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SUMMARY

We generally use block designs in field experiments to control the experimental error due to positional variations. The
underlying assumption in classical block designs that the homogeneity of experimental area within the block may not satisfy
always, particularly when the block size is large. Also we may not know in advance the soil fertility gradient and other factors
influencing the response variable to divide the experimental area into homogeneous blocks. We propose spatial smoothing
technique to estimate/eliminate positional effect in field experiments. We have considered a semiparametric regression model
with treatment effect as the parametric component and the positional effect as the nonparametric spatial function. The only
assumption about the positional effect is that it is a smooth spatial function. The proposed method is also extended for the
analysis of data in the presence of sudden shifts in the spatial function (positional effect). The method is illustrated through
both simulated as well as field experimental data.

Keywords: Nonparametric regression, Design of experiments, Positional effect, Semiparametric regression, Jump regression
surface.

1. INTRODUCTION technique to tackle this problem. In the present study,
nonparametric spatial modeling technique has been
used to estimate/eliminate the positional effect in
agricultural field experiments. The treatment effect is
taken as the parametric component and the positional
effect (covariate) is taken as a spatial (bivariate)
nonparametric function. The only assumption about the
positional effect is that it is a smooth spatial function.
The field experiments with perennial or tree crops
require large experimental area and it is difficult to get
large homogeneous blocks to conduct experiments
particularly in farmer’s field. In many situations, the
soil characters or the environmental variables have
some sudden changes in the field or in other words, the
spatial function representing the positional effect may
have some jumps or discontinuities. The method is
extended for the analysis of data in the presence of

Experimental error or the unexplained variation is
the main concern in field experimentation technique.
We generally use block designs in field experiments to
control the experimental error due to positional
variations. The underlying assumption in classical block
designs regarding the homogeneity of experimental area
within the block may not satisfy always, particularly
when the block size is large. Field experiments with
perennial tree crops require large experimental area, and
it is grown mainly in hilly areas where getting large
homogeneous area is difficult. Also we may not know
in advance the soil fertility gradient and other factors
influencing the response variable to divide the
experimental area into homogeneous blocks. Gilmour
et al. (1997) suggested the covariance modeling
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sudden jumps in the spatial function. The proposed
method is applied to both the simulated as well as field
experimental data to see its performance.

2. MODEL SETTINGS AND ESTIMATORS

The semiparametric regression model considered
for the study is given by

Y=yu+Xp+fU V) +¢ 1
where Y = [y; y» ....yn]T is the observation vector, u is
the general mean, X = [x; x, ...x,,]T is the design matrix,
B =185 ...,Bp]T is the treatment effect vector,
AU VY=[f(uy,vy) ... fuy,vy)]" is the nonparametric
spatial function representing the positional effect and
¢ is the independently and identically distributed (iid)
random error vector with mean zero. It is assumed that
fTU,V) is a smooth function. The backfitting algorithm
of Hastie and Tibshirani (1990) is used to compute the
estimates for the semiparametric regression model. The
backfitting estimators for # and f are equivalent to

A=Y, B=X"U- X" XU-S) (Y- 1)
and f =S(Y-XB-11)

where, S is the smoothing matrix derived using local
linear regression (Ruppert and Wand 1994). Let S, be
the row of the smoother matrix correspond to the

smoother vector §! evaluated at the observation point

() = (u,vy), (Uz,vy), ..., (u,v,). Then

S=[S s 1

UVy "5 Vpva

where, S}, =el (ZLW,,Z,,)'ZLW,,

viotuvuy

1 (uy—u) (- V)|

with Z,, =| . ,el'=[100]

1w, —u) (v,—v)]

wue= a1 1) (7))
x| [4nu ’ v, =V
hy hy

functions K and bandwidths 4, and £, .

ﬂ} for some bivariate kernel

Under the assumption that the treatments are
allotted at random to the spatial locations, it can be
shown that B is asymptotically unbiased and its

asymptotic variance is o*(X" Xy which is same as
when the model is fully parametric (Opsomer and
Ruppert 1999). An estimate of olis given by

&t = 1
b (n—p—1—trace(S))

x[Y—ﬁ—Xﬁ—f]

v-a-xp-7]

The variance of B is estimated by
V(B)=PP'67
where, P= (X' (I-S) X )_1 X'(I-S). The significance
of the positional effect f is tested using the lack of fit

statistic by comparing parametric and nonparametric
models (Hart 1997).

Under the null hypothesis that the positional effect
f (U, V) =0, the mean residual sum of squares obtained
by fitting model (1) is given by
& = - 0-Xx 0" X"
X[ - XX"X)"' X1(Y =) /n—p-1)

The lack of fit test statistic is given by

The statistic R; asymptotically follows an F
distribution with (n — p — 1), [n — p — 1- trace(S)]
degrees of freedom and it can be used for testing the
significance of the positional effect.

Additive model for positional effect: In many
situations, the number of experimental units is
comparatively small and estimating the spatial function
using the bivariate smoother will be inadequate. In such
situations, bivariate additive model can be fitted instead
of the two dimensional spatial function used in model
(1). By using bivariate additive function, model (1)
becomes

Y=pu+XB+HU)+/HV)+e (2
where, f; and f, are the univariate nonparametric

functions representing the positional effect in the U and
V directions and it is assumed that 2.f;(u;)= 2 (v;)= 0.
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Let M, and M, are the centered smoother matrices
corresponding to U and V. The backfitting algorithm
will provide an explicit solution to the above
semiparametric regression model and the estimates are
given by

=Y, B=X"Ud-X)'XT-Q (Y- )
and

f= A+h=00-4-Xp)

The matrix Q and the estimates fl and fz are
obtained by solving the set of equations

o A e i

fi= U=MMy) ™ A=M)} (¥ -fi- XB)

Ql(Y—/:l_XﬁA)

A

fa = I —(M;M) " A=M)IY - f1- X B)

Qz(Y—/:l—XB)
and 0=0,+0

An estimate of ¢? under model (2) is given by

1

R ~ AT
n—p—tmce(Q))[Y_M_Xﬁ_fJ

a§=(

x [Y—/ﬁt—Xﬁ—f]

The significance of the positional effect fis tested
using the lack-of-fit test statistic

Oy
R2 =
2p)

The test statistic R, asymptotically follows an F
distribution with (n — p — 1), [n — p — trace (Q)]
degrees of freedom and it can be used for testing the
significance of the positional effect. An approximate
a-level point wise confidence band around the
estimated function f s given by

Fiv) % 2426541007 1, for i = 1,...,n, where,

[QQ"];; represents the element in the i position of the

matrix [QQ].
The variance of [i is estimated by

V(B)=PPT63
where, P= X" (I - Q) X' X' (I - Q)

Choice of bandwidth: The procedure described above
involves two smoothing parameters i, and h,. The
choice of bandwidth parameters is very crucial in
smoothing technique. We have used the cross-validation
technique (Hardle 1990) to obtain the optimum
bandwidths. Let y;, i = 1,...,n are the observations and

Vi) Ih, D€ its leave-one-out estimate (estimate without

using the i™ observation) with & 1 and h, as bandwidths.
Then the cross-validation score is defined by

1| & N 2
CV(hy, h2)=;{ i = Yiym. ny) }
i=1

The values of /; and &, which minimize CV(h, h,)
can be used as the bandwidths for estimating the
regression model.

3. JUMPS IN THE SPATIAL FUNCTION

Sometimes the soil characters or environmental
variables have some sudden changes in the field or in
other words, the spatial function representing the
positional effect has some jumps or discontinuities. In
such situations the procedure given in Section 2 needs
to be modified. Let us first define a jump in the spatial
function f as follows:

S, v) = g, v) + AW) 1 5oy (1 v) €10, 112 (3)

where, g(u, v) is the continuous part, c(x) denotes the
jump location curve and A(u), is the jump magnitude
function. The functions g and A are assumed to be
smooth. The jump location curve c(u) is assumed to
have first order derivative. Note that the jump location
curve c(u) divides the entire experimental area into two
parts. Under the assumption that the treatments are
randomly distributed to the entire experimental area,
initial estimates for & and [ are given by

=Y B:[XT(I—S)X]_1 xT1-5)y-7)
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Let Y =y-4-XxB

We have used the method of Jose and Ismail
(2001) to estimate the jump location curve. Define the
set Qiu, v), i = 1, ..., 4 as the set of points in the i
quadrant with respect to the point (#, v). At any point
(u, v), consider the following two kernel weighted least
squares (minimization) problem:

Minimize
Z{yl _bO (u—ui)—bz(v—vi)—ao(u,v)l

[(ui,vt-) 30 (u,v)]}2 I[(ul- V) €Q (u,v)U s (u,v)] K
4)
Minimize

n

2 {y;EIE —by—bu—u;)—b,(v—v;)—agu,v)

i=1

1) € 0w} 101 € 0y ) L O, )] K,
(5)

u—u v=y
where, K; =K —L L'|| is some bivariate
h hy

kernel function.

If the slope of the jump location curve at any
(u, v) € c is negative, then for small bandwidths 4; and
h,, the points in Q;(u, v) and Q;(u, v) will be in the
opposite sides of c. Similarly, if the slope of ¢ at (i, v)
is positive, the points in Q,(u, v) and Q4(u, v) will be
in the opposite sides of c(u). The estimates of a; (i, v)
obtained by solving the least squares problems (4) and
(5) corresponding to the point (u, v) are denoted by
do(u, v) and dy,(u, v) respectively. Among these two
estimates, the estimate with maximum absolute value
is denoted by dy(u, v). Then the estimate of the jump
location curve is given by

arg  max|dy(u,v)|
ve[hz, 1—h2]

6(14) =

and dy(u,c(u)) is the estimate of the jump size
function A(x) which divides the experimental area into

two disjoint sets, say A and B. The estimate f of the

spatial function f on both sides of ¢(u#) can be estimated

separately based on the observations on either sides of

¢(u) by the method of kernel weighted local linear
regression (Ruppert and Wand 1994).

Let Y4, Yp' X4, Xps fa, fpand Sy, Sp are the
observation vectors, design matrices, positional effect
vectors and the smoother matrices correspond to the
sets A and B respectively. The final estimate of the
treatment vector and the rearranged spatial function f :
are given by

Br=iXTa-$XT'XTa-8Y - p)

Fa S[Y i Xﬂ]

S, O Y . Y,
where § = A , Y = A , U= A ,
0 Sg Y Yy

==l

An estimate of the error variance ¢ is given by

Ak 1
O'2=

— Y -y =X g1
(n—p—1-trace(S ))

% [Y*_#*_X*B_f*]
The variance of B is estimated by

where P = [XTU-SHXT'XTUa-5"

The above method can be extended to a more
general case that the jump location curve does not have
the explicit functional form given in (3). Assume that
the jump location curve ¢( ) induces a partition of the
field into disjoint subsets A and B. Then the spatial
function f can be defined as

flu, v) = gu, v) + Ay, v) Igu, v), (u, v) € [O,l]2

where, ¢ and A4 are smooth functions and
inf 1A(u, v)I > 0 for all (u, v) € c. As discussed above
obtain dy(u, v) for all (u, v) € (hy, 1 — hy) X (hy, 1 — hy).
Note that |dg(u, v)| near ¢ are significantly larger than

the others. An estimate of ¢ can be constructed by the
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maximin method suggested by Muller and Song (1994).
Find the curve that maximizes the minimum of

ldg(u, v)I along curves in 7; that is,

c= argmax[ min ‘&O(Lt,v)q
oel’ | (u,v)ep

where, 7" is a sufficiently rich class of candidate

boundaries, containing ¢. Once the jump location curve

is estimated, the positional effect on both sides of the

estimated jump location curve can be obtained

separately.

4. SIMULATION STUDY

A simulation study is carried out to see the
performance of the proposed method. We considered
the following model for the simulation study

Y=X6+fUYV)+c¢ (6)
where Y is the n x 1 observation vector, X is the
n X n design matrix, S is the k x 1 treatment effect
vector which is taken as f'= [-2 -2 0 4],
Su,v)=2{2+sin[2(u+v])} and the random error vector
€ follows N(O, 02). The spatial locations of the n
observations are obtained by dividing the region
[0, 1] x [0, 1] equally and each treatment is allotted
randomly to n/k spatial locations. Based on the above,
100 sets of data are simulated for different values of
n (100, 400, 900) and o (0.5, 1.0). The bivariate kernel
function considered is K(u, v)=0.75*(1 — u*)(1 = v?)
which is the product of two Epanechnikov kernels. The
treatment effect vector B =[5, 3, S 4], the bivariate

function f and the error variance o” are estimated using
the method given in Section 2. The Average Mean
Squared Errors (AMSE) of the estimated values of o,
B and f with the true values of 100 sets of simulated
data for different values of n (100, 400, 900) and & (0.5,
1.0) are given in Table 1. The AMSE of the estimated
parameters are calculated as follows:

1 100
AMSE of, §=— “(6-8& )’
° 100 2 =1 (@ (1))

1 100 2 .
AMSEof J5'=— ) | ;= ,j=1,...,4
of B =100 2in1 B = B

1 100 1
AMSE of =—>»  —
? 100 2’21 n

2L vy = fiy vl

where, E(D’Ejl(i) and P(i) (u iV j) are the estimated

values of o, f and f(u;, v,) corresponding to the i

simulated data set. It can be observed that the AMSE
of the estimates are converging to zero as n increases
or in other words, the estimated values are converging
to the true values as n increases. This indicates the
consistency of the estimates. The MSE varies with
change in the choice of bandwidths. The optimum
bandwidth (bandwidth corresponds to the minimum
MSE) will depend on the curvature of the function.
The optimum bandwidth for estimating the regression
model is obtained based on the cross validation
technique given in Section 2.

Table 1. Average Mean Squared Errors (AMSE) of the estimated values with the true values of the
simulated data (Model 6)

MSE of the estimates multiplied by 100

c n PN N - = = A ~
XB+f o f By B, B; By
0.5 100 3.90 0.18 3.51 0.99 0.95 0.65 0.93
400 1.42 0.03 1.27 0.21 0.15 0.12 0.14
900 0.82 0.01 0.73 0.08 0.07 0.08 0.08
1.0 100 9.57 0.28 6.28 1.55 1.50 1.34 1.42
400 3.37 0.12 2.95 0.45 0.41 0.38 0.43
900 1.34 0.05 1.16 0.17 0.20 0.22 0.19
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The performance of the proposed method in the
case of sudden shift or jump in the spatial function is
illustrated through a simulation study. For this, the
regression model (6) is modified as

Y=XB+fi(UV)+ ¢ @)
where Y, X , fand ¢ are as defined in model (6). The

bivariate regression function f;(u, v) is taken as a jump
regression surface of the following form

filw, v) = 2{2 + sin[2(u + v)]}

+ [1 + 2sin(1 +2u)1l,, 0.6 sin(1+2u)
(u, v) € [0,1]7
Based on the above, one set of data is simulated
for n = 900 and o = 0.40, the treatment vector
B’ =[-2.0 -2.0 0.0 4.0], the spatial function f;(u, v)
the jump location function c(u) = 0.6 sin(1 + 2u) and
the jump magnitude function A(u) = 1 + 2sin(1 + 2u).
The treatment effect vector £, the error variance o, the
jump location curve c(#) and jump magnitude function
A(u) are estimated using the method given in
Section 3. The estimated values of S and o are
respectively [Af = [-1.95 -1.97 -0.06 3.99] and
6 = 0.44 which are very close to the true values. The
jump location function and jump magnitude function
are obtained by smoothing the point wise estimates of
the jump location curve and jump size function. The
estimated and true values of the jump location curve
and jump magnitude function are shown in
Fig. 1 and 2 respectively. It can be noted that the

estimated and true values are very close.

0.6
0.5

0.4+

c(u)

0.3 1

0.2 1

0.1 T T T T T T T T T

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
u

Fig. 1. Estimated (dotted line) and true values (solid line) of the
jump location function

01 02 03 04 05 06 07 08 09

u
Fig. 2. Estimated (dotted line) and true values (solid line) of the
jump magnitude function

S. FIELD APPLICATION

The proposed spatial technique is applied to the data
of irrigation cum fertilizer trial of cocoa + areca mixed
cropping system at CPCRI Regional Station, Vittal and
it has been compared with the traditional method of
eliminating the positional effect by blocking the
experimental area. The experiment was laid out in
randomized block design with 12 treatment
combinations, 4 replications and 6 trees per plot. The

Table 2. Estimated parameters with standard errors of the
field experiment

Proposed Method Method of blocking
Treatments | p+fB SE w+p SE
1 7.57 1.15 6.18 1.33
2 11.80 1.14 11.47 1.33
3 7.26 1.14 6.38 1.33
4 8.82 1.15 7.94 1.33
5 11.97 1.12 11.91 1.33
6 9.45 1.13 8.73 1.33
7 13.79 1.12 14.45 1.33
8 12.12 1.13 12.16 1.33
9 11.38 1.15 11.84 1.33
10 14.08 1.14 14.84 1.33
11 14.10 1.14 15.38 1.33
12 14.97 1.14 16.03 1.33
MSE 32.02 42.22

Note: u+f is the sum of the estimated values of general mean
and treatment effect after eliminating the positional/block
effect
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main objective of the experiment is to compare the
effect of different treatments on the yield of cocoa. Four
years cumulative yield data has been taken as the study
variable. A total of 288 experimental cocoa trees were
planted at a spacing of 2.7m x 5.4m. Estimated
parameters (general mean + treatment effect) with
standard errors and the mean squared errors (MSE) of
cumulative yield data of cocoa after eliminating the
positional/block effect through both the methods are
given in Table 2. There is a significant reduction in the
MSE of the proposed method than the traditional
method for comparing the treatment effect. We have
used MATLAB package to develop programmes for the
simulation study and the data analysis.

6. CONCLUSION

We generally use block designs to eliminate
positional effect in field experiments. In many
situations, the underlying assumption of homogeneity
with in the block may not be true. In the present study,
a method is proposed to eliminate the positional effect
nonparametrically and the only assumption about the
positional effect is that it is a smooth spatial (bivariate)
function. The method is also extended for the analysis
of data in the presence of sudden shifts in the spatial
function (positional effect). The proposed method is

useful when there is no advance information about the
field conditions to divide the experimental area into
homogeneous blocks.
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