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FOREWORD 

 

The ICAR-Indian Agricultural Statistics Research Institute is a premier Institute in the 
disciplines of Agricultural Statistics and Informatics and is engaged in conducting research, 
teaching and training in experimental designs, sample surveys, statistical modelling, crop 
forecasting, statistical genetics, bioinformatics and computer applications. The Institute has 
taken a lead in developing statistical software packages, expert systems and many online 
systems useful for Agricultural Research.  
 
Designing an experiment is an essential component of any scientific investigation and refers to 
the specific manner in which the experiment is set up, conducted and the plans for data 
collection and analysis. Before an experiment is conducted, the experimental design has to be 
carefully planned to ensure that experimental objectives can be accomplished, assumptions 
required for hypotheses testing and data analysis are valid, randomization requirements are met 
and the experiment is reproducible. 
 
Indirect effects are a serious problem in many of the field experiments and may be spatial or 
temporal in nature. The spatial effect is also known by different names in literature viz., 
interference effect, remote effect, competition effect, neighbour effects whereas the temporal 
effect is also known as crossover effect, carry over effect, residual effect. This project entitled 
Experimental Designs in the Presence of Indirect Effects of Treatments sponsored by 
Department of Science and Technology (DST) is a good initiative by the project team to 
develop designs for different situations incorporating indirect effects. These designs will be 
helpful to the students and researchers to conduct their research more effectively and draw 
valid conclusions by using appropriate designs suitable for their situations. The software Web 
Generation of Experimental Design Balanced for Indirect Effects of Treatments 
(WebDBIE) developed will help the experimenters in generating the randomized layout plans 
of the designs. The software is deployed at ICAR-IASRI website and is freely available to the 
users on the globe. I am happy to share that software developed has received copyright from 
Registrar, Copyright, Government of India.  
 
I take this opportunity to complement the entire project team of Dr. Seema Jaggi, Dr. Cini 
Varghese, Dr. Eldho Varghese and Ms. Anu Sharma for doing a wonderful job and bringing out 
this valuable report. I thank DST for providing financial assistance and I look forward for more 
such collaborations from DST. 

 
 
 

New Delhi                          U.C. SUD 
                                                                       DIRECTOR, ICAR-IASRI 



 
 

PREFACE 

 

In designing of any scientific experiment, heterogeneity in the experimental material is an 
important aspect to be taken care of. Block designs are the most appropriate designs for 
controlling local variation over the experimental material by dividing the entire experimental 
material into groups/blocks such that the experimental units are homogeneous within a block. 
In agricultural field experiments, there may be situations where in order to control 
heterogeneity and conserve resources, the treatments are assessed using small, adjacent units 
i.e. plots in a block. The treatment applied to one experimental plot may affect the response on 
neighbouring plots as well as the response on the plot to which it is applied. Treatments such as 
fertilizer, irrigation, or pesticide may spread to adjacent plots causing neighbour effects. Thus, 
effects which occur in an experiment due to the units which are adjacent spatially to the unit 
being observed are called spatial indirect effects. When the experimental units are long lived or 
scarce, in order to study the effects of different treatments, the same unit is given the treatments 
over different periods. Treatments applied in a particular period may influence the response of 
the units not only in the period of their direct application but also in the subsequent periods. 
The treatments like drugs, feeds, leave carryover effects in the periods following the periods of 
their direct application. The effects which occur in an experiment due to the units which are 
adjacent temporally to the unit being observed are called temporal indirect effects. 
 
Understanding the structure of these indirect effects helps in minimizing the bias in the 
treatment comparisons to a great extent so as to make more precise inference. It is thus 
important to include the indirect effects in the model to have the proper specification and obtain 
designs in the presence of indirect effects that are ordered over space or time. Neighbour 
Balanced Designs are used for the situations when spatial indirect effects are suspected from 
the treatments applied in the neighbouring experimental units whereas Crossover Designs are 
used when temporal indirect effects consisting of residual or carryover effects from the 
treatments applied in the previous period are present. These designs ensure that each treatment 
occurs adjacent to every other treatment spatially or temporarily same number of times. 
 
In this report, several classes of designs have been developed for situation when the different 
types of indirect effect are suspected. Further, to enhance the application potential of these 
designs worldwide, software named 'Web Generation of Designs Balanced for Indirect Effects 
of Treatment (WebDBIE)' has been developed for the online generation and cataloguing of 
these designs. It is hoped that experimenters who conduct experiments globally will be 
immensely benefited by this study for planning and designing their experiments more 
efficiently.  
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Chapter I 

INTRODUCTION AND REVIEW 

 

1.1 Introduction 
Designing an experiment is an essential component of any scientific investigation. 
Experimental design refers to the specific manner in which the experiment is set up, 
conducted and the plans for data collection and analysis. Specifically, experimental design 
has to do with the precise way different treatments are administered to experimental units 
(subjects, parts, plots, animals etc.) and what information is to be collected on the 
experimental units and other conditions that might affect the experimental units. Before an 
experiment is conducted, the experimental design must be carefully planned to ensure that 
experimental objectives can be accomplished, assumptions required for hypotheses testing 
and data analysis are valid, randomization requirements are met, and the experiment is 
reproducible.  
 
There may arise experimental situations wherein the response from a unit may be affected 
by indirect effects from other units spatially or temporally belonging to the same cluster or 
group or block. It may be that the responses are correlated or that there is a systematic trend, 
or the response is affected by carryover effect from the units previously observed, or a 
neighbour effect from contiguous units. We may call these effects as indirect effects. Thus, 
indirect effects are effects which occur in an experiment due to the units which are adjacent 
(spatially or temporally) to the unit being observed. Given below are some situations where 
indirect effects can occur. 
 
1.1.1 Spatial Indirect Effects 
• In agricultural experiments under block design setting, where the blocks are made up of 

plots which can not be sufficiently isolated from each other, there could be spatial 
indirect effects coming from the treatments applied to the neighbouring plots.  

• If the branches of a tree form plots while the tree serves as a block, spatial indirect 
effects may arise from the treatments applied to the neighbouring branches. 

• In fertilizer trials, plants in an unfertilized plot may rob a share of the plants in a nearby 
heavily fertilized plot, thereby resulting in spatial indirect effects. 

• In varietal trials, the yield of a variety may be depressed by more aggressive 
neighbouring varieties resulting in spatial indirect effects. 

• In fungicide experiments, an unsprayed plot provides a source of spores which can 
infect neighbouring treated plots resulting in spatial indirect effects. 

• In market studies, the sale of different brands on a store shelf may be affected by the 
brands in the neighbouring shelves. 

• In the interpollination by natural hybridization of a group of genotypes, each clone has 
an equal chance of pollinating, or being pollinated by, any of the others.  
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1.1.2 Temporal Indirect Effects 
Treatments applied in a particular period may influence the response of the units not only in 
the period of their direct application but also in the subsequent periods. The treatments 
leave carryover effects (temporal indirect effects) in the periods following the periods of 
their direct application. These situations may arise in following areas: 
• Long-term agricultural field experiments 
• Nutrition experiments with dairy cattle 
• Clinical trials in medical research 
• Psychological experiments 
 
1.1.3 Spatial and Temporal Indirect Effects 
• When treatments are applied sequentially to experimental units over time or space, there 

may be an unknown trend effect which can be expressed as a polynomial function of the 
order in which the observations are taken.  

• The observations may be correlated in space or time because of neighbouring units or 
due the same units being observed over different time periods. 

 
In such situations, it is important to include the indirect effects in the model to have the 
proper specification. The experimental units consisting of different treatments are to be 
arranged within each cluster or block that is ordered over space or time. It was, therefore, 
important to obtain designs in the presence of indirect effects and compute gain in 
efficiency of these designs over conventional designs. Following are some designs that are 
ordered over space or time: 
 
• A block design for 3 treatments in 2 blocks with border plots spatially balanced for left 

and right neighbours 
 

 

3 1 2 3 1 

2 1 3 2 1 
 

• A trend free block design for 7 treatments in 3 blocks 
 

1 2 3 4 5 6 7 

6 4 2 7 5 3 1 

7 5 3 1 6 4 2 
 

• A design for 4 treatments in 4 experimental units and 4 periods temporally balanced for 
carryover effects 
 

Periods Units 

I II III IV 
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1 1 2 3 4 

2 4 1 2 3 

3 2 3 4 1 

4 3 4 1 2 

 

1.2 Definition of the Problem 
Indirect effects can arise in many situations as discussed earlier. Substantive amount of 
work has been done considering spatial/ temporal indirect effects. There are some 
experimental situations that have not been studied. Further, study incorporating both spatial 
as well as temporal indirect effects of treatments needs attention. There was a need to study 
and obtain designs addressing various issues with respect to the relationship between 
observations on units over time and/or space.  
 
For easy accessibility of these designs by the experimenters, it was required that these 
designs are compiled and presented at one place. With the advancement in web technology, 
it was also desired to make available these designs on the web for quick reference. Web 
based experimental designs in the presence of indirect effects would be of great use for the 
researchers and students working in this area. It was also desired that the analytical 
procedure of these designs be illustrated for different situations for the experimenters. 
Considering the above situations, the broad objectives taken for this project are given 
below. 
 
1.3 Objectives 
1. To obtain designs in the presence of indirect (neighbour or carryover) effects of 

treatments for block/ row-column experimental situations. 
2. To study designs considering more than one relationship between observations on 

units over time or space.  
3. To generate web-enabled useful classes of designs in the presence of indirect effects 

of treatments. 
4. To develop an online catalogue of designs incorporating indirect effects of treatments. 
5. To illustrate the analytical procedures for designs in presence of indirect effects using 

live/ simulated data sets.  
 
 
1.4 Review of Literature 

1.4.1 International Status 
• Designs with Correlated Errors 
Papadakis (1937) adjusted the plot values by the analysis of covariance when covariates 
were taken as the residuals from neighbouring plots. This analysis resulted in substantial 
reduction in error variance. Papadakis method does not assume any specific correlation 
structure among the observations. The knowledge of correlation structure among the 
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observations has been used by Williams (1952) in designing experiments. The designs for 
these situations were defined as Neighbour Designs by Rees (1967) for use in serology 
experiments. Atkinson (1969) showed that the properties of Papadakis estimator are very 
close to those of Maximum Likelihood (ML) estimators when applied to plots arranged in a 
row and underlying error structure is the first order auto-regressive [AR(1)] process. When 
observations are independent then using this method does not lead to a great increase in 
variance of the estimators, whereas failure to take into account the error structure leads to a 
considerable loss of precision. Bartlett (1978) suggested the use of correlation between 
neighbouring plots for the analysis of data from field experiments.  
 
Balanced Incomplete Block (BIB) designs are known to be optimal for the elimination of 
one-way heterogeneity under equal error variances and additive models when the 
observations are independent. Kiefer and Wynn (1981) considered the effects of correlation 
on the efficiency of such designs. Kiefer and Wynn (1981) found the optimal designs 
among the class of block and Latin square designs when observations follow a moving 
average process. They used the technique of ordinary least squares. Martin (1982) studied 
the designs and their efficiencies when observations follow a stationary torus lattice 
process. Wilkinson et al. (1983) gave a good discussion of design and analysis of 
experiments for spatially correlated observations. Cheng (1983) developed an algorithm for 
construction of optimal BIB design for correlated observations. 
 
Besag and Kempton (1986) described the applications of the use of neighbouring plot 
values in the analysis of agricultural field experiments. Kunert (1987) studied the neighbour 
balanced block designs for correlated errors. Russell and Eccleston (1987) gave algorithms 
for construction of optimal incomplete block designs when a known correlation structure is 
assumed for observations from plots in the same block. Jacroux (1998) constructed some 
efficient equineighboured incomplete block designs for block size 3 that are efficient when 
experimental units adjacent within blocks are correlated or when least squares Nearest 
Neighbour (NN) analysis is used to analyze data from an experiment because of suspected 
but unknown smooth trends within blocks. Martin and Eccleston (2001) gave an exchange-
interchange algorithm for searching optimal and nearly optimal designs for specific 
dependence structure of observations. Pooladsaz and Martin (2005) investigated moving 
average type correlation structure of order g (≥1) for ρ ≤ 0.50. The bound for AR(1) 
correlation structure is considered as  ρ ≤ 0.95, as this correlation structure is not limiting 
by any condition. Uddin (2008) have studied MV-optimal block designs for correlated 
errors. 
 
• Designs with Systematic Trend 
The study on systematic designs was initiated by Cox (1951). Bradley and Yeh (1980) first 
gave the theory of trend free block designs. They considered the situation where a common 
polynomial trend is assumed to exist over the plots in each block of a classical experimental 
design. Trend free block design was defined to be a design in which the adjusted sum of 
squares due to treatments in a model with trend effects remains the same as in the model 
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without trend effects. Necessary and sufficient condition for the block design to be trend 
free was derived. Yeh and Bradley (1983) discussed the existence of trend free block design 
for specified trends under a homoscedastic model when each treatment is equally replicated. 
 
Jacroux et al. (1995, 1997) developed some methods for identifying efficient designs when 
different blocks may have linear trend effect of different slope. Majumdar and Martin 
(2002) extended the above study for quadratic and cubic trend effects. 
 
• Designs with Neighbour/Interference Effects 
Agricultural experiments often show neighbour effects i.e., the response on a given plot is 
affected by the treatments on the neighbouring plots as well as by the treatment applied to 
that particular plot provided there are no gaps between plots. For example, in varietal trial, 
tall varieties may shade their neighbours. Sakai (1956, 1957) studied the effect of 
competition of plants and a varying number of competing and non competing individuals. 
Goodall (1960) studied the competition of marigold plants with one, two, four or eight 
neighbours arranged in a circle centered on a single plant and observed that the effect of 
neighbours was additive up to six neighbours at which stage the competition effects were 
complete and introduction of more neighbours had no effect. Hanson et al. (1961) have 
measured the competition using special design and further analysis for the design is also 
presented. Single-row yield plots of soybean genotypes have been used for his research. 
 
Rees (1967) studied interference between neighbouring units under laboratory conditions on 
designing of plots to diffusion tests in virus research. Mathematical model was given by 
Mead (1967) to estimate of inter-plant competition based on correlation between 
neighbouring pairs of plants. Freeman (1967, 1969) used cyclic BIB designs for directional 
and non-directional seed orchards. Gomez (1972) undertook a study to investigate the 
extent of varietal competition and its effects on comparison between varieties in 
transplanted lowland rice. The analysis of variance was performed, separately for each 
variety, following the procedure of split-plot design with the two halves of the plot (each 
corresponding to one of the adjacent varieties) as main-plot treatments and the five row 
positions within each half as subplot treatments. The results showed a significant difference 
between row positions indicating the presence of varietal competition effect, and the 
presence of interaction between row position and adjacent variety indicated that the 
competition effect is affected by the adjacent variety. Martin (1973) developed beehive 
designs in which plants of two species are arranged on a hexagonal grid such that for one 
species the number of neighbouring plants of the second species varies between zero and 
six. These designs allow the experimenter to carry out the investigations in a much smaller 
area and each plant is either a recorded plant or a competing plant.  
 
Breese and Hill (1973) have applied regression analysis to data from competition diallel 
experiments with plant species. The basic linear model for diallelic competition has been 
studied by Rawlings (1974) that corresponds to the model for the diallel cross mating design 
with parents included. Pearce and Moore (1976) investigated reduction of experimental 
error in perennial crops, using adjustment by neighbouring plots. 
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Gomez and Gomez (1976) have investigated the effects of two widely different nitrogen 
levels on adjacent plots separated by a 40 cm non-planted alley. Nitrogen (120 kg/ha) was 
applied to some plots and no fertilizer to some plots and 28-row plots were arranged 
systematically in an alternating series. There were a total of 16 plots and each plot was 
bordered on one side by plot of the same nitrogen level (control) and on the other side by 
plot of a different level. Dyke and Shelley (1976) introduced serial designs that allow the 
independent estimation of the effects of treatments to neighbouring plots and have 
constructed serial designs based on computer program. The aim of the experiment was to 
study interference between plots with regard to spread of disease. Designs were obtained in 
which treatments appeared repeatedly in one or more chosen orders.  
 
Investigating the competition on individual plants, Mead (1979) observed that the response 
of individual plants varies depending on the number of competing plants. Further, it 
depends on differences in distances of the neighbours also. There is a difficulty in designing 
such experiments because when the distances of up to six neighbours are symmetrically 
varied, large number of possible patterns of neighbour arises. Freeman (1979) has obtained 
some two-dimensional designs balanced for nearest neighbours. Jenkyn et al. (1979) have 
investigated interactions between plots of spring barley with four spray treatments using the 
serially balanced design described by Dyke and Shelley (1976).  
 
Veevers and Zafar (1980) have studied balanced designs for two-component competition 
experiments on a square lattice. A set of design strings has been presented, any of which 
generates an efficient balanced design. When an intra-variety competition experiment is 
performed using an arrangement of plants and spaces on a regular lattice of sites, it is 
desirable for some purposes for the design to be balanced. That is, equal number of plants is 
immediately surrounded by equal number of each of the possible number of species. For an 
equilateral triangular lattice this can be 0,1,…,6 spaces, defining seven treatments that can 
be applied to a plant. A set of nineteen distinct binary strings have been presented by 
Veevers (1982), any of which can be used to generate balanced design which is easy to 
implement. 
 
Draper and Guttman (1980) have studied response surface models by incorporating overlap 
effects from neighbouring units. Kempton and Howes (1981) have used the neighbouring 
plot values in the analysis of variety trials. Kempton (1982) proposed a method of 
correcting for competition effects in yield trials by joint regression of plot yields on to the 
yields of neighbours. Estimation of the variety effects and competition coefficient along 
with tests of significance are described for a sugar-beet trial with single-row plots where 
competition effects are assumed to extend only to plants in immediately adjacent rows. 
Jenkyn et al. (1983) studied the effects of fungicide movement between plots in field 
experiments. The number of combinations for competition treatments increases rapidly as 
the number of treatments to be tested increases. Assuming that competition occurs only 
between the test plot and its immediate neighbouring plots on either side and that the effects 
are same for left or right-hand side arrangement, Lin et al. (1985) introduced a treatment 
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sequence and computer aided non-random designs. For three treatments (cultivars), the total 
number of competition treatments or triplets is 18. Since each treatment consists of three 
plots (one test plot plus two neighbouring plots), if conventional randomized block design is 
to be used, the number of plots required for one replication would be three times the above 
figure. This is not only a wastage of resources (2/3 of the plots will be discarded) but also 
impractical because it is hard to find homogeneous fields for such numbers. Sequence of 
these triplets were constructed by a computer program in 20 plots (i. e., 18 inner plots and 
two border plots). Kempton et al. (1986) conducted series of experiments to investigate the 
effects of interplot competition on grain yield among hexaploid triticale cultivars of widely 
differing heights grown in 1.5 m wide plots using a design balanced for nearest neighbours. 
 
Azais (1987) introduced a methodological study of the nature of competition on a given 
species. The plots were defined as lines of plants and treatments as genotypes. A line (plot) 
has only two neighbouring lines (plots). There will be no adjacencies (common neighbours) 
between plots of different blocks. Two assumptions viz. (a) the first order assumption in 
which variables measured on a line depend only on the genotype sown on that line 
(producer genotype) and the genotypes sown on the two neighbouring lines (the competitor 
genotypes), and (b) the symmetry assumption, in which the effect of a competitor does not 
depend on which side of the line it is sown, were introduced. Azais (1987) defined 
balancedness in block design for studying competition effects. A block design is balanced in 
the sense that every treatment has every other treatment appearing once as a right and once 
as a left neighbour. It means, every pair of treatments appears as neighbours equally often. 
Latin squares with this property were developed by Williams (1949). For even numbers, 
such Latin squares can be obtained easily whereas for odd numbers two Latin squares are to 
be used together to satisfy this property. Based on this property some methods of 
construction of neighbour balanced designs using Latin squares were attempted. When the 
neighbour effect is present on one side only, say from left-hand side, as caused by a 
prevailing wind, simply omit the right - hand border plot from every block. Randomization 
of these designs consists of allocation of a treatment number, randomizing the blocks and 
then randomizing each block independently by a circular interblock permutation. Langton 
(1990) have defined different types of edge effects on experimental plots and have shown 
that they are important in agroforestry experiments. Methods of eliminating edge effects 
either at the design or the analysis stage are described. 
 
Azais et al. (1993) obtained series of designs that are balanced in t -1 blocks of size t and t 
blocks of size t -1, where t is the number of treatments. Azais et al. (1993) also developed a 
program that generates these designs. Designs consisting of factors balanced for neighbour 
effect of one factor were developed by Monod and Bailey (1993). In their setup the 
treatments were levels of two factors and competition is exerted only by the levels of one 
factor. They have developed designs optimal for the estimation of direct treatment effects 
and competition effects. It was assumed for analysis that the competition effects were 
directional and that direct effects and competition effects from one side are additive. 
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Block designs balanced for neighbour effects have been found quite useful by 
experimenters because they lead to simplified analysis. But these cannot be justified on 
statistical grounds unless they possess some optimal statistical properties as well. David and 
Kempton (1996) have investigated experimental designs that control interference so that it 
can be ignored in subsequent analysis. David and Kempton (1996) proposed modified alpha 
designs for controlling interplot competition in variety trials.   
 
Azais and Druilhet (1997) have studied the optimality of neighbour balanced designs when 
neighbour effects are not taken into account in the analysis model. Raghavarao and Zhou 
(1998) have studied the universal optimality of 3-designs with unequal set sizes to estimate 
the effects in a competing effect model. Azais et al.  (1998) have investigated the influence 
of design on validity and efficiency of neighbour methods by simulation study. Optimality 
of neighbour balanced designs obtained by Azais et al. (1993) when neighbour effects are 
present in the model has been studied by Druilhet (1999). Bailey (2003) studied designs for 
one-sided neighbour effects and have presented table of designs with different block sizes. 
Bailey and Druilhet (2004) studied the optimality of neighbour balanced block design when 
neighbour effects are present in the model.  
 
• Designs with Carryover Effects 
Simplest design balanced for carryover or residual effects is a Latin square design with rows 
representing periods and columns representing experimental units with the assumption that 
no residual effect of treatments is present. It is however, desirable to allow for the 
possibility that residual effects exist. The designs for such situations are known in literature 
as change over designs, switchover trials, crossover designs, time series designs, before 
after designs, repeated measurements designs and designs involving sequences of 
treatments. 
 
Williams (1949) observed that the balanced repeated measurements designs for v treatments 
using v periods can be constructed in one Latin square for an even number of treatments and 
with two Latin squares for an odd number of treatments. Williams Latin square(s) are 
variance balanced designs in the sense that all elementary contrasts among direct effects of 
treatments are estimated with same variance and also all elementary contrasts among 
residual effects are estimated with same variance. These designs require that number of 
periods is equal to the number of treatments which is too severe a restriction when the 
number of treatment is large. Sometimes sufficient number of experimental units, required 
by a balanced design is not available. For such situations, a new class of designs called 
partially balanced repeated measurements designs was introduced by Patterson and Lucas 
(1962). Methods of constructing balanced, partially balanced, extra-period balanced and 
extra-period partially balanced repeated measurements designs were given by them. 
Another class of repeated measurements designs where treatment × period interactions are 
assumed to be present in place of residual effects has been given by Balaam (1968). These 
designs are obtained by taking all possible arrangements of v treatments as sequences of 
size two.  
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Berenblut (1964) developed a class of repeated measurements designs in which direct 
effects are orthogonal to first residuals as well as subject effects. These designs require v2 
units and 2v periods (v ≥  2) for testing v treatments. Patterson (1973) showed the 
Quenouille’s cyclic method of construction can be extended to designs for any number v of 
treatments, 2v periods and v2 units. Some of the restrictions imposed on the sequences of 
treatments by Berenblut have been improved by Patterson (1973). Design problems in the 
context of possible auto-correlations between observations were considered by Berenblut 
and Webb (1974). A design procedure was adopted involving the minimization of the 
generalized variance of estimates of parameters. Also, an explicit design was produced for 
the optimum settings of quantitative factors, under reasonably mild restrictions in block 
designs and time sequences. Takka and Armitage (1983) and Kunert (1985) have 
investigated models with auto-correlated errors, but they did not consider a residual term in 
these linear models.  Azzalini and Giovagnoli (1987) derived conditions for optimality for 
models without nuisance parameters, and also with covariates and with block effects. Model 
for responses in a crossover experiment that includes direct and first-order carryover 
treatment effects, together with an auto correlated error term, was considered by Mathews 
(1987) when there are two treatments. A method for generating designs that minimize the 
variance of the estimated treatment effects was proposed. Afsarinejad (1990) gave methods 
for construction of circular balanced minimal RMDs with minimum number of units for the 
case when v is prime number provided some basic divisibility conditions hold. Kunert 
(1991) derived optimal two-treatment crossover designs for experiments with many periods, 
when the observations are correlated and first order residual effects are present.  These 
designs are found to be highly efficient when the number of periods is large. Martin and 
Eccleston (1998) obtained some variance-balanced changeover designs from orthogonal 
arrays for many dependence structures. William and John (2007) have constructed some 
crossover designs with correlated errors. 
 
1.4.2 National Status 
• Designs with Correlated Errors 
Dey and Chakravarty (1977) have obtained some classes of incomplete neighbour designs 
using the method of symmetric differences. Gill and Shukla (1985) studied the efficiency of 
block designs for auto-regressive error structure. Das (1991) have studied the optimality of 
block designs under heteroscedastic (unequal variances) model. Das et al. (1992) studied E-
optimal block designs under heteroscedastic model. Shukla and Gill (1986) and Shukla 
(1994) have presented a detailed review of use of spatial information in the analysis of field 
experiments. A catalogue of neighbour balanced designs has been prepared in Parsad et al. 
(2004). Satpati (2006) developed the algorithm for computer aided search of efficient 
designs for various experimental settings, like block designs, nested block designs and 
change-over designs whenever the observations are dependent. Computer aided search of 
efficient nested incomplete block designs for correlated errors was done by Satpati et al. 
(2006). Satpati et al. (2007) have obtained the lower bound to the A-efficiency of block 
designs under correlated error structure and obtained efficient block designs for dependent 
observations through a computer-aided search.  
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Jaggi et al. (2008) studied experimental designs for the estimation of treatments when the 
observations are spatially correlated. Some methods of constructing block designs, block 
designs with neighbour effects and row-column designs have been developed for this 
situation. The performance of some existing designs has been studied under various 
correlation structures. 
 
• Designs with Systematic Trend 
Dhall (1986) studied the trend free incomplete block designs and prepared a catalogue of 
trend free BIB designs. Some trend free group divisible partially balanced incomplete block 
designs have also been given. Lal et al. (2005) obtained the condition for a general block 
design to be trend free under heteroscedastic model and prepared the catalogue of binary 
variance balanced block, balanced incomplete block and partially balanced incomplete 
block designs that are trend free. Sarkar (2008) studied the linear trend free designs under 
factorial setup and has given the computer aided search of these designs. 
 
• Designs with Neighbour/Interference Effects 
Subramanyam (1991) used 16 units in a sequence for four treatments. To reduce the number 
of triplets, triplets of the type AAA and ABA or BAB were used. Of the v2 treatments, 
(v+1)C2 were chosen and arranged in v blocks, each comprising  of 3(v+1C2) units.  Gill 
(1993) studied the design and analysis of field experiments in the presence of local and 
remote treatment effects. The design criteria considered were optimality and balance for 
estimating local and remote effects. Bhaumik (1995) has studied optimality in the 
competing effect model in the class of binary designs and has shown that for estimating the 
treatments and competing effects together, a 3-design is universally optimal. Kumar (1995) 
has also investigated the design and analysis of experiments for investigating competition 
effects among neighbouring units. The treatments were arranged in the form of sequences, 
each treatment being used both for estimating test treatment effect as well as the neighbour 
effects. The construction and analysis of designs based on these sequences making use of a 
factorial nature has been studied.  
 
Jaggi and Gupta (2003) investigated the problem of competition in agricultural experiments 
and have obtained some complete/incomplete balanced and partially balanced block designs 
for these situations. They also studied the optimality of block designs with competition 
effects both in complete and incomplete block settings under fixed effects model and 
obtained some optimal block designs. Tomar (2003) has developed some methods of 
constructing block designs balanced for neighbouring competition effects.  
 
Tomar et al. (2005) studied the problem of competition and obtained some methods of 
constructing totally balanced incomplete block designs for competition effects. Jaggi and 
Tomar (2005) investigated the robustness of neighbour balanced complete block designs 
when the observations within a block are correlated. The A-efficiency for direct and 
neighbour effects of the treatments under AR(1) and NN correlation structure has been 
computed and tabulated for some cases under one-sided neighbour effects and two-sided 
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neighbour effects when generalized least square estimation is used. Jaggi et al. (2006) have 
obtained some series of block designs partially balanced for neighbouring competition 
effects. Pateria (2006) obtained various classes of neighbour balanced designs and studied 
their optimal properties under fixed/ mixed effects model.  
 
Jaggi et al. (2007) studied optimal complete block designs for neighbouring competition 
effects. Tomar (2007) studied some aspects of neighbour balanced block designs for 
correlated observations. Pateria et al. (2007) proposed a series of incomplete non-circular 
block designs for competition effects. 
 
Sarika (2008) studied response surface designs incorporating neighbour effects. Sarika et al. 
(2008a) studied first order response surface model with neighbour effects from immediate 
left and right neighbouring units and the conditions have been derived for the orthogonal 
estimation of coefficients of this model. The variance of estimated response has also been 
obtained and conditions for first order response surface model with neighbour effects to be 
rotatable have been obtained. A method of obtaining designs satisfying the derived 
conditions was given. Second order response surface model in which the experimental units 
experience the neighbour effects has also been studied by Sarika et al. (2008b). Abeynayake 
(2008) studied neighbour balanced designs for making test treatments vs control 
comparisons under two-sided neighbour effect model and has discussed the robustness of 
balanced block designs against missing observation. 
 
• Designs with Carryover Effects 
Extra period designs have more significant use when higher precision is required for the 
estimation of carryover or residual and cumulative effects. Subsequently, these designs 
were studied by Saha (1970). He also obtained some classes of repeated measurements 
designs with number of periods more than two for estimating treatment × period interaction 
by taking a complete set of mutually orthogonal Latin squares. Sharma (1975) gave a 
simple method of construction of Williams Latin Square Designs balanced for the first order 
residual effects of treatments. Dey and Balachandran (1976) obtained a class of totally 
balanced designs by making designs circular by adding a pre-period consisting of the 
treatments in the last period. For v treatments a class of Repeated Measurements Designs 
(RMDs) balanced for first residual effects was given by Sharma (1981) using v 
experimental units and 2v periods. Sharma (1982) gave designs by repeating the treatments 
of the last period in the added extra period. Chawla (1983) developed some series of two 
factor symmetrical and asymmetrical split type factorial RMDs. Bora (1984, 1985) obtained 
the necessary and sufficient conditions for the designs to be balanced in presence of auto-
correlated errors. Yadav (1990) obtained some methods of construction of control balanced 
RMDs. 

 
Vijaya (1992) investigated two-treatment RMDs in the presence of time trends.  Varghese 
and Sharma (2000) constructed a series of totally balanced RMDs considering the presence 
of first order residual effects of treatments with parameters (v, p = 2v-1, n = v) and 
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compared their efficiencies with some of the existing designs. Sharma et al. (2002) 
established universal optimality of circular balanced change-over designs allowing the 
estimation of first and second order residual effects of treatments under an additive fixed 
effects model. A class of circular balanced change-over designs with parameters (v, p = 3v, 
n = v2) has been shown to be universally optimal for the estimation of direct, first order as 
well as second order residual effects. 
 
Sharma et al. (2003) gave a general method of construction of minimal balanced RMDs for 
odd number of treatments with parameters (v, p = (v+1)/2, n = 2v) along with an outline for 
their analysis. These designs are basically partially balanced designs for estimating direct 
and residual treatment effects. Bhattacharyya (2006) obtained efficient two-treatment 
RMDs when the errors are auto-correlated. A class of two-period totally balanced trend-free 
RMDs considering presence of first order residual effects has been developed by Gharde 
(2007). Gharde (2007) obtained two new classes of minimal strongly balanced RMDs 
assuming the presence of first order residual effects useful for the situations where 
experimental units or periods are scarce.  

 
1.5 Scope of the Study 
Proper planning, designing and analysis of experiments for testing the significance of 
treatment comparisons under different situations, results in drawing correct and valid 
inferences about the treatment effects. One of the requirements in the designing and analysis 
of data from comparative experiments is that the observations are independent. However, 
there may be experimental situations wherein the response from a unit may be affected by 
other units spatially or temporally belonging to the same cluster or group or block. It may 
be that the responses are correlated or that there is a systematic trend, or the response is 
affected by carryover effect from the units previously observed, or a neighbour effect from 
contiguous units. Under this situation, it is important that these indirect effects be included 
in the model to have the proper specification. The project aimed to study designs in the 
presence of indirect effects of treatments for different experimental situations. Designs 
considering more than one relationship between observations on units over time or space 
would be studied. For easy accessibility of these designs by the experimenters, it was 
required that these designs are compiled and presented at one place. Web-enabled useful 
classes of designs in the presence of indirect effects of treatments were required to be 
generated. An online catalogue of designs incorporating indirect effects of treatments has to 
be developed. The analytical procedures for designs in presence of indirect effects using 
live/ simulated data sets have to be illustrated.  
 
The project report is summarized in six chapters. An introduction to indirect effects and a 
brief review of work done in the area of experimental designs in the presence of indirect 
effects is given in the first chapter. Chapter II deals with several classes of design developed 
which are balanced/optimal in the presence of spatial indirect effects. Chapter III explains 
methodology as well as the different classes of designs developed which are 
balanced/optimal for spatial indirect effects in the presence of systematic trend. Several 
classes of Row-columns designs suitable for tackling the problem of spatial indirect effects 
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are given in Chapter IV. Chapter V gives a methodology as well as the designs developed 
for experimental situations where temporal indirect effect is suspected and also gives a class 
of designs which are balanced with respect to both spatial and temporal indirect effects. A 
web solution named Web Generation of Designs Balanced for Indirect Effects Treatments 
(Web DBIE) developed for the generation of designs balanced for spatial/temporal indirect 
effects is explained in details in Chapter VI. The report ends with a summary and 
references. 
 



Chapter II 

BLOCK DESIGNS BALANCED FOR SPATIAL 
INDIRECT EFFECTS 

 

 

2.1 Block Designs Balanced for Spatial Indirect Effects from Neighbouring 
Experimental Units at Distance 2 

 

The spatial indirect effects i.e. the interference effects may not only arise from the treatments 
applied to the immediate neighbouring units but also from the treatments applied to the units 
at higher distance. Hence, interference may not be restricted to immediately adjacent units 
but may extend further, as with the spread of inoculum in disease screening trials. Block 
designs balanced for interference effects at higher distance are thus needed. Iqbal et al. 
(2006), Mingyao et al. (2007), Akhtar and Ahmed (2009) etc. highlighted some aspects of 
block designs with interference effects from the neighbouring units at higher distance.  
 
Here, we have considered block model with interference effects arising from neighbouring 
units on both sides (left and right) at distance 2. The case of one-sided (say, left) interference 
effects from the neighbouring units up to distance 2 has been considered as a particular case. 
Methods of constructing series of complete/ incomplete block designs balanced for 
interference effects up to distance 2 have been discussed and their characterization properties 
have been investigated.  
 
2.1.1 Experimental Setup and Model 
We consider a class of block designs with v treatments, b blocks and n experimental units. 
The size of the jth (j = 1, 2,…, b) block is kj and the sth (s = 1, 2, …, v) treatment is replicated 
rs times. Let Yij be the response from the ith plot (i = 1, 2,…, kj) in the jth block. It is assumed 
that the experiment is conducted in small plots in well separated blocks with no guard areas 
between the plots in a block. The blocks are circular i.e., the treatment on the immediate left 
border plot is same as the treatment on the right end inner plot of the block and treatment on 
the left border plot at distance 2 (leaving one plot from the first plot of the block) is same as 
the treatment on the second last inner plot from the right side. Similarly, treatments on the 
immediate right border plot is same as the treatment on the left end inner plot of the block 
and treatment on the right border plot at distance 2 (leaving one plot from the last plot of the 
block) is same as the treatment on the second last inner plot from the left side. Following 
fixed effects additive model is considered for analyzing a block design with interference 
effects up to distance 2: 
 

 1 2 3 4μ ′ ′ ′ ′ ′ ′+ + +Y = 1 + Δ τ + Δ δ  + Δ γ Δ α Δ η D β  + e ,                                     … (2.1.1) 
 

where Y is a n × 1 vector of observations, μ is the general mean, 1 is a n × 1 vector of ones, 
′Δ  is a  n × v matrix of observations versus direct treatments, τ is a v × 1 vector of direct 
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treatment effects, 1′Δ  is a n × v matrix of observations versus interference effect from 

treatment on the immediate left neighbour units i.e. treatment at distance 1, δ is v × 1 vector 
of left neighbour interference effects at distance 1, 2′Δ  is a n × v incidence matrix of 
observations versus interference effect from treatment on the immediate right neighbour units 
i.e. treatment at distance 1, γ is v × 1 right neighbour interference effects at distance 1, 3′Δ  is 

a n × v incidence matrix of observations versus interference effect from left neighbour 
treatments at distance 2 (leaving one plot) α is v × 1 vector of left interference effects at 
distance 2, 4′Δ  is a n × v incidence matrix of observations versus interference effect from 

right neighbour treatments at distance 2, η is v × 1 vector of right neighbour interference 
effects at distance 2, D' is a n × b incidence matrix of observations versus blocks, β is a b × 1 
vector of block effects and e is a n × 1 vector of errors with e ~ N(0, σ2 In). 
 
Let, 

1ΔΔ ′  =   M1, v × v incidence matrix of direct treatments versus immediate left neighbour 
treatments, 

2′ΔΔ  =   M2, v × v incidence matrix of direct treatments versus immediate right neighbour 
treatments 

1 2′Δ Δ = M3, v × v incidence matrix of immediate left neighbour treatments versus immediate 
right neighbour treatments, 

3′ΔΔ  = M4, v × v incidence matrix of direct treatments versus left neighbour treatments at 
distance 2, 

4′ΔΔ  = M5, v × v incidence matrix of direct treatments versus right neighbour treatments at 
distance 2, 

1 3′Δ Δ  = M6, v × v incidence matrix of immediate left neighbour treatments versus left 
neighbour treatments at distance 2, 

1 4′Δ Δ  = M7, v × v incidence matrix of immediate left neighbour treatments versus right 
neighbour treatments at distance 2, 

2 3′Δ Δ  = M8, v × v incidence matrix of immediate right neighbour treatments versus left 
neighbour treatments at distance 2, 

2 4′Δ Δ  = M9, v × v incidence matrix of immediate right neighbour treatments versus right 
neighbour treatments at distance 2, 

3 4′Δ Δ  = M10, v × v incidence matrix of left neighbour treatments at distance 2 versus right 
neighbour treatments at distance 2, 

DΔ ′  =  N1, v × b incidence matrix of direct treatments versus blocks, 
DΔ ′1 = N2, v × b incidence matrix of immediate left neighbour treatments versus blocks, 

2 ′Δ D = N3, v × b incidence matrix of immediate right neighbour treatments versus blocks, 

3 ′Δ D = N4, v × b incidence matrix of left neighbour treatments at distance 2 versus blocks, 

4 ′Δ D = N5, v × b incidence matrix of right neighbour treatments at distance 2 versus blocks, 
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( )1 2 vr , r ,..., r ′=r  be the v × 1 replication vector of direct treatments with rs (s = 1, 2, …,v) 

being the number of times the sth treatment appears in the design, 

( )1 11 12 1vr ,r ,..., r ′=r  be the v × 1 replication vector of the immediate left neighbour treatments 

with r1s being the number of times the treatments in the design has sth treatment as 
immediate left neighbour, 

( )2 21 22 2vr , r ,..., r ′=r  be the v × 1 replication vector of the immediate right neighbour 

treatments with r2s being the number of times the treatments in the design has sth 
treatment as immediate right neighbour, 

( )3 31 32 3vr ,r ,..., r ′=r  be the v × 1 replication vector of the left neighbour treatments at distance 

2 with r3s being the number of times the treatments in the design has sth treatment as left 
neighbour at distance 2, 

( )4 41 42 4vr ,r ,..., r ′=r  be the v × 1 replication vector of the right neighbour treatments at 

distance 2 with r4s being the number of times the treatments in the design has sth treatment 
as right neighbour at distance 2, 

( )1 2 bk ,k ,..., k ′=k  be the b × 1 replication vector of the block sizes  

Rτ = diag (r1, r2, … , rv), Rδ = diag (r11,r12, … , r1v), Rγ = diag (r21,r22, … , r2v), Rα = diag 
(r31,r32, … , r3v), Rη = diag (r41,r42, … , r4v), K = diag (k1, k2, …, kb), 

[ ]1 2 vT ,T ,...,T ′=T , where Ts is the total of sth direct treatments,  

[ ]1 11 12 1vL ,L ,...,L ′=L , where L1s is the total of all the treatments that have sth treatment as 

immediate left neighbour, 

[ ]1 11 12 1v R ,R ,...,R ′=R , where R1s is the total of all the treatments that have sth treatment as 

immediate right neighbour, 

[ ]2 21 22 2vL ,L ,...,L ′=L , where L2s is the total of all the treatments that have sth treatment as 

left neighbour at distance 2, 

[ ]2 21 22 2v R ,R ,...,R ′=R , where R2s is the total of all the treatments that have sth treatment as 

right neighbour at distance 2, 

[ ]1 2 bB ,B ,...,B ′=B , where Bj is the jth block total and G = Grand total. 

 
The above model is rewritten as follows by writing parameter of interest first: 
 

           1 2 3 4 μ′ ′ ′ ′ ′ ′+ + +Y = Δ τ + Δ δ  + Δ γ Δ α Δ η  1 + D β  + e                                      … (2.1.2)  
 

This can also be written as: 
 

           1 1 2 2= + +Y X θ X θ e , 
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where 
 

           1 1 2 3 4′ ′ ′ ′ ′ =  X Δ Δ Δ Δ Δ , [ ]2 ′=X 1 D , 
 

           [ ]1
′′ ′ ′ ′ ′=θ τ δ γ α η  

 and    [ ]2 μ ′′=θ β .  
 

Minimization of the residual sum of squares with respect to θ1 and θ2 leads to the normal 
equations: 
 

          1 1 1 1 2 2 1
ˆ ˆ′ ′ ′+ =X X θ X X θ X Y  

           2 1 1 2 2 2 2
ˆ ˆ′ ′ ′+ =X X θ X X θ X Y                                                                            … (2.1.3) 

 

Solving the above equations, reduced normal equations for vector of parameters θ1 is 

1
ˆ =C θ Q , where  

 

            1 1 1 2 2 2 2 1 ( )−′ ′ ′ ′= −C X X X X X X X X ,                                                                  … (2.1.4) 
 

is the information matrix of θ1, 
 

         1 1 2 2 2 ( )−′ ′ ′ ′= − 2Q X Y X X X X X Y ,                                                                … (2.1.5) 
 

is the vector of adjusted treatment totals. −′ )( 22XX is a g-inverse of )( 22XX′  such that 

2 2 2 2 2 2 2( )−′ ′ ′ ′=2X X X X X X X X . 
 
Here, 

         

τ 1 2 4 51 2 3 4

1 δ 3 6 71 1 1 1 2 1 3 1 4

2 3 γ 8 91 1 2 2 1 2 2 2 3 2 4

4 6 8 α 103 3 1 3 2 3 3 3 4

5 7 9 10 η4 4 1 4 2 4 3 4 4

′ ′ ′ ′ ′ 
  ′′ ′ ′ ′ ′ 

′ ′ ′′ ′ ′ ′ ′ = =
  ′ ′ ′′ ′ ′ ′ ′ 
  ′ ′ ′ ′′ ′ ′ ′ ′ 

R M M M MΔΔ ΔΔ ΔΔ ΔΔ ΔΔ
M R M M MΔ Δ Δ Δ Δ Δ Δ Δ Δ Δ
M M R M MX X Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ
M M M R MΔ Δ Δ Δ Δ Δ Δ Δ Δ Δ
M M M M RΔ Δ Δ Δ Δ Δ Δ Δ Δ Δ

 
 
 
 
 
 
  

, 

 
 

        

1

1 21 1

1 2 2 32 2

3 43 3

4 54 4

′   
  ′   

′ ′   = =
  ′   
  ′   

r NΔ1 Δ D
r NΔ 1 Δ D

X X r NΔ 1 Δ D
r NΔ 1 Δ D
r NΔ 1 Δ D

 and 










 ′
=













′

′′′
=′

Kk

k

DDD1

D111
XX

n
22 . 

 

Thus, 2 2 1

0
( )−

−

′ ′ =  
 

0
X X

0 K
. 
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The 5v × 5v symmetric, nonnegative definite joint information matrix for estimating the 
direct effects of treatment and interference effects from the neighbouring units up to distance 
2 is obtained as:    
 

     

1 1 1 1 1
τ 1 1 1 1 2 2 1 3 4 1 4 5 1 5

1 1 1 1 1
1 2 1 δ 2 2 3 2 3 6 2 4 7 2 5

1 1 1 1 1
2 3 1 3 3 2 γ 3 3 8 3 4 9 3 5

1 1
4 4 1 6 4 2 8 4

− − − − −

− − − − −

− − − − −

− −

′ ′ ′ ′ ′− − − − −
′ ′ ′ ′ ′ ′− − − − −
′ ′ ′ ′ ′ ′ ′= − − − − −
′ ′ ′ ′ ′− − −

R N K N M N K N M N K N M N K N M N K N
M N K N R N K N M N K N M N K N M N K N

C M N K N M N K N R N K N M N K N M N K N
M N K N M N K N M N 1 1 1

3 α 4 4 10 4 5
1 1 1 1 1

5 5 1 7 5 2 9 5 3 10 5 4 η 5 5

− − −

− − − − −

 
 
 
 
 

′ ′ ′− − 
 ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − 

K N R N K N M N K N
M N K N M N K N M N K N M N K N R N K N

 

         11 12

21 22

 
=  

 

C C
C C

,                                                                                                    … (2.1.6) 

 

where  
 

 1
11 τ 1 1

− ′= −C R N K N , 
 

 1 1 1 1
12 1 1 2 2 1 3 4 1 4 5 1 5

− − − −′ ′ ′ ′ = − − − − C M N K N M N K N M N K N M N K N , 
 

1 1 1 1
δ 2 2 3 2 3 6 2 4 7 2 5

1 1 1 1
3 3 2 γ 3 3 8 3 4 9 3 5

22 1 1 1 1
6 4 2 8 4 3 α 4 4 10 4 5

1 1 1 1
7 5 2 9 5 3 10 5 4 η 5 5

− − − −

− − − −

− − − −

− − − −

′ ′ ′ ′ − − − −
 ′ ′ ′ ′ ′− − − − =  ′ ′ ′ ′ ′ ′− − − −


′ ′ ′ ′ ′ ′ ′− − − − 

R N K N M N K N M N K N M N K N
M N K N R N K N M N K N M N K N

C
M N K N M N K N R N K N M N K N
M N K N M N K N M N K N R N K N




. 

 
The information matrix for estimating the direct effects of treatment can be obtained as 
follows: 
 

          τ 11 12 22 21
−= −C C C C C                                                                                            … (2.1.7)  

where C-
22 is a g-inverse of C22. Similarly the information matrix for estimating the 

interference effects from the neighbouring units up to distance 2 can be obtained. 
 
From equation (2.1.5), the vector of adjusted treatment totals can be obtained as follows: 
  

         

1
1

1
1 2

1
1 3

1
2 4

1
2 5

−

−

−

−

−

 −
 − 
 = −
 

− 
 − 

T N K B
L N K B

Q R N K B
L N K B
R N K B

.                                                                                           … (2.1.8) 

 

Following are some general definitions associated with block designs with interference 
effects from the neighbouring units up to distance 2:    
 
Definition 2.1.1: A block design is balanced for interference effects from the neighbouring 
units up to distance 2, if every treatment has every other treatment as both left and right 
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neighbour up to distance 2 constant number of times (say, µ1). Further, a block design with 
both sided interference effects is strongly balanced if each treatment has every treatment 
including itself as both left and right neighbours up to distance 2 a constant number of times 
(say µ2). µ1 and µ2 may or may not be equal  
 
Definition 2.1.2: A block design with interference effects from neighbouring units up to 
distance 2 is called variance balanced if the variance of any estimated elementary contrast 
among the direct effects is constant (say V1), the variance of any estimated elementary 
contrast among the interference effects arising from the immediate left neighbouring units is 
constant (say V2), the variance of any estimated elementary contrast among the interference 
effects arising from the immediate right neighbouring units is constant (say V3), the variance 
of any estimated elementary contrast among the interference effects arising from the left 
neighbouring units at distance 2 is constant (say V4) and the variance of any estimated 
elementary contrast among the interference effects arising from the right neighbouring units 
at distance 2 is constant (say V5). A block design is totally balanced if V1 = V2 = V3 = V4 = 
V5. 
 
2.1.2 Block Designs Balanced for Interference Effects  
In this section, some methods of constructing complete and incomplete circular balanced and 
strongly balanced block designs with interference effects from the neighbouring units up to 
distance 2 have been described.  
 
Method 2.1.2.1: Let there be v (prime) treatments labeled as 0, 1, 2, …, v-1. A series of 
complete circular block design strongly balanced for interference effects up to distance 2 can 
be obtained by developing the blocks of the design as follows for all q = 0, 1, …, (v-1) and p 
= 1, 2, …, (v-1)/2: 
 

 q, q + p, q + 2p,…, q + (v-2)p, q + (v-1)p, q + (v-2)p,…, q + 2p, q + p, q, (modulo v) 
 

The parameters of the designs are v, b = v(v-1)/2, r = (v-1)(2v-1)/2, k = 2v-1, µ1 = v-1, and 
µ2 = (v-1)/2.  
 
For this class of designs,  

         ( )( ) ( )τ δ γ α η v b b

v-1 2v 1
, k 2v 1

2
−

= = = = = = −R R = R R R I K I I ,                       

         ( ) ( )1 2 3 4 5 6 7 8 9 10 v

v-1
2 ,

2
′= = = = = = = = = = −M M M M M M M M M M 11 I  

          ( ) ( )u u
v-1

4 v-1
2′′ ′= +  vN N I 11 , u, u´ = 1, 2, … 5                                             … (2.1.9)   

 

Hence, from equation (2.1.9), we can write: 
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         ( )
( )

1 1 1
τ 1 1 δ 2 2 γ 3 3

2
1 1

α 4 4 η 5 5 v

2v v-1
2v 1 v

− − −

− −

′ ′ ′− = − = −

′ ′ ′= − = − = − −  

R N K N R N K N R N K N

11R N K N R N K N I
                                 … (2.1.10) 

and   
 

        

( )
( )

1 1 1 1
1 1 2 2 1 3 3 2 3 4 1 4

1 1 1 1
5 1 5 6 2 4 7 2 5 8 3 4

1 1
9 3 5 10 4 5 v

v v-1
2v 1 v

− − − −

− − − −

− −

′ ′ ′ ′− = − = − = −

′ ′ ′ ′= − = − = − = −

′ ′ ′= − = − = − −  

M N K N M N K N M N K N M N K N
 M N K N  M N K N  M N K N  M N K N

11 M N K N  M N K N I

.            … (2.1.11) 

 

Thus, from Equation (2.1.6), the joint information matrix for estimating the direct as well as 
interference effects from the neighbouring units up to distance 2 can be obtained as: 
 

   

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

2

v v v v v

2

v v v v

2v v-1 v v-1 v v-1 v v-1 v v-1
2v 1 v 2v 1 v 2v 1 v 2v 1 v 2v 1 v

v v-1 2v v-1 v v-1 v v-1 v v-1
2v 1 v 2v 1 v 2v 1 v 2v 1 v

 

′ ′ ′ ′ ′         − − − − −         − − − − −         

′ ′ ′ ′       − − − −       − − − −       

=

11 11 11 11 11I I I I I

11 11 11 11I I I I

C

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

v

2

v v v v v

2

v v v v

2v 1 v

v v-1 v v-1 2v v-1 v v-1 v v-1
2v 1 v 2v 1 v 2v 1 v 2v 1 v 2v 1 v

v v-1 v v-1 v v-1 2v v-1
2v 1 v 2v 1 v 2v 1 v 2v 1

′ − −  

′ ′ ′ ′ ′         − − − − −         − − − − −         

′ ′ ′     − − − −     − − − −     

11 I

11 11 11 11 11I I I I I

11 11 11I I I I ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

v

2

v v v v v

v v-1
v 2v 1 v

v v-1 v v-1 v v-1 v v-1 2v v-1
2v 1 v 2v 1 v 2v 1 v 2v 1 v 2v 1 v

 
 
 
 
 
 
 
 
 
 
 

′ ′    −    −    
 ′ ′ ′ ′ ′          − − − − −         − − − − −           

11 11 I

11 11 11 11 11I I I I I

 

 
The information matrix for estimating the direct effects of treatment is  

               

               ( )( )
( )τ v

2v v-1 v-3
2v 5 v

′ = − −  
11C I , v > 3.                                                   … (2.1.12) 

 
The variance of estimated elementary contrast pertaining to direct effects of treatments is thus 
obtained as 
 

             ( ) ( )
( )( )

2
s s 1

2v 5
ˆ ˆV τ -τ V σ ; s,s 1,2,..., v

v v-1 v-3′

−
′= = ∀ =                                        … (2.1.13) 

 
Similarly, the information matrix for estimating the immediate left interference effects, 
immediate right interference effects, left interference effects of treatments at distance 2 and 
right interference effects at distance 2 from the neighbouring units are obtained as 
 

            ( )( )
( )δ γ α η v

2v v-1 v-3
2v 5 v

′ = = = = − −  
11C C C C I , v > 3.                                    … (2.1.14) 
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The design is thus variance balanced for estimating the contrast pertaining to direct effects of 
treatments and interference effects from the neighbouring units up to distance 2. Also, since 
V1 = V2= V3 = V4 = V5 the series obtained is totally balanced for estimating the contrasts 
pertaining to direct effects of treatments and interference effects up to distance 2. 
 
Example 2.1.2.1: For v = 5, following is a strongly balanced complete block design with 
interference effects up to distance 2 from the neighbouring unit with v = 5, b = 10, r = 18, k = 
9, µ1= 4, µ2 = 2: 
 

0 1 2 3 4 3 2 1 0 
1 2 3 4 0 4 3 2 1 
2 3 4 0 1 0 4 3 2 
3 4 0 1 2 1 0 4 3 
4 0 1 2 3 2 1 0 4 
0 2 4 1 3 1 4 2 0 
1 3 0 2 4 2 0 3 1 
2 4 1 3 0 3 1 4 2 
3 0 2 4 1 4 2 0 3 
4 1 3 0 2 0 3 1 4 

 
Remark 2.1.2.1: For the above class of design, when interference effects from only one side 
say, left neighbouring units are considered, the information matrices for estimating direct 
effects and information matrices for estimating interference effects from the neighbouring 
units up to distance 2 can be obtained as: 
 

                ( )( )
( )τ δ γ v

2v v-1 v-2
2v 3 v

′ = = = − −  
11C C C I , v > 2.                                        … (2.1.15) 

 
A series of incomplete block design strongly balanced for interference effects can also be 
obtained by developing the blocks of the design as follows for all q = 0, 1, …, (v-1) and p = 
1, 2, …, (v-1)/2: 
 

    q, q + p, q + 2p,…, q + (v-3)p, q + (v-2)p, q + (v-3)p,…, q + 2p, q + p, q, (modulo v) 

 
The parameters of the designs are v, b = v(v-1)/2, r = (v-1)(2v-3)/2, k = 2v-3, µ1 = v-2, and 
µ2 = (v-1)/2. For this class of designs: 
 

            ( )( ) ( )τ δ γ α η v b b

v-1 2v 3
, k 2v 3

2
−

= = = = = = −R R = R R R I K I I , 

            ( ) ( )
1 2 3 4 5 6 7 8 9 10 v

v-3
v-2

2
′= = = = = = = = = = −M M M M M M M M M M 11 I , 

            ( ) ( )2
vu u

5v 9
2 v-2

2′
− ′′ ′= +N N 11 I , u, u´ = 1, 2, … 5                                    … (2.1.16)               
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Hence, we obtain  
 

            ( )
( )

1 1 1
τ 1 1 δ 2 2 γ 3 3

2
1 1

α 4 4 η 5 5 v

2v v-2
2v 3 v

− − −

− −

′ ′ ′− = − = −

′ ′ ′= − = − = − −  

R N K N R N K N R N K N

11R N K N R N K N I
                              … (2.1.17) 

and  

            

( )
( )

1 1 1
1 1 2 2 1 3 3 2 3

1 1 1
4 1 4 5 1 5 6 2 4

1 1 1
7 2 5 8 3 4 9 3 5

1
10 4 5 v

v v-2
2v 3 v

− − −

− − −

− − −

−

′ ′ ′− = − = −

′ ′ ′= − = − = −

′ ′ ′= − = − = −

′ ′= − = − −  

M N K N M N K N M N K N
M N K N  M N K N  M N K N
 M N K N  M N K N  M N K N

11 M N K N I

.                                   … (2.1.18) 

 

Thus, the joint information matrix for estimating the direct as well as interference effects 
from the neighbouring units up to distance 2 can be obtained as 
 

    

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

2

v v v v v

2

v v v v

2v v-2 v v-2 v v-2 v v-2 v v-2
2v 3 v 2v 3 v 2v 3 v 2v 3 v 2v 3 v

v v-2 2v v-2 v v-2 v v-2 v v-2
2v 3 v 2v 3 v 2v 3 v 2v 3 v

 

′ ′ ′ ′ ′         − − − − −         − − − − −         

′ ′ ′ ′       − − − −       − − − −       

=

11 11 11 11 11I I I I I

11 11 11 11I I I I

C

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

v

2

v v v v v

2

v v v v

2v 3 v

v v-2 v v-2 2v v-2 v v-2 v v-2
2v 3 v 2v 3 v 2v 3 v 2v 3 v 2v 3 v

v v-2 v v-2 v v-2 2v v-2
2v 3 v 2v 3 v 2v 3 v 2v 3

′ − −  

′ ′ ′ ′ ′         − − − − −         − − − − −         

′ ′ ′     − − − −     − − − −     

11 I

11 11 11 11 11I I I I I

11 11 11I I I I ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

v

2

v v v v v

v v-2
v 2v 3 v

v v-2 v v-2 v v-2 v v-2 2v v-2
2v 3 v 2v 3 v 2v 3 v 2v 3 v 2v 3 v

 
 
 
 
 
 
 
 
 
 
 

′ ′    −    −    
 ′ ′ ′ ′ ′          − − − − −         − − − − −           

11 11 I

11 11 11 11 11I I I I I

    

 

The information matrix for estimating the direct effects of treatment is 
 

               ( )( )
( )τ v

2v v-2 v-4
2v 7 v

′ = − −  
11C I , v > 4.                                                          … (2.1.19) 

 
Similarly, the information matrix for estimating the immediate left interference effects, 
immediate right interference effects, left interference effects at distance 2 and right 
interference effects at distance 2 respectively from the neighbouring units are obtained as 
 

                  ( )( )
( )δ γ α η v

2v v-2 v-4
2v 7 v

′ = = = = − −  
11C C C C I , v > 4.                             … (2.1.20) 

 
The series of design thus obtained is also totally balanced for estimating the contrast 
pertaining to direct effects of treatments and interference effects from the neighbouring units 
up to distance 2.  
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Example 2.1.2.2: For v = 5, following is a strongly balanced incomplete block design with 
interference effects up to distance 2 from the neighbouring units with v = 5, b = 10, r = 14, k 
= 7, µ1= 3, µ2 = 2: 
 

0 1 2 3 2 1 0 
1 2 3 4 3 2 1 
2 3 4 0 4 3 2 
3 4 0 1 0 4 3 
4 0 1 2 1 0 4 
0 2 4 1 4 2 0 
1 3 0 2 0 3 1 
2 4 1 3 1 4 2 
3 0 2 4 2 0 3 
4 1 3 0 3 1 4 

 
Remark 2.1.2.2: For the above class of designs, when interference effects from only one side 
say, left neighbouring units are considered, the information matrices for estimating direct 
effects and information matrices for estimating interference effects from the neighbouring 
units up to distance 2 are obtained as: 
 

                ( )( )
( )τ δ γ v

2v v-2 v 3
2v 5 v

− ′ = = = − −  
11C C C I , v > 3.                                   … (2.1.21) 

 
Method 2.1.2.2: The designs obtained by Azais et al. (1993) in v-1 blocks of size v (> 5) 
each are shown to be balanced for interference effects up to distance 2. These designs for v 
(prime) treatments are obtained by arranging the contents of the v-1 complete blocks of the 
design by writing the treatments in systematic order within a block with a difference of 
1,2,…,v-1 between the treatments (modulo v) in the consecutive blocks. The first block is 
formed by taking the difference of one between treatments, the second block by taking the 
difference of two and so on, the (v-1)th block by taking the difference of (v-1). The series of 
complete block design is balanced for interference effect up to distance 2 with parameters v = 
k, b = (v-1) = r, µ1= 1. 
 
For this class of designs: 
             ( )τ δ γ α η v b bv-1 , k v = = = = = =R R = R R R I K I I , 

             ( )1 2 3 4 5 6 7 8 9 10 v′= = = = = = = = = = −M M M M M M M M M M 11 I , 

               ( )u u v-1′′ ′=N N 11 ,  u, u´ = 1, 2, … 5                                                           … (2.1.22) 

 

Hence,  
         

            ( )

1 1 1 1
τ 1 1 δ 2 2 γ 3 3 α 4 4

1
η 5 5 vv-1

v

− − − −

−

′ ′ ′ ′− = − = − = −

′ ′= − = −  

R N K N R N K N R N K N R N K N

11R N K N I                  … (2.1.23) 
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and  

        

        

1 1 1 1
1 1 2 2 1 3 3 2 3 4 1 4

1 1 1 1
5 1 5 6 2 4 7 2 5 8 3 4

1 1
9 3 5 10 4 5 vv

− − − −

− − − −

− −

′ ′ ′ ′− = − = − = −

′ ′ ′ ′= − = − = − = −

′ ′ ′= − = − = −  

M N K N M N K N M N K N M N K N
 M N K N  M N K N  M N K N  M N K N

11 M N K N  M N K N I

.            … (2.1.24) 

 

The joint information matrix for estimating the direct as well as interference effects from the 
neighbouring units up to distance 2 can be obtained as: 
 

          

( )

( )

( )

v v v v v

v v v v v

v v v v

v-1
v v v v v

v-1
v v v v v

 v-1
v v v v v

′ ′ ′ ′ ′         − − − − −         
         
′ ′ ′ ′ ′         − − − − −         

         
′ ′ ′ ′ ′       = − − − − −       

       

11 11 11 11 11I I I I I

11 11 11 11 11I I I I I

11 11 11 11 11C I I I I I

( )

( )

v

v v v v v

v v v v v

v-1
v v v v v

v-1
v v v v v

 
 
 
 
 
 
  
  

  
 ′ ′ ′ ′ ′         − − − − −          

          
 ′ ′ ′ ′ ′         − − − − −          

          

11 11 11 11 11I I I I I

11 11 11 11 11I I I I I

 

   

The information matrix for estimating the direct effects of treatments is 
 

            ( )
( )τ v

v v-5
v-4 v

′ = − 
 

11C I , v > 5.                                                                     … (2.1.25) 

 

Similarly, the information matrix for estimating the immediate left interference effects, 
immediate right neighbour effects, left interference effects at distance 2, and right 
interference effects at distance 2 respectively from the neighbouring units is 
          

            ( )
( )δ γ α η v

v v-5
v-4 v

′ = = = == − 
 

11C C C C I , v > 5.                                       … (2.1.26) 

 

Hence the series of design obtained is totally balanced for estimating the contrasts pertaining 
to direct effects of treatments and interference effects arising from the neighbouring units up 
to distance 2.  
 
Example 2.1.2.3: For v = 7, following is a complete block design balanced for both sided 
interference effects from the neighbouring units up to distance 2 with parameters v = 7 = k, b 
= 6 = r, µ1= 1: 
 

1 2 3 4 5 6 0 

1 3 5 0 2 4 6 
1 4 0 3 6 2 5 
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1 5 2 6 3 0 4 
1 6 4 2 0 5 3 
1 0 6 5 4 3 2 

 
Remark 2.1.2.3: For the above class of design, when interference effects from only one side 
say, left neighbouring units are considered, the information matrices for estimating direct 
effects and information matrices for estimating interference effects from the neighbouring 
units up to distance 2 can be obtained as: 
 

                ( )
( )τ δ γ v

v v-3
v-2 v

′ = = = − 
 

11C C C I , v > 3.                                                  … (2.1.27) 

 
Remark 2.1.2.4: For the above class of designs, we can generalize the result by taking 
interference effects up to distance h (1 ≤ h ≤ k-1). The information matrix for estimating the 
direct effects and interference effects is thus obtained as follows: 
 

                 
( )

( ) v

v v- 2h + 1
v-2h v

  ′  = − 
 

11C I , v > (2 h + 1).                                            … (2.1.28) 

 
Method 2.1.2.3: Tomar et al. (2005) obtained a series of block design balanced for adjacent 
left and right neighboring units for v = mt + 1 [prime or prime power (m > 3)], b = tv, r = mt, 
k = m and µ1= 1 by developing following initial blocks modulo v and augmenting the whole 
set of blocks generated from each initial block one after another: 
 
                 x w, x w + t, x w + 2t, … x w + (m-1) t  ;   for w = 0,1, … , t-1, 

 

where x is the primitive element of GF (v). This class of design is also found to be balanced 
for interference effects from neighbouring units up to distance 2.  
 
For this class of designs: 
 

             ( )τ δ γ α η v bv-1 , k= = = = =R R = R R R I K I ,              

             ( )1 2 3 4 5 6 7 8 9 10 v′= = = = = = = = = = −M M M M M M M M M M 11 I , 

               ( ) ( )vu u v -k k - 1′′ ′= +N N I 11 , u, u´ = 1, 2, … 5                                         … (2.1.29) 
 

Hence,     
 

              ( )

1 1 1
τ 1 1 δ 2 2 γ 3 3

1 1
α 4 4 η 5 5

v k-1
k v

− − −

− −

′ ′ ′− = − = −

′ ′ ′= − = − = −  
v

R N K N R N K N R N K N

11R N K N R N K N I
                                 … (2.1.30) 

 

and  
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1 1 1
1 1 2 2 1 3 3 2 3

1 1 1
4 1 4 5 1 5 6 2 4

1 1 1
7 2 5 8 3 4 9 3 5

1
10 4 5 v

v
k v

− − −

− − −

− − −

−

′ ′ ′− = − = −

′ ′ ′= − = − = − =

′ ′ ′− = − = −

′ ′= − = −  

M N K N M N K N M N K N
M N K N  M N K N  M N K N

 M N K N  M N K N  M N K N
11 M N K N I

                                 … (2.1.31) 

 

Thus, the joint information matrix for estimating the direct as well as interference effects 
from the neighbouring units up to distance 2 can be obtained as: 
 

          

( )

( )

( )

v v v v

v v v v

v v

v k-1 v v v v
k v k v k v k v k v

v k-1v v v v
k v k v k v k v k v

v k-1v v 
k v k v k

′ ′ ′ ′ ′         − − − − −         
         

′ ′ ′ ′ ′         − − − − −         
         

′ ′ ′   = − − −   
   

v

v

v

11 11 11 11 11I I I I I

11 11 11 11 11I I I I I

11 11 11C I I I

( )

( )

v v

v v v v

v v v v

v v
v k v k v

v k-1v v v v
k v k v k v k v k v

v k-1v v v v
k v k v k v k v k v








′ ′     − −     
     

′ ′ ′ ′ ′         − − − − −         
         

′ ′ ′ ′ ′         − − − − −         
         

v

v

11 11I I

11 11 11 11 11I I I I I

11 11 11 11 11I I I I I








 
 
 
 
 
 
 
 
 

 

    
Thus, the information matrix for estimating the direct effects of treatments is 
 

              ( )
( )τ v

v k-5
k-4 v

′ = − 
 

11C I , k > 5.                                                                      … (2.1.32) 

 
Similarly,          

                ( )
( )δ γ α η v

v k-5
k-4 v

′ = = = = − 
 

11C C C C I , k > 5.                                          … (2.1.33) 

 

The series is also totally balanced for estimating the contrast pertaining to direct effects of 
treatments and interference effects from the neighbouring units up to distance 2.  
 
Example 2.1.2.4: Let m = 6, t = 2, then the following two initial blocks modulo 11 for w = 0 
and w = 1 are obtained: 

1 4 3 12 9 10 and 2 8 6 11 5 7 
 
 

Developing these blocks, we obtain the following totally balanced circular incomplete block 
design with interference effects up to distance 2 from the neighbouring units and with v = 13, 
b = 26, r = 12, k = 6, µ1= 1: 
 

1 4 3 12 9 10 
2 5 4 0 10 11 
3 6 5 1 11 12 
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4 7 6 2 12 0 
5 8 7 3 0 1 
6 9 8 4 1 2 
7 10 9 5 2 3 
8 11 10 6 3 4 
9 12 11 7 4 5 

10 0 12 8 5 6 
11 1 0 9 6 7 
12 2 1 10 7 8 
0 3 2 11 8 9 
2 8 6 11 5 7 
3 9 7 12 6 8 
4 10 8 0 7 9 
5 11 9 1 8 10 
6 12 10 2 9 11 
7 0 11 3 10 12 
8 1 12 4 11 0 
9 2 0 5 12 1 

10 3 1 6 0 2 
11 4 2 7 1 3 
12 5 3 8 2 4 
0 6 4 9 3 5 
1 7 5 10 4 6 

 
Remark 2.1.2.5: For the above class of design, when interference effects from only one side 
say, left neighbouring units are considered, the information matrices for estimating direct 
effects and information matrices for estimating interference effects from the neighbouring 
units up to distance 2 is obtained as: 

                ( )
( )τ δ γ v

v k-3
k-2 v

′ = = = − 
 

11C C C I , k > 3.                                                   … (2.1.34) 

 
Remark 2.1.2.6: The above class is generalized by taking interference effects up to distance 
h (1 ≤ h ≤ k-1). The information matrix for estimating the direct effects and interference 
effects is thus obtained as follows: 
 

                
( )

( ) v

v k- 2h + 1
k-2h v

  ′  = − 
 

11C I , k > (2 h + 1)                                              … (2.1.35) 

 
2.1.3 Analysis of Experimental Data of Block Design when Treatments Exhibit 

Neighbour Effects 
In this section, we have given the analysis of block design with neighbour effects arising 
from adjacent units on both sides (left and right) at distance 2 as in field experiment it is 
generally assumed that neighbour effects beyond distance 2 are negligible. The experimental 
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set up has been defined and the method of analysis has been illustrated for 11 genotypes 
under complete blocking situation using simulated data. A Multiple range comparison among 
genotype effects in the presence of all other effects using Tukey-Kramer test has also been 
performed using SAS 9.3.  
 
We consider the fixed effects additive model as given in (2.1.1) for analyzing a block design 
with second order interference effects. Under this set up with second order neighbour effects, 
there are six different source of variability viz. block, treatment, left neighbour effects of 
treatments, right neighbour  effects of treatments, second order left neighbour effects  of 
treatments and second order right neighbour effects of treatments. The split up of sources of 
variation and degrees of freedom is shown in the ANOVA Table 2.1.1 with respect to block 
design involving treatments exhibiting neighbour effects up to distance 2. 
 
Table 2.1.1: Sources of variation and degrees of freedom under block design set up involving 

treatments exhibiting second order neighbour effects  
 

Sources of variation Degrees of freedom 
Block b – 1 
Treatments (Adjusted for all the neighbour effects) v – 1 
Immediate left neighbour (Adjusted for direct effect and other 
neighbour effects 

v – 1 

Immediate right neighbour (Adjusted for direct effect and 
other neighbour effects 

v – 1 

Second order left neighbour (Adjusted for direct effect and 
other neighbour effects 

v – 1 

Second order right neighbour (Adjusted for direct effect and 
other neighbour effects 

v – 1 

Error By subtraction 
Total n – 1 

 
Here, v is the number of treatments and n is the total number of observations. Since the direct 
effect of treatments and all its neighbour effects cannot be partitioned orthogonally, one must 
adjust each of the effects for all other effects. PROC GLM in SAS 9.3 facilitates this 
aportioning by mentioning SS2 (Sum of squares of type II) in the model statement. More 
importantly, one must use a variance balanced design to get comparison among each of the 
effects equally precisely. 
 
Illustration: Consider an agricultural experiment for comparing 11 genotypes with respect to 
their yield. The genotypes tried in the experiment are highly competitive in nature. In order to 
see whether the response (i.e, yield) is affected significantly by the effects of neighbouring 
genotypes, the experiment was laid out in 10 complete blocks based on the designs obtained 
by Method 2.1.2.2.  Following is the layout of the experiment along with simulated data set: 
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Block 1 1.90 
(11) 

8.00 
(1) 

2.50 
(2) 

1.11 
(3) 

6.90 
(4) 

2.42 
(5) 

6.45 
(6) 

14.52 
(7) 

29.03 
(8) 

10.00 
(9) 

7.60 
(10) 

Block 2 9.12 
(2) 

8.11 
(4) 

7.37 
(6) 

3.69 
(8) 

2.76 
(10) 

10.00 
(1) 

2.02 
(3) 

1.81 
(5) 

19.96 
(7) 

13.31 
(9) 

10.64 
(11) 

Block 3 5.13 
(6) 

1.87 
(9) 

8.00 
(1) 

7.26 
(4) 

1.61 
(7) 

8.06 
(10) 

16.13 
(2) 

25.34 
(5) 

7.60 
(8) 

22.81 
(11) 

41.06 
(3) 

Block 4 6.76 
(8) 

12.01 
(1) 

8.00 
(5) 

2.07 
(9) 

20.74 
(2) 

12.44 
(6) 

9.68 
(10) 

53.22 
(3) 

35.48 
(7) 

28.39 
(11) 

9.46 
(4) 

Block 5 25.92 
(4) 

41.47 
(9) 

8.29 
(3) 

14.52 
(8) 

1.61 
(2) 

3.23 
(7) 

11.01 
(1) 

11.09 
(6) 

15.84 
(11) 

63.36 
(5) 

95.04 
(10) 

Block 6 9.00 
(1) 

3.87 
(7) 

1.94 
(2) 

17.42 
(8) 

9.95 
(3) 

49.77 
(9) 

31.10 
(4) 

11.46 
(10) 

76.03 
(5) 

19.01 
(11) 

13.31 
(6) 

Block 7 93.14 
(3) 

16.93 
(10) 

21.77 
(6) 

36.29 
(2) 

3.63 
(9) 

4.84 
(5) 

46.01 
(1) 

11.83 
(8) 

16.56 
(4) 

49.67 
(11) 

62.09 
(7) 

Block 8 67.58 
(5) 

43.01 
(2) 

21.50 
(10) 

4.30 
(7) 

19.35 
(4) 

50.00 
(1) 

40.01 
(9) 

13.69 
(6) 

10.95 
(3) 

60.83 
(11) 

20.28 
(8) 

Block 9 12.44 
(10) 

16.59 
(8) 

33.18 
(6) 

36.50 
(4) 

41.06 
(2) 

47.90 
(11) 

59.88 
(9) 

89.81 
(7) 

8.16 
(5) 

9.07 
(3) 

14.01 
(1) 

Block 
10 

14.51 
(7) 

64.51 
(6) 

24.19 
(5) 

6.91 
(4) 

1.15 
(3) 

2.53 
(2) 

14.01 
(1) 

19.01 
(11) 

76.03 
(10) 

80.00 
(9) 

18.00 
(8) 

*Numbers in the parenthesis indicate genotypes 
 
The above design is first analyzed as a complete block design with 11 treatments in 10 
complete blocks without considering the interference effects from neighbouring units and the 
result is as shown below. 
  
Output of SAS 9.3 after performing ANOVA  
 

Source DF Sum of Squares Mean Square F Value Pr > F 
Model 19 12785.066 672.898 1.41 0.1410 
Error 90 42865.987 476.289     
Total 109 55651.053       

 
Source DF Type III SS Mean Square F Value Pr > F 
Block 9 9899.089 1099.899 2.31 0.0219 
Treat 10 2885.977 288.598 0.61 0.8050 

 
The same design is to be now analyzed considering the effects of neighbouring units. The 
SAS code and the output are now given. 
 
SAS code for ANOVA (Type II) using proc glm considering neighbour effects from both 
left and right side upto distance 2 
 

Data nbbd; 
Input  block  treat  left_ne_dist_one  left_ne_dist_two  right_ne_dist_one  right_ne_dist_two
 yld; 
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Cards; 
1 1 11 10 2 3 8.00 
1 2 1 11 3 4 2.50 
1 3 2 1 4 5 1.11 
1 4 3 2 5 6 6.90 
1 5 4 3 6 7 2.42 
1 6 5 4 7 8 6.45 
1 7 6 5 8 9 14.52 
1 8 7 6 9 10 29.03 
1 9 8 7 10 11 10.00 
1 10 9 8 11 1 7.60 
1 11 10 9 1 2 1.90 
2 1 10 8 3 5 10.00 
2 2 11 9 4 6 9.12 
2 3 1 10 5 7 2.02 
2 4 2 11 6 8 8.11 
2 5 3 1 7 9 1.81 
2 6 4 2 8 10 7.37 
2 7 5 3 9 11 19.96 
2 8 6 4 10 1 3.69 
2 9 7 5 11 2 13.31 
2 10 8 6 1 3 2.76 
2 11 9 7 2 4 10.64 
3 1 9 6 4 7 8.00 
3 2 10 7 5 8 16.13 
3 3 11 8 6 9 41.06 
3 4 1 9 7 10 7.26 
3 5 2 10 8 11 25.34 
3 6 3 11 9 1 5.13 
3 7 4 1 10 2 1.61 
3 8 5 2 11 3 7.60 
3 9 6 3 1 4 1.87 
3 10 7 4 2 5 8.06 
3 11 8 5 3 6 22.81 
4 1 8 4 5 9 12.01 
4 2 9 5 6 10 20.74 
4 3 10 6 7 11 53.22 
4 4 11 7 8 1 9.46 
4 5 1 8 9 2 8.00 
4 6 2 9 10 3 12.44 
4 7 3 10 11 4 35.48 
4 8 4 11 1 5 6.76 
4 9 5 1 2 6 2.07 
4 10 6 2 3 7 9.68 
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4 11 7 3 4 8 28.39 
5 1 7 2 6 11 11.01 
5 2 8 3 7 1 1.61 
5 3 9 4 8 2 8.29 
5 4 10 5 9 3 25.92 
5 5 11 6 10 4 63.36 
5 6 1 7 11 5 11.09 
5 7 2 8 1 6 3.23 
5 8 3 9 2 7 14.52 
5 9 4 10 3 8 41.47 
5 10 5 11 4 9 95.04 
5 11 6 1 5 10 15.84 
6 1 6 11 7 2 9.00 
6 2 7 1 8 3 1.94 
6 3 8 2 9 4 9.95 
6 4 9 3 10 5 31.10 
6 5 10 4 11 6 76.03 
6 6 11 5 1 7 13.31 
6 7 1 6 2 8 3.87 
6 8 2 7 3 9 17.42 
6 9 3 8 4 10 49.77 
6 10 4 9 5 11 11.46 
6 11 5 10 6 1 19.01 
7 1 5 9 8 4 46.01 
7 2 6 10 9 5 36.29 
7 3 7 11 10 6 93.14 
7 4 8 1 11 7 16.56 
7 5 9 2 1 8 4.84 
7 6 10 3 2 9 21.77 
7 7 11 4 3 10 62.09 
7 8 1 5 4 11 11.83 
7 9 2 6 5 1 3.63 
7 10 3 7 6 2 16.93 
7 11 4 8 7 3 49.67 
8 1 4 7 9 6 50.00 
8 2 5 8 10 7 43.01 
8 3 6 9 11 8 10.95 
8 4 7 10 1 9 19.35 
8 5 8 11 2 10 67.58 
8 6 9 1 3 11 13.69 
8 7 10 2 4 1 4.30 
8 8 11 3 5 2 20.28 
8 9 1 4 6 3 40.01 
8 10 2 5 7 4 21.50 
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8 11 3 6 8 5 60.83 
9 1 3 5 10 8 14.01 
9 2 4 6 11 9 41.06 
9 3 5 7 1 10 9.07 
9 4 6 8 2 11 36.50 
9 5 7 9 3 1 8.16 
9 6 8 10 4 2 33.18 
9 7 9 11 5 3 89.81 
9 8 10 1 6 4 16.59 
9 9 11 2 7 5 59.88 
9 10 1 3 8 6 12.44 
9 11 2 4 9 7 47.90 
10 1 2 3 11 10 14.01 
10 2 3 4 1 11 2.53 
10 3 4 5 2 1 1.15 
10 4 5 6 3 2 6.91 
10 5 6 7 4 3 24.19 
10 6 7 8 5 4 64.51 
10 7 8 9 6 5 14.51 
10 8 9 10 7 6 18.00 
10 9 10 11 8 7 80.00 
10 10 11 1 9 8 76.03 
10 11 1 2 10 9 19.01 
 
; 
PROC glm; 
Class  block treat left_ne_dist_one   left_ne_dist_two  right_ne_dist_one right_ne_dist_two; 
Model yld  = block treat left_ne_dist_one left_ne_dist_two     right_ne_dist_one
 right_ne_dist_two/ss2; 
lsmeans treat/pdiff adjust=tukey lines; 
Run; 
quit; 
 
SAS Output 
 

The GLM Procedure 
  

Dependent Variable: yld  
 

Source DF Sum of Squares Mean Square F Value Pr > F 
Model 59 45483.999 770.915 3.79 <.0001 
Error 50 10167.053 203.341     
Total 109 55651.052       
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Source DF Type II SS Mean Square F Value Pr > F 
Block 9 9899.088 1099.899 5.41 <.0001 
Treat 10 5831.419 583.142 2.87 0.0067 
left_ne_dist_one 10 9706.325 970.632 4.77 <.0001 
left_ne_dist_two 10 13347.284 1334.729 6.56 <.0001 
right_ne_dist_one 10 8688.005 868.800 4.27 0.0003 
right_ne_dist_two 10 9202.507 920.251 4.53 0.0001 

*ANOVA type II was performed to get the adjusted effects of genotypes and all other neighbour effects 
 

Tukey-Kramer Comparison Lines for Least Squares Means of Genotype effects 
 

Genotype LS Means 
1 10.38b 
2 12.56ab 
3 21.89ab 
4 18.33ab 
5 28.55ab 
6 19.06ab 
7 25.44ab 
8 15.40ab 
9 31.37ab 
10 29.77ab 
11 33.28a 

* Genotypes with same letter are not significantly different 

 
Initially, the data was analysed by using the usual two-way Analysis of Variance technique 
(ANOVA) with two known sources of variance as genotypes and blocks. It is observed that 
the genotype effects are not significant i.e. the genotypes are not significantly different 
among each other. Thereafter, by considering border plots at both ends of every block up to 
distance 2 (In order to make the design balanced for neighbour effects), the same data was 
analysed once again based on the model as given in Equation (2.1.1), where apart from the 
two known sources of variations i.e. blocks and genotypes, four additional sources of 
variations i.e. the left and right neighbour effects of genotypes up to distance 2 have also been 
considered. Interestingly, it has been observed that the direct effects of genotypes came out to 
be significant at 5% level of significance. Further, we have also found that all the neighbour 
effects i.e. both left and right neighbour effects up to distance 2 came out to be significant. 
Thus, we can say that, neighbour effects from the adjacent units can play a significant role in 
the precision of the experiment. So, when there are evidences of neighbour effects, one has to 
consider these effects in to the model and analyse the data accordingly for drawing valid 
conclusions based on the experiment. 
 
As the genotype effects came out to be significant when we have considered neighbour 
effects in to the model, thus a multiple comparison was also performed among genotype 
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effects using Tukey-Kramer comparison test. It has been observed that genotype 11 was 
found to be the best and genotype 1 was giving the lowest yield and significantly different 
from the rest. 
 
2.2 Optimal Block Designs with Spatial Indirect Effects from Neighbouring 

Experimental Units at Distance 2 
 

Block designs balanced for interference effects from the neighbouring units have been found 
quite useful by experimenters under these situations and these designs also lead to simplified 
analysis. But these cannot be justified on statistical grounds unless they possess some optimal 
statistical properties as well. A lot of work which deals with optimality properties of block 
design with interference effects from the neighbouring units are available in literature 
[Bhaumik (1995), Azais and Druilhet (1997), Raghavarao and Zhou (1998), Druilhet (1999), 
Kunert et al. (2003), Jaggi et al. (2007), Pateria et al. (2011), etc.].  
 
The purpose of this section is to establish the universal optimality of complete block designs 
with interference effects from the left neighbouring units up to distance 2. The blocks are 
circular in the sense that the first border treatments at the left end of each block is same as the 
treatment on the interior plot at the right end of the block and border treatment at distance 2 
from the first plot of each block is same as the treatment at the second last plot of each block 
at the right end. The model considered is a four-way classified model consisting of direct 
effect of the treatment applied to a particular plot, effect of those treatments applied to the 
immediate left neighbouring units, effect of those treatments applied to the left neighbouring 
units at distance 2 and block effect. Conditions have been obtained for the block design to be 
universally optimal for estimating direct as well as interference effects from the left 
neighbouring units up to distance 2. Some classes of block designs have been identified to be 
universally optimal for the estimation of direct, immediate left and second order left 
neighbour effects. 
  
2.2.1 Experimental Setup and Model 
We consider a class of circular block designs with v treatments whose effects are to be 
studied in b blocks each of size k and here sth (s = 1, 2, …, v) treatment is replicated rs times.  
Let Yij be the response from the ith plot in the jth block (i = 1, 2,…, k; j = 1, 2,…, b). 
Following is the fixed effects additive model for a block design with neighbour effects from 
left neighbouring units: 
 

 1 2μ ′ ′ ′ ′+Y = 1 + Δ τ + Δ δ  + Δ γ D β  + e ,                                                  … (2.2.1) 
 

where Y is a n × 1 vector of observations, μ is the general mean, 1 is a n × 1 vector of ones, ∆' 
is a  n × v matrix of observations versus direct treatments, τ is a v × 1 vector of direct 
treatment effects, 1′Δ  is a n × v matrix of observations versus interference effect from the 

immediate left neighbour treatment, δ is v × 1 vector of immediate left neighbour interference 
effects, 2′Δ  is a    n × v matrix of observations versus interference effect from left neighbour 

treatment at distance 2 (leaving one plot), γ is v × 1 vector of left neighbor interference 
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effects at distance 2, D' is a  n × b incidence matrix of observations versus blocks, β is a b × 1 
vector of block effects and e is a n × 1 vector of errors with  e ~ N(0, σ2 In). 
 
Let, 

1ΔΔ ′  = M1, v × v incidence matrix of direct treatments versus immediate left neighbour 
treatments. 

 

2′ΔΔ  = M2, v × v incidence matrix of direct treatments versus left neighbour treatments at 
distance 2. 

 

1 2′Δ Δ  = M3, v × v incidence matrix of immediate left neighbour treatments versus left 
neighbour treatments at distance 2. 

 

DΔ ′  =  N1, v × b incidence matrix of direct treatments versus blocks. 
 

DΔ ′1 = N2, v × b incidence matrix of immediate left neighbour treatments versus blocks. 
 

2 ′Δ D = N3, v × b incidence matrix of left neighbour treatments at distance 2 versus blocks. 
 

1 2 v(r ,r , ... ,r )′=r  be the v × 1 replication vector of the direct treatment with rs as the number 
of times sth (s =1,2,…,v) treatment appears in the design. 

 

1 11 12 1v(r ,r , ..., r )′=r  be the v × 1 replication vector of the immediate left neighbour treatment 

with r1s as the number of times the treatments in the design has sth treatment as 
immediate left neighbour. 

 

2 21 22 2v(r , r ,..., r )′=r  be the v × 1 replication vector of the left neighbour treatment at distance 2 

with r2s as the number of times the treatments in the design has sth treatment as left 
neighbour at distance 2. 

      

( ) ( ) ( )1 2 v 11 12 1v 21 22 2vdiag r , r ,..., r , diag r , r ,..., r , diag r , r ,..., r= = =τ δ γR R R . 

 
The normal equation for estimating the direct effects of treatments as well as left interference 
effects of treatments up to distance 2 is 
 

           ˆ =C θ Q ,                                                                                                            … (2.2.2) 
 

where C is the joint information matrix pertaining to direct effects, interference effects from 
the immediate left neighbouring units and the interference effects from the left neighbouring 
units at distance 2 which is obtained as 
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τ 1 1 1 1 2 2 1 3

1 2 1 δ 2 2 3 2 3

2 3 1 3 3 2 γ 3 3

1 1 1
k k k
1 1 1
k k k
1 1 1
k k k

 ′ ′ ′− − − 
 
 ′ ′ ′ ′= − − − 
 
 ′ ′ ′ ′− − −
  

R N N   M N N  M N N

C M N N R N N M N N

M N N M N N R N N

                                              … (2.2.3)   

 

[ ]′′ ′ ′=θ τ δ γ , Q is the vector of adjusted totals pertaining to direct treatment, immediate 

left and left neighbour at distance 2 which is obtained as 
 

          

1

1 2

2 3

1
k
1
k
1
k

 − 
 
 = − 
 
 −
  

T N B

Q L N B

L N B

.                                                                                             … (2.2.4) 

 

Here, T is the v × 1 vector of direct treatment totals, L1 is the v × 1 vector of treatment totals 
corresponding to immediate left neighbour treatments, L2 is the v × 1 vector of treatment 
totals corresponding to left neighbour treatments at distance 2, B is the b × 1 vector of block 
totals.  
 
The 3v × 3v matrix C is symmetric, non-negative definite and doubly centered. From (2.2.3), 
the information matrix for estimating direct treatment effects (Cτ) is  
         
          τ 11 12 22 21

−= −C C C C C                                                                                            … (2.2.5) 
where  

         11 τ 1 1
1
k

′= −C R N N  
 

       12 1 1 2 2 1 3
1 1
k k

 ′ ′= − −  
C M N N M N N  

        

        
δ 2 2 3 2 3

22

3 3 2 γ 3 3

1 1
k k
1 1
k k

 ′ ′− − 
=  

 ′ ′ ′− −  

R N N M N N
C

M N N R N N
 

 
Likewise, the information matrices for estimating the first order left interference effects (Cδ) 
and second order left interference effects (Cγ) can be obtained. 

 
2.2.2 Universal Optimality of Block Designs under Interference Effect Model 
A design d* ∈ D (the class of competing designs) is universally optimal (Kiefer, 1975), if its 
information matrix is such that 
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i) Cd* is completely symmetric i.e., Cd* is of the form 1 v 2 va  + a ′I 11 where Iv is the 
identity matrix of order v and ′11  is a square matrix of order v with all elements unity 
and a1 and a2 are scalars; 

ii) trace (Cd*) > trace (Cd) for all d with Cd ∈ Bv,0, the class of all symmetric, non-negative 
definite matrices of order v with row sums equal to zero. 

 
A universally optimal design is necessarily A-, D-, and E-optimal. Here, the search for a 
universally optimal block design with second order interference effects from neighbouring 
units is restricted in the class D (v, b, k) of left circular block designs having v treatments 
arranged in b blocks of size k each.  
 
We consider a class of designs D1 (v, b, k) in which each treatment appears in a given block 
an equal number of times, say λ times and for each ordered pair of treatments excluding 
identical pairs, there exists constant number (μ1) of plots that have first chosen treatment as 
immediate left neighbour and the second one as left neighbour at distance 2.  
 
We now prove the following theorem: 
 
Theorem 2.2.2.1: A design d* ∈ D1 (v, b, k) is universally optimal for the estimation of 
direct effects under interference effects model if ( )1 2 1 v μ ′= = −M M 11 I , where μ1 is a 

scalar.  
 

Proof: Let d* be a design in D1 (v, b, k). We now show that the information matrix given in 
(2.2.5) pertaining to direct effects, Cτd*, is completely symmetric and has maximum trace in 
the class of competing designs. Here,  
                    

                τ δ γ v br , k′= = = =R R = R I DD K I , 

                λ ′= = =1 2 3N N N 11  and ( )3 1 vμ ′= −M 11 I ,                                             … (2.2.6) 
 

where r = bλ, k = vλ, λ = k / v, μ1 = bk /v (v-1). 
 
The information matrix for estimating direct effects of treatments is obtained from (2.2.5) 
with 

                11 v
bk
v v

′ = − 
 

11C I , 

                12 1 22 2

bk bk
v v

 ′ ′= − −  
C   M 11  M 11  

 

and    

                
( )

( )

v v

22

v v

1
v v-1 vbk

v 1
v-1 v v

′ ′    − −        =
 ′ ′   − −    

     

11 11I I
C

11 11I I
 ,                                   … (2.2.7)                                                                                                 
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It can be seen that 
 

              ( )
( )

( )

( )

v v
v v

22
v

v v

v-1
v-1 v v

bk v-2
v-1

v

−

′ ′  − −    =
 ′ −  

  

11 11I I
C

11I I
.                                        … (2.2.8) 

 
 

The information matrix for estimating the direct effects of treatments is then obtained as 
  

     
( )

( )

( )

( )

* v 1 22 2τd

v v
v v 1 2

v
2 2v v

bk bk bk
v v v v

bkv-1
v-1 v v v

bkbk v-2
v-1

vv

′   ′ ′= − − − −      
′ ′    − − ′−        

 ′   ′−−       

11C I   M 11  M 11

11 11I I   M 11

11  M 11I I

   … (2.2.9) 

                 
( ) ( ) { } ( ){ }

( )
( )

2
v 1 1 2 2 1 2 2 1

2

bk 1 v-1  v-1  
v v bk v-2

2bk v-1
v v-2

′   ′ ′ ′ ′= − − + + +    

′+

11I M M M M M M M M

11
                

 
The trace of Cτd* is maximized iff trace ( )1 1 2 2 ′ ′+M M M M  and trace ( )1 2 2 1 ′ ′+M M M M  is 

minimum. These traces will be minimum when ( )1 2 1 v μ ′= = −M M 11 I i.e. the design is 

balanced in the sense that each treatment has every other treatment as immediate left 
neighbour and left neighbour at distance 2, μ1 number of times. Therefore, the information 
matrix for estimating direct effects of treatments is: 
 

            ( )
( )( )τd* v

bk v-3
v-1 v-2 v

′ = − 
 

11C I .                                                                          … (2.2.10) 

 
On the similar lines the following two theorems can also be proved: 
 
Theorem 2.2.2.2: A design d* ∈  D1 (v, b, k) is universally optimal for the estimation of first 
order interference effects from the neighbouring units if ( )1 3 1 v μ ′= = −M M 11 I .  

 
Theorem 2.2.2.3: A design d* ∈ D1 (v, b, k) is universally optimal for the estimation of 
second order interference effects from the neighbouring units if ( )1 μ ′= = −2 3M M 11 I .  

 
One can obtain a series of block design with v (> 3) prime treatments for the above class of 
universally optimal designs. These designs for v (prime) treatments are obtained by arranging 
the contents of the v-1 complete blocks of the design by writing the treatments in systematic 
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order within a block with a difference of 1,2,…,v-1 between the treatments (modulo v) in the 
consecutive blocks. The first block is formed by taking the difference of one between 
treatments, the second block by taking the difference of two and so on, the (v-1)th block by 
taking the difference of (v-1). The series of complete block design is balanced for 
interference effect up to distance 2 with parameters v = k, b = (v-1) = r, µ1= 1. 
 
Example 2.2.2.1: The following left circular design with 5 treatments in 4 blocks of size 5 
each is universally optimal for the estimation of direct effects, first order and second order 
interference effects from the neighbouring units (λ = μ1 = 1): 
 

1 2 3 4 0 
1 3 0 2 4 
1 4 2 0 3 
1 0 4 3 2 

 
We consider another class of designs D2 (v, b, k) in which each treatment appears in a given 
block an equal number of times, say λ (>1) times and for each ordered pair of treatments 
including identical pairs, there exists constant number (μ1) of plots that have first chosen 
treatment as immediate left neighbour and the second one as left neighbour at distance 2.  
 
We now prove the following theorem: 
 
Theorem 2.2.2.4: A design d** ∈ D2 (v, b, k) is universally optimal for the estimation of 
direct effects if 1 2 1 μ ′= =M M 11 , where μ1 is a scalar.  
 
Proof: Let d** be a design in D2 (v, b, k). We now show that the information matrix 
pertaining to direct effects, Cτd** is completely symmetric and has maximum trace in the 
class of competing designs. 
 

Here,  
 

             τ δ γ v br , k′= = = =R R = R I DD K I , 

             1 2 3 λ ′= = =N N N 11  and 3 1μ ′=M 11 ,                                                    … (2.2.11) 
 

where r = bλ, k = vλ, λ = k / v, μ1 = bk /v2. 
 

The information matrix for estimating direct effects of treatments is obtained as follows: 
              

             21221211τ CCCCC −−= ,                                                                                 … (2.2.12) 
 

where 
 

                11 v
bk
v v

′ = − 
 

11C I , 

                12 1 22 2

bk bk
v v

 ′ ′= − −  
C   M 11  M 11  
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and 

             
v

22

v

bk
v v

bk
v v

′  −    =
 ′ −  

  

11I 0
C

110 I
. 

 

Clearly C11 is the information matrix for estimating direct effects of treatments when no 
interference effects are present in the model. Thus, 
 

            ** 11 12 22 21 11τd
Trace ( ) = Trace ( ) Trace ( )  Trace ( )−− ≤C C C C C C  

 

since 12 22 21
−C C C  is a non-negative definite matrix. Hence, for the given class of designs D2, 

trace of Cτd** is maximized if 12 22 21
− =C C C 0 , i.e. when 

12 1 22 2

bk bk
v v

 ′ ′= − − =  
C   M 11  M 11 0  and C12 will be equal to zero when  

1 2 1 μ ′= =M M 11 , i.e. the design is strongly balanced in the sense that every treatment has 
every other treatment including itself as immediate left neighbour and left neighbour at 
distance 2, μ1 number of time. Therefore, the information matrix for estimating direct effects 
of treatments is: 
 

             ** vτd

bk
v v

′ = − 
 

11C I .                                                                          … (2.2.13) 

 

Thus, Cτd** is completely symmetric and has the maximum trace in the class of competing 
designs. 
 
On the similar lines the following two theorems can also be proved: 
 
Theorem 2.2.2.5: A design d** ∈  D2 (v, b, k) is universally optimal for the estimation of first 
order interference effects from the neighbouring units if 1 3 1 μ ′= =M M 11 . 
 
Theorem 2.2.2.6: A design d** ∈  D2 (v, b, k) is universally optimal for the estimation of 
second order interference effects from the neighbouring units if 2 3 1μ ′= =M M 11 . 
 
A series of block designs D2 (v, b = v2, k = 3v) for second order interference effects on one 
side are universally optimal for the estimation of direct effects and first order interference 
effects and second order interference effects. These designs with r = 3v2, λ = 3, μ1 = 3v can 
be obtained using the method of construction of change over design for second order residual 
effects by Sharma (1977) considering the units as blocks and making the blocks left-circular 
up to distance 2.  
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Example 2.2.2.2: The following left circular design with 4 treatments in 16 blocks  of size 12 
each is universally optimal for the estimation of direct effects, first order and second order 
interference effects from the neighbouring units (λ = 3, μ1 = 12): 
 

1 1 1 2 2 2 3 3 3 0 0 0 
2 1 2 3 2 3 0 3 0 1 0 1 
3 1 3 0 2 0 1 3 1 2 0 2 
0 1 0 1 2 1 2 3 2 3 0 3 
1 2 2 2 3 3 3 0 0 0 1 1 
2 2 3 3 3 0 0 0 1 1 1 2 
3 2 0 0 3 1 1 0 2 2 1 3 
0 2 1 1 3 2 2 0 3 3 1 0 
1 3 3 2 0 0 3 1 1 0 2 2 
2 3 0 3 0 1 0 1 2 1 2 3 
3 3 1 0 0 2 1 1 3 2 2 0 
0 3 2 1 0 3 2 1 0 3 2 1 
1 0 0 2 1 1 3 2 2 0 3 3 
2 0 1 3 1 2 0 2 3 1 3 0 
3 0 2 0 1 3 1 2 0 2 3 1 
0 0 3 1 1 0 2 2 1 3 3 2 

 
2.3   Block Designs with Spatial Indirect Effects under a Non-Additive Model 
 

A distinctive feature of block design with interference effects from the neighbouring units is 
that the effect of a treatment applied to a plot is the sum of direct effect due to the treatment 
applied to the given plot and various interference effects of treatments applied to the 
neighbouring plots along with the block effects. However, under block design setup with 
interference effects from the neighbouring units, situations may arise where there could be 
interaction among direct and various interference effects from the neighbouring units. In such 
situations, effects are no longer additive in nature and thus instead of considering an additive 
model, we have to explore non-additivity in block models with interference effects from 
neighbouring units. Patterson (1970) considered direct × residual interaction under change 
over design setup and obtained designs that give the estimates of interaction effects. The 
robustness of some optimality results on change over designs when the underlying model is a 
non-additive incorporating an interaction due to direct and residual effects of treatments was 
investigated by Sen and Mukerjee (1987). Bose and Mukherjee (2000) studied cross over 
design in the presence of higher order carryover effects for non-additive models. Some small 
and efficient cross-over designs under a non-additive model have been obtained by Bose and 
Dey (2003). Varghese et al. (2009) studied optimal cross over design under treatment × unit 
interaction. 
 
Here, a non-additive block model with block effects, direct effects of treatment, interference 
effects of treatment from the immediate left neighbouring units, interference effects of 
treatment from the immediate right neighbouring units, left interference effects × direct 
effects, direct effects × right interference effects, left interference effects × right interference 
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effects and left interference effects × direct effects × right interference effects has been 
considered. Under this model, a class of complete, circular block designs balanced for both-
sided interference effects from the neighbouring units has been shown to be universally 
optimal for the estimation of both direct effects and various interference effects from the 
neighbouring units among the class of all competing designs.  
 
2.3.1 Non-Additive Block Model Under Two-Sided Interference Effects of Treatments 
We consider a class of block designs with v treatments applied in b blocks each of size k and 
each treatment replicated r number of times. Let, d(i, j) denote the treatment applied to the ith 
plot of the jth block, i = 1, 2,…, k; j = 1, 2,…, b.  The layout includes border plots at both end 
of every block making the design as circular. Let Yij be the response from the ith plot in the jth 
block. We define the following non-additive model: 
 

       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij j ijd i, j d i -1, j d i+1, j d i -1, j d i, j d i, j d i+1, j d i -1, j d i+1, j d i -1, j d i, j d i+1, jY  = μ  + τ + δ +α + γ +φ + π +ρ +β + e ;    … (2.3.1) 
 

for all i = 1, 2,…, k and j = 1, 2,…, b. Here, μ is the general mean, τd(i,j) is the direct effect of 
treatment d(i, j), δd(i-1,j) is the interference effect due to the left neighbour treatment d(i-1,j), 
αd(i+1,j) is the interference effect due to the right neighbour treatment d(i+1, j), γd(i-1,j)d(i,j) is the 
interaction effect between the direct treatment  d(i, j) and it’s left neighbour treatment d(i-1, 
j), φd(i,j)d(i+1,j) is the interaction effect between the direct treatment d(i, j) and it’s right 
neighbour treatment d(i+1, j), πd(i-,j)d(i+1,j) is the interaction effect between the left neighbour 
treatment d(i-1, j) and right neighbour treatment d(i+1, j) of d(i, j), ρd(i-,j)d(i,j)d(i+1,j) is the 
interaction effect between the direct treatment d(i, j), it’s left neighbour treatment d(i-1, j) and 
it’s right neighbour treatment d(i+1, j), βj is the jth block effect, eij is the error term which are 
independently and identically distributed N(0, σ2). 
 
This experimental setup can be looked upon as a v3 factorial experiment with three factors F1, 
F2 and F3. The direct effects correspond to the main effect of F1, the interference effects from 
the immediate left neighbouring unit correspond to the main effect of F2, the interference 
effects from the immediate right neighbouring unit correspond to the main effect of F3, the 
direct effects versus interference effects from the left neighbouring units corresponds to the 
factorial interaction F1F2, the direct effects versus interference effects from the right 
neighbouring units corresponds to the usual factorial interaction F1F3, the interference effects 
from the left neighbouring units versus interference effects from the right neighbouring units 
corresponds to the usual factorial interaction F2F3 and direct effects versus interference 
effects from both left and right neighbouring units corresponds to the usual factorial 
interaction F1F2F3. This setup can be used to analyze designs under the following model 
introduced by Kurkjian and Zelen (1962) by applying the calculus for factorial arrangements: 
                

               ij j i j ijY  = μ  + β + + e ;′ω ξ    i = 1, 2,…, k; j = 1, 2,…, b                           … (2.3.2)  
 

where v3 × 1 vector ξ  is the vector of v3 factorial effects of treatment combinations and  
               ( ) ( ) ( )i j d i -1, j d i, j d i+1, j ,⊗ ⊗ω = e e e                                                           … (2.3.3) 
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where ed(i, j) is a v×1 vector with 1 in the position corresponding to the treatment  d(i, j) and 
zero elsewhere and ⊗  denotes the kronecker product. For i = 1, ed(0, j) indicate the border plot 
of the jth block at left side and for i = k, ed(k+1, j) indicate the border plot of the jth block at right 
side. In matrix notation, Model (2.3.2) can be written as: 
 

               μ ,′′Y = 1 + D β  + ω ξ + e                                                                             … (2.3.4)  
 

where Y is a n × 1 vector of observations (n is the total number of observations), 1 is a n × 1 
vector of unity, D' is a n × b incidence matrix of observations versus blocks, β is a b × 1 

vector of block effects, ′ω  is n × v3 incidence matrix of observation versus v3 factorial 

treatment combinations with i j′ω  as the rows of ′ω and e is a n × 1 vector of errors where 

errors are independently and identically normally distributed random variable with zero mean 
and constant variance. This model can be expressed as:         

 

             d ,Y = X θ + e                                                                                                     … (2.3.5)  

with d
 ′′=
 

X 1 D ω  and  [ ]μ ′′ ′=θ  β  ξ . 
 

Thus,  

   

k b

b i j
i 1 j 1

2d 2d 2d 1d
d d b b d

1d 2d 1d 1dk b

i j d d
i 1 j 1

n k

k k
= =

= =

 ′ ′ ′  ′ ′ ′ ′
    ′ ′  ′  ′ ′ ′= = =  ′ ′     

′ ′  
    

∑∑

∑∑

1 ω1 1 1 D 1 ω
X X X X

X X D1 DD Dω 1 I Ω
X X X X

ω1 ωD ωω ω Ω R

 

 

Where d
′=R ωω , d ′=Ω ω D , [ ]2d ′=X 1 D  and 1d

′=X ω . 
 

The information matrix for estimating ξ i.e. for estimating direct effect of treatments, 
interference effects of treatment from the left neighbouring units, interference effects of 
treatment from the right neighbouring units, left neighbour interference × direct interaction 
effects, direct effects × right neighbour interference interaction effects, left interference × 
right interference interaction effects and left interference × direct × right interference 
interaction effects is given by 
 

               

( )d 1d 1d 1d 2d 2d 2d 2d 1d

k b
k b

i j
i 1 j 1d i j d

i 1 j 1 b
d

d d d

0
1
k

1
k

−

= =
= =

′ ′ ′ ′= −

   ′    = −        ′   

′= −

∑∑∑∑

C X X X X X X X X

0 ω
R ω Ω

0 I
Ω

R Ω Ω

                                     … (2.3.6) 

The v3 × v3 matrix Cd is symmetric, non-negative definite with zero row and column sums.  
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2.3.2  Universal Optimality of Block Design Under Non-Additive Interference Effects 
Model 

Consider a complete, circular block design d1 with interference effects from the neighbouring 
units which satisfy the following conditions: 
 

i) Each treatment appears in a given block an equal number of times 
 

ii) For each ordered pair of treatments including identical pairs, there exists constant number 
(μ1) of plots that have first chosen treatment as immediate left neighbour and the second 
one as immediate right neighbour.  

 

iii) Every v3 treatment combination of left neighbour × direct × right neighbour appears a 
constant number of times (say λ) in the design. 

 
We now state the following theorem to establish the optimality of design d1 in the competing 
class of designs, D. 
 
Theorem 2.3.2.1: A complete, circular block design d1 balanced for interference effects from 
the neighbouring units on both-sides, whenever exists, is universally optimal for the 
estimation of direct effects of treatments among all the competing designs under the non-
additive model (2.3.1).  
  

Proof: Let Pv be a (v-1) × v matrix such that v v
1 ,
v

 ′ 
 

1 P is orthogonal. We define   

100 010 001
v v v

110 011 101 111
v v v v v v v v v

1 1 1 1 1 1; ; ;
v v v v v v

1 1 1; ; ; ;
v v v

           ′ ′ ′ ′ ′ ′= ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗           
           

     ′ ′ ′= ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗     
     

v v v v v v

v v v

P P 1 1 P 1 P 1 P 1 1 P

P P P 1 P 1 P P P P 1 P P P P P

  

 

P100 ξ1, P010 ξ1, P001 ξ1, P110 ξ1, P011 ξ1, P101 ξ1, and P111 ξ1, together represent a complete set 
of orthonormal treatment contrasts. 
 
Following Mukerjee (1980), the coefficient matrix of the reduced normal equations for 
estimating the direct effect of treatments is given by  
 

               ( ) 11 12 22 21dir
−= −C C C C C                                                                                   … (2.3.7)  

 

where,  

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

010 010
11 d

010 100 010 001 010 110 010 011 010 101 010 111
12 d d d d d d

010 100 010 001 010 110 010 011 010 101 010 111
21 d d d d d d

′=

 ′ ′ ′ ′ ′ ′=   
′ ′ ′ ′ ′ ′ ′=   

C P C P

C P C P P C P P C P P C P P C P P C P

C P C P P C P P C P P C P P C P P C P

 

 

and 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

100 100 100 001 100 110 100 011 100 101 100 111
d d d d d d

001 100 001 001 001 110 001 011 001 101 001 111
d d d d d d

110 100 110 001 110 110 110 011 110 101 110 11
d d d d d d

22

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′
=

P C P P C P P C P P C P P C P P C P

P C P P C P P C P P C P P C P P C P

P C P P C P P C P P C P P C P P C P
C

( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1

011 100 011 001 011 110 011 011 011 101 011 111
d d d d d d

101 100 101 001 101 110 101 011 101 101 101 111
d d d d d d

111 100 111 001 111 110 111 011 111 101 111 111
d d d d d d

′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

P C P P C P P C P P C P P C P P C P

P C P P C P P C P P C P P C P P C P

P C P P C P P C P P C P P C P P C P

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

Cd is as in equation (2.3.6). For the design d1, ( ) ( )d v v v v v v1

-3λ b k v= ⊗ ⊗ = ⊗ ⊗R I I I I I I , 

where the symbols have their usual meaning as defined earlier. Then we can write: 

        ( )010 010
d v-1 v-11

-3λ b k v ;′ = =P R P I I  

             ( ) ( ) ( )

( ) ( ) ( )

010 100 010 001 010 110
d d d1 1 1

010 011 010 101 010 111
d d d1 1 1

; ; ;

; ; ;

′ ′ ′= = =

′ ′ ′= = =

P R P 0 P R P 0 P R P 0

P R P 0 P R P 0 P R P 0
                                  … (2.3.8)  

and 
1dΩ is such that 

1 1

010
d d′ =P Ω Ω 0 . 

 
Hence, for the design d1, the coefficient matrix of the reduced normal equations for 
estimating the direct effect of treatments is given by: 

 

             
( )

1 1 1 1
11 12 22 21d dir1

v-1

v-1
-3

λ

b k v

−= −

=

=

C C C C C

I

I

                                                                                  … (2.3.9)  

where 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 010 010
11 d1

1 010 100 010 001 010 110 010 011 010 101 010 111
12 d d d d d d1 1 1 1 1 1

1 010 100 010 001 010 110 010 011 010 101 010 111
21 d d d d d d1 1 1 1 1 1

′=

 ′ ′ ′ ′ ′ ′=   
′ ′ ′ ′ ′ ′ ′=   

C P C P

C P C P P C P P C P P C P P C P P C P

C P C P P C P P C P P C P P C P P C P

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

100 100 100 001 100 110 100 011 100 101 100 111
d d d d d d1 1 1 1 1 1

001 100 001 001 001 110 001 011 001 101 001 111
d d d d d d1 1 1 1 1 1

110 100 110 001 110 110 110 011 11
d d d d1 1 1 11

22

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′
=

P C P P C P P C P P C P P C P P C P

P C P P C P P C P P C P P C P P C P

P C P P C P P C P P C P P
C

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 101 110 111
d d1 1

011 100 011 001 011 110 011 011 011 101 011 111
d d d d d d1 1 1 1 1 1

101 100 101 001 101 110 101 011 101 101 101 111
d d d d d d1 1 1 1 1 1

111 100 111 001 111 110
d d d1 1 1

′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′

C P P C P

P C P P C P P C P P C P P C P P C P

P C P P C P P C P P C P P C P P C P

P C P P C P P C P ( ) ( ) ( )111 011 111 101 111 111
d d d1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 

′ ′ ′ ′ 
 P C P P C P P C P

 



Block Designs Balanced for Spatial Indirect Effects 

47 
 

Thus from equation (2.3.9), it can be seen that ( )d dir1
C is completely symmetric. 

 

From equation (2.3.7), it is clear that ( ) ( ) ( ) ( )
010 010 010 010

d ddir dir
′ ′≥ ⇒ −P C P C P C P C is 

nonnegative definite. Again equation (2.3.6) implies that d d d d≥ ⇒ −R C R C  is a 

nonnegative definite. Hence ( ) ( )010 010 010 010
d d

′ ′−P R P P C P is a nonnegative definite. 

Therefore,  

            

( ) ( ) ( )

( )

( )

010 010 010 010
d ddir 1

010 010
d1

d dir1

trace trace trace

trace

trace

   ′ ′  ≤ ≤        
 ′=   
 =  

C P C P P R P

P C P

C

 

 
Hence, 

           ( ) ( )dir d dir1
trace trace    ≤   C C for all designs in D                                      … (2.3.10) 

 
 

Thus, on the lines of Bose and Dey (2003), the block design d1 with interference effects from 
the neighbouring units is universally optimal for the estimation of direct effects of treatments 
among all the competing design under the non-additive model (2.3.1). 
 
On the similar lines the following theorem can also be proved: 
 
Theorem 2.3.2.2: A complete, circular block design d1 balanced for two-sided interference 
effects from the left neighbouring and right neighbouring units, whenever exists, is 
universally optimal for the estimation of interference effects of treatments from the 
immediate left and right neighbouring units among all the competing designs under the non-
additive model (2.3.1). 
 
2.3.3 Series of Universally Optimal Block Designs 
For given v, a series of complete circular block designs balanced for interference effects from 
both sides with parameters v, b = v2, r = 3v2, k = 3v, λ = v – 1 and μ1= 3v are obtained using 
the method of construction of change over design for second order residual effects by Sharma 
(1977) considering the units as blocks and making the blocks circular. The design so obtained 
will ensure that each v3 treatment combinations of left neighbour × direct × right neighbour 
will appear a constant number (λ = v – 1) of times in the design. The resultant design will be 
universally optimal for the estimation of direct effects of treatment as well as both left and 
right interference effects of treatments under the non-additive model.  
 
Example 2.3.3.1: The following complete circular block design with 4 treatments in 16 
blocks (rows as blocks) of size 12 each is universally optimal for the estimation of direct 
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effects, interference effects from the immediate left and right neighbouring units under the 
non-additive model (λ = 3, μ1 = 12): 
 

1 1 1 2 2 2 3 3 3 4 4 4 
2 1 2 3 2 3 4 3 4 1 4 1 
3 1 3 4 2 4 1 3 1 2 4 2 
4 1 4 1 2 1 2 3 2 3 4 3 
1 2 2 2 3 3 3 4 4 4 1 1 
2 2 3 3 3 4 4 4 1 1 1 2 
3 2 4 4 3 1 1 4 2 2 1 3 
4 2 1 1 3 2 2 4 3 3 1 4 
1 3 3 2 4 4 3 1 1 4 2 2 
2 3 4 3 4 1 4 1 2 1 2 3 
3 3 1 4 4 2 1 1 3 2 2 4 
4 3 2 1 4 3 2 1 4 3 2 1 
1 4 4 2 1 1 3 2 2 4 3 3 
2 4 1 3 1 2 4 2 3 1 3 4 
3 4 2 4 1 3 1 2 4 2 3 1 
4 4 3 1 1 4 2 2 1 3 3 2 

 
2.3.4 Non-Additive Block Model Under One-Sided Interference Effects of Treatments 
Here, a non-additive block model with block effects, direct effects of treatment, interference 
effects of treatment from the immediate left neighbouring units and left interference × direct 
effects has been considered. Druilhet and Tinsson (2009) studied optimal repeated 
measurement designs for a model with partial interactions. Park et al. (2011) studied efficient 
crossover designs in the presence of interaction between direct and residual effects of 
treatments.  
 
Consider a class of block designs with v treatments applied in b blocks each of size k and 
each treatment replicated r number of times. Let d(i, j) denote the treatment applied to the ith 
plot of the jth block, i = 1, 2,… ,k; j = 1, 2,… ,b.  Let Yij be the response from the ith plot in 
the jth block.   
 
We define the following non-additive model: 
 

       ( ) ( ) ( ) ( )ij j ijd i, j d i -1, j d i -1, j d i, jY  = μ  + τ  + δ + γ  +β + e ; i = 1,2,…,k; j = 1,2,…,b              … (2.3.11) 
 

where μ is the general mean, τd(i,j) is the direct effect of treatment d(i, j), δd(i-1, j) is the 
interference effect due to the left neighbour treatment d(i-1, j ), γd(i-1, j)d(i, j) is the interaction 
effect between the direct treatment d(i, j) and it’s left neighbour treatment d(i-1, j), βj is the jth 
block effect, eij is the error term which are independently and identically distributed N(0, σ2). 
 
This experimental setup can be considered as a v2 factorial experiment with two factors F1 
and F2. The direct effects correspond to the main effect F1, the interference effects from the 
immediate left neighbouring unit correspond to the main effect F2 and interference effects 
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from the left neighbouring units versus the direct effects corresponds to the usual factorial 
interaction F1F2. These designs may be analyzed under the following model by applying the 
calculus for factorial arrangements: 
 

          ij j i j 1 ijY  = μ  + β + + e ;′λ ξ    i = 1,2,…,k; j = 1,2,…,b,                                        … (2.3.12)  
 

where v2 × 1 vector ξ1 = [ξ11, ξ12, …, ξ1v, ξ21, …, ξ2v, …, ξv1, …, ξvv]´ is the vector of the 
effects of v2 factorial treatment combinations and  
 

           ( ) ( )i j d i -1, j d i, j ,⊗λ = e e                                                                                      … (2.3.13) 
 

where ed(i, j) is a v×1 vector with 1 in the position corresponding to the treatment    d(i, j) and 
zero elsewhere and ⊗  denotes the kronecker product. For i = 1, ed(0, j) indicate the left border 
plot of the jth block. In matrix notation, model (2.3.12) can be written as: 
 

          1μ ,′′Y = 1 + D β  + λ ξ + e                                                                                    … (2.3.14)  
 

where Y is a n × 1 vector of observations (n is the number of observations), 1 is a n × 1 vector 
of unity, D' is a n × b incidence matrix of observations versus blocks, β is a b × 1 vector of 

block effects, ′λ  is n × v2 incidence matrix of observation versus v2 factorial treatment 

combinations with i j′λ  as the rows of ′λ and e is a n × 1 vector of errors where errors are 

independently and identically normally distributed random variable with zero mean and 
constant variance.  
 
Model (2.3.14) can also be expressed as:         
 

           d ,Y = X θ + e                                                                                                     … (2.3.15)  

with d
 ′′=
 

X 1 D λ  and  [ ]μ ′′ ′=θ  β  ξ . 

 
Thus,  

     

k b

b i j
i 1 j 1

d d b b d
k b

i j d d
i 1 j 1

n k

k k
= =

= =

 ′ ′ ′  ′ ′ ′ ′
   
 ′  ′ ′ ′= =
   

′ ′  
    

∑∑

∑∑

1 λ1 1 1 D 1 λ

X X D1 DD Dλ 1 I M

λ1 λD λλ λ M V

2d 2d 2d 1d

1d 2d 1d 1d

′ ′ 
=  ′ ′ 

X X X X
X X X X

,                             

 

where d
′=V λλ , d ′=M λD , [ ]2d ′=X 1 D  and 1d

′=X λ . 
 
The information matrix for estimating ξ1 i.e. for estimating direct effects of treatment, 
interference effects of treatment from the left neighbouring units and left neighbour 
interference × direct interaction effects is given by 
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            d d d d
1
k

′= −C V M M                                                                                      … (2.3.16) 

 
Consider a class of complete circular block designs with interference effects from the 
neighbouring units D* which satisfy the following conditions: 
 

i) Each treatment appears an equal number of times in each block of the design. 
ii) Each treatment appears as left neighbour of every other treatment (including itself) equal 

number of times (say μ1) in the design i.e. the design is strongly balanced. 
 
We now state the following theorem to establish the optimality of above class of designs: 
 
Theorem 2.3.4.1: A complete circular block design d1∈ D* balanced for one-sided 
interference effects from the left neighbouring units, whenever exists, is universally optimal 
for the estimation of direct effects of treatments among all the competing designs under the 
non-additive model (2.5.1).  

Proof: Let Pv be a (v-1) × v matrix such that v v
1 ,
v

 ′ 
 

1 P is orthogonal. We define 

          01 10 11
v v v v v v

1 1; ;
v v

   ′ ′= ⊗ = ⊗ = ⊗   
   

P 1 P P P 1 P P P                                   … (2.3.17)  

 

P01ξ1, P10ξ1 and P11ξ1 together represent a complete set of orthonormal treatment contrasts. 
 
For any design in D*, the coefficient matrix of the reduced normal equations for estimating 
the complete set of orthonormal contrasts pertaining to direct effect of treatments is given by: 

          ( ) ( ) ( ) ( )
( )
( )

10 01
d01 01 01 10 01 11

d d ddir
11 01

d

−
 ′
  ′ ′ ′= −     ′  

P C P
C P C P P C P P C P G

P C P
,          … (2.3.18)  

 

where Cd is as in equation (2.3.16) and G- is a generalized inverse of G given by  

            
( ) ( )
( ) ( )

10 10 10 11
d d

11 10 11
d d

 ′ ′
 =  ′ ′  

11

P C P P C P
G

P C P P C P
. 

 
For the design d1, ( )d v v1

= ⊗V I I  and as every v2 treatment combinations of left neighbour × 

direct treatment appear equal number of times in the design, hence d1
M is such that 

01
d d1 1

.′ =P M M 0  
 

Here,  



Block Designs Balanced for Spatial Indirect Effects 

51 
 

              
( )

( ) ( )

01 01
d v-11

01 10 01 11
d d1 1

;

; .

′ =

′ ′= =

P V P I

P V P 0 P V P 0
                                                       … (2.3.19) 

 
Hence, for the design d1, the coefficient matrix of the reduced normal equations for 
estimating the complete set of orthonormal contrasts pertaining to direct effect of treatments 
is given by: 

           

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

01 01 01 10 01 11
d d dd dir 1 1 11

10 10 10 11 10 01
d d d1 1 1

11 10 11 11 11 01
d d d1 1 1

 ′ ′ ′= −   
−   ′ ′ ′

   
   ′ ′ ′   
   

C P C P P C P P C P

P C P P C P P C P

P C P P C P P C P

            … (2.3.20) 

                    
                  v-1= I , hence ( )d dir1

C is completely symmetric. 
 

Now from equation (2.3.18), it is clear that ( ) ( ) ( ) ( )
01 01 01 01

d ddir dir
′ ′≥ ⇒ −P C P C P C P C is 

nonnegative definite for all design in D*. Again equation (2.3.16) implies 
that d d d d≥ ⇒ −V C V C  is a nonnegative definite for all design in D*. Hence 

( ) ( )01 01 01 01
d d

′ ′−P V P P C P is a nonnegative definite for all such designs. 
 

Therefore,  

         

( ) ( ) ( )

( )

( )

01 01 01 01
d ddir 1

01 01
d1

d dir1

trace trace trace

trace

trace

   ′ ′  ≤ ≤        
 ′=   
 =  

C P C P P V P

P C P

C

 

Hence, 

          ( ) ( )dir d dir1
trace trace    ≤   C C for all designs in D*                                       … (2.3.21) 

 
On the lines of Bose and Dey (2003), the considered class of block designs with interference 
effects from the neighbouring units is universally optimal for the estimation of direct effects 
of treatments among all the competing designs under the given non-additive model based on 
the sufficient conditions of Kiefer (1975). 
 
On the similar lines the following theorem is also proved: 
 
Theorem 2.3.4.2: A complete circular block design d1 balanced for one-sided interference 
effects from the left neighbouring units, whenever exists, is universally optimal for the 
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separate estimation of interference effects of treatments among all the competing designs 
under the non-additive model (2.3.11).  
 
For given v (where v + 1 should be prime), design with v/2 blocks each of size v can be 
obtained by applying treatment c at ith plot of jth block (i = 1, 2, …, v and j = 1, 2, …, v/2) i.e 
at (i, j)th  position such that ij = c [mod (v + 1)]. Every block of this design is extended by 
taking its mirror image and augmenting it. The series of block design so obtained is balanced 
for one sided interference effect with parameters v, b = v/2, r = v, k = 2v, μ1= 1. The design 
so obtained is universally optimal for the estimation of both direct effects of treatment and 
interference effects of treatments under the non-additive model.  
 
Example 2.3.4.1: The following left circular block design for v = 4 is universally optimal for 
estimating both direct and interference effects of treatment under interference × direct non-
additive model with   b = 2, r = 4, k = 8 and μ1= 1: 
 

 
 
 
The complete circular block design d1∈ D* balanced for one-sided interference effects from 
the left neighbouring units is universally optimal for the separate estimation of both direct 
effects and interference effects of treatments under the non-additive model. But the design d1 
so obtained is not optimal for the estimation of interference × direct interaction effects. If the 
interest is in  interference × direct interaction effects also, a complete circular block design d2 
∈ D* with each treatment appearing as left neighbour of every treatment (including itself) 
equal number of times in each block as well can be considered.  
 
We now state the following theorem: 
 
Theorem 2.3.4.3: A complete circular block design d2∈ D* balanced for one-sided 
interference effects from the left neighbouring units, whenever exists, is universally optimal 
for the separate estimation of direct effects of treatments among all the competing designs 
under the non-additive model (2.3.11). 
  

Proof: To prove this, we define Pv, P01, P10, P11 as earlier. For the design d2, 
 

( )d v v2

-2b k v= ⊗V I I  
 

and as every v2 treatment combinations of left neighbour × direct treatment also appears 
equal number of times in each block ( )2

-2
d bv2

k v ′= ⊗M 1 1 , where the symbols have their 

usual meaning as defined earlier. Then we can write: 
          

1 2 3 4 4 3 2 1 
2 4 1 3 3 1 4 2 
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( )

( ) ( )

01 01
d v-12

01 10 01 11
d d2 2

-2b k v ;

;

′ =

′ ′= =

P V P I

P V P 0 P V P 0
                                                         … (2.3.22)    

 01
d d1 1

′ =P M M 0 . 

 

Hence, for the design d2, the coefficient matrix of the reduced normal equations for 
estimating the complete set of orthonormal contrasts pertaining to direct effect of treatments 
is given by: 
 

        

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

01 01 01 10 01 11
d d dd dir 2 2 22

10 10 10 11 10 01
d d d2 2 2

11 10 11 11 11 01
d d d2 2 2

 ′ ′ ′= −   
−   ′ ′ ′

   
   ′ ′ ′   
   

C P C P P C P P C P

P C P P C P P C P

P C P P C P P C P
             

… (2.3.23) 

                   v-1
-2b k v= I , hence ( )d dir2

C is completely symmetric. 
 

Now proceeding in the similar way as in Theorem 2.3.4.1, it can be easily proved that  
  

           ( ) ( )dir d dir2
trace trace    ≤   C C for all design in D*                                         … (2.3.24) 

 
Thus, the considered class of block designs with interference effects from the neighbouring 
units is proved to be universally optimal for the estimation of direct effects of treatments 
among all the competing design under the non-additive model (2.3.11). 
 
On the similar lines it can also be proved that the complete circular block design d2 balanced 
for one-sided interference effects from the left neighbouring units, whenever exists, is 
universally optimal for the estimation of interference effects of treatments and interference × 
direct interaction effects separately among all the competing designs under the non-additive 
model (2.3.11).  
 
Remark: Since the design d2 is universally optimal for the estimation of direct effects, 
interference effects and interference × direct interaction effects of treatments, so more 
number of experimental units is required. 
 
For given v, a series of block designs balanced for interference effect with parameters v = b, r 
= k = 2v2, μ1= 2v, can be obtained by writing the jth block (modulo v) of the design as follows 
and then considering border plots at left end of each block: 
 

     j, 1, j, 2, j, 3, …, j, v, j + 1, 1, j + 1, 2, …, j + 1, v, …, j + v, 1, j + v, 2, …, j + v, v,  
 

where j = 1, 2,…,v. 
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The design so obtained will ensure that each v2 treatment combinations of direct × left 
neighbour will appear in each block equal number of times. The resultant design is 
universally optimal for the estimation of direct effects of treatment, interference effects of 
treatment and interference × direct interaction effects under the non-additive model.  
 
Example 2.3.4.2: The following left circular block design for v = 3 is universally optimal for 
estimating direct effects, interference effects and interference × direct interaction effects of 
treatment under the non-additive model with   b = 3, r = 18, k = 18 and μ1= 6: 
 

 
 
 
 
 
2.4 Experimental Designs with Spatial Indirect Effects for Open-Pollination in 

Polycross Trials 
 

The general aim in the breeding of cross-pollinated crops is to develop improved synthetic 
population. The characters of interest are generally quantitative and therefore exhibit 
continuous variation. Polycross is a simple method of rapid screening of genetic stocks for 
their breeding value by natural hybridization of a group of selected genotypes grown in 
isolation from other compatible genotypes to promote random open-pollination. Polycross 
method is commonly used in the breeding of cross-fertilizing, wind-pollinated, perennial 
species. Polycross trials are to be designed in such a way that each genotype has an equal 
chance of pollinating, or being pollinated by, any of the others. This implies that genotypes 
must be flowering at the same time. A particular practical application of the use of polycross 
method occurs in the production of a synthetic variety, produced by combination of selected 
lines or plants and subsequently maintained by open-pollination. Since polycross seeds are 
produced under natural field conditions without manual operation, sufficient quantity of seeds 
can be produced which is of great significance for synthetic breeding. Polycross nursery is a 
specific type of field design to ensure random mating among test genotypes. Polycross seed 
nurseries are commonly used in breeding programs for sweet potato, forage (eg: grass) and 
fodder (eg: alfalfa) crops, seed orchards for forest trees, etc. 
 
Neighbour restricted designs restrict randomization of entries in such a way that certain 
groups of entries do not occur together. They can be advantageously used in situations where 
some genotypes interfere in the growth or production of other genotypes due to different 
maturity or plant height. Generally, for easy pollination, male (female) genotypes are not to 
be kept as neighbours to other male (female) genotypes. Some designs are obtained for these 
situations, where a set of genotypes will not appear in the neighbouring positions of an 
identified genotype.  
Further, for seed orchards having well known, prevailing wind directions, directional 
polycross designs are to be obtained. These would require fewer replications of genotypes as 
pollination can happen in a certain direction and hence balancing has to be done in that 

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 
2 1 2 2 2 3 3 1 3 2 3 3 1 1 1 2 1 3 
3 1 3 2 3 3 1 1 1 2 1 3 2 1 2 2 2 3 
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direction only. Some designs balanced for neighbour effects of genotypes in the direction of 
prevailing wind system have been constructed here. 
 
Polycross designs balanced for neighbours in all directions are not available for all situations. 
In these designs, it is required that every genotype should have every other genotype as a 
nearest neighbour equally frequently. Here, two series of designs have been constructed 
ensuring the reduction of self occurrence in the nearest neighbourhood in any of the eight 
directions (North, South, East, West, North-East, North-West, South-East, South-West) 
surrounding it.  
 
2.4.1 Neighbour Restricted Designs for Polycross Nurseries  
When one source of heterogeneity is present in a particular direction in the experimental area, 
block designs are advisable. Neighbour restricted block designs, balanced for neighbour 
effects of genotypes appearing on both sides in a block, can be recommended for such 
situations. When more number of genotypes is to be grown, a larger experimental area is 
required for the same and hence chances are more for having heterogeneity in two cross-
classified directions in the nursery. Neighbour restricted row-column designs are advisable 
for such situations. 
 
2.4.1.1 Neighbour Restricted Block Designs  
Let there be v = 2m genotypes belonging to two groups each of size m. Consider any two 
orthogonal Latin squares in m symbols. Retain the first Latin square as such and renumber the 
symbols in the second Latin square by (m+1), (m+2),…, 2m. Now, interlace the columns of 
the second Latin square within those of the first. The resultant arrangement has m rows 
considered as blocks each of size 2m and each genotype replicated m times. Considering 
borders on both ends in a circular manner, i.e. left (right) border is the treatment in the right 
(left) most inner plot, the final arrangement obtained is such that the genotypes are neighbour 
balanced, on both sides, for genotypes from the other group. 
 
Example 2.4.1.1: Consider v = 6 genotypes (m = 3). Two orthogonal Latin squares for m = 3 
are: 
 

1 2 3  1 2 3 
2 3 1 3 1 2 
3 1 2 2 3 1 

 
Interlace the columns of the second Latin square within those of the first Latin square after 
renumbering 1, 2, 3 of the second Latin square by 4, 5, 6, respectively. Considering circular 
borders on both sides, the following neighbour restricted block design for polycross trials in 3 
blocks of size 6 each is obtained: 

Block 
Left 

Border 
Block Contents 

Right 
Border 

I 6 1 4 2 5 3 6 1 
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II 5 2 6 3 4 1 5 2 
III 4 3 5 1 6 2 4 3 

 
Here it can be seen that every genotype from group I (1, 2, 3) has all genotypes of group II (4, 
5, 6) as left and right neighbour once and vice-versa. 
 
2.4.1.2 Neighbour Restricted Row-Column Designs  
Let v = 4m, with two groups having 2m genotypes each. m arrays each of size v × 2, where 
each genotype is replicated   times, can be obtained as follows: 

 
 Array I  Array II  Array III  Array m 
 Col 1 Col 2  Col 1 Col 2  Col 1 Col 2  Col 1 Col 2 

Row 1 1 v  1 v-2  1 v-4 … 1 
+2 

Row 2 V 2  v-2 2  v-4 2 … 
+2 

2 

Row 3 2 v-1  2 v-3  2 v-5 … 2 
+1 

Row 4 v-1 3  v-3 3  v-5 3 … 
+1 

3 

.  . .  . .  . . … . . 

. . .  . .  . . … . . 

. . .  . .  . . … . . 

Row v 
+1 

1  v-1 1  v-3 1 
 

… 
+3 

1 

 
Two border rows are added to the resultant arrays, in a circular manner, which results in a 
balanced neighbour restricted row-column design in v rows and  columns. Each genotype 

belonging to any one group has every genotype from the other group as neighbours 3 times.  
 
Example: 2.4.1.2: Let m = 2 giving rise to v = 8. The following design in 2 arrays each of 
size 8 × 2 is a neighbour restricted row-column design where each genotype is replicated 4 
times: 

 Array I  Array II 
  Col 1 Col 2  Col 1 Col 2 
 Border Row 5 1  7 1 
 Row 1 1 8  1 6 
 Row 2 8 2  6 2 
 Row 3 2 7  2 5 
 Row 4 7 3  5 3 
 Row 5 3 6  3 8 
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Row 6 6 4  8 4 
 Row 7 4 5  4 7 
 Row 8 5 1  7 1 
 Border Row 1 8  1 6 
  

Here, in each array, every genotype has two genotypes of other group as neighbour in rows or 
columns 3 times. In the entire design, all genotypes of one group will have all genotypes of 
other group occurring as neighbour thrice. 
 
2.4.2 Polycross Designs for Directional Wind System 
Let v be a prime number with (v - 1) a multiple of 3. Consider  initial columns each with 

elements 1, 3, 5. Develop these initial columns by adding 3, 4, 9, 10, 15, 16, … (mod v) 

respectively, to first, second, third,…, initial columns. A border column is appended 

to the rightmost (the leftmost) column if the wind direction is from right to left (left to right) 
in the field. The border column is to be taken in a circular manner. The middle row in each 
array is the seed row while the other two rows act as border rows. Here, each genotype in the 
seed row has a chance to get pollinated by the 3 genotypes in its right side and if the wind is 
flowing from left to right, then each genotype in the seed row has a chance to get pollinated 
by the 3 genotypes in its left side. If the wind is flowing in any other direction, then the 
direction of blocks are to be taken accordingly. 
 
Example 2.4.2.1: Let v = 7. Assuming wind is prevailing from right to left in the field, the 
following design is obtained by developing 2 initial columns (1, 3, 5) by adding 3 to the first 
initial column and 4 to the second. Top and bottom rows and right most column, given in 
bold, in both arrays represent border plants that are used for pollination only and seeds are 
not collected from them.  
 

Array I 
1 4 7 3 6 2 5 1 ← 

← 
← 

 
← 
← 
← 

 
Wind Direction 

 
 
 

Wind Direction 

3 6 2 5 1 4 7 3 
5 1 4 7 3 6 2 5 

 
      

Array II 
1 5 2 6 3 7 4 1 
3 7 4 1 5 2 6 3 
5 2 6 3 7 4 1 5 

 
Some more polycross designs suitable for directional seed orchards have been obtained using 
trial and error method that are suitable for situations where regular prevailing wind is 
predicted. 
Example 2.4.2.2: For v = 7. 
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Example 2.4.2.3: For v = 10. 
 

 
 
Example 2.4.2.4: v = 13. 

 
 
2.4.3 Octa Neighbour Balanced Polycross Designs 
Modifying the methods given by Olesen (1976) and Morgan (1988), the following two series 
of polycross designs balanced for neighbour effects in 8 directions having less number of 
replications can be obtained. 
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2.4.3.1 Octa Neighbour Balanced Polycross Designs for v Genotypes (v+1 prime) 
Olesen (1976) developed a method for constructing polycross designs for v genotypes 
balanced for neighbours (including self) in 8 directions, where each genotype is replicated v2 
times for even v (with v+1 as prime). A series of polycross designs for v genotypes (where 

v+1 is a prime number) is obtained here in  squares of size v and each genotype replicated  

times, balanced for neighbours in eight directions as follows: 
 
The genotype number c at (i, j, k), that is in row i and column j of square k, is defined as 

ijk ≡ c  (i, j, c = 1, …, v and k = 1, 3, …, v-1 or k = 2, 4, …, v)   (mod v + 1)   
where v +1 is prime. 

 
Example 2.4.3.1: Let v = 6. A polycross design as given below for 6 genotypes in 3 squares 
of size 6 and each genotype replicated 18 times, balanced for neighbours in eight directions is 
obtained by taking k = 1, 3, 5. 
 

Square I 

 

Square II 

 

Square III 
1 2 3 4 5 6 3 6 2 5 1 4 5 3 1 6 4 2 
2 4 6 1 3 5 6 5 4 3 2 1 3 6 2 5 1 4 
3 6 2 5 1 4 2 4 6 1 3 5 1 2 3 4 5 6 
4 1 5 2 6 3 5 3 1 6 4 2 6 5 4 3 2 1 
5 3 1 6 4 2 1 2 3 4 5 6 4 1 5 2 6 3 
6 5 4 3 2 1 4 1 5 2 6 3 2 4 6 1 3 5 

 
2.4.3.2 Octa Neighbour Balanced Polycross Designs for v Genotypes (v odd) 
Morgan (1988) developed a method for constructing polycross designs for v genotypes 
balanced for neighbours (including self) in 8 directions, where each genotype is replicated v2 
times for odd v. A series of polycross designs for v genotypes (v being an odd number) in v 
arrays of size  × v and each genotype replicated  times, balanced for neighbours in 

eight directions is obtained as follows: 
 
The genotype number c at (i, j, k), that is in row i and column j of array k, is defined by the 
equation  
 c ≡ [g(i, i) + g (j, j) + k]   (mod v), i = 1,2, …, ;  j, k = 1,2, …, v                                                                                      

 where 
 g(i, j)  =   (-1)i int(j/2),              if j = 1, 2, ..., m 
   = (-1)i int((j + 1)/2),  if  j = m + 1, m + 2, ..., v – 1 
   = v                     if j = v   
 where m = [(-1)(v + 1)/ 2]   (mod v). 
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Example 2.4.3.2: Let v = 5. The following polycross design for 5 genotypes in 5 arrays of 
size 3×5 and each genotype replicated 15 times, balanced for neighbours in eight directions, 
is obtained as below: 
 

Array I  Array II  Array III  Array IV  Array V 
1 2 4 3 1  2 3 5 4 2  3 4 1 5 3  4 5 2 1 4  5 1 3 2 5 
2 3 5 4 2  3 4 1 5 3  4 5 2 1 4  5 1 3 2 5  1 2 4 3 1 
4 5 2 1 4  5 1 3 2 5  1 2 4 3 1  2 3 5 4 2  3 4 1 5 3 

 
 
 



Chapter III 

BLOCK DESIGNS WITH SPATIAL INDIRECT 
EFFECTS IN THE PRESENCE OF  

SYSTEMATIC TREND 
 

 

3.1 Introduction 
In block design set up, spatial trend in the experimental material may affect the plots within 
the blocks. In such situations, the response may also depend on the spatial position of the 
experimental unit within a block. For example, field plots in block similarly oriented may 
have similar fertility gradient. In field experiments, if the land is irrigated the nutrients 
supplied by the fertilizers may be equally distributed but when there is slope or while 
dealing with undulating land in hilly areas, this may not be the case as slope may cause a 
trend in experimental units. One way to overcome such situations is the application of 
suitable arrangement of treatments over plots within a block such that the arranged design is 
capable of completely eliminating the effects of defined components of a common trend. 
Such designs have been called as Trend Free Block (TFB) designs (Bradley and Yeh, 1980). 
These designs are constructed in such a manner that treatment effects and trend effects are 
orthogonal. Bradley and Yeh (1980) introduced the concept of a TFB design along with the 
necessary and sufficient condition for the existence of such designs. Research on various 
aspects of TFB designs continued in work of Yeh and Bradley (1983), Dhall (1986), Lal et 
al. (2005) and a number of others. 
 
Here, we have considered block model with interference effect arising from the immediate 
left and right neighbouring experimental units incorporating trend component. Block model 
with interference effects from the neighbouring units at distance 2 (second order) and 
incorporating trend component have also been discussed. The case of one-sided interference 
effects have been considered as a particular case. The experimental setup has been defined 
and the information matrices for estimating direct as well as interference effects 
incorporating trend component have been derived. Further, the conditions for a block design 
with interference effects to be trend free have been obtained. Methods of constructing 
complete/ incomplete trend free block designs balanced for interference effects have been 
discussed and their characterization properties have been investigated.  
 
3.2 Experimental Setup 
Consider a class of proper block designs with v treatments and n = bk units that form b 
blocks each containing k units. Let Yij be the response from the ith plot in the jth block (i = 1, 
2,…, k; j = 1, 2,…, b). It is assumed that the experiment is conducted in small plots in well 
separated linear blocks with no guard areas between the plots in a block. Further, the design 
is circular. It is also assumed that trend effects also affect the plots within blocks and the 
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within-block trend effects can be represented by orthogonal polynomial of pth degree (p < 
k).  
 
3.2.1 Block Model with Interference Effects Incorporating Trend Component 
Based on the above experimental setup, following fixed effects additive model is considered 
for analyzing a block design with interference effects from the immediate neighbouring 
units and incorporating trend component: 
 

                1 2μ ′ ′ ′ ′+Y = 1 + Δ τ + Δ δ  + Δ γ D β  + Zρ + e ,                                           … (3.2.1) 
 

where Y is a n × 1 vector of observations, μ is the general mean, 1 is a n × 1 vector of unity, 
′Δ is a n × v matrix of observations versus direct treatments, τ is a v × 1 vector of direct 

treatment effects, 1′Δ  is a n × v matrix of observations versus interference effect from the 
immediate left neighbour treatment, δ is v × 1 vector of left neighbour interference effects, 

2′Δ  is a n × v matrix of observations versus interference effect from the immediate right 
neighbour treatment, γ is v × 1 vector of right neighbour interference effects, D' is a n × b 
incidence matrix of observations versus blocks, β is a b × 1 vector of block effects, ρ is a p 
× 1 vector representing the trend effects. The matrix Z, of order n × p, is the matrix of 
coefficients which is given by b= ⊗Z 1 F where F is a k × p matrix with columns 

representing the (normalized) orthogonal polynomials and e is a n ×1 vector of errors with e 
~ N(0, σ2 In). Without loss of generality, it can be assumed that the first k observations 
pertain to the first block, the next k observations pertain to the next block, and so on. Under 
this ordering, b k′ ⊗D = I 1 . Further, ′ ′ p1 F = 0, F F = I and hence pb .′ =Z Z I  

 
Rewriting the model as follows by writing parameter of interest first: 
 

      1 2 μ′ ′ ′ ′+Y = Δ τ + Δ δ  + Δ γ + 1 D β  + Zρ + e ,                          … (3.2.2) 
 

Equation (3.2.2) can also be written as: 
 

      1 1 2 2= + +Y X θ X θ e ,                      … (3.2.3) 
 

where,  

 [ ] [ ]1 1 2 2 1, , ′′ ′ ′ ′ ′ ′ ′ = = = X Δ Δ Δ X 1 D Z θ τ δ γ  and [ ]2 μ ′′ ′=θ β ρ .   
  

Let, 
 

1 2 v(r ,r , ... ,r )′=r  be the v × 1 replication vector of the direct treatment with rs as the number 
of times sth (s =1,2,…,v) treatment appears in the design. 

 

1 11 12 1v(r ,r , ..., r )′=r  be the v × 1 replication vector of the immediate left neighbour treatment 

with r1s as the number of times the treatments in the design has sth treatment as 
immediate left neighbour. 
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2 21 22 2v(r , r ,..., r )′=r  be the v × 1 replication vector of the immediate right neighbour 

treatment with r2s as the number of times the treatments in the design has sth treatment 
as immediate right neighbour. 

      

τ δ γ 1 2 3, , , , , ,′ ′ ′ ′ ′ ′ ′= = = = = =1 1 2 2 1 2 1 2R ΔΔ R Δ Δ R Δ Δ M ΔΔ M ΔΔ M Δ Δ K = DD . 

 
M1 be a v × v incidence matrix of direct treatments versus immediate left neighbour 
treatments, M2 be a v × v incidence matrix of direct treatments versus immediate right 
neighbour treatments, M3 is a v × v incidence matrix of immediate left neighbor treatments 
versus immediate right neighbour treatments, N1 be a v × b incidence matrix of direct 
treatments versus blocks, N2 be a v × b incidence matrix of immediate left neighbour 
treatments versus blocks and N3 is a v × b incidence matrix of immediate right neighbour 
treatments versus blocks.  
 
Therefore, 
 

                
1 2 τ 1 2

1 1 1 1 1 1 2 1 δ 3

2 2 1 2 2 2 3 γ

′ ′ ′   
   ′ ′ ′ ′ ′= =   
   ′ ′ ′ ′ ′   

ΔΔ ΔΔ ΔΔ R M M
X X Δ Δ Δ Δ Δ Δ M R M

Δ Δ Δ Δ Δ Δ M M R
, 

 

                
1

1 2 1 1 1 1 2 1

2 2 2 2 3 2

′   
   ′ ′= =   

′      

Δ1 Δ D Δ Z r N Δ Z
X X Δ 1 Δ D Δ Z r N Δ Z

Δ 1 Δ D Δ Z r N Δ Z
 

 

and        

                2 2 b

p

n k
k k

b

′ ′ ′ ′ ′  
  ′ ′= =   
 ′ ′ ′ ′    

1 1 1 D 1 Z 1 0
X X D1 DD DZ 1 I 0

Z 1 Z D Z Z 0 0 I
. 

 
The 3v × 3v symmetric, nonnegative definite, information matrix for estimating the direct 
effects, interference effects from the left neighbouring units and right neighbouring units is 
obtained as: 
 

    

1 1 1
τ 1 1 1 1 2 1 2 1 3 2

1 1 1
1 2 1 1 δ 2 2 1 1 3 2 3 1 2

1 1 1
2 3 1 2 3 3 2 2 1 γ 3 3 2 2

1 1 1
b b b
1 1 1
b b b
1 1 1
b b b

− − −

− − −

− − −

′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − − − − −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − −

R N K N Δ Z Z Δ   M N K N Δ Z Z Δ  M N K N Δ Z Z Δ

C M N K N Δ Z Z Δ R N K N Δ Z Z Δ M N K N Δ Z Z Δ

M N K N Δ Z Z Δ M N K N Δ Z Z Δ R N K N Δ Z Z Δ

 
 
 
 
 
 
 
  

                  

 
The information matrices for estimating the direct effects, interference effects from left and 
right neighbouring treatments can be obtained. 
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3.2.2 Block Model with Second Order Interference Effects Incorporating Trend 
Component 

Following model is considered for analyzing a block design with second order interference 
effects i.e. interference effects from the neighbouring units at distance 2 and incorporating 
trend component under the above experimental setup: 
 

                  1 2 3 4μ ′ ′ ′ ′ ′ ′+ + +Y = 1 + Δ τ + Δ δ  + Δ γ Δ α Δ η D β + Zρ + e ,                           … (3.2.4) 
 

where 3′Δ  is a n × v incidence matrix of observations versus second order left interference 

effects, α is v × 1 vector of second order left neighbor interference effects, 4′Δ  is a n × v 

incidence matrix of observations versus second order right interference effects, η is v × 1 
vector of second order right neighbour interference effects and all others symbols have their 
same meaning as defined earlier. Let, 
 

( )3 31 32 3vr ,r ,..., r ′=r  be the v × 1 replication vector of the second order left neighbour 

treatments with r3s being the number of times the treatments in the design has sth 
treatment as left neighbour at distance 2. 

 

( )4 41 42 4vr ,r ,..., r ′=r  be the v × 1 replication vector of the second order right neighbour 

treatments with r4s being the number of times the treatments in the design has sth 
treatment as right neighbour at distance 2, 

 
Further let, 
             ( ) ( )3 3 α 31 32 3v 4 4 η 41 42 4vdiag r , r ,..., r , diag r , r ,..., r′ ′= = = =Δ Δ R Δ Δ R , 

             3 4 4 5 1 3 6 1 4 7, , ,′ ′ ′ ′= = = =ΔΔ M ΔΔ M Δ Δ M Δ Δ M , 

             2 3 8 2 4 9 3 4 10, ,′ ′ ′= = =Δ Δ M Δ Δ M Δ Δ M                        

             3 4 4 5,′ ′= =Δ D N Δ D N , 

here M4 is a v × v incidence matrix of direct treatments versus second order left neighbour 
treatments, M5 is a v × v incidence matrix of direct treatments versus second order right 
neighbour treatments, M6 is a v × v incidence matrix of immediate left neighbour 
treatments versus second order left neighbour treatments, M7 is a v × v incidence matrix of 
immediate left neighbour treatments versus second order right neighbour treatments, M8 is 
a v × v incidence matrix of immediate right neighbour treatments versus second order left 
neighbour treatments, M9 is a v × v incidence matrix of immediate right neighbour 
treatments versus second order right neighbour treatments, M10 is a v × v incidence matrix 
of second order left neighbour treatments versus second order right neighbour treatments. 
N4 is a v × b incidence matrix of second order left neighbour treatments versus blocks and 
N5 is a v × b incidence matrix of second order right neighbour treatments versus blocks.  
 
The 5v × 5v symmetric, nonnegative definite joint information matrix for estimating the 
direct effects of treatment and neighbor effects up to distance 2 is obtained as:    
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1 1 1 1 1
τ 1 1 1 2 1 2 1 3 2 4 1 4 3 5 1 5 4

1 1 1 1
1 2 1 1 δ 2 2 1 1 3 2 3 1 2 6 2 4 1 3 7 2

1 1 1 1 1
b b b b b
1 1 1 1
b b b b

− − − − −

− − − − −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − − − − −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − − − −

=

R N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ

M N K N Δ Z Z Δ R N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K

C

1
5 1 4

1 1 1 1 1
2 3 1 2 3 3 2 2 1 γ 3 3 2 2 8 3 4 2 3 9 3 5 2 4

1 1 1
4 4 1 3 6 4 2 3 1 8 4 3 3 2 α 4

1
b

1 1 1 1 1
b b b b b
1 1 1
b b b

− − − − −

− − −

′ ′ ′−

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − − − − −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − −

N Δ Z Z Δ

M N K N Δ Z Z Δ M N K N Δ Z Z Δ R N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ

M N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ R N K 1 1
4 3 3 10 4 5 3 4

1 1 1 1 1
5 5 1 4 7 5 2 4 1 9 5 3 4 2 10 5 4 4 3 η 5 5 4 4

1 1
b b

1 1 1 1 1
b b b b b

− −

− − − − −

 
 
 
 
 
 
 
 
 

′ ′ ′ ′ ′ ′ − − −
 
 

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − − − − − 
 

N Δ Z Z Δ M N K N Δ Z Z Δ

M N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ M N K N Δ Z Z Δ R N K N Δ Z Z Δ

 
The information matrices for estimating the direct effects and interference effects up to 
second order can be obtained from the joint information matrix.  
 
3.3 Definitions 
Following are some general definitions associated with the block design with interference 
effects incorporating trend component (here the definitions are given in respect of second 
order interference effects): 
 
Definition 3.3.1: A block design is said to be balanced for second order interference effects 
from the neighbouring units if every treatment has every other treatment appearing as both 
left and right neighbour up to distance 2 constant number of times (say µ1).  
 
Further, a block design with both sided interference effects is strongly balanced if each 
treatment has every treatment, including itself, appearing as both left and right neighbours 
up to second order a constant number of times (say µ2). 
 
Definition 3.3.2: A block design with second order interference effects incorporating trend 
component, is called a trend-free design if the adjusted treatment sum of squares arising 
from direct effects of treatments and interference effects of treatments up to distance 2 
under the corresponding model is same as the adjusted treatment sum of squares under the 
usual block model with second order interference effects without trend component. 
 
Definition 3.3.3: A trend-free block design with second order interference effects is called 
variance balanced if the variance of any estimated elementary contrast among the direct 
effects is constant (say V1), the variance of any estimated elementary contrast among the 
immediate left neighbour effects is constant (say V2), the variance of any estimated 
elementary contrast among the immediate right neighbour effects is constant (say V3), the 
variance of any estimated elementary contrast among the second order left neighbour effects 
is constant (say V4) and the variance of any estimated elementary contrast among the 
second order right neighbour effects is constant (say V5). A block design is totally balanced 
if V1 = V2= V3 = V4= V5. 
 
3.4 Conditions for the Block Design with Interference Effects to be Trend Free 
The conditions for the block design with interference effects have been obtained here so that 
the treatment (direct, interference from left and right neighbouring units) effects and trend 



Block Designs with Spatial Indirect Effects in the Presence of Systematic Trend 

66 
 

effects are orthogonal and the analysis of the design could then be done in the usual manner, 
as if no trend effects was present. Such designs are known as trend free designs. We now 
derive a necessary and sufficient condition for a block design with interference effects from 
the immediate neighbouring units to be trend free. The conditions for a block design with 
second order interference effects to be trend free have also been discussed subsequently.  
 
Theorem 3.4.1: A block design with interference effects from immediate left and right 
neighbouring units and incorporating trend component is said to be trend free iff 

1,= =Δ Z 0 Δ Z 0  and 2 =Δ Z 0 , where the symbols have their usual meaning as defined 
earlier. 
  
Proof: As defined in (3.2.3), [ ]2 ′=X 1 D Z . Let [ ]3 ′=X 1 D .     
 

We define,     

              ( ) ( )u u u u u u 2,3′ ′ =n
-A = I - X X X X                                                                           

                
u τ u

u δ 1 u 1

u γ 2 u 2

′

′

′

Q = ΔA Δ

Q = Δ A Δ

Q = Δ A Δ

                                                                                       … (3.4.1) 

 

Thus,       2 2 b

p

n k
k k

b

′ 
 ′ =  
  

1 0
X X 1 I 0

0 0 I
 and 3 3

b

n k
k k

′ 
′ =  

 

1
X X

1 I
.                                    … (3.4.2) 

 
A g-inverse of 2 2′X X and 3 3′X X is given, respectively, by 

               ( )2 2 b

p

0
1
k

1
b

 
 
 
 ′ =
 
 
 
 

0 0
-X X 0 I 0

0 0 I

and ( )3 3
b

0
1
k

 
 ′ =
 
 

0
-X X

0 I
.                          … (3.4.3) 

 

Hence,   ( )2 n 2 2 2 2 n
1 1
k b

′ ′ ′ ′= − −-A = I - X X X X I D D ZZ                                           … (3.4.4) 

 
and  

                ( )3 n 3 3 3 3 n
1 .
k

′ ′ ′= −-A = I - X X X X I D D                                                     … (3.4.5) 
 

Now we first prove the necessary part. Let the block design with interference effects 
incorporating trend component be a trend free design. Thus, we have to prove 

1,= =Δ Z 0 Δ Z 0  and 2 =Δ Z 0 . Let Tz and T0 be the adjusted treatment sum of squares 
arising from the direct effect of treatments under Model (3.2.1) and under the usual block 
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model with interference effects without trend effect respectively. Further let TzL and T0L be 
the adjusted treatment sum of squares arising from interference effects of treatments in the 
left neighbouring units under Model (3.2.1) and under the usual block model with 
interference effects without trend effect respectively and TzR and T0R be the adjusted 
treatment sum of squares arising from interference effects of treatments from the right 
neighbouring units under Model (3.2.1) and under the usual block model with two-sided 
interference effects without trend effect respectively. Since the design is assumed to be 
trend free, we can write Tz = T0, TzL = T0L and TzR = T0R i.e. 
 

           2 2τ 2 3 3τ 3′ ′ ′ ′=
- -

Y A Δ Q ΔA Y Y A Δ Q ΔA Y ,                                                          … (3.4.6) 
 

           2 1 2 δ 1 2 3 1 3 δ 1 3′ ′ ′ ′=
- -

Y A Δ Q Δ A Y Y A Δ Q Δ A Y                                                        … (3.4.7) 
 
 

and      
            

          2 2 2γ 2 2 3 2 3γ 2 3′ ′ ′ ′=
- -

Y A Δ Q Δ A Y Y A Δ Q Δ A Y .                                                    … (3.4.8) 
 

 

Thus, from Equation (3.4.7), 

           

( )

2 2τ 2 3 3τ 3

2 2τ 2 3 3τ 3

2 3 .

′ ′=

′ ′ ′ ′⇒ =

′⇒ − =

- -
A Δ Q ΔA A Δ Q ΔA

- -
ΔA Δ Q ΔA Δ ΔA Δ Q ΔA Δ

Δ A A Δ 0

                                                         … (3.4.9) 

 

Similarly using Equation (3.4.7) and Equation (3.4.8), 
 

          

( )

2 1 2 δ 1 2 3 1 3 δ 1 3

1 2 1 2 δ 1 2 1 1 3 1 3 δ 1 3 1

1 2 3 1 ,

′ ′=

′ ′ ′ ′⇒ =

′⇒ − =

- -
A Δ Q Δ A A Δ Q Δ A

- -
Δ A Δ Q Δ A Δ Δ A Δ Q Δ A Δ

Δ A A Δ 0

                                          

 

and 
 

           2 2 2γ 2 2 3 2 3γ 2 3

2 2 2 2γ 2 2 2 2 3 2 3γ 2 3 2

′ ′=

′ ′ ′ ′⇒ =

- -
A Δ Q Δ A A Δ Q Δ A

- -
Δ A Δ Q Δ A Δ Δ A Δ Q Δ A Δ

 

           ( )2 2 2 2′⇒ − =Δ A A Δ 0 .                                                                             … (3.4.10)           
 

Substituting the value of A2 and A3 from Equation (3.4.4) and (3.4.5) into Equation (3.4.9) 
and (3.4.10) respectively and then solving the corresponding equations we get 
 

               1,= =Δ Z 0 Δ Z 0  and 2 =Δ Z 0 .                                                           … (3.4.11) 
 
To prove the sufficiency, we assume that the condition given in the above theorem is true 
i.e. 1,= =Δ Z 0 Δ Z 0  and 2 =Δ Z 0 . Pre-multiplying and post-multiplying both sides of 
Equation (3.4.4) and (3.4.5) by Δ  and ′Δ  respectively and using (3.4.1) we get: 



Block Designs with Spatial Indirect Effects in the Presence of Systematic Trend 

68 
 

             [ ]2τ 2 n τ 1 1
1 1 1
k b k

 ′ ′ ′ ′ ′= − − = − =  
Q = ΔA Δ Δ I D D ZZ Δ R N N ΔZ 0          … (3.4.12) 

and      

            3τ 3 n τ 1 1
1 1
k k

 ′ ′ ′ ′= = − = −  
Q ΔA Δ Δ I D D Δ R N N .                                          … (3.4.13) 

 

As, Q2τ = Q3τ, thus it is obvious that Tz = T0. Similarly, we can prove TzL = T0L and TzR = 
T0R. Hence the condition given in the above theorem is both necessary and sufficient. 
 
On the similar lines, we can obtain the conditions for a block design with second order 
interference effects to be trend free in the form of following theorem: 
 
Theorem 3.4.2: A block design with second order interference effects from left and right 
neighbouring units and incorporating trend component is said to be trend free iff 

1 2 3, , ,= = = =Δ Z 0 Δ Z 0 Δ Z 0 Δ Z 0  and 4 =Δ Z 0 , where the symbols have their usual 
meaning as defined earlier. 
 
Corollary 3.4.2.1: For a trend free block design with interference effects, the information 
matrix for estimating the direct effects as well as the information matrix for estimating the 
interference effects from left and right neighbouring units with trend is same as the 
information matrix for estimating the direct effects as well as the information matrix for 
estimating the interference effects from the immediate left and right neighbouring units 
without trend component.  
 
3.5 Trend Free Designs 
In this section, methods for construction of trend free block designs balanced for 
interference effects from the immediate neighbouring units have been described. In all the 
cases, it is assumed that the designs are circular. We choose  F as a  k × 1 vector with 
columns representing the (normalized) orthogonal polynomials and Z can be obtained based 
on F as defined earlier in such a way that 1,= =Δ Z 0 Δ Z 0  and 2 =Δ Z 0 . 
 
3.5.1 Trend Free Complete Block Designs  
For v prime, the contents of the v-1 complete blocks of the design balanced for interference 
effects from neighbouring units are obtained by writing the treatments in systematic order 
within a block with a difference of 1,2,…,v-1 between the treatments (modulo v) in the 
consecutive blocks. The first block is formed by taking the difference of one between 
treatments, the second block by taking the difference of two and so on the (v-1)th block by 
taking the difference of (v-1). Considering these (v-1) blocks as initial blocks and 
developing them modulo v will result in a series of trend free totally balanced complete 
block design with parameters v, b = v(v-1) = r, µ1= v and every treatment appears in every 
position in the design same number of times i.e. v-1.  
 
For this class of designs,  
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              ( )τ δ γ v bv v-1 , v ,′= = = =R R R I DD I  

              ( ) [ ]u u v v-1 , u,u 1,2,3′′ ′ ′= =N N 11 ,  

                ( )1 2 3 vv ′= = = −M M M 11 I .                                                                … (3.5.1) 
 

The joint information matrix for estimating the direct as well as interference effects from 
the neighbouring units is  
 

             

( )

( )

( )

v v v

v v v

v v v

v v-1 v v
v v v

v v v-1 v
v v v

v v v v-1
v v v

′ ′ ′      − − −            
 ′ ′ ′     = − − −      

      
 ′ ′ ′     − − −      

      

11 11 11I I I

11 11 11C I I I

11 11 11I I I

 

 

The information matrix for estimating the direct effects of treatment is 
  

                  ( )
( )

2

τ v

v v-3
v-2 v

′ = −  
11C I , v > 3.                                                         … (3.5.2)  

 

Similarly, the information matrices for estimating the interference effects from immediate 
left and right neighbouring units are obtained as 
 

                   ( )
( )

2

δ γ v

v v-3
v-2 v

′ = = −  
11C C I , v > 3.                                                 … (3.5.3)  

 
Thus, the designs so obtained are totally balanced for estimating the contrasts pertaining to 
direct effects of treatments and interference effects arising from the immediate left and right 
neighbouring units.  
 
Remark 3.5.1: For the above class of designs, when interference effects from only one side, 
i.e. left neighbouring units is considered, the information matrices for estimating direct 
effects and the interference effects from the left neighbouring units are obtained as 
 

                   ( )
( )

2

τ δ v

v v-2
v-1 v

′ = = −  
11C C I ,  v > 2.                                                … (3.5.4) 

 
Example 3.5.1: For v = 5, the block design balanced for interference effects from the 
immediate left and right neighbouring units is 
 

 
 
 
 
 

1 2 3 4 0 
1 3 0 2 4 
1 4 2 0 3 
1 0 4 3 2 
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Considering these four blocks as initial blocks and developing them modulo 5 will result in 
a trend free totally balanced complete block design with parameters v = 5, b = 20 = r, µ1= 5 
and every treatment appears in every position in the design four times. 
 

-2 -1 0 1 2 
     

1 2 3 4 0 
2 3 4 0 1 
3 4 0 1 2 
4 0 1 2 3 
0 1 2 3 4 
1 3 0 2 4 
2 4 1 3 0 
3 0 2 4 1 
4 1 3 0 2 
0 2 4 1 3 
1 4 2 0 3 
2 0 3 1 4 
3 1 4 2 0 
4 2 0 3 1 
0 3 1 4 2 
1 0 4 3 2 
2 1 0 4 3 
3 2 1 0 4 
4 3 2 1 0 
0 4 3 2 1 

 
Orthogonal trend component of degree one without normalization [Fisher and Yates (1957)] 
is given in the upper row and  
 

[ ]2 1 1 20 0.63 0.31 0 0.31 0.63
10 10 10 10

′− −  ′= = − −  
F  

 
3.5.2 Trend Free Incomplete Block Designs 
Tomar et al. (2005) obtained a series of incomplete block design balanced for interference 
effects from the neighbouring units for v = mt + 1 [prime or prime power (m > 3)  by 
developing following initial blocks modulo v and augmenting the whole set of blocks 
generated from each initial block one after another:  
 

               x w, x w + t, x w + 2t, … x w + (m-1) t ;   for w = 0,1, … , t-1, 
 
where x is the primitive element of GF (v). The design so obtained is a trend free block 
design balanced for interference effect with parameters v = mt + 1, b = tv, r = tm, k = m, 
µ1= 1 and every treatment appears in every position in the design t number of times. 
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For this class of designs, 
  

          τ δ γ v vr , k ,′= = = =R R R I DD I  

          ( ) ( ) [ ]u u vv -k k - 1 u,u 1,2,3′′ ′ ′= + =N N I 11 ,  

            ( )1 2 3 v′= = = −M M M 11 I .                                                                         … (3.5.5) 

 
The joint information matrix for estimating the direct as well as interference effect from the 
neighbouring units is  
 

           

( )

( )

( )

v v v

v v v

v v v

v k-1 v v
k v k v k v

v k-1v v
k v k v k v

v k-1v v
k v k v k v

 ′ ′ ′     − − −      
      

 ′ ′ ′     = − − −      
      

 ′ ′ ′      − − −     
       

11 11 11I I I

11 11 11C I I I

11 11 11I I I

 

 

 
The information matrix for estimating the direct effects of treatment is 
 

             ( )
( )τ v

v k-3
k-2 v

′ = −  
11C I , k > 3.                                                                 … (3.5.6)  

 

The information matrices for estimating the interference effects from left and right 
neighbouring units are obtained as 
                     

             ( )
( )δ γ v

v k-3
k-2 v

′ = = −  
11C C I , k > 3.                                                        … (3.5.7)  

 
The series of designs so obtained are trend free totally balanced for estimating the contrasts 
pertaining to direct effects of treatments and interference effects arising from the immediate 
left and right neighbouring units.  
 
Remark 3.5.2: For the above class of designs, when interference effects from only left 
neighbouring units is considered, the information matrices for estimating direct effects and 
the interference effects are obtained as 
 

              ( )
( )τ δ v

v k-2
k-1 v

′ = = −  
11C C I , k > 2.                                                           … (3.5.8) 

 
Example 3.5.2: Let m = 5, t = 2, then we get the following two initial blocks modulo 11 for 
w = 0 and w = 1: 
 

1 4 5 9 3 and 2 8 10 7 6 
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Developing these blocks, we obtain the following trend free totally balanced incomplete 
block design with v = 11, b = 22, r = 10, k = 5, µ1= 1 and every treatment appears in every 
position in the design two times. F is same as in Example 3.5.1. 
 

-2 -1 0 1 2 
     

1 4 5 9 3 
2 5 6 10 4 
3 6 7 0 5 
4 7 8 1 6 
5 8 9 2 7 
6 9 10 3 8 
7 10 0 4 9 
8 0 1 5 10 
9 1 2 6 0 

10 2 3 7 1 
0 3 4 8 2 
2 8 10 7 6 
3 9 0 8 7 
4 10 1 9 8 
5 0 2 10 9 
6 1 3 0 10 
7 2 4 1 0 
8 3 5 2 1 
9 4 6 3 2 

10 5 7 4 3 
0 6 8 5 4 
1 7 9 6 5 

      
Remark 3.5.3: It has also been seen that the both the above class of designs so obtained are 
trend free up to pth degree (p < k). 
 
3.5.3  Trend Free Block Designs Balanced for Second Order Interference Effects 
In this section, methods for construction of trend free block designs balanced for 
interference effects from the neighbouring units up to distance 2 have been described. In all 
the cases, it is assumed that the designs are circular. We choose  F as a  k × 1 vector with 
column representing the (normalized) orthogonal polynomial and Z can be obtained based 
on F as defined earlier in such a way that 1 2 3, , ,= = = =Δ Z 0 Δ Z 0 Δ Z 0 Δ Z 0  and 4 =Δ Z 0 . 
 
Let there be v (prime) treatments labeled as 0, 1, 2, …, v-1. A series of trend free complete 
block designs strongly balanced for interference effects up to distance 2 are obtained by 
developing the blocks of the design as follows for all q = 0, 1, …, (v-1) and p = 1, 2, …, (v-
1)/2: 
 

    q, q + p, q + 2p,…, q + (v-2)p, q + (v-1)p, q + (v-2)p,…, q + 2p, q + p, q    (modulo v) 
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The parameters of the design so obtained are v, b = v(v-1)/2, r = (v-1)(2v-1)/2, k = 2v-1, µ1 
= v-1 and µ2 = (v-1)/2.  Here, every treatment appears in every position in the design same 
number of times i.e.(v-1)/2.  
 
For this class of designs,  

             ( )( ) ( )τ δ γ α η v b b

v-1 2v 1
, k 2v 1

2
−

= = = = = = −R R = R R R I K I I , 

             ( ) ( )1 2 3 4 5 6 7 8 9 10 v

v-1
2

2
′= = = = = = = = = = −M M M M M M M M M M 11 I , 

              ( ) ( )vu u
v-1

4 v-1
2′′ ′= +  N N I 11 , u, u´ = 1, 2, … 5.                            … (3.5.9) 

 
The information matrix for estimating the direct effects of treatment is 
 

              ( )( )
( )τ v

2v v-1 v-3
2v 5 v

′ = − −  
11C I , v > 3.                                                      … (3.5.10)  

 
The information matrices for estimating the immediate left neighbour effects, immediate 
right neighbour effects, second order left neighbour effects and second order right 
neighbour effects are obtained as 
 

               ( )( )
( )δ γ α η v

2v v-1 v-3
2v 5 v

′ = = = = − −  
11C C C C I , v > 3.                           … (3.5.11) 

 

Remark 3.5.4: For the above class of designs, when interference effects from only left 
neighbouring units is considered, the information matrices for estimating direct effects and 
the interference effects from the left neighbouring units up to distance 2 are obtained as 
 

              ( )( )
( )τ δ γ v

2v v-1 v-2
2v 3 v

′ = = = − −  
11C C C I , v > 2.                                    … (3.5.12) 

 
Example 3.5.3: Let v = 5. The following is a trend free complete block design strongly 
balanced for second order interference effects with v = 5, b = 10, r = 18, k = 9, µ1= 4, µ2 = 
2 and every treatment appears in every position in the design two times: 
 

-4 -3 -2 -1 0 1 2 3 4 
         
0 1 2 3 4 3 2 1 0 
1 2 3 4 0 4 3 2 1 
2 3 4 0 1 0 4 3 2 
3 4 0 1 2 1 0 4 3 
4 0 1 2 3 2 1 0 4 
0 2 4 1 3 1 4 2 0 
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1 3 0 2 4 2 0 3 1 
2 4 1 3 0 3 1 4 2 
3 0 2 4 1 4 2 0 3 
4 1 3 0 2 0 3 1 4 

 
Orthogonal trend component of degree one without normalization [Fisher and Yates (1957)] 
is given in the upper row and F can be obtained accordingly. 
 
For v prime, a series of trend free incomplete block design strongly balanced for 
interference effects up to distance 2 can also be obtained by developing the blocks of the 
design as follows for all q = 0, 1, …, (v-1) and p = 1, 2, …, (v-1)/2: 
 

     q, q + p, q + 2p, … , q + (v-3)p, q + (v-2)p, q + (v-3)p,…, q + 2p, q + p, q     (modulo v) 
 
The parameters of this class of designs are v, b = v(v-1)/2,  r = (v-1)(2v-3)/2, k = 2v-3, µ1 = 
v-2 and µ2 = (v-1)/2. Here, every treatment appears in every position in the design same 
number of times i.e.(v-1)/2. For this class of designs,  
 

 ( )( ) ( )τ δ γ α η v b b

v-1 2v 3
, k 2v 3

2
−

= = = = = = −R R = R R R I K I I , 

      ( ) ( )
1 2 3 4 5 6 7 8 9 10 v

v-3
v-2

2
′= = = = = = = = = = −M M M M M M M M M M 11 I , 

      ( ) ( )2
vu u

5v 9
2 v-2

2′
−

′ ′= +N N 11 I , u, u´ = 1, 2, … 5                                         … (3.5.13) 
 

The information matrix for estimating the direct effect of treatments is 
 

                    ( )( )
( )τ v

2v v-2 v -4
2v 7 v

′ = − −  
11C I , v > 4.                                               … (3.5.14) 

 

The information matrices for estimating the immediate left neighbour effects, immediate 
right neighbour effects, second order left neighbour effects and second order right 
neighbour effects are obtained as 
 

                   ( )( )
( )δ γ α η v

2v v -2 v -4
2v 7 v

′ = = = = − −  
11C C C C I  , v > 4.                     … (3.5.15)  

 
Remark 3.5.5: For the above class of designs, when interference effects from only left 
neighbouring units is considered, the information matrices for estimating direct effects and 
the interference effects from the left neighbouring units up to distance 2 are obtained as 
 

                   ( )( )
( )τ δ γ v

2v v-2 v 3
2v 5 v

− ′ = = = − −  
11C C C I , v > 3.                               … (3.5.16) 
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Example 3.5.4: For v = 5, following is a strongly balanced trend free second order 
neighbour balanced incomplete block design with v = 5, b = 10, r = 14, k = 7, µ1= 3, µ2 = 2 
and every treatment appears in every position in the design two times. 
 

-3 -2 -1 0 1 2 3 
       

0 1 2 3 2 1 0 
1 2 3 4 3 2 1 
2 3 4 0 4 3 2 
3 4 0 1 0 4 3 
4 0 1 2 1 0 4 
0 2 4 1 4 2 0 
1 3 0 2 0 3 1 
2 4 1 3 1 4 2 
3 0 2 4 2 0 3 
4 1 3 0 3 1 4 

 
Remark 3.5.6: It has also been seen that the both the series of designs so obtained are trend 
free up to pth degree (p < k). 
 
 
 
 



Chapter IV 

ROW-COLUMN DESIGNS BALANCED FOR 
SPATIAL INDIRECT EFFECTS 

 

 

4.1 Introduction  
It is seen that most of the work on designs with spatial indirect effects is concentrated on 
block design. In agricultural field experiments, row-column designs are very useful when 
the heterogeneity present in the experimental material is in two directions. Freeman (1979) 
has given some row-column designs balanced for neighbours with and without border plots. 
Federer and Basford (1991) have given three methods of constructing balanced nearest 
neighbour row-column designs. Chan and Eccleston (2003) have given an algorithm which 
generates neighbour balanced row–column Designs. However, the designs obtained are 
found to be only combinatorially balanced. 
 
We have considered here three different situations under row-column setup incorporating 
neighbour effects viz., a row-column design with one-sided neighbour effects, a row-
column design with two-sided neighbour effects and a row-column design with four-sided 
neighbour effects. The information matrices for all the situations for estimating the direct 
and neighbour effects of treatments have been derived. Methods of constructing neighbour 
balanced row-column designs have been developed and its characterization properties have 
been studied.  
 
4.2 Model and Definitions 
Let v be the number of treatments and yij(m) be response from the experimental unit 
occurring in the ith row and the jth column to which the mth treatment is applied. It is 
assumed that border plots are added on the four sides of the design. Assuming that units are 
affected only by the adjacent neighbouring units and the neighbour effects are directional 
from four sides, yij(m) can be represented by a model.  
 

     … (4.2.1) 
 

m =1,2,…,v; i =1,2,…,p; j =1,2,…,q;  
 
where, τ[i, j](m)  is the direct effect of mth treatment, δ [i, j-1](m) is the neighbour effect due to 
the treatment applied in the adjacent left plot, γ [i, j+1](m) is the neighbour effect due to the 
treatment applied in the adjacent right plot, η[i-1, j](m) is the neighbour effect due to the 
treatment applied in the adjacent top (upper) plot, χ [i+1, j](m)  is the neighbour effect due to 
the treatment applied in the adjacent bottom (lower) plot, αi is the ith row effect, βj is the jth 
column effect and eij(m) is the random errors assumed to be independent with E(eij(m)) = 0 
and constant variance σ2. We now give some definitions associated with the row-column 
design with neighbour effects. 

[ ] [ ]ij(m) [i, j](m) [i, j-1](m) [i, j+1](m) i j ij(m)i-1, j (m) i+1, j (m)y =μ + τ + δ + γ + η + χ + α + β + e
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Definition 4.2.1: A row-column design with one sided, say left,  neighbour effects is said to 
be balanced if every treatment has every other treatment appearing as a left neighbour a 
constant number of times (say μ1 times) and strongly balanced if the same treatment also 
appears as a left neighbour a constant number of times (say μ2 times). μ1 may be equal to 
μ2. 
 
Definition 4.2.2: A row-column design with two sided neighbour effects, say left and right, 
is said to be balanced if every treatment has every other treatment appearing as a left and 
right neighbours a constant number of times (say μ1 times) and strongly balanced if the 
same treatment also appears as a left and right neighbours a constant number of times (say 
μ2 times). μ1 may be equal to μ2. 
 
Definition 4.2.3: A row-column design with four sided neighbour effects is said to be 
balanced if every treatment has every other treatment appearing as a neighbour a constant 
number of times (say μ1 times) and strongly balanced if the same treatment also appears as 
a neighbour a constant number of times (say μ2 times) on each of the four sides (left, right, 
top and bottom). μ1 may be equal to μ2. 
 
Definition 4.2.4: A neighbour balanced row-column (NBRC) design with four-sided 
neighbour effects is said to be circular if the treatment in the left border is the same as the 
treatment in the right-end inner plot, the treatment in the right border is the same as the 
treatment in the left-end inner plot, the treatment in the top border is the same as the 
treatment in the bottom-end inner plot and the treatment in the bottom border is the same as 
the treatment in the top-end inner plot.  
 
Definition 4.2.5: A row-column design with four sided neighbour effects is said to be 
variance balanced for direct effects, if all the pair-wise contrasts pertaining to the direct 
effects of treatments are estimated with the same variance. 
 
Three different forms of the model given in Equation (4.2.1) have now been discussed.  
 
4.2.1 Row-Column Design with One-sided Neighbour Effects 
Here, row-column design with one-sided neighbour effect, say left, is considered. Hence the 
model in (4.2.1) can be rewritten as 
 

Y = µ1 + ∆'τ + 1′Δ δ + 1′D α + 2′D β + e,                               … (4.2.2) 
 

where Y is a n × 1 vector of observations, 1 is a n × 1 vector of ones, ∆' is a n × v incidence 
matrix of observations versus direct treatments, τ is a v × 1 vector of direct treatment 
effects, 1′Δ is a n × v matrix of observations versus left neighbour treatment, δ is a v × 1 

vector of left neighbour effects, 1′D is a n × p incidence matrix of observations versus rows, 

α is a p × 1 vector of row effects, 2′D is a n × q incidence matrix of observations versus 

columns, β is a q × 1 vector of column effects and e is a n × 1 vector of errors. Now, the 
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design matrix Xn × (2v + p + q + 1) can be partitioned into parameters of interest (X1) and 
nuisance parameters (X2). 
 

[ ]1 1′ ′X = Δ Δ , [ ]2 1 2′ ′X = 1 D D ,  

1
1 1

1 1 1

′ ′ ′  ′ ′ 

ΔΔ ΔΔ
X X =

Δ Δ Δ Δ
τ 5

5 δ

 
 ′ 

R N
=

N R
, 

1 2
1 2

1 1 1 1 2

′ ′ ′  ′ ′ 

Δ1 ΔD ΔD
X X =

Δ 1 Δ D Δ D
τ 1 2

δ 3 4

 
 
 

r N N
=

r N N
 

and 
1 2

2 2 1 1 1 1 2

2 2 1 2 2

′ ′ ′ ′ ′ 
 ′ ′ ′ 

′ ′  

1 1 1 D 1 D
X X = D 1 D D D D

D 1 D D D D

′ ′ 
 
 

′  

n k h
= k K M

h M H
. 

Here, N1 is an incidence matrix of order v × p of direct treatments Vs rows; N2 is an 
incidence matrix of order v × p of left neighbour treatments Vs rows; N3 is an incidence 
matrix of order v × q of direct treatments Vs columns; N4 is an incidence matrix of order v 
× q of left neighbour treatments Vs columns; N5 is an incidence matrix of order v × v of 
direct treatments Vs left neighbour treatments; M is an incidence matrix of order p × q of 
rows Vs columns; rτ = (r1, r2 , …, rv) is the v × 1 replication vector of direct treatments with 
rm (m =1, 2 ,…, v) being the number of times the mth treatment appears in the design; rδ = 
(rδ1, rδ2 , …, rδv) is the v × 1 replication vector of the left neighbour treatments with rδm 

being the number of times the treatments in the design has mth treatment as left neighbour; 
Rτ = diag (r1, r2 ,…, rv) is the diagonal matrix of replications of treatments as direct effect; 
Rδ = diag. (rδ1, rδ2 , …, rδv) is the diagonal matrix of replications of treatments as left 
neighbour; k = (k1,k2,…,kp) is the p × 1 vector of row sizes; h = (h1,h2,…,hq) is the q × 1 
vector of column sizes; K = diag(k1,k2,…,kp) is the diagonal matrix of row sizes; H = 
diag(h1,h2,…,hq) is the diagonal matrix of column sizes. 
 
The joint information matrix for estimating all the effects (direct and neighbour) can be 
obtained as 1 1 1 2 2 2 2 1′ ′ ′ ′-C = X X - X X (X X ) X X , where 2 2′ -(X X )  is the generalised inverse of 

2 2′X X and is obtained using the following result: 
 

1 1 1 1

1 1

− − − −

− −

 ′+ − 
=   ′ ′   − 

A B A FE F FE
B H E F E

, where 1−′= −E H B A B  and BAF 1−= . 

Hence, 

1 1 1 1
2 2

1

0 ′ ′ 
 ′ ′ 

′  

- - - - - - -

- - -

0 0
(X X ) = 0 K + K ME M K -K ME

0 -E M K E
 with -1′E = H - M K M . 

Thus, 11 12

21 22

 
 
 

C C
C =

C C
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 -1 -1 -1 -1 -1
11 τ 1 1 1 1 2 1 1 3 2 3′ ′ ′ ′ ′ ′ ′+- - - -C = R - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
12 5 1 2 1 2 2 2 1 4 2 4′ ′ ′ ′ ′ ′ ′+- - - -C = N - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
21 5 3 1 3 1 4 1 3 3 4 3′ ′ ′ ′ ′ ′ ′ ′+- - - -C = N - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
22 3 2 3 2 4 2 3 4 4 4δ ′ ′ ′ ′ ′ ′ ′+- - - -C = R - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) . 

 
The 2v × 2v matrix C is symmetric, non-negative definite with zero row and column sums. 
From the above, the information matrices for estimating the direct effects (Cτ) and 
neighbour effects (Cδ) can be estimated using 11 12 22 21

-
τC = C - C C C and 

δ 22 21 11 12
-C = C - C C C  respectively. 

 
4.2.2 Row-Column Design with Two-sided Neighbour Effects  
Here, row-column design with two-sided neighbours, say left and right (or top and bottom), 
is considered. The model for this situation can be written as  

 

Y = µ1 + ∆'τ + 1′Δ δ + 2′Δ γ  + 1′D α + 2′D β + e,                                  … (4.2.3) 
 

where 1′Δ  is a n × v matrix of observations versus left neighbour treatment, δ is v × 1 vector 

of left neighbour effects, 2′Δ  is a n × v matrix of observations versus right neighbour 

treatment, γ is v × 1 vector of right neighbour effects. Here, 
 

 [ ]1 1 2′ ′ ′X = Δ Δ Δ ,  [ ]2 1 2′ ′X = 1 D D  

1 2

1 1 1 1 1 1 2

2 2 1 2 2

′ ′ ′ 
 ′ ′ ′ ′ 

′ ′ ′  

ΔΔ ΔΔ ΔΔ
X X = Δ Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ Δ

τ 1 2

1 δ 3

2 3 γ

 
 ′ 
 ′ ′ 

R N N
= N R N

N N R
,   

1 2

1 2 1 1 1 1 2

2 2 1 2 2

′ ′ 
 ′ ′ ′ 

′ ′  

Δ1 ΔD ΔD
X X = Δ 1 Δ D Δ D

Δ 1 Δ D Δ D

τ 4 7

δ 5 8

γ 6 9

 
 
 
  

r N N
= r N N

r N N
, 

and 
1 2

2 2 1 1 1 1 2

2 2 1 2 2

′ ′ ′ ′ ′ 
 ′ ′ ′ 

′ ′  

1 1 1 D 1 D
X X = D 1 D D D D

D 1 D D D D

′ ′ 
 
 

′  

n k h
= k K M

h M H
. 

Here, N1 is an incidence matrix of order v × v of direct treatments Vs left neighbour 
treatments;  N2 is an incidence matrix of order v × v of direct treatments Vs right neighbour 
treatments; N3 is an incidence matrix of order v × v of left neighbour treatments Vs right 
neighbour treatments;  N4 is an incidence matrix of order v × p of direct  treatments Vs 
rows; N5 is an incidence matrix of order v × p of left neighbour treatments Vs rows; N6 is 
an incidence matrix of order v × p of right neighbour treatments Vs rows; N7 is an incidence 
matrix of order v × q of direct treatments Vs columns; N8 is an incidence matrix of order v 
× q of left neighbour treatments Vs columns; N9 is an incidence matrix of order v × q of 
right neighbour treatments Vs columns; rγ = (rγ1, rγ2 , …, rγv) is the v × 1 replication vector 
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of right neighbour treatments with rγm being the number of times the treatments in the 
design has mth treatment as a right neighbour; Rγ = diag. (rγ1, rγ2 , …, rγv)  is the diagonal 
matrix of replications of treatments as a right neighbour. 
 
The joint information matrix for estimating the direct effects, left-neighbour effects and 
right-neighbour effects of treatments is obtained as follows:  
 

11 12 13

21 22 23

31 32 33

 
 
 
  

C C C
C = C C C

C C C
, 

 

where  -1 -1 -1 -1 -1
11 τ 4 4 4 4 7 4 4 7 7 7′ ′ ′ ′ ′ ′ ′+- - - -C = R - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
12 1 4 5 4 5 7 5 4 8 7 8′ ′ ′ ′ ′ ′ ′+- - - -C = N - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
13 1 4 6 4 6 7 6 4 9 7 9′ ′ ′ ′ ′ ′ ′+- - - -C = N - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
22 δ 5 5 5 5 8 5 5 8 8 8′ ′ ′ ′ ′ ′ ′+- - - -C = R - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
23 3 5 6 5 6 8 6 5 9 8 9′ ′ ′ ′ ′ ′ ′+- - - -C = N - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) ; 

 -1 -1 -1 -1 -1
33 γ 6 6 6 6 9 6 6 9 9 9′ ′ ′ ′ ′ ′ ′+- - - -C = R - (N K N + N K ME M K N - N E M K N - N K ME N N E N ) . 

 
Therefore the information matrix for estimating the direct effect of treatments can be 
obtained as 

[ ]
-

22 23 21
τ 11 12 13

32 33 31

= -
   
   
   

C C C
C C C C

C C C . 

 
4.2.3 Row-Column Design with Neighbour Effects from Four Sides  
Extending the model (4.2.3) for neighbour effects from four sides, the following model is 
defined:  

 

Y = µ1 + ∆'τ + 1′Δ δ + 2′Δ γ + 3′Δ η + 4′Δ χ + 1′D α + 2′D β + e,                        … (4.2.4) 
 

3′Δ  is a n × v matrix of observations versus top neighbour treatment, η is v × 1 vector of top 

neighbour effects, 4′Δ  is a n × v matrix of observations versus bottom neighbour treatment, 

χ is v × 1 vector of bottom neighbour effects. Here, 
 

 [ ]1 1 2 3 4′ ′ ′ ′ ′X = Δ Δ Δ Δ Δ , [ ]2 1 2′ ′X = 1 D D , 

1 2 3 4

1 1 1 1 2 1 3 1 4

1 1 2 2 1 2 2 2 3 2 4

3 3 1 3 2 3 3 3 4

4 4 1 4 2 4 3 4 4

′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ 

′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ 

ΔΔ ΔΔ ΔΔ ΔΔ ΔΔ
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ

X X = Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ

 

τ 1 2 3 4

1 δ 5 6 7

2 5 γ 8 9

3 6 8 η 10

4 7 9 10 χ

 
 ′ 

′ ′ 
 ′ ′ ′ 
 ′ ′ ′ ′ 

R N N N N
N R N N N
N N R N N=
N N N R N
N N N N R

, 
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1 2

1 1 1 1 2

1 2 2 2 1 2 2

3 3 1 3 2

4 4 1 4 2

′ ′ 
 ′ ′ 

′ ′ ′ 
 ′ ′ 
 ′ ′ 

Δ1 ΔD ΔD
Δ 1 Δ D Δ D

X X = Δ 1 Δ D Δ D
Δ 1 Δ D Δ D
Δ 1 Δ D Δ D

τ 11 16

δ 12 17

γ 13 18

η 14 19

χ 15 20

 
 
 
 
 
 
  

r N N
r N N
r N N=
r N N
r N N

, 

1 2

2 2 1 1 1 1 2

2 2 1 2 2

′ ′ ′ ′ ′ 
 ′ ′ ′ 

′ ′  

1 1 1 D 1 D
X X = D 1 D D D D

D 1 D D D D

′ ′ 
 
 
  

n k h
= k K M

h M H
. 

 
N1 is an incidence matrix of order v × v of direct treatments Vs left neighbour treatments;  
N2 is an incidence matrix of order v × v of direct treatments Vs right neighbour treatments; 
N3 is an incidence matrix of order v × v of direct treatments Vs top neighbour treatments;  
N4 is an incidence matrix of order v × v of direct treatments Vs bottom neighbour 
treatments; N5 is an incidence matrix of order v × v of left neighbour treatments Vs right 
neighbour treatments;  N6 is an incidence matrix of order v × v of left neighbour treatments 
Vs top neighbour treatments; N7 is an incidence matrix of order v × v of left neighbour 
treatments Vs bottom neighbour treatments; N8 is an incidence matrix of order v × v of 
right neighbour treatments Vs top neighbour treatments; N9 is an incidence matrix of order 
v × v of right neighbour treatments Vs bottom neighbour treatments; N10 is an incidence 
matrix of order v × v of top neighbour treatments Vs bottom neighbour treatments; N11 is an 
incidence matrix of order v × p direct treatments Vs rows;  N12 is an incidence matrix of 
order v × p of left neighbour treatments Vs rows; N13 is an incidence matrix of order v × p 
of right neighbour treatments Vs rows; N14 is an incidence matrix of order v × p of top 
neighbour treatments Vs rows; N15 is an incidence matrix of order v × p of bottom 
neighbour treatments Vs rows; N16 is an incidence matrix of order v × q of direct treatments 
Vs columns;  N17 is an incidence matrix of order v × q of left neighbour treatments Vs 
columns; N18 is an incidence matrix of order v × q of right neighbour treatments Vs 
columns; N19 is an incidence matrix of order v × q of top neighbour treatments Vs 
columnss; N20 is an incidence matrix of order v × q of bottom neighbour treatments Vs 
columns; rη = (rη1, rη2 , …, rηv) is the v × 1 replication vector of right neighbour treatments 
with rηm being the number of times the treatments in the design has mth treatment as top 
neighbour; rχ = (rχ1, rχ2 , …, rχv) is the v × 1 replication vector of right neighbour treatments 
with rχm being the number of times the treatments in the design has mth treatment as a 
bottom neighbour; Rγ = diag. (rγ1, rγ2 , …, rγv)  is the diagonal matrix of replications of 
treatments as a right neighbour; Rη = diag. (rη1, rη2 , …, rηv) is the diagonal matrix of 
replications of treatments as a top neighbour; Rχ = diag. (rχ1, rχ2 , …, rχv) is the diagonal 
matrix of replication of treatments as a bottom neighbour. 
 
The joint information matrix for estimating the direct effects, left-neighbour effects, right-
neighbour effects, top-neighbour effects and bottom-neighbour effects of treatments is as 
follows:   
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11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

 
 
 
 
 
 
 
 

C C C C C
C C C C C
C C C C CC =
C C C C C
C C C C C

, 

where, 
 

-1 ' -1 -1 ' -1 ' -1 ' '
11 τ 11 11 11 11 16 11 11 16 16 16

- ' - - -C = R - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

12 1 11 12 11 12 16 12 11 17 16 17C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

13 2 11 13 11 13 16 13 11 18 16 18C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

14 3 11 14 11 14 16 14 11 19 16 19C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

15 4 11 15 11 15 16 15 11 20 16 20C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

22 δ 12 12 12 12 17 12 12 17 17 17C = R - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

23 5 12 13 12 13 17 13 12 18 17 18C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

24 6 12 14 12 14 17 14 12 19 17 19C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

25 7 12 15 12 15 17 15 12 20 17 20C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N )
; 

-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '
33 γ 13 13 13 13 18 13 13 18 18 18C = R - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 

-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '
34 8 13 14 13 14 18 14 13 19 18 19C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 

-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '
35 9 13 15 13 15 18 15 13 20 18 20C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 

-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '
44 η 14 14 14 14 19 14 14 19 19 19C = R - (N K N + N K ME M K N - N E MK N - N K ME N + N E N ) ; 

-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '
45 10 14 15 14 15 19 15 14 20 19 20C = N - (N K N + N K ME M K N - N E MK N - N K ME N + N E N )

; 
-1 ' -1 - ' -1 ' - -1 ' -1 - ' - '

55 χ 15 15 15 15 20 15 15 20 20 20C = R - (N K N + N K ME M K N - N E MK N - N K ME N + N E N )
. 

 
The 5v × 5v matrix C is symmetric, non-negative definite with zero row and column sums. 
From the above, the information matrices for estimating the direct effects (Cτ), left-
neighbour effects (Cδ), right-neighbour effects (Cγ), top-neighbour effects (Cη) and bottom-
neighbour effects (Cχ) of treatments can be obtained.  
 
4.3 Method of Construction 
Method 4.3.1: Let v be a prime number. Obtain a basic array of v - 1 columns each of size 
v from the following initial sequence for values of s = 0, 1,..., v – 2 by taking modulo v: 

v  

s+1  
2(s+1) 
. 
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. 

. 
(v-1)(s+1) 

 
Develop the columns of this array cyclically mod v to get v sets of v-1 columns each. 
Making design circular by adding border plots results in a row-column design for v 

treatments in v rows and v(v-1) columns which is strongly balanced for left and right 
neighbours. It is seen that each of the v treatments has every other treatment as left and right 
neighbour v-1 times, as top and bottom neighbour v times.  
 
Example 4.3.1.1: Let v = 5 be the number of treatments.  Develop the initial array of order 
5×4 using the method given. The remaining array can be obtained by cyclically generating 
each column of the initial array and taking mod 5. Finally add border plots to make the 
design circular. 
 

 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5  
4 5 5 5 5 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 
3 1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 1 
2 2 4 1 3 3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 
1 3 1 4 2 4 2 5 3 5 3 1 4 1 4 2 5 2 5 3 1 3 
5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 
 5 5 5 5 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4  

 
Under Model 4.2.2 
The various incidence matrices are as follows:  
 

N1 = N3 = N5 = (v-1)Jv; N2 =N4 =M = Jv × v(v-1); Rτ = Rδ  = K = v(v-1)Iv; H = vIv(v-1). 
 

The joint information matrix (C) is of the following form: 
 

  
1
v

1
v

v(v-1)( - )
v(v-1)( - )

 
  
 

I J 0
C =

0 I J
. 

For this class of designs, 1
δ vv(v-1)( - )τC = C = I J . 

For the given design in Example 4.3.1.1, δτC = C = 20 I – 4 J. 
 
Under Model 4.2.3 
The various incidence matrices are as follows:  
 

N1 =N2 =N3 =N4 =N5 =N6 =(v-1)Jv; N7 = N8= N9= M =Jv × v(v-1); Rτ = Rδ = Rγ  = K = v(v-
1)Iv; H = vIv(v-1).  
 

The joint information matrix (C) is of the following form: 
 

   

1
v

1
v

1
v

v(v-1)( - )
v(v-1)( - )

v(v-1)( - )

 
 
 
 
 

I J 0 0
C = 0 I J 0

0 0 I J
. 
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The designs obtained here are variance balanced for estimating the direct effects of contrasts 
in v treatments and the corresponding information matrix for estimating the direct effect of 
treatments can be obtained as 
 

  -
τ 11 12 22 21C = C - C C C ; 

 1
11 vv(v-1)( - )C = I J , [ ]12C = 0 0 and 

1
v

22 1
v

v(v-1)( - )
v(v-1)( - )

 
  
 

I J 0
C =

0 I J
. 

 
Similarly, the information matrix for estimating left and right neighbour effects can be 
obtained by the appropriate partitioning of the C matrix. It can be found that the design is 
variance balanced for estimating the direct, left and right neighbour effects. Therefore it can 
be concluded that for this class of designs δ γτC = C = C 1

vv(v-1)( - )= I J . 

 
Particular case: If any number of rows is deleted and keeping a minimum of 4 rows and 
treating rows as columns and columns as rows, the resultant design is again variance 
balanced for estimating all the effects. 
 
Under Model 4.2.4 
The various incidence matrices are as follows: 
 

N1 =N2 =N5 =N6 =N7 =N8 =N9 =N11 =N12 =N13 =N14 =N15 = (v-1)Jv; N3 =N4 =N10 = 
v(Jv – Iv); N16 =N17 =N18 =N19 =N20 =M = Jv × v(v-1); Rτ = Rδ = Rγ = Rη = Rχ = K = v(v-
1)Iv and H = vIv(v-1) 
 

Further, 

   

1 1 1
v v v

1
v

1
v

1 1 1
v v v
1 1 1
v v v

v(v-1)( - ) -v( - ) -v( - )
v(v-1)( - )

v(v-1)( - )
-v( - ) v(v-1)( - ) -v( - )
-v( - ) -v( - ) v(v-1)( - )

 
 
 
 
 
 
 
 

I J 0 0 I J I J
0 I J 0 0 0

C = 0 0 I J 0 0
I J 0 0 I J I J
I J 0 0 I J I J

. 

 
The joint information matrix for estimating the direct, top and bottom neighbour effects is 
of the form 
  

   

1 1 1
v v v

1 1 1
τ η χ v v v

1 1 1
v v v

v(v-1)( - ) -v( - ) -v( - )
-v( - ) v(v-1)( - ) -v( - )
-v( - ) -v( - ) v(v-1)( - )

 
 
 
 
 

I J I J I J
C = I J I J I J

I J I J I J
. 

 
The designs obtained here are variance balanced for estimating the direct effects of contrasts 
in v treatments and the corresponding information matrix for estimating the direct effect of 
treatments can be obtained as 
 

  τ 11 12 22 21
-C = C - C C C ; 
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   1
11 vv(v-1)( - )C = I J , ( )1 1

12 v v-v( - ) -v( - )C = I J I J , 

and   
1 1
v v

22 1 1
v v

v(v-1)( - ) -v( - )
-v( - ) v(v-1)( - )

 
  
 

I J I J
C =

I J I J
. 

Similarly, the information matrix for estimating top and bottom neighbour effects can be 
obtained by the appropriate partitioning of the τ η χC matrix. It can be found that the design 

is variance balanced for estimating the top and bottom effects.  
 
The joint information matrix for estimating the left and right neighbour effects is as follows: 

1
v

δ γ 1
v

v(v-1)( - )
v(v-1)( - )

 
  
 

I J 0
C =

0 I J
. 

Hence 1
δ γvv(v-1)( - ) =C = I J C . 

Therefore, it can be concluded that for this class of designs η χτC = C = C and δ γC = C . 

For the given design η χτC = C = C = 16.66 I – 3.33 J and δ γC = C = 20 I – 4 J. 

 
Method 4.3.2: Let v be the number of treatments. Obtain a v2×3 basic array of the form 
given as follows: 
 

1 s s
2 s s+1
. . .
. . .
. . .
v s s+v-1

 
 
 
 
 
 
 
  
 

where s =1, 2, …, v 

 

Generate cyclically mod v to get an array of size v2×3v. Add border plots to make the 
design circular. The design obtained here is variance balanced for estimating the direct and 
neighbour effects of treatments. 
 
Example 4.3.2.1: Let v = 4 be the number of treatments. Develop an initial array of size 
16×3 using the procedure given and generate it cyclically mod 4 to get an array of 
size16×12. Add border plots to make the design circular. 
 

 4 4 3 1 1 4 2 2 1 3 3 2  
4 1 1 1 2 2 2 3 3 3 4 4 4 1 
1 2 1 2 3 2 3 4 3 4 1 4 1 2 
2 3 1 3 4 2 4 1 3 1 2 4 2 3 
3 4 1 4 1 2 1 2 3 2 3 4 3 4 
1 1 2 2 2 3 3 3 4 4 4 1 1 1 
2 2 2 3 3 3 4 4 4 1 1 1 2 2 
3 3 2 4 4 3 1 1 4 2 2 1 3 3 
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4 4 2 1 1 3 2 2 4 3 3 1 4 4 
2 1 3 3 2 4 4 3 1 1 4 2 2 1 
3 2 3 4 3 4 1 4 1 2 1 2 3 2 
4 3 3 1 4 4 2 1 1 3 2 2 4 3 
1 4 3 2 1 4 3 2 1 4 3 2 1 4 
3 1 4 4 2 1 1 3 2 2 4 3 3 1 
4 2 4 1 3 1 2 4 2 3 1 3 4 2 
1 3 4 2 4 1 3 1 2 4 2 3 1 3 
2 4 4 3 1 1 4 2 2 1 3 3 2 4 
 1 1 1 2 2 2 3 3 3 4 4 4  

 
Under Model 4.2.2 
For this class of design, N1 = N3 = 3 2v×v

J ; N2 = N4 = vJv×3v; M = 2v 3v×
J ; Rτ = Rδ = 

3v2Iv; K = 3v 2v
I ; H = v2I3v. The joint information matrix (C) is of the following form 

 

   
12
v

12
v

3v ( - )
3v ( - )

 
  
 

I J 0
C =

0 I J
. 

 

The class of design obtained here is variance balanced for estimating both the direct and left 
neighbour effects of the treatments. It can be concluded that for this class of designs 

δτC = C . 
 
Under Model 4.2.3 
The various incidence matrices are as follows:  
 

N1 =N2 =N3 =3vJv; N4 =N5 =N6 =3 2v v×
J ; N7 = N8= N9= vJv × 3v; M = 2v 3v×

J ; Rτ = Rδ = 

Rγ  = 3v2Iv; K = 3v 2v
I ; H = v2I3v with 

 

  

12
v

12
v

12
v

3v ( - )
3v ( - )

3v ( - )

 
 
 
 
 

I J 0 0
C = 0 I J 0

0 0 I J
 

 
The designs obtained here are variance balanced for estimating the direct effects of contrasts 
in v treatments and the corresponding information matrix for estimating the direct effect of 
treatments can be obtained as 
 

   -
τ 11 12 22 21C = C - C C C ; 

   12
11 v3v ( - )C = I J , [ ]12C = 0 0 and 

12
v

22 12
v

3v ( - )
3v ( - )

 
  
 

I J 0
C =

0 I J
. 

 
Similarly, the information matrix for estimating left and right neighbour effects can be 
obtained by the appropriate partitioning of the C matrix. It can be found that the design is 
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variance balanced for estimating the direct, left and right effects. Therefore it can be 
concluded that for this class of designs δ γτC = C = C . For the given example, 

δ γτC = C = C = 48 I – 12 J. 

 
Method 4.3.3: Let v be the number of treatments. Construct a v × v square with v replicates 
of v distinct treatments by placing the treatment number c at (ij)th cell, i.e., in ith row and jth 
column, which satisfies equation ij ≡ c (mod v +1), i, j, c = 1,…,v, where v + 1 should be 
prime and c (mod v+1) is the unique remainder among the set (1,…,v) on dividing v +1 into 
ij. i.e., excluding the remainder zero. Given j and c the equation has exactly one solution for 
i, and similarly, given i and c there is exactly one solution for j, which is the Latin square 
property implying that each treatment has a different neighbour. Now, take the mirror image 
of the v × v square and augment to the right or left of the existing design to get a v × 2v 
array. Add border plots to make the design circular. This array results in a NBRC design 
with parameters v, p = v, q = 2v, r = 2v, µ1 = µ1 = 2.  
 
Example 4.3.3.1: For v = 6, a 6 × 6 array is obtained as follows: 
 
 

 
The NBRC design with parameters v = 6,  p = 6, q =12, r = 12  µ1 = 2 and µ2 = 2 is 
obtained as follows:   
 

 1 2 3 4 5 6 6 5 4 3 2 1  
1 1 2 3 4 5 6 6 5 4 3 2 1 1 
2 2 4 6 1 3 5 5 3 1 6 4 2 2 
3 3 6 2 5 1 4 4 1 5 2 6 3 3 
4 4 1 5 2 6 3 3 6 2 5 1 4 4 
5 5 3 1 6 4 2 2 4 6 1 3 5 5 
6 6 5 4 3 2 1 1 2 3 4 5 6 6 

 6 5 4 3 2 1 1 2 3 4 5 6  
 
Under Model 4.2.2 
The various incidence matrices are as follows: 

 

N1 = N3 = N5 =2Jv; N2 = M = N5 =Jv × 2v; Rτ = Rδ =K = 2vIv and H = vI2v. 
 

The joint information matrix is of the following form: 

Columns 
 

Rows 
1 2 3 4 

 
5 

 
6 

1 1 2 3 4 5 6 
2 2 4 6 1 3 5 
3 3 6 2 5 1 4 
4 4 1 5 2 6 3 
5 5 3 1 6 4 2 
6 6 5 4 3 2 1 
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1
v

1
v

2v( - )
2v( - )

 
  
 

I J 0
C =

0 I J
. 

 

The designs obtained here are variance balanced for estimating the direct effects of contrasts 
in v treatments and the corresponding information matrix for estimating the direct effect of 
treatments can be obtained as 
 

   -
τ 11 12 22 21C = C - C C C ; 

 
Similarly, the information matrix for estimating left neighbour effects can be obtained by 
the appropriate partitioning of the C matrix. It can be found that the design is variance 
balanced for estimating the direct effects and left neighbour effects with 

1
δ v2v( - )τC = C = I J . For the above given example δτC = C = 12 I – 2 J. 

 
Under Model 4.2.3 
Under this the design obtained is variance balanced for estimating the direct effects of 
treatments. For the given example, it is found that τC = 12 I – 2 J. 
 
Method 4.3.4: Consider a Balanced Incomplete Block (BIB) design with parameters 
v, b, r, k>2, λ=1. Repeat each treatment in the block (considered as row) once at the 
positions adjacent to the existing positions. From each row of this design, develop 2k-1 
more rows by rotating the treatments clockwise resulting into 2bk rows. Add border plots to 
make the design circular. The resultant design is a strongly neighbour balanced row-column 
design with incomplete rows and with parameters v = v,  p = 2bk, q = 2k, r = 4rk , µ1 = 2k 
and µ2 =2kr. 
 
Example 4.3.4.1: Consider the BIB design with parameters v = b = 7, r = k = 3, λ =1. 
Following is the strongly balanced incomplete row-column design with parameters v = 7, p 
= 42, q =6, r = 36, µ1 = 6 and µ2 = 18:  
 

 3 7 7 1 1 3  
4 1 1 2 2 4 4 1 
1 1 2 2 4 4 1 1 
1 2 2 4 4 1 1 2 
2 2 4 4 1 1 2 2 
2 4 4 1 1 2 2 4 
4 4 1 1 2 2 4 4 
5 2 2 3 3 5 5 2 
2 2 3 3 5 5 2 2 
2 3 3 5 5 2 2 3 
3 3 5 5 2 2 3 3 
3 5 5 2 2 3 3 5 
5 5 2 2 3 3 5 5 
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6 3 3 4 4 6 6 3 
3 3 4 4 6 6 3 3 
3 4 4 6 6 3 3 4 
4 4 6 6 3 3 4 4 
4 6 6 3 3 4 4 6 
6 6 3 3 4 4 6 6 
7 4 4 5 5 7 7 4 
4 4 5 5 7 7 4 4 
4 5 5 7 7 4 4 5 
5 5 7 7 4 4 5 5 
5 7 7 4 4 5 5 7 
7 7 4 4 5 5 7 7 
1 5 5 6 6 1 1 5 
5 5 6 6 1 1 5 5 
5 6 6 1 1 5 5 6 
6 6 1 1 5 5 6 6 
6 1 1 5 5 6 6 1 
1 1 5 5 6 6 1 1 
2 6 6 7 7 2 2 6 
6 6 7 7 2 2 6 6 
6 7 7 2 2 6 6 7 
7 7 2 2 6 6 7 7 
7 2 2 6 6 7 7 2 
2 2 6 6 7 7 2 2 
3 7 7 1 1 3 3 7 
7 7 1 1 3 3 7 7 
7 1 1 3 3 7 7 1 
1 1 3 3 7 7 1 1 
1 3 3 7 7 1 1 3 
3 3 7 7 1 1 3 3 
 1 1 2 2 4 4  

 

For this design under Model 4.2.2, δτC = C = 24.01I – 3.43J and under Model 4.2.3, 

τC = 21 I – 3 J and δ γC = C = 11.5 I – 1.5 J. 

 
4.4  Minimal Neighbour Balanced Row-Column Designs 
A row-column design with four sided neighbour effects is said to be minimally balanced if 
every treatment has every other treatment appearing as a neighbour exactly once in all the 
four directions. This design will be balanced and with minimum number of experimental 
units.  
 
 Method 4.4.1: Construct an initial row of size v.  
 

1 v 2 v-1 3 v-2 ... (v+3)/2 (v+1)/2 
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Develop the columns by proceeding from top to bottom  filling only odd numbered cells by 
adding 1 to the previous odd numbered cell and taking modulo v. Thus the array obtained 
will be as follows: 
 

1 v 2 v-1 3 v-2 •  •  • (v+3)/2 (v+1)/2 

         
2 1 3 v 4 v-1 •  •  • (v+5)/2 (v+3)/2 

         
• 
• 
• 

  

• 
• 
• 

    

• 
• 
• 

(v-1)/2 (v-3)/2 (v+1)/2 (v-5)/2 (v+3)/2 (v-7)/2 •  •  • v v-1 

         
(v+1)/2 (v-1)/2 (v+3)/2 (v-3)/2 (v+5)/2 (v-5)/2 •  •  • 1 v 

 
The empty positions in the even numbered cells are filled in the reverse direction (from 
bottom to top) by adding 1 to the previous cell and taking modulo v. The resultant design is 
a row-column designs balanced for spatial indirect effects with parameters v, p = v, q = r = 
v, µ = 1.  
 
Example 4.4.1.1: The minimally neighbour balanced row-column design obtained for v = 7 
is as follows: 
 

1 7 2 6 3 5 4 
7 6 1 5 2 4 3 
2 1 3 7 4 6 5 
6 5 7 4 1 3 2 
3 2 4 1 5 7 6 
5 4 6 3 7 2 1 
4 3 5 2 6 1 7 

 
 



Chapter V 

EXPERIMENTAL DESIGNS BALANCED FOR 
TEMPORAL INDIRECT EFFECTS 

 

 

5.1   Designs Balanced for Temporal Indirect Effects 
 

Treatments applied in a particular period may influence the response of the units not only in 
the period of their direct application but also in the subsequent periods. The treatments leave 
carryover effects (temporal indirect effects) in the periods following the periods of their 
direct application. The designs involving sequences of treatments are more popularly known 
as Crossover designs (CODs) 
 
Method 5.1.1: Let number of treatments v be a prime number. Obtain a basic array of v - 1 
columns each of size v from the following initial sequence: 
  

ω +1 
2(ω + 1) 

. 

. 

. 
(v-1)( ω + 1) 

For ω = 0, 1,..., v – 2 modulo v 
 

Now, develop the columns of this array cyclically mod v to get v sets of v-1 columns each. 
The resultant designs obtained are balanced for temporal indirect effects up to order two in 
incomplete units.  The parameters of the design so obtained are v (prime) treatments, p = v-1 
periods and n = v(v-1) experimental units. The design developed is found to be variance 
balanced for estimating direct and temporal indirect effects. 
 
Example 5.1.1.1: Let v =5 
 

Initial Array 
1 2 3 4 
2 4 1 3 
3 1 4 2 
4 3 2 1 

 

Pe
rio

ds
 

Units 
1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 
2 4 1 3 3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 
3 1 4 2 4 2 5 3 5 3 1 4 1 4 2 5 2 5 3 1 
4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 
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5.2   Analysis of Experiments when Treatments Exhibit Temporal Indirect Effects 
 

The analysis of COD balanced for temporal indirect effect is illustrated through simulated 
data on milk production of dairy cows, for the COD with number of treatments (v ) = 5 
(0,1,2,3, and 4), number of periods (p) = 9, the number of experimental units (s) = 5 and with 
one pre-period.  
 

  
Units 

  
1 2 3 4 5 

Pre-period 0 
(0) 

9.76 
(1) 

16.42 
(2) 

10.63 
(3) 

16.48 
(4) 

7.66 

Periods 

1 
(0) 

12.45 
(1) 

15.49 
(2) 

7.92 
(3) 

14.20 
(4) 

10.47 

2 
(4) 

11.85 
(0) 

9.80 
(1) 

14.33 
(2) 

6.71 
(3) 

16.42 

3 
(1) 

16.25 
(2) 

9.68 
(3) 

17.33 
(4) 

8.54 
(0) 

8.03 

4 
(3) 

20.477 
(4) 

9.98 
(0) 

7.62 
(1) 

12.60 
(2) 

12.26 

5 
(2) 

12.42 
(3) 

19.83 
(4) 

10.25 
(0) 

11.30 
(1) 

18.49 

6 
(3) 

19.03 
(4) 

9.87 
(0) 

8.32 
(1) 

16.66 
(2) 

11.56 

7 
(1) 

15.14 
(2) 

10.55 
(3) 

15.92 
(4) 

9.11 
(0) 

8.59 

8 
(4) 

13.11 
(0) 

9.95 
(1) 

13.90 
(2) 

9.48 
(3) 

20.18 

9 
(0) 

9.18 
(1) 

17.94 
(2) 

10.40 
(3) 

14.39 
(4) 

8.94 
*Numbers in the parenthesis indicates treatments 

 
ANOVA 

Source D.F. S.S. M.S. F 
Periods 8 30.98 3.87 4.6419 
Units 4 49.77 12.44 14.9133 
Direct effects ignoring residual effects 4 508.83 127.21 

 Residual effects eliminating direct effects 4 35.20 8.80 10.54** 
OR 

    Residual  effects ignoring residual effects 4 52.70 13.18 
 Direct  effects eliminating direct effects 4 491.32 122.83 147.21** 

Error 24 20.02 0.83 
 Total 44 644.81 

  **indicate significant at 1% level 
    Here both the direct and residual effects are seen to be significant. 
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5.3   Crossover Designs with Factorial Treatment Structure 
 

In many animal experiments, it is often required to measure the effect of response from two 
or more factors over various temporal environments, like studying the effect of simultaneous 
application of various fertilizers on a crop or, the effect of feeds and environments on milk 
yield of cows. CODs having two or more factors are suitable for such situations. Several 
researchers have contributed to the construction and related aspects of CODs for the 
simultaneous application of more than one factor to experimental units over periods 
(Fletcher, 1987; Fletcher and John, 1985; Fletcher et al., 1990; Dwivedi et al., 2008 and 
Mason and Hinkelmann, 1971). Most of these studies assumed the interaction among the 
factors to be present. Some studies were made without considering the presence of residual 
effects (i.e., the carry over effects of treatments that persist even after the period of 
application of treatments) and some considered the situations where one of the factors exhibit 
residual effects.  
 
Sometimes, different levels of two unrelated factors are to be applied to experimental units 
simultaneously and their joint effect after each period of application is measured, but as 
observations are taken over different time periods from the units, first order residual effects 
of the levels of both the factors may be present. For example, in an experiment to study the 
effect of different methods of shearing and various feeds on body weight of sheep, method of 
shearing is not related to type of feed. Here, observation (body weight) has to be taken from 
each unit during each period and both the factors may exhibit residual effects. Some classes 
of such factorial CODs assuming the absence of interactions were given by Lewis and 
Russell (1998) and Varghese et al. (2009). 
 
In experimental situations, wherein experimental units are required to perform a series of 
tasks one after another under various environmental conditions such as different types of 
lighting or temperature or equipments, it is difficult to change the environmental conditions. 
Thus, each subject is required to perform all the assigned tasks under one set of conditions 
during one session. The conditions are altered from one session to another. Designs with 
nested structure having experimental conditions treated as levels of first factor and different 
tasks treated as levels of nested factor are suitable for such experiments. This experimental 
situation has been considered in literature by few researchers (Dean et al., 1999;  Raghavarao 
and Xie; 2003). The experimental setting is such that there is a gap between each main 
session and hence it is assumed that no carry over effect transfers from a main session to 
another. But carry over effects are assumed to be present within main sessions (from sub-
session to sub-session). Here, a class of designs involving sequences of treatment 
combinations with nested factors has been obtained.  
 
5.3.1 Designs Involving Sequence of Treatment Combinations Balanced for One Factor 
We first give here some definitions of designs involving sequence of treatments having 
factorial treatment structure followed by the model and the class of designs proposed. 
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Uniform: A factorial COD with two factors F1 and F2 (where F2 is nested within F1) having 
levels f1 and f2 respectively, is called uniform on periods if every treatment combination 
occurs in each period the same number of times, say χ1. A necessary condition for this to 
hold is that the number of units, n = χ1v, v being the number of treatment combinations (= 
f1f2). A factorial COD with two factors F1 and F2 having levels f1 and f2 respectively, is 
called uniform on units if every treatment combination is applied to each experimental unit 
the same number of times, say χ2. This can occur only if the number of periods, p = χ2v. A 
design is called uniform if it is uniform on both periods and units.  
 
Balanced: A COD with two factors F1 and F2 having levels f1 and f2 respectively, with levels 
of F2 nested within levels of F1, is said to be balanced if every combination of the two factors 
is preceded by each level of the nested factor F1 (except the level appearing in the 
combination) an equal number of times.  
 
Strongly balanced: A COD with two factors F1 and F2 having levels f1 and f2 respectively, 
with levels of F2 nested within levels of F1, is said to be strongly balanced if every 
combination of the two factors is preceded by every other level of the nested factor 
(excluding the level appearing in the combination) equally often say, ∆1 times and by the 
level of the nested factor appearing in the combination ∆2 times. ∆1 and ∆2 may or may not 
be equal. 
 
Variance Balanced: A COD with two factors F1 and F2 is said to be variance balanced if all 
elementary contrasts pertaining to direct effects of various treatment combinations consisting 
of levels of both the factors are estimated with a constant variance.  
 
5.3.2 Designs Involving Sequences of Treatment Combinations with Nested Factors 
Let two factors F1 and F2 have number of levels f1 (represented by 1, 2, 3,…) and f2 
(represented by a, b, c,…) giving rise to f1 × f2 treatment combinations where the levels of F2 
are nested within the levels of F1. First consider a balanced COD for f1 levels of first factor in 
p1 periods (main sessions) and n1 experimental units. Within each cell (period-unit 
intersection) of this design, consider another balanced/strongly balanced COD for f2 levels of 
second factor in p2 periods (sub-sessions) and n2 experimental units. The resultant design 
will have p1p2 periods and n1n2 units and each sub-cell receives a treatment combination out 
of f1f2 possible combinations. It is assumed that there is a gap between each main session and 
hence no carry over effect is assumed from one main session to another main session. But 
carry over effects are assumed to be present within main sessions (from sub-session to sub-
session). The resultant design is balanced/ strongly balanced depending on the design 
considered for the nested factor. 
 
To explain the general method described above, we take up two illustrations using two 
classes of designs wherein the second case is just the reverse arrangement of the first. In the 
first case, we make use of Williams (1949) Latin squares as the main session design and a 
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two treatment design as the sub-session design. An easy method of obtaining Williams Latin 
squares was given by Sharma (1975). The steps involved are described below:  
 Construct one (or two) f1 × f1 table(s) in which columns refer to experimental units and 

rows to periods according to even (or odd) f1. 
 In both the squares, number the periods from 1 to f1 successively. 
 Assign the levels of first factor 1, 2, …, f1 successively to the f1 cells in the first column 

of both the squares by proceeding from top to bottom, entering only in odd-numbered 
cells in the first and even numbered cells in the second square, and then reversing the 
direction, filling in even-numbered cells in the first and odd numbered cells in the second 
square. 

 Obtain the successive columns of the squares by adding integer 1 to each element of the   
previous column and reducing the elements, if necessary, by mod f1. 

 
It is to be noted that in each of the constructed squares every level occurs in each row and in 
each column precisely once. Moreover, when f1 is even, each level is preceded exactly once 
by other level in either of the two squares. Thus, in this case either of the two squares may be 
used. This situation occurs in neither of the two squares if f1 is odd. However, when both the 
squares are considered together, one after another horizontally, each level is preceded by 
every other level exactly twice. Consequently, both the squares must be used in this case. 
 
The sub-session design considered is a two treatment COD involving 2 periods and 4 units 
obtained by taking all possible pairs (including the identical pairs) between the two symbols. 
 
Example 5.3.2.1: Let there are two factors with 4 levels of main session factor denoted by (1, 
2, 3, 4) and 2 levels of sub-session factor denoted by (a, b). Hence there are a total of 8 ( = 
f1f2 = 4 × 2) treatment combinations. Using a Williams square design as the main session 
factor design and the above mentioned two period design as the sub-session factor design, we 
get a nested COD in 8 (= p1p2 = 4 × 2) periods and 16 (= n1n2 = 4 × 4) experimental units 
with 2 sub-sessions nested within 4 main sessions as given below:  
 

 Experimental Unit 
 
 
 
 
 
Period 

 i ii iii iv v Vi vii viii ix x xi xii xiii xiv xv xvi 
1 1a 1a 1b 1b 2a 2a 2b 2b 3a 3a 3b 3b 4a 4a 4b 4b 
2 1a 1b 1a 1b 2a 2b 2a 2b 3a 3b 3a 3b 4a 4b 4a 4b 
  
3 4a 4a 4b 4b 1a 1a 1b 1b 2a 2a 2b 2b 3a 3a 3b 3b 
4 4a 4b 4a 4b 1a 1b 1a 1b 2a 2b 2a 2b 3a 3b 3a 3b 
  
5 2a 2a 2b 2b 3a 3a 3b 3b 4a 4a 4b 4b 1a 1a 1b 1b 
6 2a 2b 2a 2b 3a 3b 3a 3b 4a 4b 4a 4b 1a 1b 1a 1b 
    
7 3a 3a 3b 3b 4a 4a 4b 4b 1a 1a 1b 1b 2a 2a 2b 2b 
8 3a 3b 3a 3b 4a 4b 4a 4b 1a 1b 1a 1b 2a 2b 2a 2b 
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It can be seen that this design is uniform and combinatorially strongly balanced. The design is 
partially variance balanced following the rectangular association scheme given by Vartak 
(1955) as described below:  
 
Association Scheme: Two treatment combinations φϕ and φ'ϕ' (φ ≠ φ'=1,2,…, f1; ϕ ≠ ϕ' = 
1,2,…, f2) are said to be first associates if φ = φ′ i.e., the combinations with same level of first 
factor and different levels of second factor are first associates. Two treatment combinations 
φϕ and φ'ϕ' are said to be second associates if ϕ = ϕ' i.e., the combinations with same level of 
second factor and different levels of first factor are second associates, and remaining are third 
associates. For the Example 3.1, the arrangement of 8 treatment combinations is as follows:  
 
 
 
 
 
 
 
For the given association scheme for f1× f2 treatment combinations, number of first associates 
= f2 –1, number of second associates = f1 –1, and number of third associates = f1f2 – f1 – f2 + 
1. 
 
Reverse Arrangement: By reversing the roles of F1 and F2 in the above example, we get 
another design belonging to a different class of designs involving sequences of treatment 
combinations with nested factors with same number of experimental periods and units.   
 
Example 5.3.2.2: Let there are two factors with 2 levels of main session factor denoted by (1, 
2) and 4 levels of sub-session factor denoted by (a, b, c, d). Hence there are 8 (= f1 × f2 = 2 × 
4) treatment combinations. By the method of construction described above, using the above 
two period design and Williams square design as the main session factor design and nested 
factor design respectively, we get a nested COD in 8 ( = p1 × p2 = 2 × 4) periods and 16 (= n1 

× n2 = 4 × 4) experimental units as given below:  
 

 Experimental Unit 
 
 
 
 
 
Period 

 i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi 
1 1a 1b 1c 1d 1a 1b 1c 1d 2a 2b 2c 2d 2a 2b 2c 2d 
2 1d 1a 1b 1c 1d 1a 1b 1c 2d 1a 2b 2c 2d 1a 2b 2c 
3 1b 1c 1d 1a 1b 1c 1d 1a 2b 2c 2d 2a 2b 2c 2d 2a 
4 1c 1d 1a 1b 1c 1d 1a 1b 2c 2d 2a 2b 2c 2d 2a 2b 
 
5 1a 1b 1c 1d 2a 2b 2c 2d 1a 1b 1c 1d 2a 2b 2c 2d 
6 1d 1a 1b 1c 2d 1a 2b 2c 1d 1a 1b 1c 2d 1a 2b 2c 
7 1b 1c 1d 1a 2b 2c 2d 2a 1b 1c 1d 1a 2b 2c 2d 2a 
8 1c 1d 1a 1b 2c 2d 2a 2b 1c 1d 1a 1b 2c 2d 2a 2b 

1a 1b 
2a 2b 
3a 3b 
4a 4b 

3rd associates of 1a 

1st associate of 1a 

2nd associates of 1a 
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This design is uniform and combinatorially balanced. In terms of variance of estimate of 
contrasts pertaining to direct as well as residual effects of treatment combinations, the design 
was seen to be partially variance balanced following rectangular association scheme. The 
precision of estimation of direct and residual effects is more in the design having more 
number of levels of the sub-session factor. 
 
5.4   Experimental Designs with Temporal Indirect Effects in the Presence of Systematic 

Trend 
 

In many agricultural experiments where observations are recorded over periods, experimental 
units may exhibit time trend. For example, in agricultural experiment where aim is to study 
the effect of growth stimulating treatments on plant growth rate, the plant growth rate 
exhibits trend over periods as it will be high when the plant is young and declines gradually 
as the plant becomes older. 
 
Another example could be nutritional experiment with dairy cattle, where experimenter wants 
to study the effect of feeds on the milk yield of dairy cows. Here, the milk yield within 
lactation exhibits time trend, as it first increases for certain number of periods till it reaches 
its peak and then declines gradually. 
 
Therefore, it is necessary to account for these possible trends while carrying out analysis of 
data and/or designing experiments for such situations. Patterson (1950) pointed out that the 
analysis suggested by Cochran et al. (1941) and Williams (1949) for the cross-over designs 
taking into account the first residual effects of the treatments may give rise to biased 
estimates of error variance for the comparisons of certain treatment effects in the case of 
dairy cattle feeding experiments where the experimental units exhibit time trend in yields 
over the periods. He then suggested a procedure of analysis which gives unbiased estimates 
of error variance in such situations. The procedure given by Patterson (1950) consists of first 
computing the linear, quadratic, … components of time trends for each experimental unit and 
then analyzing these quantities in order to obtain the estimates of treatment effects and error 
variance. Subsequently, Patterson (1951) suggested a method which is equivalent to making a 
separate analysis for each degree of polynomial, each of which provides some information on 
the parameters and then pooling the sets of estimates using their precision as weights. It was 
concluded that if linear, quadratic, … components of the time trends for each experimental 
unit are independent and have unequal variances, the weighted analysis provides more 
precise estimates of treatment effects as compared to the un-weighted analysis. Lucas (1951) 
working independently, estimated the bias from some sets of data from dairy cow feeding 
experiments using CODs of Latin-squares type and concluded that the bias is of no practical 
significance in 3×3 designs but might be serious for 4×4 designs. Vijaya (1992) dealt with the 
analysis of CODs by incorporating the linear trend variable in the model. 
 
Another way of taking care of time trends is to use trend-free designs. Designs which allow 
the estimation of treatment effects orthogonal to trend effects are called trend-free designs.   
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Trend-free designs for factorial and fractional factorial have been studied by Daniel and 
Wilcoxon (1966). Bradley and Yeh (1980) and Yeh and Bradley (1983) have studied trend-
free block designs in detail. However, in context of CODs with carry-over effects, no serious 
attempt seems to have been made perhaps due to complexity of the problem.  
 
Here, an attempt has been made to obtain conditions for a balanced CODs that allow 
estimation of treatment effects contrasts orthogonal to trend effects.  Methods of constructing 
two-period trend-free balanced CODs for odd as well as for even number of the form 2s of 
treatments have been given. Method of analysis of these designs has also been presented 
along with an illustration. 
 
First, we give some definitions that will be used in subsequent sections. 
 
Totally balanced cross-over designs: Cross-over designs permitting the estimation of direct 
effects in the presence of first order residual effects is called variance balanced, if the 
variance of elementary contrasts among the direct effects is the same, say α  and the variance 
of elementary contrasts among the residual effects is also same, say β. The constant α need 
not be equal to β. A cross-over design is called totally balanced, if α = β (Dey and 
Balachandran, 1976).    
 
Dey and Balachandran (1976) constructed a class of totally balanced cross-over designs from 
a series of BIB designs by using a pre-period. Varghese and Sharma (2000) constructed a 
series of totally balanced cross-over designs for v treatments using v experimental units and 
(2v-1) periods.  
 
Trend-free cross-over designs: A cross-over design is said to be trend-free, if the sum of 
squares due to treatments (direct as well as residual) under the model considering trend 
effects besides treatment and unit effects, is same as that obtain under the model considering 
treatment and unit effects ignoring trend effects. In these designs treatment effects contrasts 
are estimated orthogonal to trend effects.   
 
5.4.1 Conditions for a Variance Balanced Crossover Design to be Trend-Free  
Let a crossover design for v treatments with p periods and n experimental units be 
represented by COD (v, p, n).  We assume that the experimental units exhibit time trend over 
the periods and the trend effects are represented by orthogonal polynomials of various 
degrees.  Assuming presence of first residual effects of treatments, the additive fixed effect 
model M1 for the observations from this design, in matrix notation, can be written as 
 

M1: 1 1 2 2    = + +Y X θ X θ ε                     … (5.4.1) 
 

where Y is a (np×1) vector of observations, X1 = [∆1   ∆2 ], ∆1 (np×v) is the  design matrix 
for  direct effects, ∆2 (np×v) is the design matrix for residual effects, θ1 {= [τ   ρ]′} is the 
coefficient vector of parameters of interest with τ as vector of  direct effects, ρ vector of first 
residual effects, X2 = [ S  Z  1 ], S (np×n) is the design matrix for experimental unit effects, Z 
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(np×q; q ≤ p-1)  is the design matrix for trend effects, 1 is the (np×1)  column vector of 
unities. θ2 {= [ Ψ  α  µ ]′} is the coefficient vector of other factors, namely experimental unit 
effects Ψ, trend effects α and general mean µ, ε is the (np×1) error vector ~ N (0, σ2 Inp×np). 
The trend effects are assumed to be the same for all the units. The matrix Z can be written 

 

Z = 1n ⊗ ξp×q   
 

where ξp×q  is the p×q matrix of orthonormal polynomials which implies ξ’ξ = Iq.    
 
We consider another model M2,  
 

M2 :   1 1 3 3     = + +Y X θ X θ ε                        … (5.4.2) 
 

where X3 = [ S  1 ] and  θ3 = [ Ψ  µ ]′  
 
The COD(v, p, n) is said to be trend-free, if the sum of squares due to fitting of θ1 after 
eliminating the effect of θ2,   R (θ1 | θ2) is the same as the sum of squares due to fitting of θ1 
after eliminating the effect of θ3,  R (θ1 | θ3),  i.e.   
 

 R (θ1 | θ2) =  R (θ1 | θ3).                    … (5.4.3) 
 
Under model M1, the sum of squares due to fitting of θ1 after eliminating the effect of θ2 is 
seen to be  
 

 1 2 1 1 1 1 1R (    )       −′ ′=  θ θ Y H X C X H Y                   … (5.4.4) 
 

where, 1 2 2 2 2( )−′ ′= −H I X X X X , 1 1 1 1′=C X H X  and 1
−C and 2 2( )−′X X are generalized inverses of 

1C and 2 2( )′X X  respectively. Similarly, the sum of squares due to fitting of θ1 after 

eliminating the effect of θ3 under model M2 is seen to be   
 

1 3 2 1 2 1 2R (    )       −′ ′=  θ θ Y H X C X H Y                   … (5.4.5) 
 

where 2 3 3 3 3( )−′ ′= −H I X X X X , 2 1 2 1′=C X H X  and 2
−C  and 3 3( )−′X X are generalized inverses of 

2C  and 3 3( )′X X  respectively. 
 
In view of (5.4.4) and (5.4.5), condition (5.4.3) becomes 
 

1 1 1 1 1     −′ ′  Y H X C X H Y = 2 1 2 1 2     −′ ′  Y H X C X H Y ; for all values of Y.     … (5.4.6) 
 

which implies   
 

1 1 1 1 1    − ′  H X C X H = 2 1 2 1 2    − ′  H X C X H                  … (5.4.7) 
 

Pre and post multiplication of both sides of above equation by 1′X  and X1 respectively, give     

1 1 1 1 1 1 1    −′ ′  X H X C X H X =  1 2 1 2 1 2 1    −′ ′  X H X C X H X   
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i.e.,    
 

C1 = C2                       … (5.4.8) 
 

since 1 1 1 1′=C X H X  and 2 1 2 1′=C X H X  and using AA-A=A; A-  being a g-inverse of A. Thus 
the condition (5.4.8) becomes  

 

1 1 2 1 ( ) .′ − =X H H X 0   
 

which implies 
       

 1 2 2 2 2 3 3 3 3[ ( ) ( ) ]− −′ ′ ′ ′ ′− =1X X X X X X X X X X 0 .                  … (5.4.9) 
 
Now for COD (v, p, n), the matrix 
 

 

2 2

′ ′ ′ 
 ′ ′ ′ ′=  

′ ′ ′  

S S S Z S 1
X X Z S Z Z Z 1

1 S 1 Z 1 1
  

          = 
n n×q n

q n q q 1

n 1 q

p p 
n 

p np
× ×

×

 
 ′ 
 ′ 

I 0 1
0 I 0

1 0
.   

 
It can be seen that a generalized inverse of 2 2′X X  is  
 

-1
n

1
2 2 q

p
( )   n− −

 
 ′ =  
  

I 0 0
X X 0 I 0

0 0 0
. 

Therefore,  
 

-1 1
2 2 2 2( )  p     n   − −′ ′ ′ ′= +X X X X SS ZZ                 … (5.4.10) 

 

Again,   

n
3 3

n

p p 
   

p np
′ ′   ′ = =    ′′ ′   

nI 1S S S 1
X X

11  S 1  1
 

 

And a g-inverse of 3 3′X X  is  
 

-1
- n

3 3
p  

( )    
0

 
′ =  ′ 

I 0
X X

0
.   

 

It can be easily seen that  
-1

3 3 3 3( )  p  −′ ′ ′=X X X X SS                   … (5.4.11) 
 

In view of (5.4.10) and (5.4.11), the condition (5.4.9) becomes  
 

1 1′ ′ =X  Z Z  X 0  
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giving  
 

1 1 1 2

2 1 2 2

′ ′ ′ ′ 
 ′ ′ ′ ′ 

Δ ZZ Δ Δ ZZ Δ
Δ ZZ Δ Δ ZZ Δ

 =  0. 

 
i.e.,  

  
1

2

         
   and    

        

′ = 


′ = 

Δ Z 0

Δ Z 0
                   … (5.4.12) 

 
Thus, the COD (v, p, n) is trend-free, if it satisfies the conditions (5.4.12).  
 
In the following two sections, we present methods of constructing CODs that are 
simultaneously totally balanced as well as trend-free for odd number of treatments and even 
number of the form 2s of treatments.  
 
5.4.2 Construction of Totally Balanced Trend-Free CODs for Odd Number of 

Treatments 
Let the number of treatments, v, be odd.  Denote these treatments by the symbols 0, 1, 2, …, 
v-1.  From the initial sequences {0, i, 2i}, i = 1, 2, …, (v-1) develop v-1 rectangles in mod(v), 
each with three rows and v columns.  Number the rows of each rectangle as 0, 1, 2 and 
columns of first, second, …, (v-1)th rectangle in succession with numbers 1 to v(v-1).  Now if 
the rows represent the periods and columns, the experimental units, then v-1 rectangles form 
a two-period totally balanced trend-free cross-over designs in two periods and v(v-1) 
experimental units for v treatments; the 0th period representing the pre-period.    
 
As each treatment occurs v-1 times in each of the periods, therefore, 1 .′ =Δ Z 0   Similarly, as 

the residual effect of each treatment occurs (v-1) times in each period, 2′ =Δ Z 0 .  Hence the 
designs are trend-free.   
 
Example 5.4.2.1: Let v = 5. The two-period totally balanced trend-free cross-over design 
with 20 (= 5×4) experimental units developed from the four bold face initial sequences, is the 
following: 
 

 
Experimental units 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Pds 
0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 
1 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3 
2 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2 

0th period represents the pre-period. 
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5.4.3 Construction of Totally Balanced Trend-Free CODs for v = 2s 
Let v = 2s, where s is a positive integer ≥ 2.  Construct a set of v – 1 mutually orthogonal 
Latin-squares of order v.  Form a rectangle consisting of any three consecutive rows from all 
the Latin-squares of this set each row having v (v-1) treatment symbols. Number the rows as 
0, 1, 2 and columns as 1, 2, 3, …, v(v-1).  If the rows represent the periods (0th row 
representing the pre-period), and columns, the experimental units, then the rectangle form a 
two-period totally balanced trend-free cross-over design with v(v-1) experimental units.   
 
As the direct effect and residual effect of each treatment occur v-1 times in each period, the 
conditions given in (5.4.12) are satisfied. Thus, the design obtained by the above method is 
also trend-free.   
 
Example 5.4.3.1: Let v = 4 (= 22).  The two-period totally balanced trend-free crossover 
design formed from first three rows of the set of mutually orthogonal Latin-squares given in 
Fisher and Yates (1963, p. no. 88-89) is the following: 
 

 
Experimental Units 

1 2 3 4 5 6 7 8 9 10 11 12 

Periods 
0 0 1 2 3 0 1 2 3 0 1 2 3 
1 1 0 3 2 2 3 0 1 3 2 1 0 
2 2 3 0 1 3 2 1 0 1 0 3 2 

 
 
5.4   Designs Balanced for Spatial and Temporal Indirect Effects  
 

There may exist experimental situation where both spatial as well as temporal effects are 
suspected. Designs which are balanced with respect to both spatial and temporal indirect 
effects will be useful for such situations. A series of experimental designs balanced for spatial 
and temporal indirect effects of treatments has been constructed and named as Neighbour 
balanced crossover designs. 
 
Method 5.4.1: Construct an initial row of size v as follows:  
 

1  v  2  v-1  3  v-2  ...  v/2  (v/2)+1  

 
Develop the columns by proceeding from top to bottom filling only odd numbered cells by 
adding 1 to the previous odd numbered cell and taking modulo v. The array obtained is as 
given below. 
 

1 v 2 v-1 3 v-2 … v/2 (v/2)+1 
         
2 1 3 v 4 v-1 … (v/2)+1 (v/2)+2 
         
. 
. 

  . 
. 

    . 
. 
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. . . 
(v/2)+1 (v/2) (v/2)+2 (v/2)-2 (v/2)+3 (v/2)-3 … (v/2)+2 v-1 

         
(v/2) (v/2)-1 (v/2)+1 (v/2)-2 (v/2)+2 (v/2)-3 … v-1 v 

         
 
The empty positions in the even numbered cells are filled in the reverse direction (from 
bottom to top) by adding 1 to the previous cell and taking modulo v.  
 

1 v 2 v-1 3 v-2 … v/2 (v/2)+1 
V v-1 1 v-2 2 v-3 … (v/2)-1 (v/2) 
2 1 3 v 4 v-1 … (v/2)+1 (v/2)+2 

v-1 v-2 v v-3 1 v-4 … (v/2)-2 (v/2)-1 
. 
. 
. 

  . 
. 
. 

    . 
. 
. 

(v/2)+2 (v/2)+1 (v/2)+3 (v/2) (v/2)+4 (v/2)-1 … 1 2 
(v/2) (v/2)-1 (v/2)+1 (v/2)-2 (v/2)+2 (v/2)-3 … v-1 v 

(v/2)+1 (v/2) (v/2)+2 (v/2)-1 (v/2)+3 (v/2)-2 … v 1 
 
The design obtained so is neighbour balanced crossover design with parameters v treatments 
= p periods = n units/sequences and µ = 1.  
 
Example 5.4.1.1: For v = 6, following is a neighbour balanced crossover design in r rows, 6 
columns and µ = 1: 
  

1  6  2  5  3  4  
6  5  1  4  2  3  
2  1  3  6  4  5  
5  4  6  3  1  2  
3  2  4  1  5  6  
4  3  5  2  6  1  

 
 
 



Chapter VI 

WEB GENERATION OF EXPERIMENTAL DESIGNS 
BALANCED FOR INDIRECT EFFECTS OF 

TREATMENTS (WEB-DBIE) 
 

 

6.1  Introduction 
It is seen from the previous chapters that Neighbour Balanced Designs (NBDs) are used for 
the situations when spatial indirect effects are suspected from the treatments applied in the 
neighbouring experimental units whereas Crossover Designs are used when temporal 
indirect effects consisting of residual or carryover effects from the treatments applied in the 
previous period are present. These designs ensure that each treatment occurs adjacent to 
every other treatment spatially or temporarily same number of times. 
 
A large number of NBDs and Crossover Designs are developed in the literature. For details 
of NBDs, one can refer to Azais et al. (1993), Monod and Bailey (1993), Azais and Druilhet 
(1997), Azais et al.  (1998), Bailey (2003), Bailey and Druilhet (2004), Tomar et al. (2005), 
Jaggi et al. (2006), Jaggi et al. (2007) and Pateria et al. (2007). For details of crossover 
designs, one can refer to Williams (1949), Patterson and Lucas (1962), Balaam (1968), 
Sharma (1975), Dey and Balachandran (1976), Sharma (1981), Sharma (1982), Afsarinejad 
(1990), Varghese and Sharma (2000), Sharma et al. (2002) and Sharma et al. (2003) and 
Bose and Dey (2009).  
 
For easy accessibility of these designs by the experimenters, it is required that these designs 
are compiled and presented at one place. A software solution for the generation of these 
designs, like the one for partially balanced incomplete block designs developed by Sharma 
et al. (2013), is required. A web-enabled software Web Generation of Experimental Designs 
Balanced for Indirect Effects of Treatments (WEB-DBIE) has been developed and deployed 
at www.iasri.res.in/webdbie which generates  useful classes of designs in the presence of 
indirect effects of treatments. An online catalogue of these designs incorporating indirect 
effects of treatments is also developed. The web solution developed for generation of NBDs 
and Crossover designs is described below along with an online catalogue of the designs 
within a permissible range. 
 
6.2 Architecture of WEB-DBIE 
The software contains three main components namely user interface management, input 
data management and statistical engine for generation of NBD and Crossover designs. Any 
communication to software from users is handled through user interface at client side and 
input data handling is done by data management module. Statistical engine is implemented 
at server side and it contains the various procedures required for generation. User interface 
has been separated from the statistical engine to free software developers from interface 

http://www.iasri.res.in/webdbie
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problem. The user interface management has been developed using HTML, CCS and 
javascript (Yehuda and Tomer, 1998). Input data management component has been 
developed using ASP.NET and C# (Ulman et al., 2002). Web generation engine has been 
developed using C# language. This engine contains the Dynamic Link Libraries (DLL) for 
generation and randomization of designs. 

 
WEB-DBIE has been developed for web platform and programming has been done with the 
ASP.NET and C#.NET programming language. C# provides a complete set of tools for 
creation of rapid and powerful graphical user interface (GUI) based web applications. 
Microsoft Visual Studio 2010 integrative development environment has been used as a 
platform for development of the software. Fig. 6.2.1 shows the architecture of the software. 
 

 
Fig. 6.2.1: Architecture of WEB-DBIE 

 
6.3 Software Process Model and Design 
Software process model is the framework that describes the activities to be performed at 
each stage of the software development. Since most of the requirements were understood in 
advance, waterfall model was used for development of WEB-DBIE.  Software designing 
identified four major modules namely generation of various classes of NBDs and Crossover 
designs, catalogue of NBDs and Crossover designs, about NBDs and Crossover designs and 
user management.  
 
6.4 WEB-DBIE Description 
This software is available at www.iasri.res.in/webdbie. The hierarchical structure chart for 
the design of the software is shown in Fig. 6.4.1. 
  

 

Fig. 6.4.1: Design of WEB-DBIE 

Input Data Management 

User Interface  

Enter Parameter 
Dynamic Link 
Libraries (DLL) 

Generated Design Layout Statistical Engine for 
Generation and Randomization  

Server Side 
 

Graphic User Interface 
(HTML,CSS, Javascript) 

http://www.iasri.res.in/webdbie
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The site requires the creation of user profile before accessing it (Fig. 6.4.2). After entering a 
correct user id and password, a web page appears with the links for generation of NBB and 
Crossover designs (Fig. 6.4.3). 
 

 
Fig. 6.4.2: Login Page 

 

 
Fig. 6.4.3: Home Page of Software 

 
6.5 Generation and Randomization of NBD and Crossover Designs 
WEB-DBIE generates design and randomized layout for various classes of NBD (Fig. 
6.5.1) and Crossover designs (Fig. 6.5.2). It generates totally balanced/ partially balanced, 
complete/ incomplete NBD (v treatments, b blocks, r replications and k block size).      
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Fig. 6.5.1: Neighbour Balanced Designs  

 
The classes of crossover designs (v treatments, p periods and n units/sequences) generated 
are Williams square, extra period Williams square, two-period designs, minimal balanced, 
strongly balanced, totally balanced designs in complete/ incomplete sequence, designs with 
complete/ incomplete sequence using MOLS. 
 

 
Fig. 6.5.2: Crossover Designs 

  
Various web forms have been designed and developed for generation and randomization of 
the above listed designs. User can enter the number of treatments (Fig. 6.5.3) and then click 
“Generate Design” to see the design layout. The parameters of the designs so generated are 
also displayed (Fig. 6.5.4 and Fig. 6.5.5).  
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Fig. 6.5.3: Generation of NBD  

 

 
Fig. 6.5.4: NBD for v = 5  

 

 
Fig. 6.5.5: Randomized Layout of Design  
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Output can be exported to MS-Excel spread sheet for further use (Fig. 6.5.6). 
 

 
Fig. 6.5.6: Saving in MS-Excel  

 
Online catalogue for v ≤ 20 of NBDs and Crossover Designs has been developed and is 
included in the software. Search facility of all designs and designs for some particular value 
of parameters has been provided along with showing the layout of the design. Fig. 6.5.7 and 
Fig. 6.5.8 shows the catalogue and generation of NBDs.  
 

 
Fig. 6.5.7: Catalogue of NBDs 

 
Fig. 6.5.8: Catalogue and Generation of NBDs  
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Fig. 6.5.9 displays the details of one series of NBDs. 
 

 
Fig. 6.5.9: About NBDs  

 
Fig. 6.5.10 and Fig. 6.5.11 shows the snapshots of a crossover design for v = 5, p = 5 and n 
= 10 and its randomized layout. 
 

 
Fig. 6.5.10: Crossover (Williams Square) Design for v = 5  

 
Fig. 6.5.11: Randomized Layout 
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Fig. 6.5.12 and Fig. 6.5.13 shows the catalogue and generation of Crossover designs. 
  

 
Fig. 6.5.12: Catalogue of Crossover Designs  

 

 
Fig. 6.5.13: Catalogue of Crossover Designs: Select by Parameters  
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SUMMARY  
 
 
Indirect effects are very common in agricultural experiments. For a given experiment, the 
experimental layout and the treatment being tested primarily determines the significance of 
any indirect or interference effects. In varietal trials, the varieties of a given crop are planted 
in adjacent plots. As varieties generally differ in their ability to compete, plants in a plot 
will be subjected to different environmental conditions depending upon location relative to 
adjacent plots. In fertilizer trials, the plants in an unfertilized plot may affect the share of the 
plants in a nearby heavily fertilized plot. To avoid the bias while comparing the effects of 
treatments in such situation, it is important to ensure that no treatment is unduly 
disadvantaged by its neighbour. Understanding the structure of these effects helps in 
minimizing the bias in treatments to great extent. Hence, for proper model specification, 
indirect effects resulting in interference effects from neighbouring units must be 
incorporated into the model where situations demand.  
 
Methodologies pertaining to designing of experiments for different experimental situations 
in the presence of spatial indirect effects from neighbouring units under block design setup 
have been developed in Chapter II. Spatial effects from the neighbouring units are very 
common phenomenon in field experiments. Further, in such experiments, interference 
effects may arise not only from immediate neighbouring units but also from the units at 
distance two, three or at higher distance. Under block design setup, some aspects of 
interference effects from the neighbouring units up to distance 2 or second order 
interference effects have been discussed. Various methods of constructing balanced or 
strongly balanced complete/incomplete block design with interference effects up to distance 
2 have been discussed. All the designs so obtained are totally balanced for estimating the 
contrasts pertaining to direct effects of treatments and interference effects up to distance 2 
arising from the neighbouring units. In some cases, the information matrix for estimating 
direct effects and interference effects of treatments from the neighbouring units have been 
generalized for higher order interference effects. Optimality aspects with interference 
effects from the left neighbouring units up to distance 2 have been discussed. Series of 
complete block designs with interference effects up to distance 2 have been identified to be 
universally optimal under two different situations. If experimenters have the reason to 
believe that interference effects from the neighbouring units can affect the response of a 
particular plot of a block, the identified series of designs can be effectively laid out in field 
experiments under block design setup as these designs satisfy the important statistical 
property of being universally optimal.  
 
Analytical procedure of agricultural experiments under block design setup when neighbour 
effects also affects the response of a particular plot of  a block has been explained. Here, 
neighbour effects up to distance 2 (second order) have been considered. The method of 
analysis has been illustrated using hypothetical data for 11 genotypes. The result shows the 
significance of incorporating all the neighbour effects up to distance 2 in the analysis. 
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Most of the work on optimality aspects of block designs incorporating interference effects 
from the neighbouring units have been carried out under the usual block model with 
interference effects from the neighbouring units i.e. by using additive model. In the present 
work, the emphasis is on the optimal estimation of direct effects of treatments in block 
design setup involving interference effects from the neighbouring units under the non-
additive model. A class of designs has been identified as universally optimal for the 
estimation of direct effects of treatments under the non-additive model. Interestingly, the 
class of designs also resulted to be universally optimal for estimation of interference effects 
from both the left and right neighbouring units.  
 
Non-additivity under a block model with block effects, direct effects of treatment, 
interference effects of treatment from the immediate left neighbouring units and left 
interference × direct effects has been discussed. A class of complete circular block designs 
balanced for one-sided interference effects from the neighbouring units has been shown to 
be universally optimal for the estimation of both direct effects and interference effects 
among the class of all competing designs under the postulated model. Under this class of 
design, two series of designs have been obtained out of which the series of designs with 
larger experimental units are also shown to be universally optimal for the estimation of left 
interference × direct treatment interaction effects under the non-additive model.  Further, 
direct treatment × block effects non-additivity under block design setup with interference 
effects from the left neighbouring units has also been explored. 
 
Interference effects may arise from the immediate neighbouring units or it may extend 
further. But, when there is slope or while dealing with undulating land in hilly areas, this 
may cause a trend in experimental units. To overcome such situations, trend free block 
designs balanced for interference effects from the immediate neighbouring units and also 
from the neighbouring units at distance 2 have been obtained and is given in Chapter III. 
The designs so obtained are totally balanced for estimating direct and interference effects of 
treatments and are capable of completely eliminating the effects of a common trend. Thus, 
the analysis can be done in the usual manner as if no trend effect is present in the 
experimental material. 

 
Row-column designs incorporating directional neighbour effects have also been studied in 
Chapter IV. A row-column design is said to be neighbour balanced if every treatment has all 
other treatments appearing as a neighbour a constant number of times. Three different 
situations under row-column setup incorporating neighbour effects viz., row-column design 
with one-sided neighbour effect, two-sided neighbour effect and four-sided neighbour effect 
have been considered. The information matrices for all the situations for estimating the 
direct and neighbour effects of treatments have been derived. Methods of constructing 
neighbour balanced row-column designs have been developed and its characterization 
properties have been studied.  A class of row-column designs which are minimally balanced 
for spatial indirect has also been obtained. 
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In Chapter V, the designs with temporal indirect effects have been studied and a class of 
designs which are balanced for temporal indirect is also provided. Series of designs 
involving varying temporal environments under factorial treatment structure balanced for 
one factor have been obtained. These designs are uniform, combinatorially balanced and in 
terms of variance of estimated contrasts pertaining to direct as well as residual effects of 
treatment combinations, partially variance balanced following rectangular association 
scheme. These designs find application in experiments involving more than one factor 
applied sequentially under different environmental conditions. Conditions for a balanced 
CODs that allow estimation of treatment effects contrasts orthogonal to trend effects have 
been obtained.  Methods of constructing trend-free balanced CODs for odd as well as for 
even number of treatments have been given. Besides, the concept of experimental designs in 
the presence of spatial and temporal indirect effects of treatments has been studied. A series 
of experimental designs balanced for spatial and temporal indirect effects of treatments has 
been constructed and named as Neighbour balanced crossover designs. 
 
WEB-DBIE is a web based solution for generation of different classes of Neighbour 
Balanced Designs and Crossover Designs along with details of these designs and given in 
Chapter VI. It displays the randomized layout plans for given number of treatments. Online 
catalogue for selection of an appropriate design with given parameters is also provided. The 
software is menu driven and provides user-friendly interface for its easy operability. 
Availability of the WEB-DBIE software, a purpose oriented and user-friendly software for 
agricultural and allied sciences, will encourage the researchers to conduct experiments using 
appropriate designs. 
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