
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

Web-SpikeSegNet: deep learning
framework for recognition and counting
of spikes from visual images of wheat
plants
TANUJ MISRA1,5, ALKA ARORA1, SUDEEP MARWAHA1,RANJEET RANJAN JHA2,MRINMOY
RAY 1, A R RAO 1,ELDHO VARGHESE 4, SHAILENDRA KUMAR 5, SUDHIR KUMAR3,ADITYA
NIGAM 2,RABI NARAYAN SAHOO 3 AND VISWANATHAN CHINNUSAMY 3
1Division of Computer Application, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
2School of Computing andElectrical Engineering (SCEE),Indian Institute of Technology Mandi, India.
3ICAR-Indian Agricultural Research Institute, LibraryAvenue, New Delhi, India
4ICAR-Central MarineFisheries Research Institute, Kochi, India
5Rani Lakshmi Bai Central Agricultural University, Jhansi, India

Corresponding author: Alka Arora (e-mail: Alka.Arora@icar.gov.in).

The first author acknowledges the fellowship received from ICAR-IASRI, New Delhi, India to undertake this researchwork as part of Ph.D.
Also acknowledges Nanaji Deshmukh Plant Phenomics Facility, ICAR-IARI, New Delhi-12, “This work was supported by National
Agriculture Science Fund (NASF), ICAR, Grant No.NASF/Phen-6005/2016-17 and NAHEP CAAST (NAHEP/CAAST/2018/19/07).”

ABSTRACT Computer vision with deep-learning is emerging as a major approach for non-invasive
and non-destructive plant phenotyping. Spikes are the reproductive organs of wheat plants. Detection and
counting of spikes considered the grain-bearing organ have great importance in the phenomics study of
large sets of germplasms. In the present study, we developed an online platform “Web-SpikeSegNet” based
on a deep-learning framework for spike detection and counting from the wheat plant’s visual images. The
architecture of the Web-SpikeSegNet consists of 2 layers. First Layer, Client-Side Interface Layer, deals
with end user’s requests and corresponding responses management. In contrast, the second layer, Server
Side Application Layer, consists of a spike detection and counting module. The backbone of the spike
detection module comprises of deep encoder-decoder network with hourglass for spike segmentation. The
Spike counting module implements the “Analyze Particle” function of imageJ to count the number of spikes.
For evaluating the performance of Web-SpikeSegNet, we acquired the wheat plant’s visual images, and
the satisfactory segmentation performances were obtained as Type I error 0.00159, Type II error 0.0586,
Accuracy 99.65%, Precision 99.59% and F1 score 99.65%. As spike detection and counting in wheat
phenotyping are closely related to the yield, Web-SpikeSegNet is a significant step forward in the field
of wheat phenotyping and will be very useful to the researchers and students working in the domain.

INDEX TERMS Computer vision, deep learning, image analysis, spike detection and counting, Web-
SpikeSegNet, wheat

I. INTRODUCTION1

Wheat is one of the major food crops grown yearly2

on 215 million hectares globally [Wheat in the world3

CGIAR: https://wheat.org/wheat -in-the-world/]. It super-4

sedes maize and rice in terms of protein sources in low-5

and middle-income nations. Climate change and associ-6

ated abiotic stresses are the key factors of yield loss in7

wheat. Generic improvement in yield and climate resilience8

is critical for sustaining food security. One of the key as-9

pects of genetic improvement is the determination of com-10

plex genome × environment × management interactions [1].11

High-dimensional plant phenotyping is needed to bridge the12

genotype-phenotype gap in plant breeding and plant health13

monitoring in precision farming. Visual imaging is the most14

commonly used cost-effective method to quantitatively study15

of plant growth, yield, and adaptation of biotic and abiotic16

stresses. Besides, it is strongly reasoned that the imminent17

trend in plant phenotyping will depend on imaging sensors’18

VOLUME 4, 2016 1

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

combined tools and machine learning [2]. Yield estimation19

in wheat has received significant attention from researchers.20

The number of spikes/ears determines the grain number per21

unit area and thus yield. Counting of spikes of the large num-22

ber of genotypes through traditional methods using naked-23

eye is a tedious and time-consuming job. Presently, non-24

destructive image analysis-based phenotyping is gaining mo-25

mentum and proves as the less laborious and fast method. A26

cluster of research works available in the area of computer vi-27

sion to detect and characterize spikes, and spikelets in wheat28

plants [3]–[8].High resolution image dataset with significant29

quantity is a major constraint to develop the computer vision30

based approaches. In this context, Pound et al. (2017) [6] and31

David et al. (2020) [9] contributed ACID (Annotated Crop32

Image Dataset) and GWHD (Global Wheat Head Detection)33

dataset respectively. In computer vision, the problem of spike34

detection lies under the domain of pixel-wise segmentation35

of objects. Bi et al. (2010) [4], Qiongyan et al. (2017) [5]36

and Sadeghi-Tehran et al. (2017) [7] used manually defined37

color intensities and textures for spike segmentation. Pound38

et al. (2017) [6] and Hasan et al. (2018) [8] used Autoencoder39

[10] and Region-based Convolutional Neural Network (R-40

CNN) [10] deep-learning technique, respectively, to detect41

and characterize spikes with greater than 90 percent accuracy.42

Xiong et al. (2019) [11] proposed a deep-learning model43

“TasselNetV2” to characterize the maize tassels with around44

91% accuracy. Sadeghi-Tehran et al. (2019) [12]developed45

a methodology using Simple Linear Iterative Clustering and46

Deep Convolutional Neural Networks for the spike quan-47

tification in wheat plant. Recently, Misra et al.(2020) [3]48

developed a deep learning model known as SpikeSegNet,49

which was reported as an effective and robust approach50

for spike detection (accuracy: 99.91 percent) and counting51

(accuracy: 95 percent) from visual images irrespective of52

various illumination factors. In this paper, a web-solution53

is presented as “Web-SpikeSegNet” for spike segmenta-54

tion and counting from wheat plants’ visual images for55

easy accessibility and quick reference. The developed web-56

solution has a wide application in the plant phenomics do-57

main and will be useful for researchers and students working58

in the field of wheat plant phenotyping. Web-SpikeSegNet59

is platform-independent and is readily accessible by at the60

URL: http://spikesegnet.iasri.res.in/.61

II. IMPLEMENTATION62

Web_SpikeSegNet is developed based on the approach give63

by Misra et al. (2020) [3]. The approach is based on the64

convolutional encoder-decoder deep-learning technique for65

pixel-wise segmentation of spikes from the wheat plant’s66

visual images. The architecture of the network was inspired67

by UNet [13], SegNet [14], and PixISegNet [15], which are68

popularly used in various sectors for pixel-wise segmenta-69

tion of objects. SpikeSegNet consists of two modules viz.,70

Local Patch extraction Network (LPNet) and Global Mask71

Refinement Network (GMRNet), in sequential order. The72

details of the approach are given in [3]. Input images were73

divided into patches before entering into the LPNet module74

to facilitate local features’ learning more effectively than75

the whole input image. LPNet was used in extracting and76

understanding the contextual and local features at the patch77

level. Output images of the LPNet are further refined at78

GMRNet to better segment the spikes, as given in Figure 1.79

SpikeSegNet network was trained using visual images of the80

wheat plant and its corresponding ground-truth segmented81

mask images with class labels (i.e., spike regions of the plant82

image). Details of the dataset preparation for training the83

network were given in [3]. SpikeSegNet provides significant84

segmentation performance at pixel-level in spike detection85

and counting and is also proved as a robust approach when86

tested for different illumination levels that may occur in the87

field conditions.88

A. ARCHITECTURE OF THE PROPOSED SOFTWARE —89

"WEB-SPIKESEGNET"90

Web-SpikeSegNet is web-based software for the detection91

and counting of spikes from visual images of the wheat92

plant. It is developed and implemented on the Linux op-93

erating system with 32 GB RAM and NVIDIA GeForce94

GTX 1080 Ti graphics card (with a memory of 11 GB). Py-95

Charm version 5.0 integrative development environment de-96

veloped by Jetbrains [https://www.jetbrains.com/] was used97

for the development of the software. The software archi-98

tecture consists of two layers, namely Client-Side Interface99

Layer (CSIL) and Server Side Application Layer (SSAL).100

The architecture of Web-SpikeSegNet is given in Fig. 2. End-101

users (especially the plant physiologist) will interact with the102

Web-SpikeSegNet available at http://spikesegnet.iasri.res.in/103

through CSIL using internet. CSIL deals with the end-user’s104

requests and its corresponding responses management and105

implemented using HyperText Markup Language (HTML)106

[16], Cascading Style Sheets (CSS) [17], Flask [18], and107

JavaScript [19] technologies. HTML, CSS and Flask were108

used to design the front-end view of the webpages and109

JavaScript was used for the client side validation. End-users110

will upload wheat imege in the software through CSIL and111

then it will be forwarded to the SSAL for the spike de-112

tection and counting. SSAL consists of two modules: spike113

detection and spike counting module. SpikeSegNet deep114

learning model will be applied on the input image for the115

spike segmentation in Spike Detection module and it will116

be forwarded to the spike counting module for counting117

the segmented spikes. After completion of the process, the118

segmented spikes along with spike count will be shown119

in the end-user’s window through CSIL. Spike detection120

module was developed using python libraries such as Ten-121

sorflow [20], Keras [21], Numpy [22], Scipy [23], Mat-122

plotlib [24] and OpenCV [25] for constructing and im-123

plementing the deep learning model.Convolutional encoder124

network [10] (Encoder_SpikeSegNet), decoder network [10]125

(Decoder_SpikeSegNet), and bottleneck network ([10],126

[15]) using stacked hourglasses (Bottleneck_SpikeSegNet)127

are the backbone of LPNet, GMRNet and correspondingly128

2 VOLUME 4, 2016

Tanuj
Highlight

Tanuj
Highlight

Tanuj
Highlight

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

FIGURE 1. Flow diagram of SpikeSegNet: Here, input is visual image of wheat plant of size 1656*1356 . The input image is divided into patches of size 256*256
before entering into the LPNet. The output of LPNet are patch-by-patch segmented mask images which are then combined to form the mask image as per the size
of the input visual image. This image may contain some sort of inaccurate segmentation of the object (or, spikes) and are refined at global level using GMRNet
network.The output of GMRNet network is nothing but the refined mask image containing spike regions only.

the SpikeSegNet.The number of encoders, decoders, and129

stacked hourglasses was estimated empirically, as given in130

[3], to produce the best results by considering the optimum131

performances. Encoder_SpikeSegNet consists of 3 encoder132

blocks, and the output feature-maps of each encoder block133

are forwarded to the next encoder block for further feature134

extraction. Each encoder block consists of two convolution135

layers, each with the square filter of size 3*3 [26] with a136

varying number of filters (16, 64, 128) followed by ReLU137

[27] and max-pooling layer with a window size of 2*2 [28].138

Square filters are popularly used in state-of-art methods [29],139

and the mentioned window size is considered as standard140

[13], [30]. Batch Normalization, a statistical procedure, is141

done to improve the performance as well as stability of the142

network. Input and output feature description of each encoder143

block in the Encoder_SpikeSegNet is presented in the tabu-144

lar form (Table 1) and the algorithm for implementing the145

Encoder_SpikeSegNet network is given in Algorithm 1.146

Decoder_SpikeSegNet network facilitates a special oper-147

ation called transpose convolution [31], which up-sampled148

the incoming features to regenerate or decode the same. The149

resulting up-sampled feature maps are then concatenated/150

merged with the corresponding encoded feature maps of the151

Encoder_SpikeSegNet. Merge operation helps in transferring152

the spatial information across the network for better local-153

ization of the segmented masks. The Decoder_SpikeSegNet154

contains three decoder blocks, and each decoder block con-155

sists of two convolution layers (with filter size 3*3) with a156

varying number of filters (128, 64, 16) as opposite to each en-157

coder block in Encoder_SpikeSegNet and followed by ReLU158

operation to decode the features. The output of the final159

decoder was fed into the “SoftMax” ([32]) activation layer160

for classifying objects (or spikes).Input and output feature de-161

scription of each decoder block in the Decoder_SpikeSegNet162

is presented in the tabular form (Table 2) and the algo-163

rithm for implementing the Decoder_SpikeSegNet network164

VOLUME 4, 2016 3

Tanuj
Highlight

Tanuj
Highlight

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

TABLE 1. Input and output feature description of each encoder block in the Encoder_SpikeSegNet Network

Encoder Block # Name of the Layers Input feature size # of kernel with size 3*3 Output feature size
E_conv_1_1p 256*256*1 16 256*256*16
E_conv_1_2p 256*256*16 16 256*256*16Encoder Block-1
Pool-1 256*256*16 - 128*128*16
E_conv_2_1p 128*128*16 64 128*128*64
E_conv_2_2p 128*128*64 64 128*128*64Encoder Block-2
Pool-2 128*128*64 - 64*64*64
E_conv_3_1p 64*64*64 128 64*64*128
E_conv_3_2p 64*64*128 128 64*64*128Encoder Block-3
Pool-3 64*64*128 - 32*32*128

pEach convolution layer is followed by ReLU activation function and batch normalization
Feature size=x*y*z represents z number of features with x*y size
E_conv_u_v denotes the vth convolution layer of the uth encoder block number

TABLE 2. Input and output feature description of each decoder block in the Decoder_SpikeSegNet Network

Decoder Block # Name of the Layers Input feature size # of kernel with size 3*3 Output feature size
T_conv-1p 32*32*128 128 64*64*128
D_conv_1_1q 64*64*128 128 64*64*128Decoder Block-1
D_conv_1_2q 64*64*128 128 64*64*128
T_conv-2p 64*64*128 64 128*128*64
D_conv_2_1q 128*128*64 64 128*128*64Decoder Block-2
D_conv_2_2q 128*128*64 64 128*128*64
T_conv-3p 128*128*64 16 256*256*16
D_conv_3_1q 256*256*16 16 256*256*16Decoder Block-3
D_conv_3_2q 256*256*16 16 256*256*16

pTranspose convolution operation followed by batch normalization and merge operation with the corresponding encoder block output
qConvolution operation followed by batch normalization

is given in Algorithm 2.Bottleneck_SpikeSegNet network165

contains three hourglasses, which provide more confident166

segmentation by concentrating the essential features captured167

at various occlusions, scale, and view-points [8], [13]. Each168

hourglass comprises a sequence of residual blocks containing169

three convolution layers of filter size 1*1, 3*3, and 1*1170

sequentially with depth (or the number of filters) 128, 128,171

and 256, respectively, estimated empirically on the basis of172

optimal performances. Algorithms for implementing Bot-173

tleneck _SpikeSegNet, LPNet, and GMRNet are presented174

in Algorithm 3, 4, and 5, respectively. The Spike counting175

module is integrated with the output of the Spike detection176

module in SSAL. For this purpose, the “Analyze Particle”177

functions of imageJ [33] was applied to the output image of178

GMRNet, which is a segmented mask image or binary image179

containing spike region only. “Analyze Particle” function180

implements a flood-fill technique [34] for counting of object.181

B. TRAINING OF WEB-SPIKESEGNET182

For training the spike-detection module of Web-SpikeSegNet183

using the algorithms [1-5], 600 wheat plant’s visual images184

were captured using LemnaTec imaging facility installed185

at Nanaji Deshmukh Plant Phenomics Center, New Delhi,186

India. The image dataset was randomly divided into training187

and testing at 85% and 15% respectively. Web-SpikeSegNet188

was trained for 300 epochs with batch size 32 due to the sys-189

tem platform constraints. Binary Cross-entropy loss function190

was used as it is a binary classification problem (i.e., pixels191

with either spike pixels or non-spike pixels) in the domain of192

image segmentation. Details of the hyper-parameters used to193

FIGURE 2. Architecture of Web-SpikeSegNet: The software architecture
consists of two layers, namely Client-Side Interface Layer (CSIL) and Server
Side Application Layer (SSAL). CSIL deals with the end-user’s requests and
its corresponding responses management. SSAL consists of two modules:
spike detection and spike counting module.

train the network are given in Table 3.194

4 VOLUME 4, 2016

Tanuj
Highlight

Tanuj
Highlight

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

Algorithm 1 Encode_SpikeSegNet: Encoding operation of SpikeSegNet
1: I: Input image/feature
2: Conv(input feature, filter_size, no. of filters): Convolution operation . for generating feature maps
3: BatchNorm(): Batch normalization operation . for improving the performance as well as stability of the network
4: Pool(): Pooling operation or down-sampling with window size 2*2
5: procedure ENCODER_SPIKESEGNET(I) . input image of size 256*256
6: //First Encoder Block
7: E_conv_1_1← Conv(I, 3 ∗ 3, 16) . generates 16 feature maps of size 256*256
8: E_batch_1_1← BatchNorm(E_conv_1 _1) . batch normalization of the features
9: E_conv_1_2← Conv(E_batch_1 _1, 3 ∗ 3, 16) . generates 16 feature maps from the batch normalized features

10: E_batch_1_2← BatchNorm(E_conv_1_2)
11: I_Encoded_block_1← Pool(E_batch_1_2) . size of each feature map reduced by half and returns 16 feature maps of size 128*128
12: //Second Encoder Block. Here input is the output of First encoder block
13: E_conv_2_1← Conv(I_Encoded_block _1, 3 ∗ 3, 64) . generates 64 feature maps of size 128*128
14: E_batch_2_1← BatchNorm(E_conv_2 _1) . batch normalization of the features
15: E_conv_2_2← Conv(E_batch_2 _1, 3 ∗ 3, 64)
16: E_batch_2_2← BatchNorm(E_conv_2 _2)
17: I_Encoded_block_2← Pool(E_batch_2 _2) . return 64 feature maps of size 64*64
18: //Third Encoder Block. Here input is the output of second encoder block
19: E_conv_3_1← Conv(I_Encoded_block _2, 3 ∗ 3, 128) . generates 128 feature maps of size 64*64
20: E_batch_3_1← BatchNorm(E_conv_3 _1)
21: E_conv_3_2← Conv(E_batch_3 _1, 3 ∗ 3, 128)
22: E_batch_3_2← BatchNorm(E_conv_3 _2)
23: I_Encoded_block_3← Pool(E_batch_3 _2) . return 128 feature maps of size 32*32
24: return I_Encoded_block _3

Algorithm 2 Decoder_SpikeSegNet: Decoding operation of SpikeSegNet
1: I: Output of Bottleneck_SpikeSegNet (for LPNet) or, output of Encoder_SpikeSegNet (for GMRNet).
2: Conv(input feature, filter_size, no. of filters): Convolution operation
3: BatchNorm(): Batch normalization operation
4: Tr_conv(input feature, filter_size, no. of filters): Transpose convolution . to up-sample the feature maps
5: Merge(): Merge/concatenation operation . for transferring the spatial information across the network
6: procedure DECODER_SPIKESEGNET(I) . here input is 128 feature maps of size 32*32
7: //First Decoder Block
8: T_conv_1← Tr_Conv(I, 3 ∗ 3, 128) . Up-sampling done and return 128 decoded feature maps of size 64*64
9: D_batch_1_1← BatchNorm(T_conv_1) . batch normalization of the features

10: M_1←Merge(D_batch_1 _1, I_Encoded_block _3) . concatenation operation with the output of third Encoder block [refer Algorithm 1 Line no.:
23]

11: D_conv_1_1← Conv(M_1, 3 ∗ 3, 128)
12: D_batch_1_2← BatchNorm(D_conv_1 _1) . batch normalization of the features
13: D_conv_1_2← Conv(D_batch_1 _1, 3 ∗ 3, 128)
14: I_Decoded_block_1← BatchNorm(D_conv_1 _2) . Output of the 1st Decoder Block is 128 decoded feature maps of size 64*64
15: //Second Decoder Block. Here input is the output of First Decoder block
16: T_conv_2← Tr_Conv(I_Decoded_block _1, 3 ∗ 3, 64) . Up-sampling done and return 64 decoded feature maps of size 128*128
17: D_batch_2_1← BatchNorm(T_conv_2) . batch normalization of the features
18: M_2←Merge(D_batch_2 _1, I_Encoded_block _2) . concatenation operation with the output of second Encoder block [refer Algorithm 1 Line

no.: 17]
19: D_conv_2_1← Conv(M_2, 3 ∗ 3, 64)
20: D_batch_2_2← BatchNorm(D_conv_2 _1)
21: D_conv_2_2← Conv(D_batch_2 _2, 3 ∗ 3, 64)
22: I_Decoded_block_2← BatchNorm(D_conv_2 _2) . Output of the second Decoder Block is 64 decoded feature maps of size 128*128
23: //Third Decoder Block. Here input is the output of Second Decoder block
24: T_conv_3← Tr_Conv(I_Decoded_block _2, 3 ∗ 3, 16) . Up-sampling done and return 16 decoded feature maps of size 256*256
25: D_batch_3_1← BatchNorm(T_conv_3) . batch normalization of the features
26: M_3←Merge(D_batch_3 _1, I_Encoded_block _1) . concatenation operation with the output of First Encoder block [refer Algorithm 1 Line no.:

11]
27: D_conv_3_1← Conv(M_3, 3 ∗ 3, 16)
28: D_batch_3_2← BatchNorm(D_conv_3 _1)
29: D_conv_3_2← Conv(D_batch_3 _2, 3 ∗ 3, 16)
30: I_Decoded_block_3← BatchNorm(D_conv_3 _2) . Output of the third Decoder Block is 16 decoded feature maps of size 256*256
31: return I_Decoded_block _3

C. PERFORMANCE MEASUREMENT OF195

WEB-SPIKESEGNET196

For evaluating the segmentation performance to detect the197

spikes, the resulting segmented images (Ipred) using the Web-198

SpikeSegNet software are compared with the corresponding199

ground-truth mask images (Igrtr), which were prepared by200

ensuing the steps mentioned in [3]. Segmentation perfor-201

mances are calculated using the following [Eq. (1) to Eq.202

(10)] statistical parameters [35]–[37]:203

Type I Error (E1): For any rth test image, exclusive-OR204

operation is done to compute pixel-wise classification error205

(Pix_Errr) between (Ipred) and the corresponding (Igrtr)206

VOLUME 4, 2016 5

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

Algorithm 3 Bottleneck_SpikeSegNet
1: I: Input image/feature
2: Conv(input feature, filter_size, no. of filters): Convolution operation
3: BatchNorm(): Batch normalization operation
4: Tr_conv(input feature, filter_size, no. of filters): Transpose convolution operation
5: Pool(): Pooling operation or down-sampling with window size 2*2
6: Merge(): Merge/concatenation operation
7: procedure BOTTLENECK_SPIKESEGNET(I) . here, input is output of ENCODER_SPIKESEGNET, 128 feature maps of size 32*32
8: H_1← HOURGLASS_SPIKESEGNET(I) . Call HOURGLASS_SPIKESEGNET procedure and return, 128 feature maps of size 32*32
9: Scale_up_← SCALE_UP(H_1) . Call SCALE_UP procedure and return, 128 feature maps of size 64*64

10: H_2← HOURGLASS_SPIKESEGNET(Scale_up)
11: Scale_down_← SCALE_DOWN(H_2) . Call SCALE_DOWN procedure and return, 128 feature maps of size 32*32
12: H_3_← HOURGLASS_SPIKESEGNET(Scale_down)

13: return H_3 . return, 128 refined feature maps of size 32*32
. Hourglass gives more confident segmentation by concentrating on the essential features

14: procedure HOURGLASS_SPIKESEGNET(I)
15: res_1← RESIDUAL_BL(I) . returns, 256 feature maps of size 32*32
16: pool_1←Pool(res_1) . down-sampling done and returns, 256 feature maps of size 16*16
17: res_2← RESIDUAL_BL(pool_1) . returns, 256 feature maps of size 16*16
18: pool_2←Pool(res_2) . down-sampling done and returns, 256 feature maps of size 8*8
19: res_3← RESIDUAL_BL(pool_2) . returns, 256 feature maps of size 8*8
20: pool_3←Pool(res_3) . down-sampling done and returns, 256 feature maps of size 4*4
21: res_4← RESIDUAL_BL(pool_3) . returns, 256 feature maps of size 4*4
22: res_5← RESIDUAL_BL(res_4)
23: T_conv_1←Tr_conv(res_5, 3 ∗ 3, 256) . up-sampling done and returns, 256 feature maps of size 8*8
24: M_1←Merge(T_conv_1, res_3)
25: res_6← RESIDUAL_BL(M_1) . returns, 256 feature maps of size 8*8
26: T_conv_2←Tr_conv(res_6, 3 ∗ 3, 256) . up-sampling done and returns, 256 feature maps of size 16*16
27: M_2←Merge(T_conv_2, res_2)
28: res_7← RESIDUAL_BL(M_2) . returns, 256 feature maps of size 16*16
29: T_conv_3←Tr_conv(res_7, 3 ∗ 3, 256) . up-sampling done and returns, 256 feature maps of size 32*32
30: M_3←Merge(T_conv_3, res_1)
31: res_8← RESIDUAL_BL(M_3) . returns, 256 feature maps of size 32*32
32: return res_8
33: procedure RESIDUAL_BL(I)
34: res_conv_1←Conv(I , 1 ∗ 1, 128)
35: res_conv_2←Conv(res_conv_1, 3 ∗ 3, 128)
36: res_conv_3←Conv(res_conv_2, 1 ∗ 1, 256)
37: return res_conv_3 . returns, 256 feature maps . Scale up and scale down operations help in finding the relationships among aggregate features at

different scales which further helps in getting the robust features
38: procedure SCALE_UP(I)
39: sc_up_conv_1←Conv(I , 3 ∗ 3, 128)
40: sc_up_batch_1←BatchNorm(sc_up_conv_1)
41: sc_up_conv_2←Conv(sc_up_batch_1, 3 ∗ 3, 128)
42: sc_up_batch_2←BatchNorm(sc_up_conv_2)
43: sc_up_pool←Tr _Pool(sc_up_batch_2)
44: return sc_up_pool
45: procedure SCALE_DOWN(I)
46: sc_down_pool_1←Pool(I)
47: sc_down_conv_1←BatchNorm(sc_down_pool_1, 3 ∗ 3, 128)
48: sc_down_batch_1←BatchNorm(sc_down_conv_1)
49: sc_down_conv_2←Conv(sc_down_batch_1, 3 ∗ 3, 128)
50: sc_down_batch_2←BatchNorm(sc_down_conv_2)
51: return sc_down_batch_2

Algorithm 4 LPNet Local Patch Extraction Network
1: I: Input image/feature
2: procedure LPNET(I) . here input is visual image patches of size 256*256
3: Encoded_I← ENCODER_SPIKESEGNET(I) . Call Algorithm 1. Return encoded feature maps of the input image
4: Bottleneck_I← BOTTLENECK_SPIKESEGNET(Encoded_I) . Call Algorithm 3. Return refined feature maps of the input features
5: Decoded_I← DECODER_SPIKESEGNET(Bottleneck_I) . Call Algorithm 2. Return decoded feature maps of the input features
6: return Decoded_I . Segmeted mask image of size 256*256 containing spikes regions corresponding to the input patches.

Algorithm 5 GMRNet
1: I: Input image/feature
2: procedure GMRNET(I) . here input is the output image/feature of LPNet
3: Encoded_I← ENCODER_SPIKESEGNET(I) . Call Algorithm 1. Return encoded feature maps of the input image
4: Decoded_I← DECODER_SPIKESEGNET(Encoded_I) . Call Algorithm 2. Return decoded feature maps of the input features
5: return Decoded_I . Refined segmeted mask image of size 256*256 containing spikes regions corresponding to the input image/feature.

6 VOLUME 4, 2016

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

TABLE 3. Hyper-parameters

Optimizer : Adam
Learning rate : 0.0005

Epoch : 300
Batch size : 32

Loss function : Binary Cross Entropy

image of size p×q,207

Pix_Errr(I
pred, Igrtr) =

1

p ∗ q

q∑
l=1

p∑
k=1

[Ipred(k, l)⊕Igrtr(k, l)]

(1)
E1 is computed by averaging the Pix_Errr of all the test208

images:209

E1 =
1

n

n∑
r=1

Pix_Errr (2)

Where, n is the total number of test images. E1 lies within210

[0, 1]. If the value of E1 is close to “0", it refers minimum211

error, whereas if E1 is close to “1", it signifies large error.212

Type II error (E2): For any rth test image, the error rate E2
r

213

is computed by the average of false-positives (FPR) and false214

negatives (FNR) rates at the pixel level defined as:215

Er
2 = 0.5 ∗ FPR+ 0.5 ∗ FNR (3)

Where,216

FPR =
1

p ∗ q

q∑
l=1

p∑
k=1

[(Igrtr(k, l). ∗ Ipred(k, l))⊕ Ipred(k, l)]

(4)217

FNR =
1

p ∗ q

q∑
l=1

p∑
k=1

[(Igrtr(k, l). ∗ Igrtr(k, l))⊕ Ipred(k, l)]

(5)
E2 is computed by taking the average errors of all the input218

test images as given below:219

E2 =
1

n

n∑
r=1

Er
2 (6)

Following performance parameters are also used for220

measuring the segmentation performance of the Web-221

SpikeSegNet at pixel level to identify/detect spikes as fol-222

lows:223

• True positive (TP): number of pixels correctly classified224

as spikes.225

• True Negative (TN): number of pixels correctly classi-226

fied as non-spikes (other than spike pixels).227

• False Positive (FP): number of non-spike pixels classi-228

fied as spikes pixels.229

• False Negative (FN): number of spike pixels classified230

as non- spikes pixels.231

Then Precision, Recall, F-measure and Accuracy can be232

defined as:233

Precision = TP/(TP + FP) (7)

measures the percentage of detected pixels are actually spikes234

Recall = TP/(TP + FN) (8)

measures the percentage of actually spikes spike pixels are235

detected236

Accuracy = (TP + TN)/(TP + TN + FP + FN) (9)

measures performance of the Web-SpikeSegNet237

F 1Score = 2(Precision ∗Recall)/(Precision+Recall)
(10)

measures robustness of the Web-SpikeSegNet in detecting or238

identifying spikes239

III. RESULTS AND DISCUSSION240

To demonstrate the working environment of Web-241

SpikeSegNet, a case study is presented here. The architecture242

of Web-SpikeSegNet mentioned in section 3, and the design243

of the software consists of 5 sections, namely “Home page”,244

“Spike Detection and Counting”, “Help”, “Contact Us”,245

and "Sample Data set". The “Home page” contains basic246

information about SpikeSegNet, and the flow diagram of the247

steps needs to be followed to recognize and count the spikes248

of the uploaded wheat plant image (Fig. 3). The "Sample249

Data set" section facilitates sample visual images of wheat250

plants for the experiment. Spike Detection and Counting251

module is the center of attention of the software. The user252

has to follow the following steps to detect and count the253

spikes and the output of each steps are pictorially presented254

in Supplementary 1:255

1) Select and upload visual image of wheat plant of size256

1656*1356 consisting of above ground parts only as257

discussed in [3].258

2) Click on “Generate Patches” button for dividing the259

whole image into patches. Here, the visual image260

is divided into 100 pixel overlapping patches (each261

patches of size 256*256) which work as input to the262

LPNet module. Therefore, from one visual image of263

size 1656*1356, 180 patches of size 256*256 will be264

generated.265

3) Click on “Run LPNet” to run the LPNet module for266

extracting contextual and spatial features at patch level.267

Output of the LPNet are the segmented images of size268

256*256 corresponding to the patch images.269

4) The output of LPNet are merged to generate the seg-270

mented image of size 1656*1656 that contains some271

inaccurate segmentation of spikes and further refined272

at global level by clicking on “Run GMRNet” button.273

5) For counting the wheat spikes, click on “Count”button274

and the corresponding spikes count will be displayed275

on the next window.276

The final output of Web-SpikeSegNet after detection and277

counting of spikes from the visual images of wheat plant is278

given in Fig. 4.279

VOLUME 4, 2016 7

Tanuj
Highlight

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

TABLE 4. Segmentation performance analysis of Web-SpikeSegNet

Type I Error Type II Error Accuracy Precision Recall F1 Score
0.00159 0.0586 0.9965 0.9959 0.9961 0.9965

FIGURE 3. Home page of Web-SpikeSegNet contains basic information about SpikeSegNet and the flow diagram of the steps need to be followed to recognize and
counting the spikes of the uploaded wheat plant image.

FIGURE 4. The final output of Web-SpikeSegNet after detection and counting of spikes from the visual images of wheat plant.

8 VOLUME 4, 2016

Tanuj
Highlight

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

A. PERFORMANCE ANALYSIS OF WEB-SPIKESEGNET280

Web-SPikeSegNet was trained using the training dataset
consisting of randomly selected 85% of the total images
captured (i.e., 510 images among 600 images). Although the
network was trained for 300 epochs, the training losses were
plateaued around 100 epoch as given in Fig 5. Segmentation
performances of the Web-SpikeSegNet has been computed
on the testing dataset consists of 90 images. The mentioned
statistical parameters (eq. 1 to eq. 10) are computed, and the
average values are presented in Table 4.As the performance
of spike detection is calculated at the pixel level, the value
of E1 (=0.00159) depict that on an average only 104 pixels
are misclassified among 65,536 pixels which is the pixel size
of one image, i.e., 65,536 (256 * 256). The accuracy of the
approach as well as the developed software is around 99.65
%. The average precision value reflects that 99.59% of the
detected spikes are actually spike pixels and the robustness
of the approach is also ∼ 100%.

FIGURE 5. Graphical representation of training Loss.

B. COMPARATIVE ANALYSIS WITH ACID (ANNOTATED281

CROP IMAGE DATASET) DATASET AVAILABLE AT282

HTTPS://PLANTIMAGES.NOTTINGHAM.AC.UK/283

For the comparative study, we ran the developed software284

on the ACID (Annotated Crop Image Dataset) dataset. The285

dataset consists of 415 training images and 105 testing286

images and was contributed by Pound et al (2017) [6].287

They proposed a multi-task deep learning architecture for288

localizing wheat spikes and spikelet and achieved 95 %289

accuracy in spike detection. As the Web-SpikeSegNet model290

was trained using the wheat’s visual images with consistent291

white background, we converted the background of the test292

images given in the mentioned website from back to white293

for conducting the comparative study. The output of Web-294

SpikeSegNet on ACID dataset is presented in Fig. 6. To com-295

pute the segmentation performance the ground-truth mask296

images corresponding to the testing dataset were prepared297

utilizing the procedure mentioned in [3]. The average seg-298

mentation performances are given in Table 5.The value of299

the type I error (0.00164) reflects that on an average only300

107 pixels are wrongly classified among 65,536 pixels (size301

of one image is 256*256 pixels). The accuracy (99.55%),302

precision (99.62%), and F1 value (99.62%) depicts that Web-303

SpikeSegNet approach is comparatively generalized and ro-304

bust than the approach presented by Pound et al (2017)305

[6]. It is due to the training criteria of Web-SpikeSegNet306

where, the deep learning model is trained at patch level for307

understanding the local as well as global features efficiently.308

The previous literatures [4], [5], [7] related to wheat plant309

phenotyping presented laborious, destructive, and complex310

image processing pipelines for detecting and characterizing311

the spikes. Most of the image processing pipelines involve the312

color intensity thresholding technique. [6], [7] presented non-313

destructive and feature based segmentation to characterize314

the spikes but, the features were manually defined. Recently,315

some researchers [3], [6], [8] proposed computer vision316

based approaches by combining the digital image processing317

and deep-learning technique for auto-detecting spikes non-318

destructively. But, there is a very limited easy-to-use pipeline319

available for detecting and characterizing spikes from the320

visual image of wheat plant. In this context, our main focus321

is to develop an online, easy-to-use, generalized and robust322

platform to characterize wheat spikes non-destructively.323

FIGURE 6. Comparative study with ACID (Annotated Crop Image Dataset)
dataset available at https://plantimages.nottingham.ac.uk/: (a) test images (b)
black background converted into white (c) detected spikes using
Web-SpikeSegNet software

VOLUME 4, 2016 9

Tanuj
Highlight

Tanuj
Highlight

Tanuj
Highlight

Tanuj
Highlight

Misra et al.: Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants

TABLE 5. Segmentation performance analysis of the ACID dataset

Type I Error Type II Error Accuracy Precision Recall F1 Score
0.00164 0.0576 0.9955 0.9962 0.9958 0.9962

IV. CONCLUSIONS324

Recognition and counting of spikes for the large set of325

germplasms in a non-destructive way is an enormously326

challenging task. This study developed web-based software327

“Web-SpikeSegNet” using the robust SpikeSegNet approach,328

which is based on digital image analysis and deep-learning329

techniques. The software is freely available for researchers,330

and students are working particularly in the field of wheat331

plant phenotyping. Further, it is a useful tool in the automated332

phenomics facility to automate the phenology-based treat-333

ment. Web-SpikeSegNet is a significant step toward studying334

the wheat crop yield phenotyping and can be extended to the335

other cereal crops.336

REFERENCES337

[1] J. R. Porter and S. Christensen, “Deconstructing crop processes and338

models via identities,” Plant, cell & environment, vol. 36, no. 11, pp. 1919–339

1925, 2013.340

[2] S. A. Tsaftaris, M. Minervini, and H. Scharr, “Machine learning for plant341

phenotyping needs image processing,” Trends in plant science, vol. 21,342

no. 12, pp. 989–991, 2016.343

[3] T. Misra, A. Arora, S. Marwaha, V. Chinnusamy, A. R. Rao, R. Jain,344

R. N. Sahoo, M. Ray, S. Kumar, D. Raju et al., “Spikesegnet-a deep345

learning approach utilizing encoder-decoder network with hourglass for346

spike segmentation and counting in wheat plant from visual imaging,”347

Plant methods, vol. 16, no. 1, pp. 1–20, 2020.348

[4] K. Bi, P. Jiang, L. Li, B. Shi, and C. Wang, “Non-destructive measurement349

of wheat spike characteristics based on morphological image processing,”350

Transactions of the Chinese Society of Agricultural Engineering, vol. 26,351

no. 12, pp. 212–216, 2010.352

[5] L. Qiongyan, J. Cai, B. Berger, M. Okamoto, and S. J. Miklavcic, “Detect-353

ing spikes of wheat plants using neural networks with laws texture energy,”354

Plant Methods, vol. 13, no. 1, p. 83, 2017.355

[6] M. P. Pound, J. A. Atkinson, D. M. Wells, T. P. Pridmore, and A. P. French,356

“Deep learning for multi-task plant phenotyping,” in Proceedings of the357

IEEE International Conference on Computer Vision Workshops, 2017, pp.358

2055–2063.359

[7] P. Sadeghi-Tehran, K. Sabermanesh, N. Virlet, and M. J. Hawkesford,360

“Automated method to determine two critical growth stages of wheat:361

heading and flowering,” Frontiers in Plant Science, vol. 8, p. 252, 2017.362

[8] M. M. Hasan, J. P. Chopin, H. Laga, and S. J. Miklavcic, “Detection363

and analysis of wheat spikes using convolutional neural networks,” Plant364

Methods, vol. 14, no. 1, p. 100, 2018.365

[9] E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu,366

N. Kirchgessner, G. Ishikawa, K. Nagasawa, M. A. Badhon et al., “Global367

wheat head detection (gwhd) dataset: a large and diverse dataset of high-368

resolution rgb-labelled images to develop and benchmark wheat head369

detection methods,” Plant Phenomics, vol. 2020, 2020.370

[10] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.371

MIT press Cambridge, 2016, vol. 1.372

[11] H. Xiong, Z. Cao, H. Lu, S. Madec, L. Liu, and C. Shen, “Tasselnetv2:373

in-field counting of wheat spikes with context-augmented local regression374

networks,” Plant Methods, vol. 15, no. 1, pp. 1–14, 2019.375

[12] P. Sadeghi-Tehran, N. Virlet, E. M. Ampe, P. Reyns, and M. J. Hawkesford,376

“Deepcount: in-field automatic quantification of wheat spikes using simple377

linear iterative clustering and deep convolutional neural networks,” Fron-378

tiers in plant science, vol. 10, p. 1176, 2019.379

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks380

for biomedical image segmentation,” in International Conference on Medi-381

cal image computing and computer-assisted intervention. Springer, 2015,382

pp. 234–241.383

[14] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-384

volutional encoder-decoder architecture for image segmentation,” IEEE385

transactions on pattern analysis and machine intelligence, vol. 39, no. 12,386

pp. 2481–2495, 2017.387

[15] R. R. Jha, G. Jaswal, D. Gupta, S. Saini, and A. Nigam, “Pixisegnet: Pixel-388

level iris segmentation network using convolutional encoder–decoder with389

stacked hourglass bottleneck,” IET Biometrics, vol. 9, no. 1, pp. 11–24,390

2019.391

[16] T. Berners-Lee, “Tim berners-lee,” Bloomberg Businessweek, 1989.392

[17] E. A. Meyer, Cascading style sheets: The definitive guide. " O’Reilly393

Media, Inc.", 2004.394

[18] G. Mainland, M. Welsh, and G. Morrisett, “Flask: A language for data-395

driven sensor network programs,” Harvard Univ., Cambridge, MA, Tech.396

Rep. TR-13-06, 2006.397

[19] S. Yehuda and S. Tomer, “Advanced javascript programming,” BPB Pub-398

lication, New Delhi India, 1998.399

[20] T. Hope, Y. S. Resheff, and I. Lieder, Learning tensorflow: A guide to400

building deep learning systems. " O’Reilly Media, Inc.", 2017.401

[21] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,402

2017.403

[22] E. Bressert, SciPy and NumPy: an overview for developers. " O’Reilly404

Media, Inc.", 2012.405

[23] E. A. Christensen, F. J. Blanco-Silva et al., Learning SciPy for numerical406

and scientific computing. Packt Publishing Ltd, 2015.407

[24] S. Tosi, Matplotlib for Python developers. Packt Publishing Ltd, 2009.408

[25] J. Howse, OpenCV computer vision with python. Packt Publishing Ltd,409

2013.410

[26] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural411

network for modelling sentences,” arXiv preprint arXiv:1404.2188, 2014.412

[27] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning ac-413

tivation functions to improve deep neural networks,” arXiv preprint414

arXiv:1412.6830, 2014.415

[28] B. Graham, “Fractional max-pooling,” arXiv preprint arXiv:1412.6071,416

2014.417

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for418

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.419

[30] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for420

image-based plant disease detection,” Frontiers in plant science, vol. 7, p.421

1419, 2016.422

[31] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep423

learning,” arXiv preprint arXiv:1603.07285, 2016.424

[32] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for425

convolutional neural networks.” in ICML, vol. 2, no. 3, 2016, p. 7.426

[33] M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, “Image processing with427

imagej,” Biophotonics international, vol. 11, no. 7, pp. 36–42, 2004.428

[34] A. Asundi and Z. Wensen, “Fast phase-unwrapping algorithm based on a429

gray-scale mask and flood fill,” Applied optics, vol. 37, no. 23, pp. 5416–430

5420, 1998.431

[35] H. Proença, S. Filipe, R. Santos, J. Oliveira, and L. A. Alexandre, “The432

ubiris. v2: A database of visible wavelength iris images captured on-433

the-move and at-a-distance,” IEEE Transactions on Pattern Analysis and434

Machine Intelligence, vol. 32, no. 8, pp. 1529–1535, 2009.435

[36] M. Haindl and M. Krupička, “Unsupervised detection of non-iris occlu-436

sions,” Pattern Recognition Letters, vol. 57, pp. 60–65, 2015.437

[37] Z. Zhao and K. Ajay, “An accurate iris segmentation framework under438

relaxed imaging constraints using total variation model,” in Proceedings439

of the IEEE international conference on computer vision, 2015, pp. 3828–440

3836.441

10 VOLUME 4, 2016

Tanuj
Highlight

Tanuj
Highlight

Tanuj
Highlight

Tanuj
Highlight

