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SUMMARY 

Robustness of optimal block designs for triallel cross experiments of 
Das and Gupta [4] is investigated using connectedness and efficiency criteria 
against exchange of a cross. The exchanged cross may have no line in 
common, one line in common or two lines in common with the substituted 
cross. Each of these aspects has been dealt with separately and it is found that 
the designs involving more than 9 lines are robust. 
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1. Introduction 

Triallel crosses form an important class of mating designs, which are used 
for studying the genetic properties of a set of inbred lines in plant breeding 

experiments. Let there be p inbred lines which give rise to Ilc =3 PC3 possible 

crosses of the type (it x i 2) x i3 , it:;t i2 :;t i3, it, i 2, i3 =1,2, ... , p. Rawlings 

and Cockerham [17) were the first to introduce mating designs for trialiel 
crosses. 

Triallel cross experiments are generally conducted using a completely 
randomized design (eRD), or a randomized complete block (ReB) design as 
environmental design involving nc crosses. The total number of triallel crosses nc 
becomes manifold with increasing value of p. As a result more resources are 
required for conducting experiments. Furthermore, accommodation of large 
number of crosses in a ReB design may result into large intra-block variances. 
In such situations, a sample of the complete triallel crosses, i.e. partial triallel 
crosses (PTC) introduced by Hinkelmann [9] can be used. Other authors who 
contributed in this field are Arora and Aggarwal [1, 2], Ceranka et al. [3] and 
Ponnuswamy and Srinivasan [16], etc. More details on triallel cross experiments 
can be found in Hinkelmann [10] and Narain [12]. 
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Recently, following Gupta and Kageyama [8] and Dey and Midha [5], Das 
and Gupta [4] have constructed block designs for triallel crosses that start with p 
lines rather than nc crosses in the experiment. This approach yields designs 
which are universally optimal in D (p, b, k), the class of connected block designs 
for triallel crosses in p lines with b blocks each of size k such that the total 
number of experimental units are n < nco Das and Gupta [4] used nested 
balanced block designs with sub-block size 3 in the construction of optimal 
block designs for triallel crosses. These optimal designs perform well under 
ideal conditions. However, disturbances may occur due to some reasons at 
different phases from planning to execution of an experiment. Exchange of a 
cross in one such aberration or discrepancy that is said to have occurred, if one 
of the crosses gets substituted by any of the remaining crosses during 
experimentation due to the following reasons 

(i) 	 In environmental design, a different cross has been applied in a block 
instead of what should have been, due to human mistake or due to 
erroneous tagging and labeling. 

(ii) 	 In environmental design, suppose one cross did not germinate due to 
incompatibility of the cross or for any other reason and was substituted by 
an already existing surplus cross. 

(iii) 	 If resource is not available for a particular cross, then exchange of that 
cross with any other surplus cross is necessitated. 

Pearce [13] first reported such type of disturbances in general block design 
set up. Gomez and Gomez [7] have termed these disturbances as mechanical 
errors whereas Pearce [14] called these as errors in the application of the 
treatments. The presence of such discrepancy may affect the properties of the 
original design. Therefore, there is a need to use the designs that are insensitive 
to such types of disturbances. In this article, an attempt, therefore, has been 
made to investigate the robustness of optimal block designs for trialleI crosses 
against exchange of a cross. In Section 2, preliminaries of block designs for 
triallel crosses have been discussed. The exchanged cross may be distinct in 
terms of the lines with the substituted cross or may have one line or two lines in 
common. Each of these has been dealt with separately in Section 3, 4 and 5 
respectively. In each situation, relationship has been established between the 
information matrix of the resulting design and that of the original design. The 
eigenvalues of the information matrix of the resulting design have been obtained 
when the original design is variance balanced with respect to line effects. 
Robustness have been investigated using the connectedness criterion (see e.g., 
Ghosh [6]) and the efficiency criterion (see e.g., John [11]). . 

2. Experimental Set-up 

Let d be a block design with b blocks each of size k for a triallel cross 
experiment in p inbred lines. Further, let rl and Sj denote the number of 

--- ---_..... _------------------- ­
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replications of the tth cross and the number of replications of ilb line in different 
crosses, respectively in d [t = 1, 2, ...• p(p - l)(p - 2)/3; i = I, 2•...• pl. 
Evidently, :Ert =bk. LSi =3bk and n =bk, the total number of observations. In 

a triallel cross experiment. the genotypic effect of the hybrid consists of single 
line effects. two line specific effects and three line specific effects. However. if 
we assume that for a partial triallel cross experiment (in which every line 
appears as half parent an equal number of times, say rH' and every line appears 

as full parent an equal number of- times, say rp. and each of the crosses 

(i) x i2 ) x i~ appears at most once) the two line specific effects and three line 

specific effects are not of importance, still the line effects are of two types viz. 
effects as half parent and effect as full parent. i.e., the ordering of lines in a 
triallel cross is important. Some plant breeders argue that these ordering effects 
can also be averaged over line effects. Hence, in the present investigation. 
similar to Das and Gupta [4] we consider the situations where the ordering of 
lines in a triallel cross is not of importance and postulate the following linear 
additive fixed effect model for the observations 

(2.1) 

where Y is the (n x 1) vector of observed responses. /.1 is general mean. g and 

~ are vectors of p line effects and b block effects. respectively. In is a n x 1 

vector of unities. 6.; is the (n x p) observations vs lines design matrix, i.e. 

(S,t)th element of 6.; is 1 if sth observation pertains to the eh line and is zero 

otherwise. 6.; is the (nxb) observations vs blocks design matrix i.e. 

(s, t) Ih element of 6.; is 1 if S th observation pertains to the t lh block and is zero 

otherwise and E is the random error which follows N n (0, a2In) . 

The information matrix of the reduced normal equations for estimating 
linear functions of line effects, using d. under model (2.1) is 

(2.2) 

where G d = 6.16.; = (gdii')' gdii sdi and for i ;;f. i', gdii'is the number of crosses 

in d in which the lines i and i' appear together. Nd :;; 6.16.; = «ndij», ndij is the 

number of times the line i occurs in block j of d and Kd = 6.26.; is the diagonal 

matrix of block sizes. The design d will be connected if and only if 
rank (Cd) =p - 1. Henceforth. we shall consider only the connected designs. 

We state below two theorems {Das and Gupta [4]} for better 
understanding of the optimality aspect of designs considered in D (p, b. k). 
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Theorem 1: For d E D (p, b, k), tr (Cd) S; k'ib {3k(k - I - 2x) 
+ p x (x + I)}, where x = [3k1p], [.] being the integer valued function and tr (A) 
denotes the trace of the matrix A. 

Corollary 1: For d E D (p, b, k), if 3k1p ;::: 1 (Le., x ;::: 1), then 

tr (Cd) S; k'ib {3k(k-1-2x) + P x (x+l)} S; 3bk (p-3)/p S; 3b(k-l) 

And if 3k1p S; 1, i.e. x =0 then tr (Cd) S; 3b (k - 1) 

Again, if nwj = 0 or 1 for all i, j, then tr (Cd) = 3b(k-I) 

Theorem 2: Let d E D (P. b. k), be a block design for trialiel crosses 
satisfying 

(i) tr (Cd.) = k')b {3k(k -1- 2x) + p x (x + I)}. and 

(ii) Cd- is completely symmetric 

Then d* is universally optimal in the relevant class of competing designs in 
D (P. b, k) and in particular is A-optimal. 

Consider a nested balanced block design dn with parameters v =p. bl> b2, 

kit k2 =3. If we now identify the treatments of dn as lines of a triallel cross 
experiment and perform crosses among lines appearing in the same sub-block of 
rln. we get a block design d* for a triallel experiment involving p lines with 
n =bz crosses arranged in b =bl blocks, each of size k =k l /3. The information 
matrix of d* is given by 

Cd. = (p - lfl k-Ib (3k(k -1 - 2x) + p x (x + I)} [Ip J~l] (2.3) 

Thus, from (2.3) and Theorem 2, it is evident that d* E D (P. b, k), 
constructed using a nested balanced block design with parameters p, b l = b, 
b2=bk, k) ='3k, k2 =3 is universally optimal in D (p, b, k). 

Now, we discuss the robustness of optimal trialiel crosses in the sequel. 

3, Robustness Against Exchange ofDistinct Crosses 

Without loss of generality, assume that the cross involving lines 1,2 and 3 
has been exchanged with the cross involving lines 4, 5 and 6 in block 1. Let dE 
denote the resulting design. The incidence matrix of d in the partitioned form 
can be written as 

(3.1) 
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where 

DI is the 6 x 1 vector corresponding to affected lines vs affected block 

UI is the (p - 6) x 1 vector corresponding to unaffected lines vs affected block 

Np is the 6 x (b - 1) incidence matrix corresponding to affected lines vs 
unaffected blocks 

Nu is the (p - 6) x (b - 1) incidence matrix corresponding to unaffected lines vs 
unaffected block 

After interchange of a cross, the resulting incidence matrix is 

(3.2) 

with DIE = DI + e and e' = [-1 -1 -1 1 1 1] 

The Gd matrix defined in (2.2) in the partitioned form can be written as 

d2G=[G~I G ] (3.3)d Gd2 Gd3 

where 

Gdl is the 6 x 6 matrix corresponding to affected lines and affected pairs of lines 

Gd2 is the 6 x (p - 6) matrix corresponding to pair of lines, having one line 
affected 

Gd3 is the (p - 6) x (p - 6) matrix corresponding to unaffected lines and 
unaffected pair of lines 

After exchange, the resulting matrix <iE will be 

.
GE =Gd +[: 0]o With (3.4) 

.. -.--- ­

-1 -1 -1 0 0 0 

-1 -1 -1 0 0 0 

-1 -1 -1 0 0 0 
F= 

0 0 0 1 1 

0 '0 0 1 

0 0 0 1 1 

~.--.... ­
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Here, we define DI =[1 1 1 XI X2 X3]', where Xi (i =1,2,3) taking values 
1 or 0 depending on the presence or absence of the lines 4, 5 and 6 in the 
affected block. 

Now, the resulting information matrix can be expressed as 

CE=Cd-AE 

where 

(3.5) 

Substituting DI> e and F in (3.5). we get 

A =k-I[X T'l 
E T ZJ 

where 

k-l k-I k-l -XI -Xl --X3 

k-l k-l k 1 -XI -Xl -X3 

k-l k-l k --1 -XI -- X2 -- X3
X== 

-Xl -X2 -X3 2XI +1-k Xl +X2 +l--k x l +x3 +1--k 

-Xl -- X2 -X3 Xl +X2 +l-k 2X2 +1 k Xz +x3 +l-k 

- Xl -X2 -- X3 XI+ x3+ 1-- k X2 +X3 +l-k 2X3 +l-k 

T =U I e' and Z = O(p-6) x (p-6). the null matrix 

One can easily see that AE is symmetric with row and column sum zero 
and AE commutes with information matrix Cd of a variance balanced block 

design for triallel crosses. Therefore, the eigenvalues of resulting information 
matrix (CE) can be obtained by subtracting the eigenvalues of AE from that of 

Cd . Thus, the eigenvalues of CE are 

(i) eo == 0 with multiplicity I 

(ii) alE =J,l. with multiplicity (p - 3) 

(iii) aZE =(J,l. - a) ,and 

(3.6) 



-----------------------------------------------------
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Here, I..t =3b(k - l)/(p - 1) is the unique non-zero eigenvalue of Cd' For 
design dE to be connected, rank (CE ) should be P-1. In other words 

I..t "# 8 j , i 1,2. It is difficult to obtain the conditions for which I..t"# 8j in 

generaL Hence, we shall study the particular designs. 

Furthennore, for a connected design, the efficiency of the resulting design 
(dE) relative to the original design (d) is seen to be 

(3.7) 

The eigenvalues of AE are obtained by solving 

IAE -8II=C (3.8) 

which simplifies to 

(3.9) 

where Q =3k 3 - Xl Xl - X3 

Equation (3.9) is cubic in 8. Therefore, we have considered here only two 
cases, namely Xl =X2 = X3 == 1 and Xl =Xz =X3 =O. For both the cases, the cubic 
equation reduces to a quadratic, giving the eigenvalues of AE as 

(3.10) 

Case I: XI = 0, X2= 0, X3= 0 

The non-zero eigenvalues of AE are 

81,82=±3~1- :2 (3.11) 

In this case, the non-zero eigenvalues of AEare 

(3.12) 

A catalogue of all variance balanced block designs for diallel crosses 
obtainable from Families 1 to 4 of Das and Gupta [4] has been prepared for 
p :5 30 and is given in Table 1 in the Appendix. The connectedness of dE 
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obtained from d given in Table I has been examined individually and 
empirically. It is found that all the designs in Table 1 (except the design with 
parameters p =9, b =4, k =3 in Case II) remains connected after the exchange 
of a distinct cross in both the cases. The relative efficiencies of optimal designs 
for triallel crosses which remains connected after exchange of a cross have been 
obtained using (3.7). It is observed that the relative efficiencies of the block 
design for triallel crosses with parameters p =9, b =12, k = 2 are 0.8889 and 
0.8000 in Case-I and Case-II respectively. Further, the relative efficiencies of 
the designs with parameters p = 15, b =7, k = 5; P =b =7, k =2 and p =b = 10, 
k =3 are 0.9479, 0.5000 and 0.9290 respectively in Case-II. For rest of the 
designs the relative efficiency is greater than or equal to 0.9500. Thus, the 
designs with p > 9 (except the designs with p = 15, b = 7, k =5 and p =b =10, 
k =3 for the cases discussed above) are robust according to efficiency criterion. 

4. Robustness Against Exchange ojCrosses having One Line in Common 

Without loss of generality, we assume that the cross having lines 1,2 and 5 
has been exchanged with the cross having lines 3, 4 and 5 in block 1 so that the 
line 5 is common between them. The incidence matrix of d in the partitioned 
form can be written as 

(4.1) 


where 

n1 is the 5 x 1 vector of involved lines vs affected block 

UI is the (p 5) x 1 vector of uninvolved lines vs affected block 

Np is the 5 x (b 1) matrix corresponding to involved lines vs unaffected blocks 

Nu is the (p - 5) x (b - I) matrix corresponding to uninvolved lines vs 
unaffected blocks 

As in Section 3, here nl can be written as 

n, =[1 1 XI X2 1]' 

where Xl. Xz take value lor 0 according as the line 3 or 4 is present or absent in 
block 1. 

Here also, nlE = nl + e, with e'= [-1 -1 -1 1 0] 

--------~.....--..-.--- . 
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The matrices Gdh Gd2 and Gd3 have the same meanings as defined earlier 
in (3.3) but are of order (5 x 5), 5 x (p - 5) and (p - 5) x (p - 5), respectively. 
Here, F given in (3.4) is 

-1 -1 0 0 -1 

-1 -1 0 0 -1 

F = 0 0 1 1 1 (4.2) 

0 0 1 

-1 -1 1 1 0 

Substitution of Dh e and F in (3.5), yields 

A = k-I [X 1"] (4.3) 
E T Z 

where 

-1+k -1+k -xI -X2 -1+k 

-l+k -l+k -xI -x2 -l+k 

-xI -xI 2xI +l-k xI +x2+ 1- k l-k 

-x2 -x2 XI +X2 +l-k 2x2 +l-k l-k 

-l+k -l+k l-k l-k o 

X= 

T =ule' and Z =O(p-5)x (p-5) 

It can be seen here that AE satisfies all the properties described earlier in 
Section 3. 

Now, the solution of the equation 

(4.4) 

gives the non-zero eigenvalues of AE as 

(4.5) 

where c =2(x I - x2i + 4 (3k - 3 - XI - X2) + (x I + X2 + 2 - 2k)+ 4 (1 - k)2 

Depending upon the 1, 0 values of Xi (i = 1, 2), all the optimal block 
designs for triallel crosses have been classified into 3 cases which are presented 
below along with the non-zero eigenvalues 8h 82of AE• 
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Case I: Xl =0, X2 =0 

Case II: Xl =0, X2 =1 

Case Ill: XI =1, X2 =1 

(4.6) 

As earlier, here the connectedness of dE has been proved for particular 
designs given in Table 1 by equating 0; (i =1, 2) with Il, the non-zero eigenvalue 
of that particular design, d. Relative efficiencies for connected designs in 
different cases have been computed using (3.7). It is observed that the relative 
efficiency of the block design for triallel crosses with parameters p = b =19. 
k =3 is 0.8463 in Case-I. In Case II. the relative efficiencies for the designs with 
parameters p = 9, b = 12, k =2 and p =b = 7, k = 2 are 0.8889 and 0.7317 
respectively. In case-III. the relative efficiencies of the designs with parameters 
p =9, b = 4, k =3; p :: 9, b =12. k =2 and p :: b =7. k =2 were found to be 
0.4000, 0.8506 and 0.6393 respectively. For rest of the designs the relative 
efficiency is greater than or equal to 0.9500. Thus, the designs with p > 9 
(except the designs with p = 19, b = 19, k = 3 for the Case I) are robust 
according to efficiency criterion. 

5. Robustness Against Exchange ofCrosses having Two Lines in Common 

Without loss of generality, we assume that the cross having lines 1.3 and 4 
has been exchanged with the cross having lines 2, 3 and 4 in block 1. so that 
lines 3 and 4 are common. The incidence matrix of d can be written as 

(5.1) 

where DJ, Ult Np and Nu are of order (4 x 1), (p - 4) x I, 4 x (b - 1) and 
(P-4) x (b-l) respectively and have the meaning as in (3.1). Here. 

DIE= DI +e with e' =[-1 1 0 0]. Let Dl = [1 xIII] with XI = 1. if line 2 is 
present in block 1 and 0 otherwise. Also, the matrix F given in (3.4) takes the 
form 



JJ8 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

F = [-~ ~ ~ -~ 1 
-1 1 0 0 


-1 0 0 


Substituting the values of nit e and F in (3.5), we get 

AE= k-l[~ ~] (5.2) 

with 

-l+k -Xl -l+k 
-l+kI

-XI 2XI+l-k l-k l-k 
X= 

-I+k l-k 0 0 

-l+k l-k 0 0 

T =ule' and Z =O(p-4) x (p-4) 

The solution of 

(5.3) 

gives the non-zero eigenvalues (a" a2) of AE as 
2a" a2 = [XI ±(X1 +ctl Ik: (5.4) 

where c =2(3k - 3 - XI) + 4(k-1)2 + (Xl + 1 - k)2 

The values of alt a2 for different cases are given below 

Case I: Xl =0 

Case II: Xl =1 

Like earlier cases, in this section also, the connectedness of dE has been 
studied empirically for particular designs given in Table 1. The relative 
efficiencies have been computed for connected designs for different cases using 
(3.7). It is observed that in Case I the relative efficiencies of the designs with 
parameters p = 9, b =4, k =3 and p =b =7, k =2 are 0.8596 and 0.9120 
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respectively. In Case II, the relative efficiencies for the designs with parameters 
p =9, b = 4, k =3; p =9, b =12, k =2 and p = b =7, k =2 are 0.8000, 0.9283 
and 0.8438 respectively. For rest of the designs the relative efficiency is greater 
than or equal to 0.9500. Thus, the designs with p > 9 are robust according to the 
efficiency criterion. 

Hence, we may conclude that all the universally optimal designs for triallel 
crosses with p > 9 considered here are robust according to the efficiency 
criterion. 
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APPENDIX 

Table 1: Variance balanced block designs for triallel crosses for p::; 30 obtainable 

from Das and Gupta [4] 

SI.No. Parameters Source 

p b k 

I 7 7 2 Sl-F4 

2 9 4 3 SI-Fl 

3 9 12 2 SI-F3 

4 10 10 3 SI-P5(i) 

5 10 40 3 SI-F2 

6 13 13 4 SI-F4 

7 13 52 3 SI-F2 

8 15 35 4 SI-F3 

9 15 7 5 SI-Ft 

10 16 16 5 Sl-P13 

11 16 112 5 SI-F2 

12 19 19 3 SI-P6 

13 19 t9 6 SI-F4 

14 19 76 3 SI-F2 

15 21 70 3 Sl-F3 

16 21 70 4 SI-F3 

17 21 70 6 Sl-F3 

18 21 10 7 81-Fl 

19 25 100 3 Sl-F2 

20 25 25 8 Sl-F4 

21 27 117 8 SI-F3 

22 27 13 9 SI-Ft 

SI Das and Gupta [4] 


F# Family # of Designs 


P Table 3 of Preece [15] 


------- ... -~~.~-...-- ... 


