat)<-paste("p",0:2,sep="=") 

colnames(aic_mat)<-paste("q",0:2,sep="=") 

for(i in 0:2){ 

  for(j in 0:2){ 

    fit_arima<-arima(datats,order=c(i,1,j), seasonal = 

list(order=c(0,0,0),period=NA),include.mean=TRUE)  

    aic_mat[(i+1),(j+1)]=fit_arima$aic 

  } 

} 

fit_arima 

 

#################################################################### 

# Training set 
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data_trn<- ts(data_rt[1:1138]) 

 

# Test set  

data_test<- ts(data_rt[1139:1150]) 

tail(data_test) 

#garch_spec<- ugarchspec() 

#garch_spec 

#######################################################################

## 

arfima_spec<- arfimaspec(mean.model = list(armaOrder = c(1, 1),  

                                           arfima = TRUE, external.regressors = x))  

fit_arfima<- arfimafit(arfima_spec, data_rt) 

fit_arfima 

fited_arfima<- ts(fit_arfima@fit$fitted.values) 

#plot(data_rt, col=1) 

#lines(fited, col=2) 

write.csv(fited_arfima, file = "afima.csv") 

# To obtained residuals from ARMA Model 

resid<-ts(fit_arfima@fit$residuals) # It is taken as input variable for GARCH and 

MSGARCH 

plot(resid, ylab="Residuals") 

resid_sqr<- (resid)^2 # It is taken as input variable for ANN and ELM 

plot(resid_sqr, ylab="Squared Residuals") 

 

# Obtaining the ACF plot of Squared Residuals 

Acf(resid,lag.max=100) 

Acf(resid_sqr,lag.max=50)  

# Obtaining the PACF plot of squared residual 

Pacf(resid,lag.max=100) 
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Pacf(resid_sqr,lag.max=50) 

#######################################################################

## 

figarch_spec<-ugarchspec(variance.model = list(model = "sGARCH",  

                                             garchOrder = c(1, 1),  

                                             submodel = NULL, external.regressors = NULL,  

                                             variance.targeting = FALSE),  

                       mean.model = list(armaOrder = c(1, 1), include.mean = FALSE,  

                                         archm = FALSE,  

                                         archpow = 1, arfima = TRUE,  

                                         external.regressors = NULL, archex = FALSE),  

                       distribution.model = "norm", start.pars = list(), fixed.pars = list()) 

 

# Model Estimation 

figarch_fit<- ugarchfit(spec=figarch_spec, data= data_trn) 

figarch_fit 

fited_afigarch<- figarch_fit@fit$fitted.values 

plot(data_rt, col=1) 

#GARCH model using ruGarch package 

# Specification of GARCH model 

# Model Forecasting Performance of GARCH model 

# Training set 

data_trn<- ts(data_rt[1:707], frequency = 12, start = c(1960, 2)) 

 

# Test set  

data_test<- ts(resid_sqr[708:719], frequency = 12, start = c(2019, 1)) 

tail(data_test) 

#garch_spec<- ugarchspec() 

#garch_spec 
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#######################################################################

######### 

# Fitting of ARIMA model 

aic_mat<-matrix(nrow=3,ncol=3) 

rownames(aic_mat)<-paste("p",0:2,sep="=") 

colnames(aic_mat)<-paste("q",0:2,sep="=") 

for(i in 0:2){ 

  for(j in 0:2){ 

    fit_arima<-arima(data_rt,order=c(i,1,j), seasonal = list(order=c(0,0,0),period=NA))  

    aic_mat[(i+1),(j+1)]=fit_arima$aic 

  } 

} 

fit_arima 

aic_mat 

########################################################## 

# To put these forecast in the context, lets disply with the last 20 obs. of estimation 

est_var_t<- ts(c(tail(est_var, 12))) # To get last 12 obs 

est_res2_t<- c(tail(est_res2, 20, rep(NA, 10))) # To get last 20 obs 

garch_fcast_t<- c(rep(NA, 20),(fcast_sigma)^2 ) 

 

plot(est_res2_t, type = "1") 

line(est_var_t, col="green") 

line(garch_fcast_t, col="orange") 

# Fitting of ANN model 

data_trn.ann<- data_trn.elm 

 

fit.ann<- mlp(data_trn.ann, m = frequency(data_trn.ann), hd = NULL, reps = 20, comb = 

c( 

   "mean"), lags = NULL, keep = NULL, difforder = NULL, 
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    outplot = c(TRUE), sel.lag = c(TRUE), 

    allow.det.season = c(FALSE),  

    hd.auto.type = c("cv"), hd.max = NULL) 

 

names(fit.ann) 

fcast.ann<- predict(fit.ann, h=12) 

fcast_ann<- fcast.ann$mean 

fcast_ann 

 

# RMSE and MAPE 

rmse_ann=sqrt(mean((data_test-fcast_ann)^2)) 

rmse_ann 

mape_ann=(mean((abs(data_test-fcast_ann))/data_test))*100 

mape_ann 

plot(data_test) 

lines(fcast_ann, col="green") 
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