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Abstract

Banana is affected by a wide number of diseases, of which, Fusarium wilt caused by Fusarium
oxysporum f. sp. cubense (Foc) race 1 has played a major role in devastating Gros Michel banana
plantations. Since 1960s, the pathogen Foc race 4 has threatened the survival and existence of the
Cavendish group of bananas, which has necessitated detailed study on Fusarium wilt, the causal
organism Foc, its biology, dispersal, pathogenicity, diversity and detection at a molecular level
(especially in soils) and its management. The recently developed technique of transferring the gene
encoding green fluorescent protein into Foc has assisted in visualizing and analysing the colonization
and infection of banana plants by the pathogen. Studies on the pathogenicity secreted in xylem genes
have helped in rapid detection of the pathogen in planta and techniques such as real-time
fluorescence loop-mediated isothermal amplification assay have facilitated rapid and direct
quantitative detection of Foc in soil. Several management practices, especially resistant varieties/
transgenics and biological control methods are available for the effective management of this deadly
disease. Strict quarantine procedures and reduction of Foc inoculum are the methods undertaken to
limit the spread of the disease to other un-infected regions. This review summarizes the recent
developments of Fusarium wilt in banana and its management.
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Review Methodology: Information for the review has been compiled from journal articles, text books, proceedings, reports etc. and
to access these, ICAR-CeRA J gate, hard copy of text books (for an instance D R Jones, 2018. Handbook of Diseases of Banana,
Abaca and Enset, CABI, p633) were referred. Information for the review has also been compiled from CAB Abstracts, CAB Heritage and
e-Journals, Science Direct, Research Gate. In addition we used the references from the articles obtained by this method to check for
additional relevant material. We also spoke to colleagues and checked for any upcoming studies not yet published.

Introduction

Banana (Musa sp.) is a perennial monocotyledonous herb
plant belonging to the order Zingiberales. Its fruits are
consumed worldwide, as dessert and cooked (plantain)
forms. The fruits of edible bananas are diploid and triploid
seedless parthenocarpic hybrids derived from intra- or
inter-specific crosses between two diploid wild Musa
species, Musa acuminata (AA) and M. balbisiana (BB)
[1, 2]. The most common varieties of dessert are triploid
AAA derived from crosses within M. acuminata, while
common cooking triploid bananas (AAB or ABB) are
derived from crosses between M. acuminata and
M. balbisiana. Bananas are vital for food security in many

tropical and subtropical countries and half of the banana
production relies on somaclones derived from a single
triploid genotype, Cavendish [3]. In 2015, global banana
exports, excluding plantains, registered the first decline
since 2010 after having reached an unprecedented peak of
18.6 million tonnes in 2014 [4]. Export of banana from Asia
has also declined by 46% as a production drop occurred,
mainly due to Fusarium wilt in the Philippines (which is the
largest exporter in the region, accounting for 90% of the
total export from Asia). As Fusarium wilt is becoming a
major threat to banana cultivation worldwide and will be
the major impediment for the export of banana in the
future, the current review focuses on different aspects on
status, diagnostics and management.
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Pathogen

Fusarium wilt of banana is caused by the fungus Fusarium
oxysporum Schlechtend.: Fr. f. sp. cubense (Foc) (E.F. Smith)
Snyder and Hansen [5]. It is also known as the Panama
disease [6] and is poly-cyclic in nature. [7]. The diverse
means of dispersal and long-term survival in infested soil
could be the reason for Foc being the most widely
distributed pathogen. There are four recognized races
(race 1 to race 4) of this fungus, which are separated based
on reaction on differential hosts. Race 1 causes disease in
the Gros Michel (AAA), Silk (AAB), Lady Finger (AAB),
Maqueno (Maia Maoli-Popoulu subgroup, AAB), Pome
(AAB) and Pisang Awak (ABB) cultivars, race 2 attacks
monthan, bluggoe and other closely related cooking
bananas and also affects some bred tetraploids (Bodles
altafort hybrid between Gros Michel and Pisang lilin) and
enset (Ensete ventricosum) and race 4 infects Cavendish
(AAA) group of bananas and also cultivars susceptible to
races 1 and 2. Race 3 is not considered to be a pathogen of
banana, as it only attacks Heliconia spp. (tropical American
banana relatives). Race 4 is further divided into subtropical
and tropical strains. Tropical race 4 (Foc TR4) is a more
virulent form of the pathogen and is capable of causing
disease in Cavendish grown under any conditions, whereas
subtropical race 4 (Foc STR4) generally causes disease only
in plants grown under abiotic stress, especially in cold
weather [8].

Occurrence and Losses

Races 1 and 2 of Foc are distributed worldwide [5, 8, 9]. Foc
STR4 is reported in Taiwan, Canary Islands, South Africa
and southern Brazil [8, 9]. The infection of Foc TR4 was first
reported in Taiwan [10] in Cavendish cultivar, affecting
nearly 1200 ha of banana plantations. Later, Foc TR4 has
been reported to cause severe damage to Cavendish

cultivars in Malaysia, Indonesia, South China, Philippines,
Northern Territory of Australia [11–13], Mozambique
[14], Jordan [15], Lebanon and Pakistan [16]. In 2017,
Foc TR4 was also reported in Laos [17], Vietnam [18] and
Myanmar [19]. In India, its presence was reported in Bihar
(Katihar and Purnea districts) [20] (Fig. 1) and Faizabad
district in Uttar Pradesh [21]. Reports of Foc infecting
Cavendish in different parts of the world are summarized in
Table 1 and Fig. 2. The lack of banana diversity and the
difficulties in the banana breeding process have raised
serious distress that poses the threat of disappearance of
banana from the shops.
Fusarium wilt epidemics in the twentieth century

resulted in the devastation of more than 50 000 ha of
exotic Gros Michel (AAA) plantations [8], which led to a
major shift of the entire banana production to race
1-resistant Cavendish (AAA) banana varieties such as
Williams, Grand Naine and Dwarf Cavendish. Between
1940 and 1960, the loss caused by Foc race 1 in Gros Michel
variety was estimated to be US$2.3 billion [38] to the
export companies alone. In 2013, the financial losses
due to Foc TR4 infection has been estimated as high as
US$121 million in Indonesia, US$253 million in Taiwan,
US$14 million in Malaysia and more than US$7.5 million in
northern Mozambique (www.rtb.cgiar.org). Earlier, it was
stated that the occurrence of Foc TR4 in Latin America
would cause huge losses to the banana industry, as that
region along with Caribbean contributes to 80% banana
export [39]. Unfortunately, the recent report in 2019 says
it has spread to Colombia (Latin America), which is a major
concern for the banana industries involved in export
(https://www.foodnavigator-latam.com/Article/2019/08/09/
Colombia-declares-national-emergency-as-TR4-banana-di-
sease-confirmed). In banana, Cavendish cultivars comprised
of 15% of the global banana production and occupied 40%
of the total global area [7]. Clearly, this implied a huge risk
for a pandemic outbreak of Foc TR4 as Cavendish clones
are susceptible to the strain. The vegetative propagation of

Figure 1 Fusarium wilt tropical race 4 devastated banana field at Katihar, Bihar, India.
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Table 1 Chronological occurrence of Fusarium wilt disease in the Cavendish group of banana across the globe

Year Country Remark Reference

1967 Taiwan Symptoms of Fusarium wilt on Cavendish
cultivar at Chiatung in South Taiwan were
observed. Initially, it was observed in 0.27 ha
and later it has spread to 1200 ha in 1976. In
1989, VCG 01213 of TR4 was identified

[22–24]

1970s Philippines About 30 000 plants of Grand Naine were
eradicated due to Foc wilt between 1974 and
1991, and this was mainly caused by STR4
(VCGs 0122, 0123 and 0126)
Samples collected from highland and lowland
Cavendish banana farms in Davao in Sep 2005
confirmed the presence of TR4 (VCG 01213/16)

[25, 26]

1990s Indonesia and Malaysia Foc TR4 infected thousands of ha of banana and
resulted in loss of hundreds of millions of USD.
In Lampung district of Sumatra, TR4 caused a
loss of 9–11 million USD between 1993 and
2002, and 5000 ha of Cavendish plantations
abandoned

[27]

1997–99 Australia Foc STR4 (VCGs 0120, 129, 1211) was reported
in Subtropical regions of South Queensland and
New South Wales in 1993. Foc TR4 (VCG
01213/16) infecting Cavendish was confirmed
in Darwin (Northern territory of Australia) 1997

[28–30]

2001 China The symptoms of Foc TR4 was first observed on
Cavendish plants in localized areas along the
Pearl River Delta in Guangdong Province in
South China and later confirmed as VCG
01213/16. In 2006, 6700 ha plantations were
severely affected in Guangdong Province

[31–33]

2009 India (Foc race 1 –VCG 0124
infecting Cavendish)

The Foc infected samples collected from Theni
district of Tamil Nadu in 2010 confirmed the
presence of Foc race 1 in cv. Grand Naine

[34]

2015 India (Foc TR4) Although the Foc TR4 believed to be present
since 2010, the Foc samples collected from
Katihar district of Bihar in 2015 confirmed the
presence of Foc TR4 (VCG 01213/16) in India.
This TR4 has spread to the adjoining state Uttar
Pradesh and the incidence was more than 50%
in severely infected banana growing areas of
these two states

[35]

2012–13 Oman (2012), Jordan (2013)
and Mozambique (2013)

• TR4 was confirmed in Jordan in 2013, but has
probably been present in the country since at
least 2005

• Foc TR4 in Oman was reported in 2012
• The TR4 occurrence was observed in export
banana plantation located in northern
Mozambique in Nov. 2013. It was later found in
Nampula province also

http://www.sun.ac.
za/english/faculty/agri/
plant-pathology/ac4tr4/
background/
global-distribution-of-Foc-Tr4
http://www.promusa.
org/Tropical+race+4+-
+TR4#footnote19

2012 Pakistan and Lebanon • In Pakistan, symptoms of Fusarium wilt were
first observed in 2012 in a 2 ha Cavendish
plantation in Baoo Pooran of Sindh province
and in 2014, approximately 121 ha were
affected. Later, the samples collected were
confirmed as Foc TR4

• In Lebanon, during 2013, one ha area of Grand
Naine plantation located at Mansouri and
Berghliyeh regions was affected by Fusarium
wilt and the pathogen was confirmed as Foc
TR4

[16]

2016 Israel The incidence of Fusarium wilt TR4 was
observed in cv. Grand Naine has grown in
Shfeya (Camel coastal plain) and Kibbutz Ein
Gev (Eastern Shore of Lake Galilee)

[36]
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planting material and a lack of diversification efforts over
the last century have increased the genetic vulnerability
of the crop to unacceptable levels, which could threaten
food security. Also there is no known substitute to the
commercial Cavendish cultivars yet developed. Thus, there
is a need for international, regional and local measures
aimed at prevention and management of this destructive
disease.

Symptoms

Development of a reddish-brown discoloration of the
xylem in fine or smaller non-woody feeder roots at
the sites of infection and yellowing of lower older leaves
are the initial symptoms. Leaf yellowing begins along the

margin and advances towards the midrib. Subsequently, the
petiole turns brown and buckles. Infected plants frequently
develop longitudinal splits on the pseudostem just above
the soil level. The typical external symptom is hanging
of dead leaves around the pseudostem, which appears like
a skirt. Eventually, the heart leaf withers and the pseudo-
stem remains standing until it is removed or collapsed
[5, 40, 41]. Infection is also passed into young suckers [22].
Cross-section of the corm and pseudostem shows
purplish-brown discoloration of the vascular bundles
while in corm, the discoloration appears as a collection of
tiny reddish or brownish dots and streaks [42]. The
discoloration of the rhizome is severe where the stele
joins the cortex [5]. Generally, infected plants produce no
fruit bunches and if produced, the fruits are very small with
few fingers having pithy and acidic flesh [43].

Table 1 (Continued)

Year Country Remark Reference

2014–17 Vietnam, Myanmar and Laos The symptoms of Fusarium wilt TR4 was
observed in three provinces of Northern
Vietnam along the Red River that originates in
the Yunnan province of China i.e. Hanoi (2014),
Hung Yen (2015) and Lao Cai (2015). Later in
2016, the samples collected from Laos,
Vietnam and Myanmar confirmed as Foc TR4
(VCG 01213/16)

[18, 19, 37]

2019 Colombia The incidence of TR4 was reported in La Guajira
and declared the presence of TR4 officially on
8th August 2019

https://www.foodnavigator-
latam.com/Article/
2019/08/09/Colombia-
declares-national-
emergency-as-TR4-
banana-disease-
confirmed

Figure 2 Occurrence of Fusarium wilt (TR4, STR4 and race 1) in Cavendish group of bananas in different banana growing
countries of the world.
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Mechanism of Symptom Expression

In the presence of banana roots, the chlamydospores or
conidia of the fungal pathogen germinate and infect the
lateral or feeder roots of banana plants [44]. The pathogen
colonizes and blocks the plant vascular system [8] thereby
inhibiting water and nutrient transport to the leaves and
also damaging the chloroplast, and thus leading to wilting.
The chloroplast damage leads to expression of leaf yellow-
ing. The fungus produces fusaric acid and beauvericin
toxins. Normally, fusaric acid (at 17.9 mg/ml) is considered
to be enough for initiating leaf chlorosis symptom [45],
whereas beauvericin which inhibits cholesterol acyltrans-
ferase, induces typical programmed cell death (PCD) and
pore formation in cellular membranes [46]. Both beauver-
icin and fusaric acid are found to be detected in all the
infected tissues of banana including pseudostems, fruit and
leaves [47]. Besides, the fungus also secretes a mixture of
hydrolytic enzymes, including cutinases, cellulolytic
enzymes (cellulases, hemicellulases and xylanase), pecti-
nases (pectin methylesterase, polygalacturonase and
pectate lyase) and proteases [48] which facilitate pen-
etration of pathogen into the plant cell wall. Unlike in
susceptible cultivars, resistant cultivars respond to the
initial pathogen attack by quick occlusion of the xylem
lumens with tyloses (large bladder-like cells), gels and gums,
hindering the pathogen from further entering the plant.

Biology, Survival and Dispersal

The fungus initially enters into the epidermal cells and
intercellular spaces of the banana root thereafter it forms
numerous microconidia and macroconidia and finally
chlamydospores when the plants are dead. Microconidia
are either one- or two-celled, oval- to kidney-shaped and
are produced in false heads. Macroconidia are four- to
eight-celled and sickle-shaped with foot-shaped basal cells.
Chlamydospores are usually globose and are formed singly
or in pairs in hyphae or conidia [49]. The fungus moves
through the conducting vessels acropetally along with the
xylem sap by alternating between the sporulating and
germinating phase to penetrate the barriers. After the plant
wilts completely, the fungus feeds saprophytically on the
dead plant parts such as leaves, pseudostem and roots, and
produces numerous resting spores called chlamydospores,
which are resistant to desiccation and unfavourable
environmental conditions and enable to remain viable in
the soil and on plant debris for more than four decades
[38, 42]. The germination rate of chlamydospores and
Fusarium wilt development depends on the soil topography
and rhizosphere microflora [50, 51]. These spores could be
transported to disease-free soils by wind, run-off waters
and inadvertent dispersal via birds, animals, humans and
even farm implements [5, 52]. The spread of the pathogen
locally, nationally and internationally is through
root-to-root contact, infected planting materials (rhizomes

or suckers) and also through soil attached to planting
materials, farm implements, vehicles, footwear and unster-
ilized potting compost [53]. Dispersal could also be
effected through soil adhering to other crops planting
materials. Aerial dissemination of Focmight also be possible
since macroconidia or sporodochia of the pathogen were
produced on artificially inoculated plants in greenhouse
experiments [54].
The pathogen survives in the roots of several species of

common grasses and weed species such as Commelina
diffusa, Chloris inflate/C. barbata, Ensete ventricosum,
Euphorbia heterophylla, Tridax procumbens, Cyanthillium
cinereum, Paspalum, Panicum and Ixophorus which do not
express the symptom of the disease [55–57].
Environmental factors, especially the edaphic factors such
as poor soil drainage and unfavourable chemical or physical
or biological conditions play a role in the predisposition of
the host to the disease [58, 59]. Soil moisture content at
less than field capacity (0.01 MPa) is favourable to Fusarium
wilt development [60]. Also, temperature plays a major
role in the progress of Foc invasion and symptom
development in banana [61] as infection and establishment
of Foc TR4 in the Cavendish variety takes place at 15 °C or
below during winter in the subtropics. High disease severity
of Fusarium wilt of banana occurred at pH 8 is also noticed
[51]. During heavy rainfall, spores of the pathogen and
infected tissues on the ground are carried in surface
drainage water. Survival of Indian strain of Foc under water
stagnation for a month is also reported [62]. The texture
and organic matter content of the soil significantly
influenced the survival of the pathogen as wilt disease
has been recorded from loose soil to heavy clay soil
with the pH range of 4.80–8.45 and EC range from
0.12 to 1.10/dsm [63]. Banana weevil, Cosmopolites sordidus,
seems to be a vector or predisposing agent of Foc as Foc
TR4 was detected on exoskeleton [64]. Co-infection of
nematode Radopholus similis and Foc in cv. Gros Michel is
reported, however, there was no influence on disease
severity [65].

Colonization

Colonization of the host plant by Foc is a complex process
which requires a series of highly regulated processes such
as recognition of host roots by a signalling process,
adhesion to the root surface, differentiation of the
penetrating hyphae, penetration of root cortex and
degradation of the physical barriers of the host (e.g.
endodermis) to reach the xylem for infection. Adaptation
to the host cell environment, including antifungal com-
pounds and finally proliferation in the xylem vessels,
production of reproductive structures and secretion of
virulence determinants such as little polypeptides or
phytotoxins is well defined [66].
Invasion of epidermal cells and penetration of cell walls

by Foc race 1 and Foc TR4 have been demonstrated through
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green fluorescent protein transformants [67, 68]. In an
artificial inoculation study of banana (Silk, AAB), coloniza-
tion of cortex and xylem vessels was observed at 5 and 15
days after inoculation, respectively [69].

Pathogenicity

Studying specific pathogenicity factors and genes in Foc is
useful not only to identify pathogenic isolates, but also to
identify the genes that could be silenced for effective
management of the disease. Fungal pathogenicity genes are
responsible for the formation of infection structures, cell
wall degradation, toxin biosynthesis and signalling [70] so as
to suppress plant immunity [71]. Foc secretes a wide array
of proteins into the host xylem sap during colonization
which contributes affirmatively to wilt disease development
in banana [72], such as the specific effector proteins
secreted in xylem (SIX). Genome and transcriptome
analyses of Foc race 1 and TR4 identified several ortholo-
gous copies of SIX genes [73]. Foc TR4 possessed three
copies of SIX1 gene as compared to the single copy present
in Foc race 1. Additionally, Foc TR4 also contained SIX4,
SIX6 and SIX8 [74, 75]. Isolation of a resistance gene
analogous to the tomato I-3 gene would help in under-
standing the mechanism of pathogenicity of Fusarium wilt in
the few wild-resistant cultivars of banana [76].
Certain pathogenicity genes also encode proteins that are

involved in the suppression or disruption of host defence
mechanisms [77]. Quantitative analysis of the transcript
showed a significant increase in expression of chsV, MFS
multidrug transporter and ste12 genes in Foc STR4 and TR4
compared with that of non-pathogenic F. oxysporum [78].
Genome analysis reveals that the genome structures of race
1 and TR4 isolates are highly syntonic with those of
F. oxysporum f. sp. lycopersici strain Fol 4287 [73].
Proteomics is an apt research tool to study microbial

pathogens in terms of their proteome maps, stage-specific
proteomics and pathogenicity factors. Many reports per-
taining to cataloguing mycelial, conidial, sclerotial, organel-
lar and secreted proteins (secretome) across a range of
fungal species exist [79–83]. Proteome comparison studies
between Foc race 1 and race 4 [84] and also between
pathogenic Foc (race 1, VCG 0124) and non-pathogenic
F. oxysporum (npFo) [85] revealed the overexpression of
proteins such as vesicle transport v-SNARE (soluble
N-ethylmaleimide-sensitive factor attachment protein
receptors) protein, developmentally regulated GTP
binding protein, ankyrin, isocitrate np dehydrogenase
[NADP], mitochondrial, homogentisate 1,2-dioxygenase
and hypothetical protein in pathogenic Foc.

Genetic Diversity and Detection

Studying Foc diversity is very much essential for developing
durable resistant banana cultivars and also for quarantine

purposes [86]. Important methods used to study the
variation in Foc include vegetative compatibility group
(VCG) analysis and molecular characterization techniques.
VCG grouping is a useful technique for studying the

genetic relationship between isolates of asexually reprodu-
cing fungi such as Foc. On the basis heterokaryon formation,
isolates of Foc can be divided into genetically distinct groups
known as vegetative compatibility groups. It gives an idea of
the genetic diversity and evolution of the pathogen [87].
So far, 24 Foc VCGs have been identified across the world
[88]. Isolates in some VCG were cross-compatible with
those in other VCG, resulting in VCG complexes such as
VCG 0120-01215, VCG 0124-0125-0128-01220 and VCG
01213-01216. The Foc race 1 belonged to VCG 0123, 0124,
0125, 0126, 0128, 01210 and 01215 whereas the Foc race 2
belonged to VCG complex 0128-01220 and 01214 [38, 89,
90]. Fusarium wilt of banana is caused by 35 different strains
or genotypes of Foc among which, VCG 01213 called Foc
TR4, is just one of six distinct strains that attacked
Cavendish, but it is much more aggressive on Cavendish
than the strains known previously [13]. The Foc TR4
belonged to a single group of VCG 01213/16 complex,
whereas the Foc STR4 isolates belonged to VCG 0120,
0121, 0122, 0129 and 01211 [88, 91–93]. However, the use
of VCG as a means to classify Foc is also considered to be
incomplete as one race could comprise more than one
VCG (e.g. VCG 0124 and VCG 0125 belonged to race 1) or
one VCG occurs in multiple races (e.g. VCG 0124 occurs in
both race 1 and race 2). Also, few of the VCG groups are
cross-compatible, giving rise to VCG complexes making it
more difficult for pathotype identification. However, Ghag
et al. [76] separated 24 VCGs of Foc further into two clades
and eight lineages, of which 21 VCGs are present in
Australia and Asia. Mostert et al. [94] identified VCG
complex 0124/5 as the most common one in the Indian
subcontinent, Vietnam and Cambodia, while VCG complex
01213/16 as the dominant one in the rest of Asia. In this
study, Foc VCG diversity in Bangladesh, Cambodia and
Sri Lanka, and presence of VCGs 01221 and 01222 in
Cambodia and Vietnam are documented.
While vegetative compatibility provided a clear measure

of phenotypic relatedness, the molecular technique is
useful to determine the genetic similarity between isolates
within each VCG and the genetic relatedness among VCGs.
The multigene phylogeny analysis done by Fourie et al. [91]
separated Foc isolates into eight distinct and mostly
unrelated lineages. It also indicated that the rRNA IGS
(intergenic spacer) region found as an excellent marker for
the diagnosis of Fusarium spp. in which lineage-specific
polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) fingerprints could be devel-
oped for Foc isolates since IGS region is a relatively quickly
evolving region with the potential for more than one
sequence to reside within a single genome [95]. The other
regions utilized for phylogenetic study are translation
elongation factor-1α (TEF), the mitochondrial small
subunit (MtSSU) rRNA genes and a repeat region
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encoded in the mitochondrial genome (MtR). The separ-
ation of Foc using DNA fingerprinting techniques such as
RFLP [96], randomly amplified polymorphic DNAs and
DNA amplification fingerprints [97] and amplified fragment
length polymorphisms (AFLP) [98] correlated well with Foc
VCG clusters of distinct phylogenetic lineages. A number
of DNA-based studies have been employed to determine
the phylogenetic relationships between Foc VCGs. These
studies all suggested that Foc could be separated into
two main clades and eight to ten lineages. Clade A
(which included VCGs 0126, 0122, 0121, 01213/16)
affected mainly M. acuminata hybrids, whereas Clade B
(which included VCGs 0124/5, 0128, 01220, 0124/22,
0123, 01217, 01218, 01221) affected mainly
M. acuminata×M. balbisiana hybrids. The lineages in Foc
each contained one to five closely related VCGs. Zheng
et al. [19] reported that isolates from Vietnam, Laos and
Myanmar were genetically close related and resembled the
Foc TR4 strain from Yunnan. Furthermore, the authors
demonstrated genetic association between the Foc TR4
strains from Pakistan and the Philippines as well as between
the strains from Lebanon and Jordan.
The early and correct diagnosis of plant pathogenic fungi

is a crucial component of any crop management system. In
this direction, Sharon [99] first designed oligonucleotide
primer sequences R1F and R1R for the specific amplifica-
tion of the Australian Foc race 1. Similarly, PCR markers
[100] for the VCG complex 01213/16 (Foc TR4) [92, 101]
have been developed for rapid identification. Dita et al. [92]
have reported a PCR diagnostic that uniquely amplified a
463 bp amplicon in isolates belonging to Foc TR4, along
with in planta detection method which provided a fastest
receipt-to-result efficiency within 6 h. Lin et al. [102] used
real-time PCR for quantification and detection of Foc TR4
by using the SCAR primer set FocSc-1/FocSc-2, which was
designed according to the sequence of a 242 bp DNA
fragment (Foc242). They found that levels of Foc gDNA
present in severely symptomatic banana pseudostems and
leaves were 6946-fold and 26.69-fold higher than in those
of mild-symptomatic banana, respectively. Zhang et al.
[103] developed a real-time fluorescence loop-mediated
isothermal amplification assay (RealAmp) for the rapid and
quantitative detection of Foc TR4 in naturally infested soil
samples, which could detect 100 times lower concentration
than that of real-time PCR. The RealAmp assay was highly
specific because it used four primers that recognized six
regions on the target DNA. Previously, real-time PCR [102]
and loop-mediated isothermal amplification assay have been
developed to detect the Foc TR4 in banana tissues [104].
Peng et al. [105] used RealAmp for the rapid and
quantitative detection of TR4 in soil and it facilitated to
detect and differentiate ST4 isolates from TR4 isolates
simultaneously. Besides, this method was highly tolerant to
inhibitor substances in soil. Fraser-Smith et al. [75]
detected Foc TR4 strains from an international collection
of Foc isolates by screening for the presence of the putative
effector SIX8. Foc-SIX8a was present in all race 4 isolates,

whereas Foc-SIX8b was present only in all subtropical race
4 isolates. Foc-SIX8 was neither detected in any of the race
1 and 2 isolates nor in the putative non-pathogens assessed.
These results suggest that Foc-SIX8 is a suitable candidate
for the molecular differentiation of race 4 from race 1 and 2
isolates and also for the further differentiation of tropical
and subtropical race 4 isolates. Neill et al. [106] reported
the infection of Foc TR4 in Queensland, Australia by
confirming the PCR results after sequencing the IGS
region of the ribosomal DNA (rDNA) of the isolates
obtained. A diagnostic PCR assay was optimized and
used by Muhammad et al. [107] for specific detection of
Foc TR4 in Basrai banana variety grown in Sindh province
of Pakistan. An original approach, using orthogonal arrays
and the Taguchi method, was employed by Aguayo et al.
[108] to improve the sensitivity of detection of Foc
TR4 strains causing disease to Cavendish bananas in the
tropics, i.e. VCGs 01213/16 and 0121, without compro-
mising its specificity. FWB-TR4 primer was developed
and it was found to be specific, in which the DNA
regions targeted by the FWB-TR4 primer were all
100% conserved within all the VCG 01213/16 and 0121
isolates.
Foc isolates could also be grouped as odoratum or

inodoratum based on production or non-production of
volatile aldehydes, respectively [40, 109]. Accordingly,
Foc VCGs 0120, 0121, 0122, 0126, 0129, 01210, 01211,
01213, 01215, 01216 and 01219 are classified as ‘odoratum’

group while VCGs 0123, 0124, 0125, 0128, 01212, 01214,
01217, 01218 and 01220 are described as ‘inodoratum’

group [30]. It is speculated that the genes conferring
race 4 virulence are linked to those governing volatile
production [110].

Management of Fusarium Wilt

Since the occurrence of Fusarium wilt of banana, various
management strategies such as flood-fallowing [41], appli-
cation of organic amendments [5], planting of resistant
banana varieties [111], crop rotation [22], fungicidal
treatment [112] and soil fumigation [113] have been
attempted. However, factors such as co-evolution with
the plant host and the spread of virulence determinants via
processes such as parasexuality, heterokaryosis and sexual
recombination led to the evolution of new race [114],
which in turn made these disease management practices
much more complicated. Planting of resistant varieties is
the effective way to control Fusarium wilt disease but it is
limited due to consumer preference, extremely poor
fertility particularly in the Cavendish subgroup [115, 116]
and therefore somaclonal variation and genetic transform-
ation are being exploited. Usage of antagonistic microbes,
which protects and promote plant growth by colonizing
and multiplying in both rhizosphere and plant system, also a
potential environment safe alternative approach for the
management of Fusarium wilt of banana has been
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attempted [117]. Besides, botanicals with antifungal com-
pounds have been attempted for the management of the
disease [118]. Even though there are multiple options for
managing Fusarium wilt of banana including prophylactic
measures, the perennial nature of this pathosystem and the
corresponding polycyclic nature of the disease hindered
the advance of long-term management measures [119].
Hence, an integrated disease management programme for
Fusarium wilt should be undertaken by involving planting
disease-resistant varieties and following other strategies
such as quarantine measures, cultural, chemical and
biological control measures, etc.

Pathogen exclusion

The important aspect of management of Fusarium wilt
at the initial stage is preventing the spread of the pathogen
to other uninfected areas. Prevention of the spread of
fungal propagules is vital since once introduced, the
eradication of the fungus from a field could be very difficult
by either soil or plant-applied disease control treatments
[8]. Preventive measures include adopting strict quarantine
practices, checking for infected plant materials and
thorough cleaning of farm implements, which might help
in slowing the spread of this disease [120]. Regional
awareness and contingency programmes have been
created in the Western hemisphere to ensure that
stakeholders are informed about the symptoms and
potential impact of Foc TR4 [121]. When Foc TR4 arrives
in new areas, early recognition and delineation of the
affected areas are desirable. Daniells et al. [122] observed
that combination of clean planting material, clean fields and
effective quarantine have been cost-effective in Foc preven-
tion besides growing resistant cultivars and application of
soil additives.

Reduction of inoculum level

Since Fusarium wilt is a soil-borne systemic disease, control
strategies are mainly addressed to reduce soil inoculums
before planting banana. Flooding the Foc infested field for
3–4 months with a minimum of 30 cm of water significantly
reduced populations of Foc in soil and controlled Fusarium
wilt [123] as it creates anaerobic conditions [5, 41].
Removing and burning infected plants and spraying the
soil with the fungicide Triadimefon three times at 25-day
intervals are found effective in China [124]. Temperatures
of 65 and 90 °C are necessary to eliminate microconidia
and chlamydospores, respectively [125]. Rice hull burning
to heat sterilize the soil [126], burning the diseased plant
parts such as rhizome, pseudostem, leaves and sterilization
of infected soils [127], and elimination of weeds, insect
vectors and plant-parasitic nematodes harbouring wilt
pathogen are proved to be the effective Foc management
practices [54].

Chemical measures

Chemical control is an essential component of an inte-
grated disease management programme. The use of
fungicides [128] or surface sterilants [129] is effective at
preventing the spread of Foc.
Fungicides such as cyproconazole, propiconazole and

prochloraz showed Fusarium wilt disease reduction of
around 80% in banana plants [120] and their mode of action
is to be inhibiting the demethylation step in the biosynthesis
of sterol. Fungicides belonging to the benzimidazole group
such as benomyl, carbendazim and thiabendazole which act
as a multiplication inhibitor during fungal mitosis [130] have
shown effective at controlling Foc in vitro and in greenhouse
conditions [128]. Injection of rhizome with 2% carbenda-
zim in cv. Rasthali was effective at controlling Fusarium wilt
but the same treatment was not effective in South Africa.
However, potassium phosphate (20%) injection into the
pseudostem had some positive effect [54]. Surface ster-
ilants, such as quaternary ammonium compounds (10%),
sodium hypochlorite (5%), detergent and cleansers are
essential components of a disease management programme
and they are used to disinfect any equipment capable of
transporting Foc-infected soil such as farm machinery and
implements such as tractors, shovels, cane knives and also
footwear. Farmcleanse® containing 10% alkali metal salts of
alkylbenzene sulphonic acid, 5% coconut diethanolamide
and 1% pyridine-2-thiol 1-oxide sodium salt is found to be
the most effective, totally inhibiting germination of conidia
when applied at the recommended rate of 10% [29].
Surface sterilant Sporekill® containing 12% polydiallyldi-
methylammonium chloride reported to inhibit spore
germination of Foc TR4 [129], hence it could be utilized
as an effective disinfecting agent of Foc TR4. However, most
of these chemicals are non-reliable, as they are known to
cause some environmental hazards and harmful to banana
industry workers [131].

Soil amendments

Soils with higher biological diversity and activity, such as
natural or organically managed agricultural soils are often
more suppressive to root infecting fungi than convention-
ally managed agricultural soils [132–135]. Application of
bioorganic fertilizers increased the bacterial diversity in the
rhizosphere of banana [136]. The microbial community
structure in soil amended with organic fertilizers for a long
period is significantly different from that in soil amended
with chemical fertilizer as revealed by PCR-DGGE or 454
pyrosequencing methods [137–140]. Biocontrol agents
when applied in combination with organic materials have
shown the enhanced activity of biocontrol microbes,
resulting in better disease control than the application of
biocontrol microbes alone [136, 141, 142].
Application of chemical amendments in soil also shows

some effects on disease control. Liming of soil reduces the
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survival period of the Foc to 2 months [143]. High lime
(CaO) content (175–280 ppm) enhances disease suppres-
sion in the soil [144] as it reduces germination of
chlamydospores. Addition of calcium carbonate (CaCO3),
calcium hydroxide [Ca(OH)2], calcium sulphate (CaSO4)
or iron chelates to the soil, reduces Foc germination and
thus disease severity. Reduction of iron availability increases
soil suppression [145] as well as reducing chlamydospore
germination [51]. High P content in soil reduces Fusarium
wilt incidence [146]. Soil application of calcium compounds
and phosphate salts such as Ca(OH)2, Ca(NO3)24H2O,
CaCO3, CaSO4, K2HPO4 and NaH2PO42H2O, strongly
inhibits chlamydospore germination and promotes lysis of
germ tubes of Foc in soil [147, 148]. The impact of nitrate
(NO3) and ammoniacal (NH4) nitrogen is well documented
on Fusarium wilts of annual hosts [149] and generally, NO3

decreases the severity of these diseases, whereas NH4

increases the severity.
Soil amendment using silicon (Si) is found effective at

controlling Fusarium wilt in banana [150–152]. Silica is used
by the plant in the form of silicic acid and deposits as
elemental Si in the cell wall which in turn blocks the entry of
Foc. In addition to this, Si also induces plant defence
mechanism and enhances the production of few com-
pounds such as phenolics, lignin-thioglycolic acid and
enzymes such as peroxidases, polyphenol oxidases and
chitinases which are involved in plant protection [153].
Influence of soil abiotic factors such as soil pH, N and Mn;
on Foc race 1 incidence in ‘Gros Michel’ banana variety
showed that a high soil pH, lower Ca and Mg content
results in a higher bunch weight from plants under infected
conditions [154].

Disease suppressive soils

Disease development depends on the condition of the soil
[8, 51]. Healthy and disease-resistant soil for a longer
period termed as disease suppressive soils. In the suppres-
sive soils which contained more microbial population,
suppress the pathogen development and such soils have
been reported in Central America, the Canary Islands,
Australia and South Africa [42]. In general, suppressive soils
have higher pH values and on the other hand soils with
lower pH values are significantly correlated with a higher
incidence of Fusarium wilt in Peru [155]. The nature of
disease-suppressive soil is known to be influenced by its
mineral content, microbiome and soil structure [156]. In
tropical America, a close relationship is found between
suppression of Fusarium wilt and the presence of clay
(montmorillonite type) soils, whereas in the Canary Islands,
suppression is associated with host mineral nutrition [157].
Smith et al. [158] proposed that by the application of
biocontrol agents isolated from banana roots grown in
Fusarium wilt suppressive soil of tissue culture plantlets in
the nursery had a better chance of protection against Foc.
Non-pathogenic F. oxysporum (npFo) and Trichoderma

isolates from suppressive soils in South Africa suppresses
Fusarium wilt of banana in the glasshouse [159]. Addition of
organic matter boosts the general suppressiveness of soils
[160–163]. Specific suppressiveness due to the combined
activity of specific groups of microorganisms, which could
interfere at a particular stage of the life cycle of the
soil-borne pathogen, could be transferred to conducive
soils by mixing smaller amounts (1–10% w/w) of the
suppressive soil into the conducive soil [164, 165]. For
Fusarium wilt suppressive soils, competition for carbon by
non-pathogenic F. oxysporum [166, 167] and siderophore-
mediated competition for iron by rhizosphere bacteria
[168, 169] are shown to be the key mechanisms.
Also, antimicrobial volatiles such as sesquiterpenes
[170], methyl 2-methylpentanoate and 1,3,5-trichloro-
2-methoxy benzene [171], 2-methylfuran, 2-furaldehyde,
2-(methylthio)benzothiazole and murolool [172] have been
studied for their potential role in disease suppressive soils
in vitro and it shows that these volatiles strongly reduce the
hyphal growth of the Fusarium wilt pathogen. Suppression
of Fusarium wilt is usually more related to microbial
characteristics and enzymatic activities than to any of the
chemical soil parameters tested [173, 174]. Application of
Bacillus amyloliquefaciens NJN-6 (BIO) isolate along with
compost revealed a significant decrease in Fusarium wilt
disease incidence of 68.5%, resulting in a two-fold increase
in yield. Study on impact of application of biofertilizer
(BIO), pig manure compost (PM) and chemical fertilizer
(CF) on the composition of rhizosphere microbial com-
munity revealed that significant increase in Acidobacteria
(Gp1 and Gp3), Firmicutes, Leptosphaeria and while vice
versa for Proteobacteria and Ascomycota including
Fusarium, a causal pathogen for Fusarium wilt disease in
the BIO treatment [175] than in CF and PM treatments.
Other potentially beneficial bacterial communities associ-
ated with disease suppression are Burkholderia, Gaiellaceae,
Paenibacillaceae and Streptomycetaceae. Both Gaiellaceae
and Streptomycetaceae, belonging to Actinobacteria, are
the dominant groups in soils resistant to Fusarium wilt of
banana [51]. Burkholderia sp. is capable of colonizing the
surface of Foc hyphae and cause mycelial deformation with
terminal and intercalary swelling [176]. Paenibacillaceae
produces fusaricidins, an antifungal compound group that
suppresses F. oxysporum f. sp. nevium [177]. Understanding
the temporal and spatial microbial dynamics of disease-
suppressive soils as well as the corresponding modes of
action is needed to facilitate the development of effective,
consistent and durable disease management tools. A model
predicting Fusarium wilt suppressiveness, including several
soil factors combined with the abundance of three keystone
microbial tax, such as Actinobacteria, Firmicutes and
Acidobacteria as the major microbial predictors for bulk
soil suppressiveness at a continental scale, in Australia, has
been developed [178].
Research on management practices in order to select

and stimulate indigenous microbial communities or activi-
ties that enhances suppressiveness in the soil is yet to be
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explored. Few studies pertaining to the use of specific soil
amendments including chitosan [179], chitin [180], fish
emulsion [181], application of agricultural practices such
as crop rotation or minimum tillage [182, 183] or use of
cover crops [184] or even by host-mediated microbiome
engineering, where the protective microbiome is artificially
selected over multiple generations [185], have been
conducted in order to identify an apt integrated disease
management system for Fusarium wilt.

Crop rotation

The monotony in the characteristics of the cultivated soil
which might lead to the conditions favourable for pathogen
multiplication and spread could be disrupted by following
crop rotation. Different crop rotation systems have a varied
effect on suppression of different diseases via mechanisms
such as interrupting the pathogen life cycle, variation in
establishment of antagonistic microbes exhibited due to
variation in plant root exudates and production of
allelochemicals [186, 187]. The bacterial community that
occurred either in soil or in plant endosphere could be one
of the main reasons for disease suppression [188] and
variations in bacterial diversity and structure in relation to
crop rotation have been studied in detail by Fierer et al.
[189, 190]. Crop rotation with paddy and flooding
for 3–4 months before planting banana is found to be
effective [63, 147] and also inter-planting with cassava
lowered the inoculum [13]. Banana rotation with Chinese
leek and paddy could control Fusarium wilt, and it
is speculated that the control is due to release of
antifungal compounds from root exudates or leaf
leachates such as 1-dimethyl-2-pentenal and dimethyl
trisulphide [191].
Instead of monoculture, adoption of mixed planting by

growing diverse banana cultivars often incurred moderate
losses [5]. Two-year crop rotation systems of banana with
other crops such as maize, pea, pineapple and cassava
demonstrated that pineapple–banana system reduced Foc
population and suppressed the disease incidence, along
with significantly higher abundances of Acidobacteria,
antagonistic Burkholderia, Planctomycete and Chloroflexi and
Basidiomycetes rather than Ascomycetes [192]. Soil with
favourable abiotic properties and a proper plant arrange-
ment also could help to promote Fusarium wilt suppression
in susceptible banana variety [193].

Soil solarization and cover crops

Disease control through cultural practices (crop rotation
and flooding) and solarization are practiced in Latin
America, Taiwan, India, Malaysia, Australia and Indonesia
[5, 194–196]. Soil solarization has the power to convert
conducive to suppressive soil for wilt diseases [197]. The
process of soil solarization by means of heating soils under

transparent plastic tarps to raise temperature which is
detrimental to fungal pathogens has successfully been used
to control variety of plant diseases without destroying the
beneficial microbes [198–200]. Solarization could increase
the soil temperature to 52.35 °C, which consequently
could suppress the Fusarium population in the soil and
reduce Fusarium wilt incidence on banana compared
to practices such as fallowing and crop rotation with
maize [201].
Cover cropping followed by incorporation of plant

residues into the soil is effective to suppress certain
soil-borne pathogens [202] as they increase the nutrient
availability, reduce groundwater contamination and stimu-
late beneficial microflora in the soil [203]. The incorpor-
ation of plant residues to the soil is also helpful to increase
the benefits of solarization [204]. In addition to direct
effects on plant pathogens, many cover crops impact plant
pathogens indirectly by triggering the plants host defence
response and induce specific suppression by enhancing
individual beneficial organisms such as Trichoderma harzia-
num and mycorrhizae in soils. Also no-till cover crops
provide many of the above said benefits and additionally,
they act as a physical barrier that reduces the splash of soil,
soil-borne pathogens onto foliage, stems or fruit and the
presence of free moisture on the plant. Several plant
species of Fabaceae and Poaceae served as cover crops
in banana cropping [205–207]. Addition of Brachiaria
decumbens as a cover crop alters the food web of
macrofauna in soil litter which might be helpful in
controlling the banana weevil, C. sordidus, a dispersal
agent of Fusarium wilt pathogen [208]. Management of
ground cover at the base of the banana plantations is found
to be a significant factor in reducing the incidence and
severity of Fusarium wilt in bananas [209] as the cover
crops reduces the weed population and plant-parasitic
nematode infection [210] which are involved in the
dispersal of Fusarium wilt pathogen. Application of silicon,
T. harzianum, compost, differentiated sources of NPK and
growing Crotalaria juncea as a cover crop could reduce the
Fusarium wilt disease severity index up to 23% as compared
to that of control (81%), in 14-month-old banana
plants [211].
In general, volatiles released by living plants are effective

for soil-borne pathogens. For example, the aqueous
leachates and volatiles emitted from the intact growing
roots of Chinese chive (Allium tuberosum Rottler) inhibit
spore germination of Foc. The characterization of the
volatiles revealed the presence of five different compounds
and among which 2-methyl-2-pentenal and dimethyl
trisulphide showed stronger inhibition on Foc TR4 [191].

Soil microbiome modification

Soil suppression of disease induced by organic amendments
and biocontrol agents have been widely described
[212, 213] and are more frequently related to the
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modification of the soil microbiota [214, 215], which mainly
promote general and specific suppression mechanisms
[216] against the disease causing fungal pathogens. It is
observed that the rhizosphere soils amended with biocon-
trol B. amyloliquefaciens NJN-6 (BIO) enriched the bacterial
genera Sphingobium (Gp6 and Gp4), Lysobacter,
Sphingopyxis, Cryptococcus and Dyadobacter at significant
levels, and steadily suppressed the Fusarium as compared to
those in compost-enriched soils [217]. Therefore, specifi-
cally high diversity communities create a competitive
environment deleterious to pathogens where competition
for nutrients is a mechanism that limits survival and invasion
by soil-borne pathogens [218].

Biological control

The continuous cropping causes the loss of soil biodiversity
and destroys the ecological balance of soil, which offers
favourable conditions for the build-up of Fusarium wilt
pathogens [219]. Expediting the growth of antagonistic
microorganisms, in both rhizosphere and endosphere of
the plant is an important approach in the management of
Fusarium wilt of banana. Several reports have demonstrated
the successful use of different species of Trichoderma,
Pseudomonas, Bacillus, Burkholderia cepacia, Streptomyces,
non-pathogenic F. oxysporum (npFo) of both endophytic and
rhizospheric in nature against Fusarium wilt disease
[175, 218, 220]. Application of npFo strain Ro-3 three
times resulted in the reduction of Fusarium wilt disease
severity by up to 89% and significant enhancement in plant
growth [221]. Application of B. amyloliquefaciens strain
NJN-6 along with the organic mixture of pig manure
compost and amino acid fertilizer (2:3 w/w) has also
effectively suppressed Fusarium wilt disease in banana
[222, 223]. In general, the genera Bacillus remain the most
promising biocontrol agents involved in suppression of
various soil-borne pathogens as they form a stable and
extensive biofilm [224] and also secrete many antifungal
compounds such as surfactin, bacillomycin and macrolactin
[223, 225].
Performance of certain microbial groups such as

oligotrophic bacteria and actinomycetes or non-pathogenic
Fusarium species is better in suppression of Fusarium wilt
than other groups [226]. Both higher bacterial diversity and
lower fungal diversity are associated with disease suppres-
sion [187, 191, 227] and the most evaluated strains are npFo
(32%) followed by Trichoderma and Pseudomonas [228, 229].
Biocontrol agents also applied along with botanicals for
enhancing protection of plants from various diseases.
Combined application of botanical formulation (Datura
metel Wanis EC and Damet 50 EC) and biocontrol agents
(Pseudomonas fluorescens Pf1 and Bacillus subtilis TRC 54)
has reduced the wilt incidence significantly under green-
house by 64% and field conditions by 75% [230]. Zimmu
(Allium cepa× Allium sativum) leaf extract alone could
effectively suppress Fusarium wilt disease under both

greenhouse and field conditions in the Cavendish cultivar
‘Grand Naine’ and enhanced the yield at significant level
[231]. There are fewer studies on the biocontrol effects
of microbial strains against Fusarium wilt of banana
conducted under field conditions [219, 223, 225, 232,
233]. Many potential biocontrol agents which exhibited
excellent suppression of Fusarium wilt in vitro and in
greenhouse have failed under field conditions [234].
A possible reason could be a failure in the selection of
biocontrol agents with multiple functions (biological
control and plant growth promotion activities) and
actions [8]. A biocontrol agent that showed antagonistic
activity against Fusarium wilt in one field sometimes failed in
another, which could be due to the significant differences in
colony morphology and virulence of pathogenic strains
infecting the other field. Therefore, it is necessary that
newly isolated and characterized biocontrol strains should
be evaluated under field conditions to assess their
biocontrol potential.
For commercial purposes, the suitable methods for the

mass production of biocontrol agents with the advantages
of long shelf life, easy preparation and supportive to the
growth of biocontrol agents should be evaluated. For
instance, T. harzianum Th-10 on dried banana leaf formu-
lation survived for 4–6 months and served as cheaper
formulation for control of Foc [232]. In banana, particularly,
Bacillus strains showed maximum average biocontrol with
the nursery application method [228] while Trichoderma
strains were more effective with the drenching method
[235]. Pseudomonas and npFo strains showed maximum
average biocontrol with root dipping methods [236, 237].
In addition, several reports have documented that the

use of biocontrol agents in combinations are more effective
than individual agents for the management of plant diseases
[238–242]. Combined application of two endophytes viz.,
Pseudomonas sp. UPMP3 and Burkholderia sp. UPMB3
showed significant reduction of Fusarium wilt disease in
susceptible banana cv. Berangan [243]. Banana sucker
treatment before planting with biocontrol agents
Trichoderma viride and P. fluorescens and soil drenching
with same biocontrol agents twice at 30 and 180 days after
planting as booster application, effectively reduced the
Fusarium wilt disease incidence and intensity and enhanced
the yield [244]. The application of endophytic Trichoderma
asperellum Prr2 + rhizospheric Trichoderma sp. NRCB3
recorded 100% reductions of Fusarium wilt disease under
both pot and field conditions [245]. A series of soil
treatments are required for combating Foc as the combi-
nation of endophytic and rhizospheric bacterial microbes
applied on three occasions (at the time of planting, and
2 months and 4 months after planting) resulted in significant
reductions of Fusarium wilt and also promoted plant
growth parameters. These studies have therefore provided
useful information to assist the determination of suitable
biocontrol agent(s) and application intervals required for
the successful suppression Fusarium wilt disease of
banana [246].
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There is growing evidence in use of arbuscular mycor-
rhizal fungi for the control of several fungal diseases
and also to promote plant growth [247]. Application of
Glomus mosseae+ T. harzianum in plants challenged with
Foc under field conditions could sustain 61 and 70%
improvement in plant height and girth, respectively and
gain of 75% in bunch weight [248] besides reducing
the Foc population. Application of Glomus etunicatum
(KPV) + Pseudomonas aeruginosa (Ge-A +Ge-B) or
G. mosseae (TPV) + Pseudomonas sp. (Gm-A) combination
also significantly suppressed the Fusarium wilt disease
under pot culture conditions [249].
Currently, banana planting materials used are derived

from tissue culture where the plants are raised under
axenic conditions, thus the plants devoid of rhizospheric/
endophytic microbes including beneficial organisms.
Hence the tissue-cultured plantlets are succumbing to
soil-borne disease quickly. In another study, application
of mixture of native endophytic bacteria (mostly
γ-proteobacteria) into tissue-cultured banana recorded
67% control of Fusarium wilt disease under greenhouse
conditions [250]. Similarly, re-introduction of naturally
occurring endophytes to tissue cultured banana plantlets
resulted in a substantial reduction in the infection and
severity of Fusarium wilt disease as well as increase in plant
growth parameters [250]. It is also important to note that
incorporation of endophytic and rhizospheric microbes
during in vitro culturing of tissue culture plants showed
greater advantages than they are applied in field conditions.
For an instance in vitro bacterization of tissue culture
plantlets with endophytes, B. subtilis strain EPB56 and
EPB10 and the rhizobacteria, P. fluorescens strain Pf1
showed high-level reduction (more than 70%) of
Fusarium wilt disease and doubling of yield under field
conditions [251].
The possible mechanisms involved in the reduction of

Fusarium wilt severity by biocontrol agents have been well
documented by senior authors and others [252]. Among
the mechanisms of pathogen inhibition, production of
antimicrobial compounds, which could be volatile or
non-volatile compounds, antibiotics, chitinase and other
lytic enzymes, siderophores and hydrogen cyanide, are the
most important traits possessed by the biocontrol agents
and these traits are involved in the destruction of the
cell wall integrity of the pathogen, leading to effective
control [253].

Host resistance

Conventional breeding
Though chemical, cultural and biological means give
considerable protection against highly virulent strain Foc
TR4, complete protection is achieved only through
cultivating resistant cultivars. As there is no commercially
important Cavendish cultivar (AAA), identification of
resistant sources in the related groups of banana and

utilizing them in breeding for obtaining resistant against the
wilt is hour of the need. Already a successful cross between
‘Sukali Ndizi’ and ‘TMB2X8075-7’ denoted complete
resistant against Foc race 1 and described the gene
responsible for resistant is single recessive and the gene
was also named as Panama disease 1 [254]. Recently, wild
banana viz., Musa basjoo, M. itinerans [255], M. nagensium,
M. ruiliensis, M. velutina and M. yunnanensis showed
resistance to Foc TR4 under screening and these can be
utilized in breeding programme to obtain desirable resistant
cultivars. In addition, M. acuminata subsp. malaccensis has
shown resistance to Foc TR4 [256]. In the Caribbean
and Mozambique regions, diploids and wild sp. such as
Pahang (AA), Calcutta 4 (AA) and M. itinerans showed high
degree of resistance to Foc TR4 [257]. Researchers from
China have developed five different Foc TR4 resistant/
tolerant varieties and among those, ZJ 9-triploid was
completely resistant to Foc TR4 in China (developed by
crossing diploid with tetraploid-FHIA 01) (personal
communication).
Some level of resistance to Fusarium wilt has been

obtained by using somaclonal variation techniques [23] and
the resistant cultivars developed from Taiwan Banana
Research Institute (TBRI) were GCTCV-44, GCTCV-53
and GCTCV-119. These improved variants were not
acceptable for commercial planting because of shorter
shelf-life and longer de-greening time of fruit in comparison
with the parental Giant Cavendish. The variant
GCTCV-215-1 (Tai Chiao No. 1) is found to be a promising
candidate for commercial planting but the disadvantage of
this cultivar is that it requires longer time to complete the
crop cycle and produce a lighter fruit bunch in comparison
with Giant Cavendish. Another variant GCTCV-218
(Formosana) is less susceptible to Foc TR4, high yielding
with high-quality fruits. Thus the cv. Formosana ranks
higher for consumer preference both in local and Japanese
markets. Some of the cultivars or wild genotypes such as cv.
Rose (AA, M. accuminata ssp. malaccensis), and numerous
AAA and AAB-Plantain types are found to be resistant to
Foc TR4 [258–260]. Tolerance/resistance to Foc TR4 is also
found in several bred hybrids, especially in those developed
by the programme at the Fundación Hondureña de
Investigación Agrícola (FHIA) in Honduras [261] such as
FHIA-01 (Gold finger), FHIA 18, FHIA 2 (Mona lisa), FHIA
25 and SH-3640/10 (High Noon) [262]. However, the
somaclonal variants obtained so far relied on quantitative
resistance that is highly dependent on the inoculum
concentration of the pathogen and they required other
management strategies such as adopting annual cropping
systems, which are not practicable for most banana
producers worldwide. Instead, the substantial genetic
diversity for TR4 resistance in wild banana germplasm,
such as accessions of M. acuminata ssp. malaccensis [263],
could be exploited in breeding programmes and/or
along with various transformation techniques [264] to
develop a new generation of banana cultivars in conformity
with consumer preferences [265]. The whole genome
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sequence of banana genotype, DH-Pahang, which is
resistant to the Foc TR4 pathogen, might form valuable
information for crop improvement in future [266].
Methods such as protoplasts transformation and gene
knockout systems for Foc would enhance the study of
plant pathogen interactions and also the early monitoring
and screening resistant materials for banana disease
resistance breeding [267].
Transcriptome sequencing of Foc TR4 resistant cv.

‘Yueyoukang 1’ indicated that the genes related to CEBiP,
BAK1, NB-LRR proteins, PR proteins, transcription factor
and cell wall lignification have been found to induce strongly
upon infection with Foc TR4 [268].
Mutation breeding is also an important approach for the

development of resistant cultivars against Foc TR4. Ethyl
methane sulphonate (EMS) induced mutants of Brazil
banana (Musa sp. AAA) and Williams 8818-1 showed
resistance against Foc TR4 [269, 270]. In our laboratory
also, the putative gamma-irradiated embryonic cell suspen-
sion derived plants of cv. Grand Naine showed resistance
to Foc TR4 under glasshouse conditions. Though the
success of a positive mutant is a rare event, it suggests
that it is possible to develop banana plant resistant against
Foc TR4 by attempting mutagenesis at large scale especially
in commercial cultivars.

Transgenic approach

Genetic modification of banana through appropriate
methods is important for developing elite edible banana
plants resistant to different races of Foc. Genetic trans-
formation of elite banana cultivars for resistance to Foc has
been accomplished by using techniques such as particle
bombardment, sonication-assisted vacuum infiltration of
apical meristem and Agrobacterium-mediated gene trans-
formation [271–275]. Microarray studies have also been
used to identify the genes significantly involved in the early
stages of interaction between banana and Foc TR4. It
showed that the cell wall strengthening genes might be
important for banana resistance to Fusarium wilt [276].
Besides, genes encoding antimicrobial peptides are strong
candidate for fungal resistance inMusa sp. as they are highly
inhibitory to Foc in vitro [277].
Understanding the molecular mechanisms of certain

proteins in banana–Foc interaction would reveal how these
proteins are associated with the induction of resistance
against Foc. Overexpression of the plant pectin methyles-
terase inhibitor protein reduced the activity or expression
level of PME, resulting in enhanced resistance of plants to
pathogens [278–280]. In banana, increased PMEs and
followed by decreased degrees of pectin methylesterifica-
tion accompanied by increased low methylesterified homo-
galacturonan (HGs) in the root vascular cylinder appeared
to play a key role in specifying the susceptibility of banana
plant to Foc [281].

Overexpression of antimicrobial proteins (AMP) such as
magainin [282] and defensins [283] in transgenic banana
plants has led to some level of tolerance to Fusarium
wilt. Other groups have tried animal cell-derived
apoptosis-inhibition-related genes namely CED9, Bcl-xL
and Bcl-2 30-UTR to prevent the necrotrophic death of
banana plants after the Foc established itself in the host
plant. In the transgenic banana cv. Rasthali higher AMP
content was negatively correlated with Foc disease symp-
toms [284]. Similarly, overexpression of PCD gene
MusaBAG1 in response to Foc infection in banana is found
to confer resistance to Foc in greenhouse bioassays [275].
Among defence-related genes, those encoding

nucleotide-binding site leucine-rich repeat proteins are
found to be less represented in the Musa sequence
(89 genes) compared to Oryza sativa (464 genes) and
Vitis vinifera (459 genes) [263]. Pathogen-triggered
immunity-related genes such as chitin elicitor-binding
protein (CEBiP) and the chitin elicitor receptor kinase
(CERK1), the important components of the plant signalling
pathway that recognized chitin oligosaccharide, are found
to express more in resistant cultivar than in susceptible
cultivars against Foc TR4 [285].
The identified SCAR markers and Quantitative Trait Loci

linked to Fusarium wilt resistance mostly corresponded to
resistance genes that might play major role in recognition of
pathogen. Hence wherever the genome sequence is
available, studies can be carried out in future to character-
ize genes involved in defence mechanism pathways. Petunia
floral defensins, PhDef1 and PhDef2 (antimicrobial protein),
have been overexpressed in transgenic banana plants using
embryogenic cells as explants for Agrobacterium-mediated
genetic transformation. The high-level constitutive
expression of these defensins in elite banana cv. Rasthali
led to significant resistance against infection of Foc in vitro
and ex vivo bioassays [283]. Expression of rice thaumatin-
like protein gene in transgenic banana plants showed
enhanced resistance to Foc TR4 [286]. RNAi-based strategy
for banana resistance using dsRNAs of adenylate cyclase,
DNA polymerase alpha and delta subunits against Foc
spores in vitro displayed varying degrees of inhibition of
spore germination [287]. Recently two lines of transgenic
Cavendish have been developed, of which one was
transformed with RGA2, a putative nucleotide-binding and
leucine-rich repeat (NB-LRR)-type resistance (R) gene,
from a seedling of M. acuminata ssp. malaccensis and the
other with Ced9 an anti-apoptosis gene derived from the
nematode Caenorhabditis elegans, and the lines were free
from Foc TR4 disease [288]. Transgene expression in the
RGA2 lines was strongly correlated with resistance.
However, these transgenic lines are to be tested for their
resistance with the Foc isolates collected from different
parts of the world as the Foc strains may differ in its
virulence from place to place.
Although development of resistance is achieved

normally through conventional breeding or by genetic
engineering, recent approach of genome editing using
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Clustered Regularly Interspaced Short Palindromic Repeats
associated protein9 (CRISPR)/Cas9) tool has shown to
achieve desirable traits by modifying plant genome [289].
Recently, banana genome editing using this tool for
targeting MaATG8s gene for developing resistance
against Foc TR4 [290] and MaSWEET-1a, MaSWEET-4b,
MaSWEET-14b, MaSWEET-4c, MaSWEET-14c,
MaSWEET-4d, MaSWEET-14d and MaSWEET-14 h [291]
or MaAPS1 and MaAPL3 genes for Foc TR4 and abiotic
resistance together have been suggested. Since transcrip-
tional up-regulation of MaAGPase genes occurs in response
to Foc TR4 infection, these genes may play a role in
modulating the response to fungal infections in banana
[292]. Thus, CRISPR/Cas9 could, therefore, modify banana
gene expression to enhance resistance to Foc and further
improvement of banana.

Conclusion

Among various production constraints, Fusarium wilt of
banana is becoming the most devastating disease affecting
commercial and subsistence of banana production world-
wide. The aggressive strain of Foc TR4 which was first
detected in Asia in the 1990s is now in found most of the
banana growing regions of the world including Central
America. Because of this, the global banana production is
under severe threat, which in turn will have a calamitous
impact on livelihoods and food security of millions of
smallholders who grow more than 85% of the crop. Since
no single-method is available to contain the disease
effectively, integration of different management strategies
such as creation of awareness and sensitization among all
the stakeholders including the plant tissue culture compa-
nies; quarantine and sanitation measures to prevent the
spread of disease to un-infected areas; soil health improve-
ment which includes crop rotation, intercropping, cover
cropping, need-based application of fertilizers, application
of effective microbes and soil amendments such as cakes,
organic manures, ashes and banana waste recycling; use
of resistant varieties; disease-free planting material;
good agricultural practices have to be followed to
effectively manage this lethal disease. As ‘time and tide
waits for none’, it is better to quicken the enforcement of
various preventive and management strategies to cease the
spread of the disease before it engulfs the entire
banana reign.
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