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FOREWORD

Trend-free block designs are quite useful in the experimental situations that may have trend
effect in the experimental units. These designs have wide applications when experiments are
conducted in Green house where the source of heat is located on sides of the house and the
experimental units (pots) are kept in lines; in poultry experiments where the source of heat is at
the centre of the cage and chicks of early age are in the different tiers and experiments in hilly
areas where the land is undulated. Keeping in view the importance of trend-free designs, the
Institute undertook a project A Study on Trend-Free Designs.

The results available on trend-free block designs in the literature are for the experimental
situations with blocks of equal sizes. There, however, do occur experimental situations where
block designs are to be used with unequal block sizes. When the block sizes are unequal, then
intra-block variances are not constant. Therefore, the present investigation is an attempt to
obtain trend-free block designs under heteroscedastic model for non-proper block designs. A
trend-free block design is an arrangement of treatments to plots within blocks such that the
known properties of ordinary analysis of variance for treatment and block sum of squares are
preserved and variation due to trend effect is removed from the error sum of square.

It is known that binary variance balanced block designs (BBB) designs of Type o, where o
can take any non-negative real value, are the most efficient designs in the competing class of
designs. Therefore, a necessary and sufficient condition for a block design to be trend-free
block design under heteroscedastic set up when intra-block variances are proportional to non-
negative real power of block sizes is obtained. Using the condition catalogues of trend-free
BBB designs of Type a, both under homoscedastic (o. = 0) and heteroscedastic model (for
a =1, 2, 3), is prepared. Heteroscedasticity of the model increases as value of a increases.
Catalogue of trend-free balanced incomplete block (BIB) designs and two associate class
partially balanced incomplete block (PBIB) designs are also prepared. Sometimes it may not
be possible to convert every design to trend-free design then linear trend-free designs are
given. Further, nearly trend-free designs are identified when it is not possible to obtain even
linear trend-free designs.

Nested block designs are required when there is need of making sub-blocks within a larger
block. For such situations nested balanced incomplete block (NBIB) designs are quite useful.
The condition for a NBIB design to be trend-free NBIB design at sub-block level is obtained.
NBIB designs that are trend-free both at sub-block and block level have also been identified.
Catalogues of trend-free and linear trend-free NBIB designs at sub-block levels are also
prepared. NBIB designs with sub-block size 2 and designs for complete diallel cross
experiments have a one-to-one correspondence. Utilizing this relationship a catalogue of trend-
free optimal block designs for a diallel cross experiments with number of inbred lines, p <30 is
prepared. The catalogues of the trend-free/ linear trend-free designs, prepared in this project,
will serve as a ready reckoner to the practicing statisticians and the experimenters. The
scientists associated with the project deserve appreciation for carrying out this work.

S.D. SHARMA
DIRECTOR
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PREFACE

The data generated from designed experiments are used to draw valid inferences about the
population. In several experimental situations, the response is dependent on the spatial or
temporal position of the experimental units within a block and thus trend in the experimental
units become another important nuisance factor. In such situations, a common polynomial
trend of a specified degree over units within blocks may be appropriately assumed. One may
think of suitable designs, in which treatment effects are orthogonal to trend effects, in the
sense that analysis of the design could be done in usual manner, as if no trend effects were
present. Such designs are called trend-free block designs.

Most of the work on trend-free block designs is for the experimental situations having blocks
of equal sizes. There, however do occur experimental situations where block designs with
unequal block sizes and/ or with unequal replications are to be used. For example, non-proper
block design setting occurs while experimenting with natural blocks such as littermates
(animal experiments), trusses per blossom (horticultural experiments), family sizes as blocks
(psychological experiments), batches of test material (industrial experiments), etc.
Experimenting on hilly areas, wastelands or salinity in field experiments may also force the
experimenter to have blocks of unequal sizes. When the block sizes are unequal, the intra
block variances may not be constant. Through uniformity trial data, it has been shown in the
literature that intra-block variances are proportional to non-negative real power of block sizes.

Therefore, a necessary and sufficient condition for a block design to be trend-free block design
under heteroscedastic set up when intra-block variances are proportional to non-negative real
power of block sizes is obtained. This condition is simplified for homoscedastic model. It is
known that binary variance balanced block (BBB) designs of Type o, where o can take any
non-negative real value and heteroscedasticity increases as value of a increases, are the most
efficient designs in the competing class of designs. Therefore, catalogues of trend-free, linear
trend-free and nearly linear trend-free BBB designs of Type o both under homoscedastic (o =
0) and heteroscedastic model (for o = 1, 2, 3) is prepared. Catalogues of trend-free, linear
trend-free and nearly linear trend-free balanced incomplete block (BIB) designs and two
associate class partially balanced incomplete block (PBIB) designs are also prepared.

In some experimental situations, the sources causing heterogeneity in the experimental
material are nested within each other. To deal such situations nested block designs can be
usefully employed. Seeing the usefulness of nested block designs in real life situations, a
necessary and sufficient condition for a nested balanced incomplete block (NBIB) design to be
trend-free NBIB design at sub-block level is obtained. Some NBIB designs that are trend-free/
linear trend-free/ nearly linear trend-free both at sub-block and block level have also been



identified. NBIB designs with sub-block size 2 and designs for complete diallel cross
experiments have a one-to-one correspondence. Utilizing this relationship a catalogue of trend-
free optimal block designs for a diallel cross experiments with p <30 is prepared.

It is generally said that there is no randomization in trend-free designs. It is shown through
examples that randomization in trend-free designs is restricted to some extent but not
vanished. It is similar to that as we go from designs complete randomized design to
randomized complete block design and then to Latin square design, the randomization goes on
restricted.

We express our deep sense of gratitude to Dr. S.D. Sharma, Director, Indian Agricultural
Statistics Research Institute, New Delhi for his encouragement during the course of this
investigation. We express heartfelt thanks to Dr. V. K. Sharma, Head, Division of Design of
Experiments for providing necessary facilities to carry out this research work. We would also
like to thank Dr. L. M. Bhar for usefulness discussions during the course of this investigation.
Dr. A. B. Mandal, Principal Scientist, Division of Nutrition and Feed technology deserves
special thanks for useful discussion on the applications of trend-free designs in experiments on
aviary research.

We are grateful to Dr. R. Srivastava, internal referee and an anonymous external referee whose
suggestions helped in improving the presentation of the manuscript. Help rendered by Mrs.
Renuka Ahuja in typing this manuscript is acknowledged.
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CHAPTER I

INTRODUCTION

1.1 Introduction

In several designed experiments, the experimental units exhibit a smooth trend
over time or space and thus random allocation of treatments to the experimental
units may no longer be appropriate for obtaining the efficient estimates of the
parameters. Instead systematic run orders or designs, in which the treatments are
to be allotted to experimental units in some order, may have to be used to
eliminate the effects of such trend. The resulting designs are called as trend-free
designs.

Consider a sensory experiment where the quality of the product (say chicken,
custard etc.) depends on temperature and thus treatments are different
temperatures. In such experiments flavour of the product varies with temperature
and the experimenter has to go from lower temperature to higher temperature
stepwise and changing of temperature is technically difficult. Thus, there it is not
possible to adopt the procedure of randomization.

For better understanding, we shall illustrate some experimental situations where
an experimenter has to use systematic (trend-free) designs in different
experimental settings.

1.2 Completely randomized designs

Consider the following experiment described by Cox (1951). An experimenter
wants to compare the effect in processing of a number of treatments applied to
wool. The wool is divided into lots as alike as possible and the lots are numbered
in random order. In each week, only one lot is processed with a certain treatment.
The experimenter believes that age of the wool affects the process so that there
will be a smooth trend due to aging. In this situation a systematic order of
assignment of treatments or treatment combination to experimental units, instead
of randomized order may be reasonable to do in order to reduce or eliminate the
effect of the trend. The intention is to find the systematic run order so that the
properties of the ordinary analysis of variance are preserved. He gave some
systematic designs in which trend effect is eliminated in the designs of zero-way
elimination of heterogeneity setting.

Cox (1958) described an experimental situation in which the experimental units
have a trend effect. This is described below:

Experimental Situation 1.1: “[Cox (1958)]. Consider an experiment to
investigate the effect on textile process of changing the relative humidity.
Suppose that three relative humidities 50, 60 and 70% are to be used. To obtain
uniform experimental units a suitable quantity of raw material was taken and



thoroughly mixed and then divided into, say, nine experimental units. The first
batch was processed at one relative humidity in the first period, the second batch
at different relative humidity in the second period, and so on. Superimposed on
any treatment effects and on random variations remaining, is likely to be a smooth
trend due to aging of the material. It would often be of interest to estimate this
trend explicitly, as well as to set up the experiment so that the trend has little or no
influence on the estimates of treatment effects.”

Consider the following assignment or run order of treatments

| Teo Tso T70 T70 Teo Tso Tso T70 Teo

The mean influence on Ts iS %(2+6+7)=5, the mean influence on Tgo is

%(1+ 5+9) =5, and the mean influence on T is also %(2 +4+8) =5. Thus any

contrast among these treatments is not affected by the linear trend.

Now we will illustrate an example how restricted randomization is possible in
systematic designs.

Suppose we have 2 varieties (treatments), each replicated 4 times in an
experimental design of 8 units and the treatments are allotted to plots in the
following order

T Ty Ty T, Ty T, T T,

-7 -5 -3 -1 1 3 5 /

The same experimental material can be arranged in the following manner

Ty T T T, T, T T Ty

-7 -5 -3 -1 1 3 5 /

In both these arrangements sum of the positions is same or Ziéio =0,i=1,2
where 5;0 is the orthogonal polynomial of order p (here p=1) and Zi denotes

summation over all plots receiving treatments T;. This makes the treatment
differences orthogonal to the linear trend effect and the design is trend-free
design for linear effect. Other arrangements can also be made by interchanging
the treatments. Thus in trend-free designs estimate of treatment effects are
improved by eliminating the trend effects at some cost of randomization.

Now we illustrate with an example on a set of live data the role of trend in an
experiment.




Experimental situation 1.2: In a nutritional avian research experiment, four
feeds were the four treatments; say Ti, T, T3 and T4. The chicks were kept in
Cage-tier system. In a cage there are four tiers one below the other. The
experimenter knows from previous experiences that if chicks are kept from top
tier to bottom tier there are chances of trend due to sun light, fresh air etc. But he
is not aware of trend-free designs. He applied the same treatment to all the tiers in
a cage to avoid the effect of any trend. In each tier there were 10 birds. He
measured the body weight of the birds from birth to sixth week of age.

To confirm whether there is effect of trend among the tiers within the cage, the
obtained data were analyzed by two methods; one by usual analysis of variance
(ANOVA) and the other by using analysis of covariance (ANCOVA) assuming
linear trend within each cage. The results revealed that the efficiency was
obtained up to 21 per cent.

Further, Sachdev et al. (1989) made a study to see the cage-tier effect on feed
consumption, egg production and egg-quality traits of Japanese quails. The data
used were on female adult quails, 200 each from line A and B, up to 50 weeks of
age. Significant effect of cage-tier locations was observed in line A on feed
consumption during 6 to 10th and 15 to 18 weeks of age, as well as on egg quality
traits. Despite insignificant changes on total feed consumption and egg
production, superior numerical values were recorded from the birds located in the
top tier. Better quality eggs were produced by fourth (from top) quails. In line B,
the feed consumption during 23rd and 26th weeks of age, total egg production,
feed efficiency, yolk index and shell weight were significant influenced by cage-
tier locations. Better feed efficiency and egg quality were recorded in the birds
placed in the first and fourth respectively.

1.3 Designs for factorial experiments

Factorial designs have been widely used in agricultural/ industrial experiments.
The application of systematic designs in factorial settings has been investigated in
industrial experiments.Athough these designs can also be used where the
experimental resources are scarce/costly and the experimental units may exhibit
trend-effect such as agricultural experiments conducted on hills, in animal science
experiments where the experimental cost is much and the animals (experimental
units) may exhibit a trend-effect due to change in birth weight from animal to
animal. Box and Hay (1953) gave the method of construction of a certain class of
designs with quantity factors by means of which trend occurring during a
comparative experiment may be eliminated without loss of efficiency. The design
and analysis is illustrated with an example of bio-assay. Philips (1964, 1968a,
1968b) developed magic squares, magic rectangles of even orders for the
balancing of linear, and occasionally quadratic or cubic trends in general class of
factorial designs. To be clearer, we illustrate an example of linear trend-free
design for factorial experiment given by Philips (1968b) by using magic square.



Experimental Situation 1.3: Consider the 2x2x2x2 factorial design shown in
Table 2.1, in which A, B, C and D represent the four treatments and their
subscripts 1 and 2 are the two levels of each of them. The numbers of the
occasions of measurement have been entered in the body of the table as a
symmetric magic square.

Table 1.1
C1 C2
D, D, D, D
Aq B, 16 2 3 13
B> 5 11 10 8
A, B, 9 7 6 12
B, 4 14 15 1

In above square table of order nxn, sum of each row, column and diagonal is

%n(n2 +1) i.e. 34. The main effects A, B, C and D are linear trend-free as the

average for each of the factor is% =8.5. Also for the interaction AxB, AxC,
BxD and CxD the mean effect is same for each of its level e.g. in interaction
AxB for each level AiB; i=1,2; ] =1,2 mean effect is % =8.5. But it is not true

for interactions AxD and BxC. So these two interactions are not linearly trend-
free. Also averages of numbers of higher order interactions are not balanced (for
example the numbers for third order interactions AxBxCxD are inevitably
unbalanced).

1.4  Block Designs

Heterogeneity in the experimental material is the most important problem to be
reckoned within the statistical designing of scientific experiments. Occasionally,
one can find a certain factor (called nuisance factor) that though not of interest to
the experimenter, does contribute significantly to the variability in the
experimental material. Various levels of this factor are used for blocking. In
experimental situations with only one nuisance factor, block designs are used.
These designs are useful in controlling the heterogeneity of the experimental units
and it is ascribed to between blocks variability. There, however, do occur
situations where the experimental units within blocks may be subjected to trend
effects in one or more spatial or temporal dimensions. Some commonly
encountered experimental situations in agricultural sciences are described in the
sequel.

We now illustrate with an example on live data given by Federer and Schlottfeldt
(1954) for completely randomized block design, how trend has affected the units
within blocks after the experiment is established and data is analyzed by analysis
of covariance (ANCOVA).



Experimental situation 1.4: “[Federer and Schlottfeldt (1954)]. An
experiment was devised in the spring of 1951, to determine whether the exposure
of tobacco seeds to different dosages of cathode rays would affect the growth of
the resulting plants. The seeds were from a strain of tobacco that had been under
controlled pollination since 1909, and, hence, the material used in the experiment
was highly uniform with respect to its genetical background. The seven different
treatments (the different doses of cathode rays) were laid out in a randomized
complete block (RCB) design with eight replicates. The plot size was 2 rows by
10 plants with 3 feet between rows and 1.5 feet between the plants. The following
measurements were made

1) plant height on 13-07-1951 and 14-08-1951,

i) length of longest leaf on 13-07-1951 and 14-08-1951 and

i) width of widest leaf on 13-07-1951.

Shortly after the plants were transplanted to the field it became apparent that an
environmental gradient existed from the center of the replicates outward. This was
confirmed when the data were obtained. The data were analyzed using: a) usual
analysis of variance (ANOVA), b) analysis of covariance (ANCOVA) with
position of the treatments within a replicate as covariates. Upon fitting curvilinear
covariance of second degree a considerable reduction in mean square error (MSE)
is obtained. In fact, the MSE by ANCOVA was little more than half that obtained
by ANOVA.

In the above example the experimenter does not know in the beginning that some
trend would occur in the experimental units, in later time. If the experimenter
would have judged in the beginning before the start of the experiment by
visualizing the experimental condition, it would better use the trend-free block
design.

To have precise estimates of treatment contrasts it is necessary to eliminate these
trend effects. For this the treatments have to be assigned to the plots within the
blocks in such a way that known properties of analysis of variance for the
treatment and block sum of squares are preserved and variation due to trend is
also removed from error sum of squares. Such designs are called trend-free block
designs.

Now we discuss, how trend-free designs are better to ANCOVA, once we have a
trend-free design. It is because in ANCOVA, the position of the plots are taken as
auxiliary variable and the treatments are adjusted to the values that would have
been obtained had there been no variation in the auxiliary variable. Here we adjust
the treatments for auxiliary variable. But in trend-free block designs, the designs
are constructed such that the treatments are orthogonal to treatments. It means that
the treatments are assigned to the plots within the blocks in such a way that
adjusted treatment sum of squares and unadjusted block sum of squares do not
change and the sum of squares due to trends is directly subtracted from the error
and thus the error is reduced to the extent (degree) trend is present in the



experimental units. Also contrasts do not change in contrast analysis when
analyzing the data using trend-free designs. Moreover, the analysis of ANCOVA
gets complicated as the degree of trend increases while in trend-free designs only
we have to work out the sum of squares separately for each degree of trend.

Bradley and Yeh (1980) first gave the rigorous treatment to the theory of Trend-
free block designs. They have considered the situations where a common
polynomial trend in one or more dimensions is assumed to exist over the plots in
each block of a classical experimental design. They defined a trend-free block
design as a block design in which the adjusted sum of squares due to treatments in
a model with the trend effects remains the same as in the model without the trend
effects. In other words, the presence of trend effects does not affect the adjusted
sum of squares due to treatments. The error sum of squares, however, gets
reduced when the trend effects are present in the model. They developed a
necessary and sufficient condition for a block (complete or incomplete) design to
be trend-free block design under a homoscedastic model. Yeh and Bradley (1983)
discussed the existence of trend-free block (TFB) design for specified trends
under a homoscedastic model when each treatment is equally replicated. Some
results for linear and odd degree polynomial TFB designs are given. Bradley and
Odeh (1988) gave an algorithm in FORTRANT77 for the construction of linear
trend-free block (LTFB) design. Stufken (1988) gave a weak point of Yeh and
Bradley (1983), " Every binary block design having r(k+1) = 0 (mod 2) can be
converted into Linear trend-free block design™ with an example. Lin and Dean
(1991) gave some general results on the existence of trend-free and partially
trend-free designs for both varietals and factorial experiments. They also studied
trend-free properties of cyclic, GC/n incomplete and complete block designs. Chai
and Majumdar (1993) made a correction to Yeh and Bradley (1983) and proved
that a binary block design can be converted into linear trend-free block (LTFB)
design when i) the design is BIB design, or ii) k, the block size is an even number,
or c) the design is balanced block design with b > 3. They also gave a distinct
definition of LTFB and strongly linear trend-free block (SLTFB) design.

Let a design d be represented by a kxb array of symbols 1, ..., v, with columns
denoting blocks and rows periods. Thus, if the entry of a cell (i, j) of d is i, it
means that under d, treatment i has to be applied in period I of block j. Also let
D(v, b, k) denotes the class of all connected block designs in b blocks, k periods
based on v treatments. Let d € D(v, b, k) and sq; denote the number of times
treatment i appears in row (period )Il. Then a design is LTFB design iff

35,0 (1) =0, i=1, ., v (1.1)
1=1

where @, (l) is the orthogonal polynomials of degree 1, | = 1, ..., k and sgj; denotes
the number of times treatment i appears in row (period) .

Condition (1.1) holds for binary as well as non-binary designs, and also
irrespective of whether k is large, equal or smaller than v (Lin and Dean (1991).



The polynomials ®1(l) satisfy the condition ®dq(I) = -®q(k-1+1). In addition,
@, ((k+1)/2) = 0, when k is odd. It follows that (1.1) is true whenever
Sdil = Sdi(k-1+1) » 1=1, .., [(k+1)/2], i=1, ..,V (1.2)

with [.] denotes the largest integer function. It is to note here that, when k is odd
condition (1.2) does not impose any restriction on Sgik+1)2. It can be easily seen
that condition (1.1) does not in general implies condition (1.2) while the condition
(1.2) always implies condition (1.1). Condition (1.2) is in fact necessary and
sufficient condition for a design d to be "odd degree trend-free”. Hence the
condition (1.2) is known to be condition for a design to be strongly linear trend-
free (SLTF) design.

Jacroux, Majumdar and Shah (1995, 1997) developed some methods for
identifying efficient designs when different blocks may have linear trend effect of
different slope. Majumdar and Martin (2002) extended the above study for
quadratic cubic trend. Lin and Stufken (2002) considered the problem of strongly
linear-trend free block design through the use of graph theory and gave algorithm
for such designs.

Sometimes it may not be possible to convert every design to trend-free design
then we go for linear trend-free design because much of the trend effect is reduced
by using linear trend-free designs. But sometimes it is not possible to make the
design even linear trend-free and this provides a motivation to go for nearly trend-
free designs. Yeh, Bradley and Notz (1985) introduced the concept of nearly
trend-free block (NTFB) designs. Let the usual additive model for a block design
with polynomial trend terms added is written in terms of plot position t and block
designation j as

v . p
Yo =u+) 84r+ B+ 2.0,0, () +e, (1.3)
i=1 a=1

)71, .., by t=1, .., k, where yj; is the observation on plot t of block j; x4, 5 and /4
are respectively, the usual mean, treatment and block parameters; ej; are random
errors assumed to be iid with zero mean; 8't = 1 or 0 as the treatment i is or is
not on the plot (j, t), i =1, ..., v. A block design under model (1.3) is TFB
design iff each trend component is orthogonal to the treatment allocation through
the experiment i.e.

v ok .

D> 6@, (t)=0, =1, .., p; i=1, ... v. Then Yeh et al. (1985) gave two
i=1 t=1
definitions of NTFB designs as below:

Definition 1.1: A block design under model (1.3) is said to be NTFB design of
Type A if
b k

>IN s, 1Y (L4)

a=li=1 j=1t=1



IS minimum among class of connected designs with the same (treatment-block)
incidence matrix.

Definition 1.2: A block design under model (2) is said to be NTFB design of

Type B if, among the class of connected designs with same incidence matrix
p-1 v b

DI OIPNIT MO} (1.5)

a=1i=1 j=1t=1
is minimum and

v b k )
2050, 0F (1.6)
i=1  j=1t=1
is minimum among the designs satisfying (1.4).

NTFB design of type A is natural. It can be interpreted as requiring the overall
treatment arrangement to be as orthogonal to all specified trend components
possible. The criterion for NTFB design of Type B focuses first on the lower
degree components of the trend. It may be particularly useful when there exist
designs completely free of trend effect up to degree p-1. Bradley and Odeh (1988)
developed the algorithm for the construction of LTFB and NTFB design.

Chai (1995) suggested that when the condition r (k+1) = 0 (mod 2) for a proper
block design to be TFB design does not hold (when k is even and r is odd) the
best way, we can do in this case is to have a nearly linear trend-free version of
design by permitting the treatment symbols (within block). Chai simplified and
brought clarity for the condition of linear NTFB design as

(&5, @, (1)) =1 for i=1,...v.
1=1
Ultimately we can say that a block design is NLTFB design if

\ k
Z{(Zsi@l('))z} SV. (1.7)

i=1[ I=1
Chai (1995) gave some methods for construction of NTF version of BIB designs
to be NTFB designs. He also discussed A-, D- and E- optimality of BIB designs
for the model that include trend effects.

In the sequel we illustrate the situation where TFB design does not exist and we
have to go for NTFB design.

Consider a BIB design with usual parameters v=4, b=6, r=3, k=2, A=1. The six
blocks are

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

1 1 1 2 2 3
2 3 4 3 4 4




In this design the condition r(k+1) = 0 (mod 2) does not hold. So the best way is
to go for NLTFB design that is given below:

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

1 3 1 2 4 3
2 1 4 3 2 4

Here @, (1) =-land®,(2) =1for all the treatments, as there are only two

positions within each block. For the treatment 1, s,, =2ands;, =1, as treatment 1

takes position 1 two times and position 2 one time only, in the NTF design. Now
2

2 2
D 5@, () =-1and O s, @, (1)) =1ask=2. This is true for the treatments i = 2,
= =

4 2
3, 4. Thus Z{(ZSHCDl(I))Z} = 4. Thus condition (1.7) is satisfied and we can

i=1 1=1

say that the said design is NLTFB design.

Further, in the class of binary incomplete block designs under proper settings
balanced incomplete block (BIB) designs are the best (universal optimal) designs
for estimating all possible elementary treatment contrasts. However, there do
occur situations in which block designs with unequal block sizes and/ or with
unequal replications may be required. For example, non-proper block design
setting occurs while experimenting with natural blocks such as littermates (animal
experiments), trusses per blossom (horticultural experiments), family sizes as
blocks (psychological experiments), batches of test material (industrial
experiments), etc. Experimenting on hilly areas, wastelands or salinity in field
experiments may also force the experimenter to have blocks of unequal sizes. It
is also known that in the class of binary block designs with unequal replications
under non-proper setting variance balanced block designs are the most efficient
designs for estimating all possible elementary treatment contrasts. In variance
balanced block designs, generally it is assumed that intra-block variances are
constant. Through empirical investigations, however, it has been shown that intra-
block variances are proportional to non-negative real power of block sizes (see
e.g. Sardana, Sreenath and Malhotra (1967), Bist, Malhotra and Sreenath (1975),
Handa, Sreenath, Sastry, Rajpal and Shukla (1982)). This enforces one to extend
from homoscedastic model set up to a heteroscedastic model, where intra block
variances are proportional to non-negative real power of block sizes. This model
under block design set up has been studied by Das, Gupta and Das (1992), Gupta
(1995), Gupta, Das and Dey (1991), Lee and Jacroux (1987), Parsad and Gupta
(1994), Parsad, Gupta and Singh (1996), among others. Chai (2002) has
established a link between trend-free block designs and block designs for parallel
line assays. Using this relation he obtained necessary and sufficient condition for
the existence of a w -design with unequal block sizes and gave a method of

construction of y -designs. It seems that no work has been done to obtain trend-
free block designs under heteroscedastic model.




Above discussion relates to the experimental situations where there is only one
nuisance factor. However, there do occur experimental situations in which one or
more factors are nested within the blocking factor. Nested block designs,
therefore, have been developed to deal with experimental situations where one
nuisance factor is nested within blocking factor. Examples of such experiments
are illustrated in Experimental situation 3.1 to Experimental situation 3.3 in
Chapter I11.

A nested block design is defined as a design with two systems of blocks where the
second system is nested within the first. We could not find any literature on
obtaining trend-free NBIB designs.

This investigation, therefore, aims to develop trend-free variance balanced, and
trend-free nested balanced incomplete block designs. If trend-free designs for
variance balanced and NBIB designs are not possible then we shall go for nearly
trend-free variance balanced and NBIB designs.
The broad objectives of the proposed study are:

1.5  Objectives

1. To obtain trend-free and nearly trend-free non-proper variance balanced
block designs under a homoscedastic and a hetroscedastic model.

2. To obtain trend-free and nearly trend-free nested balanced incomplete
block (NBIB) designs.

3. To prepare a catalogue of trend-free/ nearly trend-free designs obtained in

objectives 1 and 2.

1.6 Practical Utility

The designs obtained from this study are useful for research workers in adopting
the suitable designs when trend of specified degree is expected to be present in the
experimental units e.g. green house where source of heat is located on sides of the
house, experiments conducted on hilly areas, poultry science experiments where a
bulb is fixed in the centre of the shed to give heat to the birds in all directions,
animal science experiments in which litter mates having different birth weight in a
litter, orchard and vineyard experiments on undulated topography, experiments in
which yields are affected by slowly migrating insects entering the area from one
side, laboratory experiments where the responses to the experimental units may be
affected within time periods by instrument drift or analyst fatigue, etc. The
catalogues of the trend-free designs prepared will serve as a ready reckoner to the
plasticizing statisticians and the experimenters.
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CHAPTER 11

TREND-FREE BLOCK DESIGNS UNDER
HETEROSCEDASTIC SET UP

2.1 Introduction

In this chapter, we shall present some practical situations where the experimenter
is forced to use unequal block designs and the experimental units within the
blocks are subject to trend-effect over time or space. A necessary and sufficient
condition is derived for a connected block design to be trend-free under
heteroscedastic set up, when there is a common trend in experimental units within
blocks. Using these results and results given in literature, a catalogue of balanced
incomplete block (BIB), partially balanced incomplete block (PBIB) and variance
balanced block designs with unequal replications in non-proper settings is also be
given.

The meaning of trend-free block design is to assign treatments to plots within
blocks so that the known properties of ordinary analysis of variance for treatment
and block sum of squares are preserved and variation due to trend effect is
removed from the error sum of square. Such an arrangement is called as trend-
free block design. We begin with some definitions:

Definition 2.1: A connected proper block design d (v, b, k) with v treatments in
b blocks each of size k < v is said to be trend-free block (TFB) design if this
design trend free of the order up to p < (k-1). The block design is said to be linear
trend-free block (LTFB) if it is trend free of order one.

Definition 2.2: A connected block design d (v, b, ki, ..., k) with v treatments in
b blocks of size (ki, ..., kp)< Vv is said to be trend-free block (TFB) design if this
design trend-free of orderuptop < {min (ky ,..., k) — 1}. This design is also
said to be linear trend-free block (LTFB) if it is trend-free of order one.

So when a TFB design exists for a specified order trend component, it is also a
TFB for any subset of these components. If a TFB design does not exist for a
specified order, a TFB design does not exist for any larger set of components.

We consider some experimental situations where trend may be present in the
experimental units within a block.

Experimental situation 2.1: Tea-garden experiments are generally conducted in
hilly areas. In hilly areas, usually the land is undulated. Different dulation of land
are taken as blocks and the number of plots in a level is the block size. The
number of plots in each block may or may not be equal because of limited
available land in a particular dulation. Moreover different levels may be little
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sloppy due to hilly area and this may cause trend effect due to movement of
nutrient in one direction or different soil depths, etc.

Experimental situation 2.2: A nutritional experiment was conducted with four
feeds. The experimental units are piglets, the litters are blocks and the number of
piglets in a litter is block size. For this, we use block design. As litter size is
varying from litter to litter and so generally the block sizes are not equal. The
response variable is weekly body weight. This response variable depends upon
birth weight of piglets. Birth weights are not equal for all the piglets within a litter
(block). This increasing/ decreasing order of birth weight in each litter may cause
a trend effect in the experimental units. It is thus required to eliminate the trend
effect, which may exist due to varying birth weights of piglets in a litter.

In such experiments usually one has to opt for designs in which block sizes are
not equal. But the studies available in literature deal with obtaining trend-free
block designs for equal block sizes under homoscedastic set up. No result seems
to be available for non-proper block designs under a homoscedastic or
heteroscedastic model. Hence, trend-free block designs for blocks of unequal
sizes, needs to be investigated. Moreover when block sizes are unequal it is
unrealistic to assume that the intra-block variances are equal. Keeping in view,
following two-way classified, additive, fixed effects, heteroscedastic model is
Yiju=put g5+ ﬂj +eju,i=1,...vj=1.., by u=1,... ,1jj (2.1)
where yijj, is the observation pertaining to u™ experimental unit receiving the i"
treatment in the j™ block, 4 is general mean, 7 is effect of treatment i, S is the
effect of block j and ejj, are random errors with

E(eiju) =0,

cov (ey, eyy) =0 ki ¥V i=ij=ju=u’

=0 otherwise.

Here o € [0,00) . This model is in fact a generalization of Fairfield Smith's variance
law {see e.g. Sardana, Sreenath and Malhotra (1967), Bist, Malhotra and Sreenath
(1975), Handa, Sreenath, Sastry, Rajpal and Shukla (1982)}. In these
investigations it was found that the intra-block variances are proportional to non-
negative real power of block sizes. The value of a was estimated by making use
of uniformity trial data. This model was earlier been studied by Das, Gupta and
Das (1992), Parsad and Gupta (1994a, 1994b), Gupta (1995), Parsad, Gupta and
Singh (1996), Gupta and Parsad (2001), among others. A design is said to be
binary balanced block design of typee, if information matrix (C-matrix) for the
block design under model (1.1) is completely symmetric. A special case of =1
has been investigated by Lee and Jacroux (1987) and Gupta, Das and Dey (1991).
For « = 0 we get the usual homoscedastic model.

12



2.2 Condition for a block design to be trend-free block design

In this section we obtain the necessary and sufficient condition for a general block
design (2.1) to be trend-free block design. Throughout this chapter we shall deal
with only real matrices and vectors. Denote an n-component vector of all unities
by 1., an identity matrix of order n by I,, A~ and A™will respectively denote a-
generalized and true inverse of matrix A. E(.) and D(.) are respectively the

expectation and dispersion. M’is the transpose of matrix M. z * P, denotes the
i=1
direct sum of matrices P;. When the order of matrix is clear, it is not mentioned.

Consider model (2.1) in matrix notations, for the general block design with trend
terms added

y=ul+A't+D'B+Z'¢p+e (2.2)
E€)=0,DE)=c*V, V=3"{l, &},
t=1 t
where y is an nx 1 observable random vector and let there are b; blocks of size k;,

S
b, blocks of size k, so on and bs blocks are of size ks such that th =b. A" is
t=1
the nxv design matrix for parameters of interest, t =(t,,...,7,)’, the vector of
treatment effects, D' is nxb design matrix for nuisance parameters
B=(8,..05,), the vector of block effects. Also, A'l, =1 =D'1,

Al =r,D1 =kwhere r=(r,.,r,) and k=(i,..k,) are vectors of
replications and  block  sizes, respectively.  Further, AA"'=R=
diag(r,,---,r,), DD'=K =diag(k,,---,k,)anda e [0,) is a known constant.

Let d be the connected block design under model (2.2) when ¢ = 0. We assume a
common trend effect in all the blocks of degree p = {min (ky ,... , k) — 1}. Thus ¢
is a px1 vector of trend effects and the matrix Z' of order nxp, is matrix of
coefficients given by Z=(Z, Z, --- Z,)where matrix Z; =1, ®F/is of order

bi ke xp and F{ is kixp, t=1, ..., s matrix with columns consisting of equi-spaced
normalized orthogonal polynomials. Also 1F =0,FRF =1,, Vt=1..5s
and ZZ'=b1 . Here problem is to assign treatments to plots within blocks so

that the known properties of ordinary analysis of variance for treatments and for
block sum of squares are preserved when variation due to the trend may be
removed from error sum of squares in model (2.1). A design possessing above
property is called a trend-free block design by Bradley and Yeh (1980). A formal
definition of a trend-free block design is given as:

Definition 2.3: A connected block design d is said to be a trend-free block design

if and only if the additional reduction in sum of squares due to fitting of
parameters of interest over and above fitting of other parameters, for the two
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models one containing the trend effect and the other without trend effects, is equal
ie.
R(/ 1, B, ¢) = R(t/ p, B) (2.3)

where R(t/ p, B) is the additional reduction in sum of squares due to fitting of T,
u, B over and above fitting just u, B (Searle, 1971) . Similarly R(t/ u, B, ¢) is the
additional reduction in sum of squares due to fitting of t, u, B and ¢ over and
above fitting just , B, ¢.

Thus for deriving necessary and sufficient condition for a block design d to be
TFB design, we consider the following two situations:

Case | When there is no trend effect i. e. ¢ = 0 under model (2.2)
The usual C-matrix (information matrix) is

C, = X,VIX, = XIV*X, (X, VX)) X,V X,
where X;= A’ X=(1 D),
n /-1 n/-lly | i
S P4 IR K
X,(X,VIX,) X, = DK™*D.
So the C-matrix simplifies to
C,=AV'A'-AV'D'’K*DVA’' = U,H,U; (2.9)
where H, = 1 - U,K™**U,,, (2.5)
U, =AV*? U, =DV "?
and R (t/p,p) =v'H,UCIU,H,Vv (2.6)

where v =V 2y

Case Il When trend effect is present i. e. ¢# 0 under model (2.2)
The C-matrix in presence of trend effect is,

C, = X,VIX, = XV X, (XLV X)XV X,

0o 0 0’
where X3=(1 D' Z'), (X3V!X;)" = |0 K™ 0 |and
0 0 mll

b

X;(X5V7iX,) Xy = DK™ D+m?*Z'Z, mt=>k*.
=1

Thus the information matrix simplifiesto C, = U,H,U;, (2.7)
where H, =1 -U,K™**U, —-m*Vv2z'2v V2 (2.8)
and R(t/p,B,¢)=v'H,UC,UH,V. (2.9)

Now we have following result:
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Theorem 2.1 A necessary and sufficient condition for a connected block design
d to be trend-free design is AV *Z' =0.

Proof: Necessary Part For design d to be trend-free design, from (2.3), (2.6)
and (2.9) we have

v'H,U;C,UH,v=Vv'HUC UH,v or H,UC,UH, =H,UC /UH, (2.10)
Pre- and post multiplying both sides of (2.10) by U, and Uj respectively, we
have

U1H2U£C£U1H2Ui = U1H1U1CIU1H1U1’

or C,C;C,=C,C{C, or C,=C,

or U(H,-H)U,=0 or UV™"Z2zZv"U,=0

or AV'Z'ZVv7A'=0 or AV*'Z'=0. (2.11)

Sufficient Part To prove sufficiency, (2.11) is used with (2.5) and (2.8) to show
thatC, =C,and U,H, =U,H,and the equality of (2.6) and (2.9) follows.

Now if n observations under model (2.2) are arranged block wise such that b;
blocks of size k; come first, b, blocks of size ko, come next, so on, and last b

blocks of size ks appear in last, ibtkt =n. Also, the design matrix A is also
t=1
written block wise so that vxn matrix A" =(A] A, --- Al) where A{is

matrix of order by kixv, t=1, ..., s. Then result of Theorem 2.1 simplifies as

Corollary 2.1: A necessary and sufficient condition for a connected block
design d, under heteroscedastic model, to be trend-free block design is

Ki“AZ) +K3%AZ5 +...+ K “AZ, =0. (2.12)
This result under homoscedastic set up (o = 0) is
S
> AZ; =0 (2.13)
t=1

Corollary 2.2: If the model (2.2) is a homoscedastic model i.e. V = & I, then
the condition for a block design (proper or non-proper) to be TFB design is

AZ'=0. (2.14)

For proper block design settings under homoscedastic model, this condition is
same as obtained by Bradley and Yeh (1980).

Remark 2.1 There are some trivial results in which a block design is a trend-
free block design. A Latin square design of order Kk is always a trend-free block
design of degree (k-1) when rows are regarded as complete blocks, column
effects become common effects of plot position within blocks. A symmetric
balanced incomplete block (BIB) design can always be converted into trend-free
block design of degree k-1, where k is the block size of the design. All the cyclic
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designs and full n-cyclic designs are trend-free designs when the treatment labels
are systematically ordered within blocks. These designs have the property that
each treatment is replicated equal number of times (once) in each block and
because of this property, these designs are trend-free designs.

Now we consider a simple example of a BIB design and show how the condition
(2.14) is satisfied.

Example 2.1 Consider a trend-free balanced incomplete block (BIB) design with
parametersv =15, b =5, r=4, k=4 and A = 3 as

Block 1 4 2 3 1
Block 2 3 1 4 5
Block 3 2 3 5 4
Block 4 5 4 1 2
Block 5 1 5 2 3

The design matrix of the above BIB design and matrix coefficients of orthogonal
polynomials is

>
N

ol Neolell NeoleolololoNol JielNeloelNolNolNoll _iie]
OO OO O0OOFrRPROPFRPROOOOPFRPROOOOOR

P OOO0OO0OO0O0OO0OO0OO0OPrO0OO0OO0OO0OFroOoPr oo

‘OOHOOOOI—‘OHOOHOOOOOOO‘
1
[
1
[
+
w

‘OOOI—‘OI—‘OOOOOOOOI—‘OI—‘OOO‘

In the above, it is seen that AZ’ =0 and hence this BIB design is trend-free.
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2.3  Catalogue of trend-free balanced incomplete block designs
For completeness a BIB design is defined as

Definition 2.4: A BIB (v, b, r, k, A) is an arrangement of v treatments in b blocks
each of size k (<v) such that
)} each treatment occurs at most once in each block,
i) each treatment occurs in exactly in r blocks,
iii) each pair of treatments occur together in A blocks.
The integers v, b, r, k, A are known as parameters of the BIB design. These
parameters are not independent and satisfy the following parametric relations:
i) vr = bk
i) r(k-1) = A(v-1)
iii) b >v, Fisher’s inequality.
A BIB design is said to be symmetric if v=rand b = k.

Several attempts have been made in the literature to prepare a catalogue of BIB
designs [see e.g. Fisher and Yates (1956), Takeuchi (1961), Raghavarao (1971),
Kageyama (1972), Hall Jr. (1986) and Street and Street (1987)]. But these
catalogues are not exhaustive. Parsad, Gupta and Khanduri (2000) prepared an
exhaustive catalogue of BIB designs containing replication number up to 30 for
symmetric BIB designs and up to 20 for asymmetric BIB designs and thus total
494 BIB designs are listed.

Dhall (1986) has given a catalogue of trend-free BIB designs for 3 < k < 6 and
linear trend-free BIB designs for 7 <k < 15.

Here we give a catalogue of BIB designs for replications, r < 20 which can be
converted trend-free and linear trend-free BIB designs. Some times it is neither
possible to convert a design to trend-free nor to a linear trend-free design. Then
the best option is to convert the design to a nearly linear trend-free (NLTF)
design, by permutation of treatments, as defined by Chai (1995) and is shown in
(1.7). Thus trend-free, linear trend-free and NLTF balanced incomplete block
designs are presented in Table 2.1.1, Table 2.1.2 and Table 2.1.3, respectively.
Symmetric BIB designs and their copies are not included in the catalogue as these
designs are trivially trend-free designs. Further if a BIB design is obtained that
can be converted into trend-free BIB design and let another BIB design that is
constructed by taking the copies of said trend-free BIB design then this BIB
design is not included in the catalogue because copies of a trend-free BIB designs
is also trend-free block design.
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Table 2.1.1: BIB designs for r <20 that can be converted into trend-free BIB
designs

Sr. No. \Y; b r k A n
1 4 12 6 2 2 24
2 5 10 4 2 1 20
3 5 10 6 3 3 30
4 6 30 10 2 2 60
5 6 30 15 3 6 90
6 6 30 20 4 12 120
7 7 21 6 2 1 42
8 7 21 15 5 10 105
9 8 56 14 2 2 112

10 9 36 8 2 1 72

11 9 36 12 3 3 108
12 9 18 8 4 3 72

13 9 18 10 5 5 90

14 10 90 18 2 2 180
15 10 30 9 3 2 90

16 10 30 12 4 4 120
17 10 30 18 6 10 180
18 11 55 10 2 1 110
19 11 55 15 3 3 165
20 11 55 20 4 6 220
21 13 78 12 2 1 156
22 13 26 6 3 1 78

23 13 39 15 5 5 195
24 13 26 12 6 5 156
25 13 26 14 7 7 182
26 15 105 14 2 1 210
27 16 80 20 4 4 320
28 16 48 15 5 4 240
29 17 136 16 2 1 272
30 17 68 20 5 5 340
31 17 34 16 8 7 272
32 17 34 18 9 9 306
33 19 171 18 2 1 342
34 19 57 9 3 1 171
35 19 57 12 4 2 228
36 19 57 18 6 5 342
37 21 210 20 2 1 420
38 21 105 20 4 3 420
39 21 42 12 6 3 252
40 21 42 20 10 9 420
41 25 50 8 4 1 200
42 29 406 28 2 1 812
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Sr. No. \Y; b r k A n
43 31 155 20 4 2 620
44 31 93 15 5 2 465
45 37 222 18 3 1 666
46 37 111 12 4 1 444
47 41 164 20 5 2 820
48 46 92 20 10 4 920
49 49 196 16 4 1 784
50 49 98 18 9 3 882
51 57 114 16 8 2 912
52 61 305 20 4 1 1220
53 61 183 15 5 1 915
54 61 122 12 6 1 732
55 61 122 20 10 3 1220
56 81 324 20 5 1 1620
57 85 170 14 7 1 1190
58 91 273 18 6 1 1638
59 145 290 18 9 1 2610
60 181 362 20 10 1 3620

Table 2.1.2: BIB designs for r <20 that can be converted into linear trend-

free BIB designs

Sr. No. Y, b r k A n
1 6 10 5 3 2 30
2 6 15 10 4 6 60
3 8 28 14 4 6 112
4 9 12 4 3 1 36
5 9 12 8 6 5 72
6 10 15 6 4 2 60
7 10 18 9 5 4 90
8 12 44 11 3 2 132
9 14 26 13 7 6 182

10 15 35 7 3 1 105
11 15 21 7 5 2 105
12 15 35 14 6 5 210
13 16 80 15 3 2 240
14 16 40 10 4 2 160
15 17 68 16 4 3 272
16 18 102 17 3 2 306
17 18 34 17 9 8 306
18 20 76 19 5 4 380
19 21 70 10 3 1 210
20 21 28 8 6 2 168
22 21 30 10 7 3 210
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Sr. No. \Y; b r k A n
23 21 35 15 9 6 315
24 21 30 20 14 13 420
25 21 28 20 15 14 420
26 22 7 14 4 2 308
27 25 30 6 5 1 150
28 25 40 16 10 6 400
29 27 117 13 3 1 351
30 27 39 13 9 4 351
31 28 126 18 4 2 504
32 28 36 9 7 2 252
33 31 155 15 3 1 465
34 33 176 16 3 1 528
35 33 44 12 9 3 396
36 33 48 16 11 5 528
37 34 51 18 12 6 612
38 35 119 17 5 2 595
39 35 85 17 7 3 595
40 36 84 14 6 2 504
41 36 45 10 8 2 360
42 36 48 20 15 8 720
43 37 74 20 10 5 740
44 39 247 19 3 1 741
45 41 82 10 5 1 410
46 45 99 11 5 1 495
47 45 55 11 9 2 495
48 45 60 16 12 4 720
49 45 75 20 12 5 900
50 46 138 18 6 2 828
51 49 56 8 7 1 392
52 51 85 10 6 1 510
53 52 68 17 13 4 884
54 55 66 12 10 2 660
55 55 99 18 10 3 990
56 57 76 20 15 5 1140
57 64 144 18 8 2 1152
58 65 208 16 5 1 1040
59 65 80 16 13 3 1040
60 66 78 13 11 2 858
61 76 95 20 16 4 1520
62 78 91 14 12 2 1092
63 81 216 16 6 1 1296
64 81 90 10 9 1 810
65 85 102 18 15 3 1530
66 91 195 15 7 1 1365
68 100 150 18 12 2 1800
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Sr. No. \Y; b r k A n
69 105 120 16 14 2 1680
70 111 185 20 12 2 2220
71 113 226 16 8 1 1808
72 120 136 17 15 2 2040
73 121 132 12 11 1 1452
74 136 153 18 16 2 2448
75 141 188 20 15 2 2820
76 145 232 16 10 1 2320
77 153 323 19 9 1 2907
78 153 171 19 17 2 2907
79 169 182 14 13 1 2366
80 171 190 20 18 2 3420
81 177 236 16 12 1 2832
82 225 240 16 15 1 3600
83 289 306 18 17 1 5202
84 361 380 20 19 1 7220

Table 2.1.3: BIB designs for r <20 that can be converted into nearly linear

trend-free BIB designs

Sr. No. \Y; b r k A n
1 4 6 3 2 1 12
2 6 15 5 2 1 30
3 8 28 7 2 1 56
4 10 45 9 2 1 90
5 10 15 9 6 5 90
6 12 66 11 2 1 132
7 12 22 11 6 5 132
8 14 91 13 2 1 182
9 16 120 15 2 1 240
10 16 24 9 6 3 144
11 16 40 15 6 5 240
12 16 24 15 10 9 240
13 18 153 17 2 1 306
14 18 51 17 6 5 306
15 20 190 19 2 1 380
16 20 38 19 10 9 380
17 26 65 15 6 3 390
18 28 378 27 2 1 756
19 28 42 15 10 5 420
20 32 496 31 2 1 992
21 36 42 7 6 1 252
23 46 69 9 6 1 414
24 46 69 15 10 3 690
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Sr. No. v b r k A n
25 66 143 13 6 1 858
26 76 190 15 6 1 1140
27 96 304 19 6 1 1824
28 136 204 15 10 1 2040
29 196 210 15 14 1 2940
30 324 342 19 18 1 6156
2.4  Catalogue of trend-free partial balanced incomplete block designs

Two-associate partially balanced
extensively been used for the construction of binary balanced block designs. So
we have studied the two-associate class PBIB designs given by Clatworthy
(1973). Here we give a catalogue of PBIB designs which can be converted trend-
free, linear trend-free and nearly linear trend free PBIB designs.

incomplete block (PBIB) designs have

Table 2.2.1: Singular Group Divisible designs that can be converted into
trend-free PBIB designs

S-2

S-29
S-68
S-99

S-4
S-33
S-72
S-104

S-9
S-42
S-77
S-105

S-10
S-44
S-80
S-111

S-15
S-52
S-84
S-115

S-19
S-56
S-90
S-119

S-23
S-60
S-93
S-123

S-26
S-65
S-96
S-124

Table 2.2.2: Singular Group Divisible designs that can be converted into
linear trend-free PBIB designs

S-1

S-22
S-40
S-57
S-73
S-88

S-100
S-120

S-3
S-24
S-45
S-58
S-76
S-89
S-101
S-121

S-5
S-25
S-48
S-59
S-79
S-91
S-102

S-7
S-31
S-50
S-62
S-82
S-92
S-103

S-12
S-35
S-51
S-66
S-83
S-94
S-107

S-13
S-36
S-53
S-67
S-85
S-95
S-112

S-17
S-37
S-54
S-70
S-86
S-97
S-113

S-21
S-39
S-55
S-71
S-87
S-98
S-116

Table 2.2.3: Singular Group Divisible designs that can be converted into

nearly linear trend-free PBIB designs

S-18
S-41
S-110

S-20
S-43
S-114

S-27
S-46
S-117

S-28
S-47
S-118

S-30
S-49
S-122

S-32
S-106

S-34
S-108

S-38
S-109
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Table 2.3.1: Semi-regular Group Divisible designs that can be converted into
trend-free PBIB designs

SR-1 SR-2 SR-3 SR-4 SR-5 SR-7 SR-9 SR-10
SR-11  SR-12 SR-13 SR-15 SR-17 SR-20 SR-23  SR-24
SR-25 SR-30 SR-33 SR-36 SR-39 SR-44 SR-45  SR-49
SR-60 SR-61 SR-65 SR-67 SR-68 SR-70 SR-72  SR-87
SR-92 SR-95 SR-97 SR-102 SR-105 SR-108

Table 2.3.2: Semi-regular Group Divisible designs that can be converted into
linear trend-free PBIB designs

SR-18 SR-19 SR-21 SR-22 SR-26 SR-27 SR-28  SR-29
SR-31 SR-32 SR-34 SR-35 SR-37 SR-38 SR-40 SR-42
SR-47 SR-51 SR-52 SR-53 SR-54 SR-55 SR-56  SR-57
SR-58 SR-59 SR-62 SR-63 SR-64 SR-66 SR-69 SR-71
SR-74 SR-76 SR-78 SR-80 SR-81 SR-82 SR-83 SR-84
SR-85 SR-86 SR-88 SR-89 SR-90 SR-91 SR-93  SR-99
SR-100 SR-101 SR-103 SR-104 SR-106 SR-107

Table 2.3.3: Semi-regular Group Divisible designs that can be converted into
nearly linear trend-free PBIB designs

SR-6 SR-8 SR-14 SR-16 SR-73 SR-75 SR-77  SR-79
SR-109 SR-110

Table 2.4.1:  Regular Group Divisible designs that can be converted into
trend-free PBIB designs

R-1 R-4 R-8 R-9 R-10 R-14 R-15 R-16
R-17 R-18 R-19 R-22 R-23 R-24 R-28 R-29
R-30 R-32 R-33 R-34 R-35 R-36 R-37 R-38
R-40 R-41 R-42 R-43 R-44 R-49 R-50 R-51
R-52 R-54 R-55 R-56 R-57 R-58 R-60 R-64
R-65 R-69 R-71 R-75 R-79 R-80 R-81 R-83
R-84 R-86 R-87 R-89 R-90 R-91 R-92 R-94
R-95 R-96 R-98 R-99 R-104 R-105 R-106 R-109
R-110 R-112 R-113 R-114 R-115 R-116 R-117 R-120
R-128 R-129 R-130 R-133 R-134 R-135 R-136 R-137
R-138 R-139 R-141 R-142 R-143 R-144 R-145 R-146
R-147 R-148 R-149 R-150 R-151 R-152 R-153 R-154
R-158 R-159 R-160 R-162 R-163 R-166 R-168 R-170
R-171 R-172 R-173 R-174 R-175 R-176 R-177 R-178
R-179 R-180 R-182 R-183 R-186 R-187 R-188 R-189
R-190 R-191 R-193 R-194 R-195 R-196 R-197 R-198
R-199 R-200 R-201 R-202 R-203 R-204 R-205 R-206
R-207 R-208  R-209
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Table 2.4.2: Regular Group Divisible designs that can be converted into
linear trend-free PBIB designs

R-45 R-46 R-47 R-48 R-53 R-59 R-61 R-62
R-63 R-66 R-67 R-68 R-70 R-72 R-73 R-74
R-76 R-77 R-78 R-82 R-85 R-88 R-93 R-102
R-103 R-107 R-108 R-111 R-118 R-123 R-127 R-131
R-132 R-140 R-155 R-156 R-157 R-161 R-165 R-169
R-181 R-184 R-185 R-192

Table 2.4.3: Regular Group Divisible designs that can be converted into
nearly linear trend-free PBIB designs

R-2 R-3 R-5 R-6 R-7 R-11 R-12 R-13
R-20 R-21 R-25 R-26 R-27 R-31 R-39 R-164
R-167

Table 2.5.1: Triangular Group Divisible designs that can be converted into
trend-free PBIB designs

T1 13 15 16 17 T8 T T-9
T10 T11 T2 T3 T16  T-17  T-19 T-23
T29 T3l T-33 T3 T3 T-38 T30 T4
T52 T53 T-55 T56 T58  T-60 T-61  T-67
T71  T77  T-8L T84 T91  T-94 T95  T-100

Table 2.5.2: Triangular Group Divisible designs that can be converted into
linear trend-free PBIB designs

T-14 115  71-18 120 T-21  T-22 7125 126
T27 T28 T30 T3 T35 T-37  T40  T-43
T-44  T-45  T-46  T-47  T-48 T-49 T50  T-51
T54  T62 T-63 T64 T-65 T-66 T-68  T-69
T70 T72 T3 T74  T75  T-76  T-18  T-19
T80 T82 T-83 T8 T8  T-87 T8  T-89
T90 T92 T93 T9 T97 T98  T-99

Table 2.5.3: Triangular Group Divisible designs that can be converted into
nearly linear trend-free PBIB designs

| T-2 T-4 T-57 T-59 |
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Table 2.6.1: Latin square type Group Divisible designs that can be converted
into trend-free PBIB designs

LS-1 LS-2 LS-3 LS-5 LS-6 LS-9 LS-12  LS-16
LS-17 LS-18  LS-19 LS-20 LS-22  LS-24  LS-26  LS-27
LS-30 LS-34  LS-38 LS-42  LS-45 LS-46  LS-47 LS-49
LS-50 LS-60 LS-63 LS-66 LS-67 LS-68 LS-69 LS-70
LS-71 LS-77  LS-78 LS-82  LS-83  LS-101 LS-104 LS-110
LS-114 LS-116 LS-117 LS-118 LS-131 LS-134 LS-136 LS-146

Table 2.6.2: Latin square type Group Divisible designs that can be converted
into linear trend-free PBIB designs

LS-7 LS-8 LS-10  LS-11  LS-13 LS-14  LS-15 LS-21
LS-23  LS-25 LS-28 LS-31 LS-32 LS-35 LS-40 LS-48
LS-51 LS-52 LS-53  LS-54  LS-55  LS-56  LS-57  LS-58
LS-59 LS-61 LS-62 LS-64 LS-65 LS-72 LS-73 LS-74
LS-75  LS-76  LS-80 LS-81 LS-84 LS-85 LS-86  LS-87
LS-88 LS-89 LS-90 LS-91 LS-92 LS-93 LS-94 LS-95
LS-96 LS-97 LS-98  LS-102 LS-106 LS-108 LS-109 LS-111
LS-112 LS-115 LS-119 LS-120 LS-121 LS-122 LS-123 LS-124
LS-125 LS-126 LS-127 LS-128 LS-129 LS-130 LS-132 LS-133
LS-135 LS-137 LS-139 LS-140 LS-141 LS-142 LS-143 LS-145

Table 2.6.3: Latin square type Group Divisible designs that can be converted
into nearly linear trend-free PBIB designs

| LS-4 LS-79  LS-138 LS-144 |

2.5 Methods of Construction of block design under heteroscedastic model
As discussed earlier, non-proper block designs are quite useful in many
experimental situations. When block sizes are unequal it is unrealistic to assume
that the intra-block variances are equal. Thus, two-way classified, additive, fixed
effects, heteroscedastic model (2.1) is considered for the present study. The
information matrix (C-matrix) of a block design under the heteroscedastic model
(2.1), obtained by using the principle of generalized least squares is given by

C= 2k;“[R, —k;'N ] (2.15)
j=

where N; is the j" column of vxb treatment vs blocks incidence matrix, N and
R; = diag(nyj, ..., ny), where nj is the number of times treatment i is applied to
block j. A design is said to be a binary variance balanced block design of type a,
if C-matrix given in (2.15) is complete symmetric. For o = 0, all results reduce to
that of usual homoscedastic setup. For detail, one may refer to Parsad, Gupta and
Khanduri (2000). Now, we give some results for trend-free block designs under
heteroscedastic model.
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Most of the binary variance balanced block (BBB) designs under heteroscedastic
set up of Type a (o= 0) are constructed by using component BBB designs under
homoscedastic model. Let BBB design under homoscedastic model be connected
and have v treatments, b; blocks of size kj, b, blocks of size kp, so on, and b

blocks of size ks. By taking copies of block sizes Ky, ..., ks in the ratio of k" : ... :
ks respectively, we have a BBB design of Type a (o= 0) which also remains
connected. Now we have the following result:

Theorem 2.2: If there exists a trend-free binary balanced block (TFBBB) design
with blocks of unequal sizes under homoscedastic model, then it can be expanded
into TFBBB design of Type a (o= 0) under heteroscedastic model.

Proof For a TFBBB design under homoscedastic set up (2.13) holds. If we take

o o)

k—1(:opies of by blocks of size ki, k—Zcopies of b, blocks of size k,, so on, and
c c

o

k—Scopies of bs blocks of size ks then the design obtained is BBB of type a
c

(o 0), ¢ being the highest common factor of k*, ..., k. With this each factor

A.Z; in condition (2.12) is multiplied byl% VvV t=1,---,sand thus the condition
(2.12) reduces to (2.13) which clearly holds to start with.

Binary balanced block designs are known to be efficient in D(v, b, n), the class of
connected block designs in which v treatments are arranged in b blocks and total
number of experimental units is n. Here we give a method to develop trend-free
binary balanced block (TFBBB) designs obtained by the method of Khatri (1982).

-1
Consider an unreduced BIB design with parameters v, b :(\0 r :[V J K,

k-1)

V-2
A= [k ZJ’ where v, b, r and k are the number of treatments, blocks, replication

number of each treatment and block size respectively and A is the number of
blocks in which every pair of treatments occur together. Now select any p disjoint
blocks out of b blocks such that kp < v. Put these kp treatments in one block and

kp-2
repeat this block Aop times where 4, = [kp

]. Now from the b blocks delete

K
b, = [kp] blocks in which all replicates of the selected kp treatments occur. This

process Yyields a binary balanced block (BBB) design with parameters
V =V, by =Aop, ki =kp, ba=b-bo, ko =k, 1 =[(Aop + r—ro) Lj,, 1 1]

kp
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k-1
For such type of BBB designs we have the following different cases fork <3
under homoscedastic set up i. e. a = 0.

kp—1
where T, =( P j (2.16)

Case A. For k=2, when v and p both are odd, we get a linear trend free
block (LTFB) design

For k=2, the parameters (3.1) simplify to
V¥=v,by =p, ki =2p, by =b-bg ks =2,
h=p+r-ro=v-pfori= 1, .., 2p

=r=v-l, Vi=2p+1,---,V.
First we consider the treatment numbers 2p+1, 2p+2, ..., v which are replicated v-
1 (even number) times. We, therefore, can permute these treatments in a block of
size 2 such that half of treatments get first position and the other half gets the
second position. Further first 2p treatments are replicated p times in blocks of size
2p and v-2p times in blocks of size 2. Now these 2p treatments can easily be
permuted in such a way that the design is LTFB design. We illustrate this
procedure by an example.
Example 2.2: Let the unreduced BIB designbev=7,b=21,r=6,k=2, 1 =1.
Let p = 3, then we have a variance balanced block design with parameters v' = 7,
by =3,k =6,b, =6,k,; =2, = 4fori=1,...,6andr; = 6. This variance
balanced block design, under homoscedastic set up (« = 0), can be converted into
TFB design of degree {min (ki, k;) — 1} =1 which is given below with rows as
blocks.

Block No.

1 4 1 2 5 6 3
2 6 3 1 4 5 2
3 5 2 3 6 4 1

(Polynomial coefficients -5 -3 -1 1 3 5)
4 1 7
5 2 7
6 3 7
7 7 4
8 7 5
9 7 6

(Polynomial coefficients -1 1)

For variance balanced block design, under heteroscedastic set up (o = 0), we take
the copies of blocks of size, ks , k" in the ratio of (ky )*: (ko )*. So from Theorem
2.2, above design under heteroscedastic set up of typee, for any value of «, will
also be TFBBB design.
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We can obtain a series of BBB designs which can be converted into TFB designs
by the method given in Case A. Thus TFBBB designs for {max (ry, r2)}<10 are
given below.

Table 2.7: Variance balanced block designs which can be converted into
TFB designs for {max (r, r2)}<10

E3 EJ EJ EJ EJ E3

p v b, k1 b, Kz ry r
3 7 3+t 6 6 2 4 6
3 9 3o+t 6 21 2 6 8
3 11 34+l 6 40 2 8 10
5 11 5o+t 10 10 2 6 10

Note: Above designs are TFB designs for any value of a.

Case B For k=2, when v is even LTFB design is not possible

When v is even and k = 2, v-kp=u (say) is even. These u treatments will be
replicated r = v-1 (an odd number) times in block of size 2. So, LTFB design is
not possible. [Theorem 3.1, Yeh and Bradley (1983)].

Case C For k=2, when v is odd and p is even LTFB design is not
possible

When v is odd and p is even, 2p is even. First 2p treatments will appear p times in
block size 2p and r-rpor v - 2p times in block of size 2. But v - 2p is an odd
number. So LTFB design is not possible.

Case D For k=3, when p is even LTFB design is possible

If p is even kp treatments will appear in Ao p blocks i.e. an even number of blocks.
So these kp treatments can be permuted to LTFB design. These kp treatments and
the remaining v - kp treatments will appear in block of size 3 with different
replications. Now m < (v - kp) treatments will appear in each of the blocks of size
3. Thus these blocks of size 3 can easily be permuted to LTFB design. (Theorem
3.2, Chai and Majumdar (1993)).

Example 2.3: Let the unreduced BIB designbev=7,b=35r=15 k=3, 1=
5. Let p = 2, then for kp = 6, and A,p = 8, we have a variance balanced block
design with parameters v'=7, b, =8,k =6, b, =15k, =3, r =13 fori =1,
..., 6 and r7 = 15. This variance balanced block design can be converted into TFB
design with rows as blocks for any value of c.
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Theorem 2.3: If a BBB design is obtained as a union of two block designs, the
BBB design thus obtained will be trend-free block design if the two block designs
can be converted into trend-free block designs, individually.

Proof simplifies from Corollary (2.1).

2.6 Analysis of data from trend-free block designs

In a trend-free block design we assign treatments to plots within blocks so that the
known properties of ordinary analysis of variance for treatment and block sum of
squares are preserved and variation due to trend effect is removed from the error
sum of square. So the analysis of a trend-free block design is same as that the
analysis of block design without trend-effect, the only difference is that sum of
squares due trend effects are worked out separately and is subtracted from the
error sum of squares. Now the steps for the analysis of a trend-free block design
are given below.

Under the model (2.2), let the block design d is a connected design. Then the

reduced normal equations for estimating linear functions of treatment effects,
using the design d, are
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Cyty =Qq,

where C, =R, - N KN/,

and Qg =Ty —NgKg'By.

Here, Ty is the vector corresponding to treatment totals and By is the vector of
block totals. Q,is known as the vector of adjusted treatment totals. The i

b
element of Q,is Q; =T; — > ;jBj /k; .
j=1

For design d, the adjusted sum of squares for treatment effects is QyC4Qq , where

Cyis a g-inverse of C,. Also, the unadjusted block sum of squares is
112 b B2 2
- Byl B .
By KBy _(Bul) _ 3 21 _C% \here G is the grand total.

n i1 K]
Now sum of square due to i component of trend Wi is the i™ component of the
vectorW =2’y

Thus the analysis of variance table for a trend-free design is as follows:

ANOVA
Source d.f. SS
Treatment effects v-1
Q4CyQyq
Block effects b-1 ’ 2
8/ K-1g (Ba1p) _ b Bf g2
afdBa LT
j=1")
Trend term 1 1 W2, /b
Trend term 2 1 W2, /b
trend term p 1 W2 /b
Error n-v-b-p+1 By subtraction
TOtal n —1 Br 1 2 \Y b GZ
, _ 2
YY—M—Z >y -—
n i-1j=1 n
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2.7 Catalogue of trend-free binary variance balanced block designs

On the basis of above results, a catalogue of BBB designs of type o with
replication number of treatments r <30 and for values of o =0, 1, 2 and 3 with
two distinct block sizes, which can be converted trend-free, linear trend-free and
nearly linear trend free BBB designs are given in Table 2.8 to Table 2.11.

Table 2.8.1: BBB designs with two distinct block sizes for =0 that can be

converted into trend-free BIB designs.

S.L.No. v r b ki by, k n Reference Design
1 6 8 6 4 12 2 48 2 S1: 1 R18
2 6 8 12 3 6 2 48 3 SR18: 2 (32
3 6 9 18 2 6 3 54 2 SR6: 3 (23)
4 6 14 12 4 12 3 84 4 S1: 3 SR18
5 6 16 12 4 24 2 96 4 S1: 1 R23
6 6 16 24 3 12 2 96 3 SR19: 4 (32
7 6 17 24 2 18 3 102 2 R18 : 3 R42
8 6 18 12 3 36 2 108 3 SR18 : 2 R19
9 6 19 48 2 6 3 114 2 R24: 3 (23)
10 6 22 18 2 24 4 132 1 SR7: 4 R94
11 6 23 42 3 6 2 138 3 R6: 2 (32
12 6 24 18 4 36 2 144 2 S3: 3 R18
13 6 24 18 2 36 3 144 2 SR6: 3 R43
14 6 26 12 4 54 2 156 1 S4: 2 R27
15 6 26 24 3 42 2 156 3 SR19: 2 R21
16 6 27 54 2 18 3 162 2 SR8: 9 (23)
17 6 27 36 4 6 3 162 4 SR35: 3 (23)
18 6 28 24 4 24 3 168 8 S1: 3 SR19
19 6 29 12 4 42 3 1714 4 S1: 3 R46
20 8 9 8 6 8 3 72 2 S18: 1 R54
21 8 10 16 4 8 2 80 1 SR39: 2 (42
22 8 11 24 3 8 2 88 1 R57: 2 (42
23 8 12 8 4 32 2 96 1 SR36: 1 R30
24 8 18 16 6 16 3 144 4 S18: 1 R55
25 8 20 16 2 32 4 160 1 SR9: 2 R98
26 8 22 48 3 16 2 176 3 R55: 4 (42
27 8 22 24 4 40 2 176 3 SR36: 1 R33
28 8 24 16 4 64 2 192 1 SR39: 2 R30
29 8 25 64 2 24 3 200 2 R30: 3 R54
30 8 26 24 6 16 4 208 6 S18: 1 SR39
31 8 27 40 5 8 2 216 5 R134: 2 (42
32 8 27 24 3 24 6 216 1 R58: 2 RI164
33 8 29 24 3 40 4 232 3 R54: 4 R97
34 8 30 24 4 48 3 240 4 S6: 3 R55
35 8 30 24 6 48 2 240 3 S19: 2 R29
36 9 10 27 2 9 4 90 1 R34: 1 R104
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SLNo. v r by ki by, kp n Reference Design
37 9 12 9 6 27 2 108 3 S21: 1 R34
38 9 12 18 2 18 4 108 1 LS1: 2 LS26
39 9 15 54 2 9 3 135 2 R34: 3 (33)
40 9 17 27 3 18 4 153 3 SR23: 2 R104
41 9 20 54 2 18 4 180 2 R34: 1 RI105
42 9 20 18 4 18 6 180 2 LS26 : 3 LS72
43 9 21 18 6 27 3 189 6 S21: 1 SR25
44 9 22 27 6 9 4 198 3 SR65: 1 R104
45 9 22 18 3 36 4 198 3 LS7: 4 LS26
46 9 24 36 2 36 4 216 1 LS2: 4 LS26
47 9 24 18 6 54 2 216 3 S22: 2 R34
48 9 26 36 2 54 3 234 2 LS1: 3 LS12
49 9 27 54 2 45 3 243 2 R34: 3 R59
50 9 28 27 6 45 2 252 3 SR65: 1 R35
51 9 29 27 3 9 2 261 3 SR23: 2 R35
52 9 29 63 3 18 4 261 3 R62: 2 R104
53 9 30 36 6 18 3 270 4 SR65: 1 R60
54 10 12 20 5 10 2 120 1 SR55: 2 (52)
55 10 12 20 3 10 6 120 1 T12: 2 T57
56 10 14 30 2 20 4 140 2 T2: 1 T31
57 10 14 10 6 40 2 140 1 S26: 1 R36
58 10 15 50 2 10 5 150 2 SR11: 5 (25)
59 10 15 30 2 30 3 150 2 T2: 3 T9
60 10 15 10 3 20 6 150 1 T9: 2 T60
61 10 16 20 5 20 3 160 1 SR55: 1 R69
62 10 17 30 3 20 4 170 1 T13: 4 T28
63 10 21 60 2 30 3 210 2 T1: 1 T13
64 10 22 50 2 20 6 220 1 SR12: 2 RI166
65 10 22 10 4 30 6 220 2 T28: 3 T60
66 10 22 80 2 20 3 220 2 R36: 1 R69
67 10 22 20 6 20 5 220 2 S26: 1 SR55
68 10 23 20 4 30 5 230 4 T28: 5 T44
69 10 24 20 8 40 2 240 4 S51: 1 R36
70 10 24 40 5 20 2 240 5 SR52: 4 (52)
71 10 24 30 2 30 6 240 1 T1: 3 T60
72 10 24 30 3 30 5 240 3 T9: 5 T44
73 10 25 30 3 40 4 250 3 T9: 4 T33
74 10 26 60 3 20 4 260 3 T12: 4 T28
75 10 26 30 2 50 4 260 1 T1: 2 T37
76 10 27 60 2 30 5 270 2 Tl1: 5 T44
77 10 28 60 2 40 4 280 2 T1: 4 T33
78 10 27 30 3 3 6 270 1 T13: 6 T57
79 10 29 30 3 50 4 290 1 T13: 2 T35
80 10 30 20 5 100 2 300 1 SR55: 2 R37
81 10 30 60 2 60 3 300 2 T1: 3 T12
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SLNo. v r by ki by, kp n Reference Design
82 10 30 20 3 40 6 300 1 T10: 4 T60
83 12 14 24 6 12 2 168 3 SR66: 2 (62)
84 12 14 12 6 24 4 168 1 SR67 : 2 R109
85 12 15 12 6 36 3 180 2 S27: 1 R75
86 12 15 36 4 12 3 180 4 SR41: 3 (43)
87 12 16 48 3 12 4 192 3 SR26 : 4  (34)
88 12 16 12 8 48 2 192 4 S53: 1 R38
89 12 17 60 3 12 2 204 3 R70: 2 (62)
90 12 18 60 2 24 4 216 1 R40: 2 R109
91 12 21 108 2 12 3 252 2 R39: 3 (43)
92 12 25 12 5 24 10 300 1 R145: 2 R203
93 12 26 12 8 36 6 312 4 S53: 3 SR68
94 12 27 24 9 36 3 324 6 S82: 1 R75
95 12 28 24 8 48 3 336 8 S53: 3 SR26
96 12 28 12 8 60 4 336 1 S56: 2 R111
97 12 28 60 5 12 3 33 5 R145: 3 (43)
98 12 28 24 6 48 4 336 3 SR66: 4 R109
99 12 28 48 6 24 2 336 3 SR69: 4 (62
100 12 29 60 5 24 2 348 5 R144: 4 (62)
101 12 30 24 6 72 3 360 2 SR67 : 3 R71
102 13 14 39 2 26 4 182 1 Cl0: 1 c21
103 13 21 39 3 26 6 2713 1 Cl9: 2 C23
104 13 25 39 3 52 4 325 3 Cl6: 2 c21
105 13 26 26 4 39 6 338 1 C21: 3 C23
106 14 16 14 8 28 4 224 2 S59: 1 R113
107 14 18 14 6 56 3 252 1 S33: 2 R79
108 14 20 84 3 14 2 280 3 R79: 2 (72
109 14 21 98 2 14 7 294 2 SR14: 7 27)
110 14 30 28 10 28 5 420 2 R205: 1 OTR16
111 15 9 15 3 15 6 135 1 T16: 1 T61
112 15 18 30 3 30 6 270 1 T17: 2 T61
113 15 19 45 3 3 5 28 3 T6: 5 T48
114 15 19 60 4 15 3 28 4 R114: 3 (53)
115 15 20 60 2 30 6 300 1 T5: 3 T62
116 15 20 15 10 75 2 300 5 S100: 1 R41
117 15 20 75 3 15 5 300 3 SR28: 5 (35)
118 15 22 90 2 30 5 330 2 T6: 5 T48
119 15 24 90 2 60 3 360 2 T6: 3 T14
120 15 24 15 6 30 9 360 1 T61: 3 T83
121 15 25 150 2 15 5 375 2 R4l: 5 (35)
122 15 25 120 2 45 3 375 2 T5: 3 T16
123 15 26 15 10 60 4 390 5 S100: 2 R117
124 15 26 45 2 30 10 390 1 T6: 5 T92
125 15 27 45 3 45 6 405 1 T19: 3 T61
126 15 30 90 2 45 6 450 2 T6: 3 T61

33




SLNo. v r by ki by, kp n Reference Design
127 16 21 48 3 48 4 336 3 LS18 : 4  LS29
128 16 22 48 2 64 4 352 1 LS3: 2 LS42
129 16 22 9% 3 16 4 352 3 R86: 4 (44)
130 16 25 32 8 48 3 400 2 SR92 : 1 OTRO1
131 16 26 144 2 32 4 416 2 LS4 : 1 LS34
132 17 24 34 4 34 8 408 1 C22 : 2 C26
133 17 24 68 2 68 4 408 1 Cl1: 2 c22
134 18 20 36 9 18 2 360 3 SR9 : 2 (92
13 18 21 54 6 18 3 3718 2 SR73 : 3 (63)
136 18 23 90 4 18 3 414 2 OTR11 : 3 (63)
137 18 26 144 3 18 2 468 3 R88: 2 (92
138 18 27 162 2 18 9 486 2 SR16 : 9 (29)
139 20 24 80 5 20 4 480 5 SR58 : 4 (54)
140 20 25 100 4 20 5 500 4 SR46 : 5 (45)
141 20 29 180 3 20 2 580 3 RO : 2 (102
142 21 16 105 2 21 6 336 1 T8 : 3 T65
143 21 271 21 9 126 3 567 3 S88 : 2 R91
144 21 28 147 3 21 7 588 3 SR31: 7 (37)
145 24 28 96 6 24 4 672 3 SR74 : 4  (64)
146 24 29 120 5 24 4 69% 5 R153 : 4 (64)
147 26 29 78 9 26 2 754 3 R199 : 2 (132
148 27 15 27 9 27 6 405 1 SR102 : 1 R170

Table 2.8.2: BBB designs with two distinct block sizes that can be converted

into linear trend-free BIB designs for = 0.

SI.LNo. v r b1 ki by ky n Reference Design
1 6 14 18 2 16 3 84 2 SR6 : 1 R47
2 6 24 48 2 16 3 144 2 R24 : 1 R47
3 8 6 16 2 4 4 48 1 SRO: 2 (249
4 8 15 12 4 24 3 120 2 S6: 3 R54
5 8 16 24 2 20 4 128 1 R29 : 2 R97
6 8 18 12 4 48 2 144 1 S7: 2 R29
7 8 26 32 2 36 4 208 1 R30 : 2 R101
8 9 7 6 6 9 3 63 2 S21: 1 SR23
9 9 14 18 3 12 6 126 1 LS12 : 2 LS72
10 9 17 18 6 15 3 153 2 SR65 : 1 R59
11 9 18 36 2 30 3 162 2 LS1: 1 LS15
12 9 18 30 3 12 6 162 1 LS14 : 2 LS72
13 9 19 54 2 21 3 171 2 R34 : 1 R61
14 9 22 12 6 42 3 198 1 S24 : 2 R62
15 9 23 9 3 30 6 207 1 SR23: 2 R165
16 9 24 24 3 24 6 216 1 LS13 : 4 LS72
17 9 27 21 3 30 6 243 1 R62 : 2 RI165
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SI.LNo. v r by, ki b, ki n Reference Design
18 10 28 25 4 30 6 280 1 T35: 3 T60
19 10 29 50 4 15 6 290 2 T37: 1 T59
20 12 10 8 6 24 3 120 1 SR66 : 1 R71
21 12 10 48 2 6 4 120 1 R38: 2 (34)
22 12 14 16 3 20 6 168 1 SR26 : 1 OTR24
23 12 14 6 8 30 4 168 2 S53: 1 Rl11
24 12 16 15 8 12 6 192 1 S58 : 1 SR67
25 12 19 12 9 40 3 228 3 S82 : 1 R78
26 12 19 24 6 28 3 228 3 SR66 : 1 R73
27 12 20 15 8 60 2 240 1 S58 : 1 R40
28 12 20 36 6 6 4 240 3 SR68 : 2 (34)
29 12 20 16 6 48 3 240 1 SR69 : 2 R71
30 12 20 18 8 24 4 240 2 SR90 : 1 OTRO5
31 12 23 20 3 36 6 276 1 R70 : 2 OTR22
32 12 24 36 2 54 4 288 1 SR13 : 2 OTRO06
33 12 24 15 8 42 4 288 1 S58 : 2 OTRO3
34 12 24 40 3 28 6 288 1 R77 : 2 OTR21
35 12 25 20 6 60 3 300 2 S28 : 3 R70
36 12 26 12 6 80 3 312 1 S29 : 2 R78
37 12 26 96 2 40 3 312 2 R38: 1 R76
38 12 27 120 2 28 3 324 2 R40 : 1 R73
39 12 28 32 3 40 6 336 1 SR27 : 2 OTR24
40 12 30 20 6 120 2 360 1 S31: 2 R40
41 14 8 7 8 14 4 112 1 S59 . 1 Ri112
42 14 28 84 3 35 4 392 3 R79 : 1 OTRO09
43 15 12 10 6 30 4 180 1 S35: 2 Rl14
44 15 12 10 9 30 3 180 1 S85: 1 R81
45 15 12 20 3 20 6 180 1 T14 : 2 T62
46 15 16 50 3 15 6 240 1 T8 : 1 T61
47 15 22 20 3 30 9 33 1 T14 : 3 T83
48 15 23 15 3 50 6 345 1 T16 : 2 T63
49 15 24 40 3 40 6 360 1 T15: 4 T62
50 15 24 20 6 60 4 360 1 S36: 4 R1l14
51 15 26 20 6 90 3 390 2 S35: 3 R81
52 15 26 50 3 60 4 390 1 R85 : 4 R114
53 15 30 50 3 50 6 450 1 T18 : 2 T63
54 16 12 48 2 24 4 192 1 LS3 : 2 LS36
55 16 12 64 2 8 8 192 1 SR15: 4 (28)
56 16 14 12 8 32 4 224 1 S62 : 2 SR44
57 16 18 24 4 24 8 288 1 LS40 : 2  LS98
58 16 22 16 4 36 8 352 1 LS30 : 2 LS100
59 16 24 12 8 72 4 384 1 S62 : 2 R122
60 16 24 48 2 36 8 384 1 LS3 : 2 LS100
61 18 8 36 3 6 6 144 1 SR30: 2 (36)
62 18 15 12 9 54 3 270 1 SR99 : 1 R89
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Sl. No.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

v
18
18
18
18
20
21
21
24
25
25
27
32
36
36
48
54
78

r
18
22
26
28
16
18
20
11
23
28
12
10
22
28
28
21
29

b,
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105
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36
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35
8
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9
8
36
84
24
18
26
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n
324
396
468
504
320
378
420
264
575
700
324
320
792

1008
1344
1134
2262

1
1
2
3
1
1
1
1
2
3
1
1
2
1
3
2
3

Reference

R169
S87
S37

SR99
S67 :
T22 :

T8 .
R92 :

S112

LS61 :

SR33 :

SR49
T41 :
T24 .

SR78

SR79 :

R201 :

1

NWPAPWERLRNWOWNWNREPRRRPPWN

Design
OTR11
SR72
SR99
OTRO2
SR108
T65
T70

(4 6)
SR60
LS135
39)
(48)
T81
T85
(68)
(69)
(13 6)

Table 2.8.3: BBB designs with two distinct block sizes that can be converted

into nearly linear trend-free BIB designs for « = 0.

S.LNo. v r bp ki by kp n Reference Design
1 6 13 12 3 21 2 78 3 SR18 : 1 R21
2 6 21 24 3 271 2 126 6 SR18 : 1 R26
3 6 28 21 2 42 3 168 1 R21 : 3 R46
4 8 15 12 6 24 2 120 3 S18 : 1 R29
5 8 18 36 2 24 3 144 1 R31 : 3 R54
6 9 11 6 6 21 3 99 2 S21 : 1 Re62
7 9 13 18 6 3 3 117 2 SR65 : 1 (33)
8 10 11 25 2 10 6 110 1 SR11 : 1 R166
9 10 12 15 2 15 6 120 1 T2 : 3 T57
10 12 7 12 6 6 2 84 1 SR67 : 1 (62)
11 12 9 36 2 6 6 108 1 SR13 : 3 (26)
12 12 12 20 3 14 6 144 1 R70 : 1 OTR21
13 12 13 6 6 40 3 156 1 S27 : 1 R78
14 12 15 10 6 60 2 180 1 S28 : 1 R40
15 12 17 32 3 18 6 204 2 SR26 : 1 R167
16 12 27 18 6 108 2 324 3 S27 : 2 R39
17 14 9 7 6 28 3 126 1 S32 : 1 R79
18 14 27 21 6 84 3 378 1 S34 : 3 R79
19 18 7 18 6 6 3 126 1 SR72 : 1 (63)
20 18 11 10 9 18 6 198 1 S8 : 1 SR72
21 20 11 20 10 10 2 220 1 SR108 : 1 (102)
22 20 15 100 2 10 10 300 1 SR17 : 5 (210)
23 27 10 27 9 9 3 270 1 SR102 : 1 (93)
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Table 2.9.1: BBB designs with two distinct block sizes for & = 1 that can be
converted into trend-free BIB designs.

Sr. v r b, ki by ko n Reference Design
No.
1 6 12 12 4 12 2 12 4 S1 1 RI18
2 6 21 36 2 18 3 126 4 SR6 9 (23
3 6 22 36 3 12 2 132 9 SR18 4 (32
4 6 24 24 2 24 4 144 1 R24 4 R94
5 8 8 16 2 8 4 64 1 SR9 4 (24)
6 8 15 16 6 8 3 120 4 S18 1 R54
7 8 16 32 2 16 4 128 1 SR10 8 (24)
8 8 26 24 2 40 4 208 1 R29 4 R97
9 8 30 32 6 16 3 240 8 S18 1 R55
10 9 14 27 2 18 4 126 1 R34 2 R104
11 9 20 18 2 36 4 180 1 LS1 4 LS26
12 9 24 27 6 27 2 216 9 S21 1 R34
13 10 18 20 3 20 6 180 1 Ti12 4 T57
14 10 22 30 2 40 4 220 1 T3 8 T28
15 10 26 30 6 40 2 260 3 S26 1 R36
16 10 27 10 3 40 6 270 1 T9 4 T60
17 12 12 48 2 12 4 144 1 R38 4 (34)
18 12 21 24 6 36 3 252 4 S27 1 R75
19 12 26 60 2 48 4 312 1 R40 4 R109
20 13 22 39 2 52 4 286 1 C10 2 C21
21 14 12 14 6 28 3 168 2 S32 1 R79
22 14 12 14 8 14 4 168 2 Sh9 1 R112
23 14 24 28 8 28 4 336 4 S59 1 R113
24 15 15 15 3 30 6 225 1 TIi16 2 T61
25 15 24 30 9 30 3 360 3 S85 1 R81
26 15 28 30 6 60 4 420 3 S35 4 R114
27 15 30 30 3 60 6 450 1 T17 4 T61
28 16 18 48 2 48 4 288 1 LS3 4 LS36
29 16 24 64 2 32 8 384 1 SR15 1 6(28)
30 18 27 36 9 54 3 486 3 SR99 1 R89
31 21 28 105 2 63 6 588 1 T8 9 T65
32 27 18 81 3 27 9 486 1 SR33 9 (39
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Table 2.9.2: BBB designs with two distinct block sizes for a = 1 that can be
converted into linear trend-free BIB designs.

Sr. v. r by ki by ks n Reference Design
No.
1 8§ 12 12 4 24 2 96 2 S6 1 R29
2 8 22 16 2 36 4 176 1 SR9 2 R100
3 9 11 12 6 9 3 99 4 821 1 SR23
4 9 22 24 6 18 3 198 8§ S21 1 SR24
5 12 14 16 6 24 3 168 2 SR66 1 R71
6 12 16 12 6 40 3 192 2 S27 1 R78
7 12 18 12 8 30 4 216 4 S53 1 R111
8 12 20 36 2 42 4 240 1 SR13 2 OTRO0O4
9 12 26 32 3 36 6 312 1 SR27 2 R167
10 12 30 30 4 120 2 360 1 S12 2 R40
11 15 11 25 3 15 6 165 1 SR28 1 R168
12 15 22 50 3 30 6 330 1 SR29 2 R168
13 16 10 12 8 16 4 160 2 S61 1 SR44
14 16 20 24 8 32 4 320 4 S61 1 SR45
15 16 30 24 4 48 8 480 1 LS40 4  LS98
16 16 30 36 8 48 4 480 2 S64 3 SR44
17 18 10 36 3 12 6 180 1 SR30 4 (36)
18 18 13 36 6 6 3 234 2 SR72 1 (63)
19 18 27 30 9 36 6 486 3 S86 2 SR72
20 24 13 72 3 16 6 312 1 R92 4 (46)
21 27 28 8 9 9 3 75 3 SR102 1 (93
22 32 12 64 4 16 8 384 1 SR49 4 (48)

Table 2.9.3: BBB designs with two distinct block sizes for a =1 that can be
converted into nearly linear trend-free BIB designs

Sr. v r by ki by ko n Reference Design
No.
1 6 27 36 3 27 2 162 9 SR18 1 R26
2 9 15 12 6 21 3 135 4 S21 1 R62
3 9 25 36 6 3 3 225 4 SR65 1 (33
4 9 26 30 3 24 6 234 1 LS14 4 LS72
5 9 29 36 6 15 3 261 4 SR65 1 R59
6 10 23 25 2 30 6 230 1 SR11 3 R166
7 10 30 15 2 45 6 300 1 T2 9 T57
8 12 13 16 3 18 6 156 1 SR26 1 R167
9 12 15 15 4 60 2 180 1 Si11 1 RA40
10 12 15 3 2 18 6 180 1 SR13 9 (26)
11 12 19 36 6 6 2 228 3 SR67 1 (62)
12 12 19 20 3 28 6 228 1 R70 2 OTR21
13 12 24 16 3 40 6 288 1 SR26 2 OTR24
14 12 25 30 6 60 2 300 3 S28 1 R40
15 15 20 20 3 40 6 300 1 Ti4 4 T62
16 21 26 70 3 56 6 546 1 T22 8 T65
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Table 2.10.1: BBB designs with two distinct block sizes for a = 2 that can be
converted into trend-free BIB designs

Sr.No. v r by ki by k n Reference Design
1 6 20 24 4 12 2 120 8 S1 ; 1 R18
2 8 12 16 2 16 4 96 1 SR9 8 (24)
3 8 18 24 4 24 2 144 4 S6 1 R29
4 8 24 32 2 32 4 192 1 SR10 1 6(24)
5 8 27 32 6 8 3 216 8 S18 1 R54
6 9 22 27 2 36 4 198 1 R34 4 R104
7 10 30 20 3 40 6 300 1 T12 ; 8 T57
8 12 16 48 2 24 4 192 1 R38 ; 8 (34)
9 14 18 28 6 28 3 252 4 S32 : 1 R79
10 14 20 28 8 14 4 280 4 Sh9 1 R112
11 15 27 15 3 60 6 405 1 T16 4 T61
12 16 30 48 2 9% 4 480 1 LS3 8 LS36
13 32 16 64 4 32 8 512 1 SR49 8 (48)

Table 2.10.2: BBB designs with two distinct block sizes for a = 2 that can be
converted into linear trend-free BIB designs

Sr. Y r by ki by k n Reference Design

No.

1 9 19 24 6 9 3 171 8 S21 1 SR23
2 12 20 30 4 60 2 240 2 Sl11 1 R40
3 12 22 32 6 24 3 264 4 SR66 1 R71
4 12 22 16 3 36 6 264 1 SR26 2 R167
5 12 22 24 6 40 3 264 4 S27 1 R78
6 12 26 24 8 30 4 312 8 S53 1 R111
7 15 17 25 3 30 6 255 1 SR28 2 R168
8 16 16 24 8 16 4 256 4 S61 1 SR44
9 18 14 36 3 24 6 252 1 SR30 8 (36)
10 18 25 72 6 6 3 450 4 SR72 1 (63)
11 24 17 72 3 32 6 408 1 R92 8 (46)

Table 2.10.3: BBB designs with two distinct block sizes for a = 2 that can be
converted into nearly linear trend-free BIB designs

Sr.No. v r b, Kk b, ko, n Reference Design

3 9 23 24 6 21 3 207 8 S21 1 R62

39




Table 2.11.1: BBB designs with two distinct block sizes for a = 3 that can be

converted into trend-free BIB designs

S.No. \Y) r bl kl bz kz n
Reference Design
1 8 20 16 2 32 4 160 1 SR9 16 (2 4)
2 8 30 48 4 24 2 240 8 S6 : 1 R29
3 12 24 48 2 48 4 288 1 R38 : 16 (34)
4 12 30 60 4 60 2 360 4 S11 : 1 R40
5 14 30 56 6 28 3 420 8 S32 : 1 R79
6 16 28 48 8 16 4 448 8 S61 : 1 SR44
7 32 24 64 4 64 8 768 1 SR49 16 (4 8)

Table 2.11.2: BBB designs with two distinct block sizes for a = 3 that can be

converted into linear trend-free BIB designs

S.No. v r K1 b, ko n

Reference Design
1 15 29 3 60 435 1 SR28 : 4R168
2 18 22 3 48 396 1 SR30 : 16(36)
3 24 25 3 64 600 1 R92 : 16 (4 6)

Remark 2.1 No BBB designs with two distinct block sizes for « = 3 could be
obtained that can be converted into nearly linear trend-free BIB designs
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CHAPTER 111

TREND-FREE NESTED BALANCED INCOMPLETE
BLOCK DESIGNS AND DESIGNS FOR DIALLEL
CROSS EXPERIMENTS

3.1 Introduction

In Chapter 11 we have discussed the experiments where there is only one nuisance
factor. However, there do occur experimental situations in which one or more
factors are nested within the blocking factor. Nested block designs have been
developed to deal with experimental situations where one nuisance factor is
nested within blocking factor. In this chapter, we shall present some practical
situations where the experimenter has to use nested block designs. A nested block
design is a design with two systems of blocks where the second system is nested
within the first. To be clearer let us consider the following experimental situation:

Experimental situation 3.1: This example relates to a virological experiment,
quoted by Preece (1967). Suppose the half-leaves of a plant form the experimental
units, on which a number of treatments, say, inoculations with sap from tobacco
plants infected with tobacco necrosis virus, are to be applied. Suppose the number
of treatments is more than the number of suitable half-leaves per plant. Now,
there is one source of variation present due to variability among plants. Further,
leaves within a plant may exhibit variation among themselves due to their being
located on the upper branch, middle branch or on the lower branch of the same
plant. Thus leaves within plants form a nested 'nuisance’ factor, the nesting being
within the plants The half-leaves being experimental units, we then have two
systems of ‘blocks', leaves (which may be called sub-blocks) being nested within
plants (which may be called blocks).

For this type of situations, Kleczkowski (1960) devised a form of nested
incomplete block design with eight treatments for a series of experiments in
which bean plants, in two primary leaves stage, were inoculated with the sap from
tobacco plants infected with the tobacco necrosis virus. The treatments were eight
different virus concentrations. Each leaf had two inoculations, one for each half-
leaf; ignoring the leaf positions, plants and leaves were, respectively, the blocks
(of size 4) and sub-blocks (of size 2) of a nested balanced incomplete block
(NBIB) design (which shall be discussed later).

Experimental situation 3.2: In animal experiments, generally littermates
(animals born in the same litter) are experimental units within a block i.e. litters
are blocks. However, animals within the same litter may be varying in their initial
body weight. If body weight is taken as another blocking factor, we have a system
of nested blocks within a block.
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Experimental situation 3.3: Consider a field experiment conducted using a
block design and harvesting is done blockwise. To meet the objective of the
experiment, the harvested samples are to be analyzed for their contents in the
laboratory by different technicians over different periods of time. Therefore, to
control the variation due to technicians it is taken as another blocking factor.
Hence, we have a system of nested (sub) blocks i.e. technicians.

In the experimental situation 3.1, the position of the leaves is nested within plants.
This position of leaves may exhibit trend effect in the order in which they are
nested. In the experimental situation 2, units nested within the block do not have
exactly same body weight and may give the trend effect in the experimental units.
And in experimental situation 3.3 different technicians may exhibit the trend
effect in the experimental units. In general we can say that nested block designs
may have trend-effect at sub-block or at block level over space and time. In such
situation, it is required to have trend-free block designs. The information matrix
(C-matrix) of a nested block design is in terms of parameters of sub-block. Thus a
necessary and sufficient condition, for a nested block design to be trend-free
design at sub-block level, is derived. Using this condition a catalogue of nested
balanced incomplete block (NBIB) designs will be given. A nested block design
with sub-block size 2 has a one to one correspondence with designs for diallel
crosses. The question whether these optimal block designs for diallel crosses can
be converted into trend-free designs is investigated. A catalogue of optimal proper
block designs for diallel cross experiments that can be converted into trend-free
designs is also prepared.

We begin with some preliminaries of nested block designs.

3.2.  Nested block designs
A nested block design is an arrangement of v treatments in a nested block design
with b; blocks, there being g; mutually exclusive sub-blocks nested within the i

by
block, j = 1,2,....b; and b, = qu be the total number of sub blocks. Let
j=1
N = (( nj)) be the vx b; treatment-block incidence matrix, where nj; is the
number of times the i" treatment appears in the j" block, i = 7,2,..., v. N1 =r = (

r, ...nv)’, UN=k=(ki ..., k, ), where ri and k;j denote the replication of the i

\ b1
treatment and j" block size respectively with > r, = >k, =n, total number of
i1 =1

observations. Let M = (( mjj(; )) denote v x b, treatment-sub block incidence
matrix, where mjj; denote the number of times the i treatment appears in the j ™
sub block nested within the j block, j*= /,..., . ML =rand 1'M = h, , = (

h'@, ,..., hiy,))'’, where h'g) = (hl(j),---,hqj(j)). R =diag (ry, ..., ), K=diag ( ki,
..., Ky, ). Let Hj and H are the diagonal matrices whose diagonal elements are the
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successive elements of h; and h and W is the by x b, block vs sub-block incidence
matrix. The model under consideration can be written as

Yiitu = 4+ 7+ B+ 155 + €y (3.1)
where yiju is the u™ observation obtained from the i" treatment in the j*™ sub
block of the j" block; u = 1, 2, ..., mijq , & is the general mean, 7, is the i"

treatment effect, A is the j™ block effect, nij- ) 1S the effect of the i™™ sub block
nested within the j* block and ejj ¢, is the uncorrelated errors with mean zero and
common variance . The model (3.1) can be written in matrix notations as

y=ul +AT+D'B+®n+e (3.2)
where
y = (Y1, ..., yn) ISan nx1 observable random vector.

B=(B,,..B,) , is the by x1 vector of block effects.
n= My M2, ...,nqu(bj))’, is the byx 1 vector of sub-block effects nested within

the block effects.
A’ is the nx v observations vs treatments incidence matrix,

D’ is the nx b, observations vs blocks incidence matrix,

@' is the nxb, observations vs sub-blocks nested within the blocks incidence
matrix,

e is the nx 1 vector of random errors.

The following relations can easily be seen
A A =R, diag(r,---,r,), AL =r, A® =M ,AD'=N,®1=h, ® ®'= H,

®D'=W DD'=K,Dl1=k,11=n.

Without loss of generality, we assume that the observations are assumed to be
b

arranged in the order of ( j, j'). Therefore, we can write W :Z+hj and H
=1
1 bl
=>"H;.L=>)"I;.Then we have
j=1 j=1
N=ML, W= L'H, K = L'HL = WL, n = lnglbl, k = L’Hlbj and

WH W' =L'W' =K.
The reduced normal equation for estimating treatment contrasts is
C=R-MH™M'. (3.3)

It can be seen that the coefficient matrix of the reduced normal equations for
estimating the treatments effects is same as obtained if blocks are ignored and the
design is analyzed as sub-blocks. Therefore, as far as the estimation of the
treatment effects are considered it is the sub block structure that only matters. The
properties of the C-matrix are completely determined by treatments versus sub-
blocks incidence matrix. Therefore, for obtaining the trend-free designs for nested
block designs, it is proper to consider the trend effect at the sub-block level.
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Further, if the experimenter is interested in estimating all elementary treatment
contrasts with same precision, then we require nested block designs that are
variance balanced. In the sequel we shall give some definitions and results on
nested variance balanced block designs.

Definition 3.1: A connected nested block design is said to be sub-block variance
balanced if and only if all the non-zero eigenvalues of C matrrix are equal.

The information matrix C=R —MH ™M’ for a variance balanced design is given
by

cC=40( —111’) (3.4)
v b g
where 6'——[ =33 > mé i1 is unique non-zero eigen value of C
i=1 j=1j'=1
matrix. A nested block design is said to be binary if my, =0 or 1. For a binary
(n _bl )

nested sub-block balanced design 6 = . The above definition considered

(v-1)

the variance balanced property with respect to sub-blocks only. However, one
may consider that the block classification ignoring sub-blocks also forms a
variance balanced block design. Most of the available literature relates to the
combinatorial aspects of the nested block designs that are variance balanced with
respect to block classification as well as sub-block classification ignoring other
classification. Such designs have been called as nested variance balanced block
designs. A binary, proper and equireplicated nested variance balanced block
design is the nested balanced incomplete block (NBIB) design that was
introduced by Preece (1967). A NBIB design is defined as follows:

Definition 3.2: A NBIB design with parameter (v, r, by, Ky A1, b2 ka, A2, m) is an
arrangement of v treatments, each replicated r times with two system of blocks
such that:

a) The second system is nested within the first, with each block of the first
system containing exactly m blocks from the second system.

b) Ignoring the second system leaves a balanced incomplete block (BIB)
design with by blocks each of k; units and with 4; concurrences and
C) Ignoring the first system leaves a BIB design with b, blocks each of k;

units and, 1, concurrences.

The following parametric relations hold good in case of a NBIB design
1. vr = b1 k1 =m blkz :b2 kz;

2. (v-1) 4 =(kki-D)r ;  (v-1)42 = (ko-1) rand

3. (v-1)( A1-mA) =(m-—Dr.
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The work on combinatorial aspects of NBIB designs was initiated by Preece
(1967) who gave some trail and error solutions of NBIB designs and provided a
list with r < 15. Jimbo and Kuriki (1983) gave theorems in order to construct
NBIB designs. Dey, Das and Banerjee (1986) have given some methods of
construction of NBIB designs through initial solutions and resolvable BIB designs
as special cases. Morgan, Preece and Rees (2000) presented an excellent review
of NBIB designs and provided a catalogue of NBIB designs with v < 16, r < 30.
Satpati (2001) has given an exhaustive review of nested balanced block, nested
balanced incomplete block and nested partially balanced incomplete block
designs alongwith generalization of methods of construction of NBIB designs.

3.3  Trend-free nested balanced incomplete block designs
In this section we obtain the necessary and sufficient condition for a nested
balanced incomplete block to be trend-free block design when experimental units
within the blocks are subject to trend effect over space or time.
Consider the NBIB design d with parameter (v, r, by, ki, A1, by, ka, 42, m) under
model 3.2 with trend terms added
y=ul+At+D'B+om+Z'y+e (3.5)
E(e) =0, D(e) = & I.

Let d be the connected block design under model (3.5) when y=0. yisapxl

vector of trend effects. We assume a common trend effect in all the blocks of
degree p = (ko — 1). The matrix Z' is matrix of coefficients given by matrix
Z' =1, ®F'is of order n xp and F' is kyxp, matrix with columns consisting of

equi-spaced normalized orthogonal polynomials. Also 1'F' =0,FF =1,,
and ZZ'=D, 1. Here problem is to assign treatments to plots within blocks so

that the known properties of ordinary analysis of variance for treatments and for
block sum of squares are preserved when variation due to the trend may be
removed from error sum of squares in model (3.2). A formal definition of a trend-
free block design is given as:

Definition 3.3: A NBIB block design d is said to be a trend-free block design if
and only if the additional reduction in sum of squares due to fitting of parameters
of interest over and above fitting of other parameters, for the two models one
containing the trend effect and the other without trend effects, is equal i.e.

R(t/wB.nw) = R(t/p,B,m) (3.6)
where R(t/u,B,n, ) is the additional reduction in sum of squares due to fitting
of t,B,nand y over and above fitting just t,B,n . Similarly R(t/w,B,n) is the
additional reduction in sum of squares due to fitting of <, and n over and above
fitting justt,p.

Thus for deriving necessary and sufficient condition for a NBIB design to be
trend-free design, we consider the following two situations:
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Casel  When there is no trend effect i. e. y =0 under model (3.5)
The usual C-matrix (information matrix) is

Cy = X[ =X, (X5X5) X5 1X,

where X; = A", X;=[1 @ D]
n h kK 0o 0 0
XX, =lh H W and (X,X,)"=[0 H™ 0
k W K 0 0 0

X, (X5X,) X, = @H'®.
So the C-matrix simplifies to

C,=A(l —®@'H'®)A' = AQA’ (3.7)
where, @, =1 -®'H'® (3.8)
and R(t/u,B,m) =y'Q,A'CIAQ,y . (3.9)

Case Il When trend effect is present i. e. y # 0 under model (3.5)
The C-matrix in presence of trend effect is,

Cz = Xi[l —X3(X'3X3)_X§]Xl
where Xs=[1 D" ¢ Z1],

n h" k' 1Z n h" k' 0
(XX,) = h H W oz _ h H W 0 and
k W K DZ k W K 0
Z'l Zo ZD zZ'Z 0 0 O b2Ip
o 0 0 0o
o 0O H 0 0
XX =15 o o0 o
0 0 0 bl
Thus the information matrix simplifies to
C, =A(l —O'H'® +b;'Z'Z)A' = AQ,A’ (3.10)
where Q, =(I-®'H'®+b,'Z2'2), (3.11)
and R(t/w, B, vw) =y'Q,A'C,AQ,y (3.12)

Now we have following result:

Theorem 3.1: A necessary and sufficient condition for a NBIB design d to be
trend-free at sub-block level is AZ" = 0.

Proof: Necessary Part For design d to be trend-free design, from (3.6), (3.9)
and (3.12) we have

yQ,A'C,AQYy = y'Q A CIAQY
or Q,A'C,AQ, = QA'C/AQ, (3.13)
Pre- and post multiplying both sides of (3.13) by A and A’respectively, we have
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AQ,A'CLAQ, A' = AQA'CIAQ, A

or C,C,C,=CC/C, or C,=C,

or A(Q,-Q)A'=0 or b,'AZ'ZA'=0.

or AZ' =0. (3.14)

Sufficient Part To prove sufficiency, (3.14) is used with (3.8) and (3.11) to show
thatC, =C,and AQ, = AQ, so the equality of (3.9) and (3.12) follows.

The necessary and sufficient condition for a NBIB design to be trend-free designs
at the sub-block level is given in (3.14). Here the matrix Z' =1, ®F'is of order
n xp, p<(ko—1)and F'is kyxp, matrix with columns consisting of equi-spaced

normalized orthogonal polynomials. This condition is obtained in terms of sub-
block because the C-matrix is in terms of sub-block.

Similarly when the trend effect is at block level, we can say that the condition for
a NBIB design to be trend-free at block level if AZ.=0. (3.15)
where Z. =1, ®Fis of order n xq g=(ki — 1), g>p and F« is ki x g, matrix with

columns consisting of equi-spaced normalized orthogonal polynomials.
Now to be clearer, we define a NBIB design to be trend-free as

Definition 3.3: A NBIB design with parameter (v, r, by, ki, A1, b2 ko, A2, m) is said
to be completely trend-free design if it is trend-free at block and sub-block level.
A NBIB design is said to be trend-free design at block level if it trend-free at
block level only and it is said to be trend-free design at sub-block level if it is
trend-free at sub-block level only.

Here we give an example of a complete trend-free NBIB design and show how
the condition (3.14) and (3.15) are satisfied.

Example 3.1: Consider NBIB design with parametersv =5, b; -5, b,=10,r =4,
l[<(1 = ;L,(kz ?]2’ A1=3, 2=1as[(1,4),(2.3)]; [(2,5),(34)]; [(31).(4,9)]; [(4,2).(51)];
5,3),(1,2)].

For this NBIB design the matricesA, Z' and Z. of order 20x5, 20x 1 and 20x 3
respectively are
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>
N
N

10 O 0 0 -1 3 +1 -1
0 0 O 1 0 +1 -1 -1 43
01 O 0 0 -1 +1 -1 +1
0 0 1 0 0 +1 +3 +1 -1
01 O 0 0 -1 3 +1 -1
0 0 O 0 1 +1 -1 -1 43
00 1 0 0 -1 +1 -1 +1
00 O 1 0 +1 +3 +1 -1
00 1 0 0 -1 3 +1 -1
1 0 O 0 0 +1 -1 -1 +3
00 O 1 0 1 +1 -1 +1
00 O 0 1 +1 +3 +1 -1
00 O 1 0 -1 3 +1 -1
01 O 0 0 +1 -1 -1 +3
00 O 0 1 -1 +1 -1 +1
10 O 0 0 +1 +3 +1 -1
00 O 0 1 -1 3 +1 -1
0 0 1 0 0 +1 -1 -1 +3
10 O 0 0 -1 +1 -1 +1
01 0 0 0 +1 +3 +1 -1

Here we see that AZ" = 0 and AZ.= 0. Thus in the above design trend effect is
completely eliminated.

3.4  Construction of trend-free nested balanced incomplete block designs

In this section we shall study some families of NBIB designs that can be
converted into trend-free design. A catalogue of NBIB designs that can be
converted into completely trend-free design, trend-free designs at sub-block
levels, trend-free designs at block level and nearly linear trend-free designs will
be given.

Families of NBIB designs given by Dey, Das and Banerjee ((1986), Gupta and
Kageyama (1994), Das and Gupta (1997), Das, Dey and Dean (1998), Parsad,
Gupta and Srivastava (1999) and Parsad, Gupta and Gupta (2000) have been
studied and families of NBIB designs (with parameters) that can be converted into
trend-free NBIB designs at sub-block and block levels are given in Table 3.1.

48



Table 3.1: Families of NBIB designs that can be converted into trend-free
NBIB designs at the block and at the sub-block level

S. \' b]_ b2 r k1 k2 M Y Remark
No.
1. 2t+1 2t+1 t(2t+1) 2t 2t 2 2t-1 1
2. mt+1 t(mt+1) ut(mt+l) Mt 2u 2 m-1 1 m=
2u,
u>2
3. 2t+1  t(2t+1)  2t(2t+1) 4t 4 2 6 2
4. 4t+1 4+l 2(4t+1) 4t 4t 2t 4t-1 2t-1
5. 6t+1  t(6t+1)  2t(6t+1) 6t 6 3 5 2
6. ot+1  t(9t+1)  3t(9t+1) ot 9 3 8 2
7. 12t+  t(12t+1  4t(12t+1) 12t 12 3 11 2
1 )
8. 6t+1  6t+1 2t(6t+1) 6t 6t 3 6t-1 2
9. 4t-1 4t-1 2(4t-1)  2(2t-1) 42 2t 4t-3 2t-2
Note: 1) t>1 for all the cases.
i) v is prime or prime power for all the cases except at SI. No. 1.

A general method of construction of NBIB (Parsad, Gupta and Srivastava (1999))

is given below:

Suppose there exists a BIB designs with parameters V',b’,r’,k’,A" and there also

exists an NBIB designs with parametersk’,b’,b,,r",k;,ky,A;,X5. Then writing
each of the block contents of BIB design as NBIB design, we get an NBIB design

with

parametersv =V',b, = b'b,b, = by, r = r'r’ k= ki k, =Ky, Ay = XA, A, = AN

Using this result we have families of NBIB that can be converted into trend-free
NBIB designs at sub-block and block levels are given in Table 3.2.
Table 3.2 Some other families of NBIB designs that can be converted into
trend-free NBIB designs at the block and at the sub-block level

Sr. b, b, r K1 ko M Iy
No.
1 b’ (2t+1) b’ t(2t+1) 2tr’ 2t 2 (2t-1) 1 A
2 b’ t(mt+1) b mt(mt+1) mtr’ M 2 (m-1) 1 A
3 b't(2t+1)  2b't(2t+1) atr’ 4 2 6 20
4, b’ (4t+1) 2b' (4t+1) atr’ 4t 2t (4t-n)A (2t A
5. th’ (6t+1) 2th' (6t+1) 6tr’ 6 3 5\ 2\
6 th' (9t+1) 3th’ (9t+1) otr' 9 3 8 20
7 th' (12t+1)  4tb’(12t+1)  12tr’ 12 3 11\ 20
8 b’ (6t+1) 2tb’ (6t+1) 6tr' 6t 3 (6t-1) A’ 20
9 b’ (4t-1) 2(4t-1) 2(2t-1) 42 2t-1  (4-3)  (2t-2))
r!
Note: i) v=V' forall the designs

i)

t > 1 for all the cases.

49




1ii) v is prime or prime power for all the cases except at Sr. No. 1.
Now we have the following result:

Result 3.1: Let there exist a nested BIB design with parameters
v, b,,b,,rk;,k,, 4,4, that is linear trend-free with respect to sub blocks. Then
this design can be converted in linear trend-free with respect to blocks if

Q) either replication r is even, or

(i) for r odd, k,, and m both are odd, where k; = m k.

Out of 68 NBIB designs given by Morgan, Preece and Rees (2001), 44 designs
satisfy condition (i) and 4 designs satisfy condition (ii)

Result 3.3: NBIB designs obtained by the method given in Theorem 3.1,
Kageyama, Philip and Banerjee (1995) with parameters

VI
v=V,b = [Zj,bz =2b,,r = =1)(k'=1"),k, =2(k'=1"),k, = (k" =1"),

A= (K =)+ (V= 2K+ )4, = (V= 2k +),Where v =D" r"=k"A"are  the
parameters of a symmetric BIB design, can be converted into complete trend-free
NBIB designs if v is odd and trend-free NBIB design at sub-block level,
otherwise.

3.5  Catalogue of trend-free Nested Balanced Incomplete Block Designs

A catalogue of NBIB designs with v < 16, r <30 is prepared by Morgan, Preece
and Rees (2000). In this catalogue, the NBIB design obtainable as copies of other
NBIB designs have been excluded. Here we give a catalogue of above NBIB
designs that can be converted into completely trend-free, linear trend-free at sub-
block level and nearly linear trend-free at sub-block level NBIB designs.

Table 3.3.1 NBIB designs that can be converted into completely trend-free

NBIB designs

Sr. Y, b, b, r K1 K, M Ao Source
No.

1. 5 5 10 4 4 2 3 1 MPR 1
2. 7 7 21 6 6 2 5 1 MPR 2
3. 7 7 14 6 6 3 5 2 MPR 3
4, 7 21 42 12 4 2 6 2 MPR 19
5. 9 9 36 8 8 2 7 1 MPR 8
6. 9 9 18 8 8 4 7 3 MPR 6
7. 9 18 36 8 4 2 3 1 MPR 5
8. 10 10 30 9 9 3 8 2 MPR 12
9. 10 30 60 18 6 3 10 4 MPR 47
10. 11 11 55 10 10 2 9 1 MPR 14
11. 11 55 110 20 4 2 6 2 MPR 49
12. 11 55 165 30 6 2 15 3 MPR 66
13. 11 55 110 30 6 3 15 6 MPR 67
14, 11 11 22 10 10 5 9 4 MPR 15

50




Sr. \' b, b, r Ky ko M A Source
No.

15. 13 13 78 12 12 2 11 1 MPR 23
16. 13 26 78 12 6 2 5 1 MPR 21
17. 13 39 78 12 4 2 3 1 MPR 20
18. 13 39 156 24 8 2 14 2 MPR 55
19. 13 26 52 12 6 3 5 2 MPR 22
20. 13 13 52 12 12 3 11 2 MPR 24
21. 13 26 78 18 9 3 12 3 MPR 48
22. 13 13 39 12 12 4 11 3 MPR 25
23. 13 39 78 24 8 4 14 6 MPR 56
24, 13 13 26 12 12 6 11 5 MPR 26
25. 15 15 105 14 14 2 13 1 MPR 31
26. 15 15 30 14 14 7 13 6 MPR 32
27. 15 105 210 28 4 2 6 2 MPR 59
28. 16 16 80 15 15 3 14 2 MPR 44
29. 16 16 48 15 15 5 14 4 MPR 45
30. 16 48 96 30 10 5 18 8 MPR 68

Table 3.3.2 NBIB designs that can be converted into trend-free NBIB
designs at the sub-block level

Sr. \Y; b, b, r K1 Ko M Y Source
No.

1. 6 15 30 10 4 2 6 2 MPR 13
2 8 28 56 21 6 3 15 6 MPR 51
3 9 12 36 8 6 2 5 1 MPR 9
4, 9 18 36 8 4 2 3 1 MPR 5
5. 10 15 30 9 6 3 5 2 MPR 11
6 10 45 90 27 6 3 15 6 MPR 58
7 10 45 90 18 4 2 6 2 MPR 46
8. 12 33 132 22 8 2 14 2 MPR 53
9. 14 91 182 26 4 2 6 2 MPR 57
10. 15 21 105 14 10 2 9 1 MPR 29
11. 15 35 105 14 6 2 5 1 MPR 27
12. 15 35 105 21 9 3 12 3 MPR 52
13. 15 35 210 28 12 2 22 2 MPR 62
14. 15 35 105 28 12 4 22 6 MPR 64
15. 15 42 210 28 10 2 18 2 MPR 60
16. 16 20 80 15 12 3 11 2 MPR 41
17. 16 24 48 15 10 5 9 4 MPR 39
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Table 3.3.3 NBIB designs that can be converted into linear trend-free NBIB
designs at the sub-block level

Sr. v b, b, r k1 Ko, M Y Source
No.

1. 9 18 36 8 4 2 3 1 MPR 5
2. 12 33 66 22 8 4 14 6 MPR 54
3. 15 21 42 14 10 5 9 4 MPR 30
4, 15 35 70 14 6 3 5 2 MPR 28
5. 15 35 140 28 12 3 22 4 MPR 63
6. 15 35 105 28 12 4 22 6 MPR 64
7. 15 35 70 28 12 6 22 10 MPR 65
8. 15 42 84 28 10 5 18 8 MPR 61

Table 3.3.4 NBIB designs that can be converted into nearly linear trend-free
NBIB designs at the sub-block level

Sr.No. v b, b, r Ky ko A Ao Source
1. 8 14 28 7 4 2 3 1 MPR 4
2. 8 28 84 21 6 2 15 3 MPR 50
3. 10 15 45 9 6 2 5 1 MPR 10
4, 12 22 66 11 6 2 5 1 MPR 17
5. 12 33 66 11 4 2 3 1 MPR16
6. 12 22 44 11 6 3 5 2 MPR 18
7. 16 20 120 15 12 2 11 1 MPR 40
8. 16 20 40 15 12 6 11 5 MPR 43
Q. 16 24 120 15 10 2 9 1 MPR 38
10. 16 30 120 15 8 2 7 1 MPR 36
11. 16 40 120 15 6 2 5 1 MPR 34
12. 16 40 80 15 6 2 5 1 MPR 35
13. 16 60 120 15 4 2 3 1 MPR 33

3.6 Designs for Diallel Cross Experiments

The diallel cross is a type of mating design used to study the genetic properties of
a set of inbred lines. Suppose there are p inbred lines and it is desired to perform
a diallel cross experiment involving p(p-1)/2 cross of type (i xj) fori<j,i,j=

1,2, ..., p. This is a type IV mating design of Griffing.

The problem of generating optimal mating designs for experiments with diallel
crosses has been recently investigated by several authors [see e.g., Gupta and
Kageyama (1994), Dey and Midha (1996), Mukerjee (1997), Das, Dey and Dean
(1998), Parsad, Gupta and Srivastava (1999), Chai and Mukerjee (1999)]. These
authors used nested balanced incomplete block (NBIB) designs of Preece (1967)
for this purpose.
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Similar to block designs, experimental units in block design for a diallel cross
experiments may be subject to trend-effect over space or time. So condition for a
block design for a diallel cross experiments to be trend-free block design for a
diallel cross experiment has been obtained. Further, a catalogue of trend-free
block design for a diallel cross experiments will be prepared.

3.6.1 Necessary and Sufficient Condition
Let d be a block design for a diallel cross experiments of the type IV involving p-
inbred lines, b blocks each of size k;. This means that there are k; crosses and 2k,

lines, respectively in each block. It may be mentioned here that the designs for
diallel crosses have two types of block sizes, kl@ , the block sizes with respect to

crosses and k2, the block sizes with respect to the lines and k@ =2k@. I,
therefore, follows that the block designs for diallel crosses may also be viewed as
nested block designs with sub blocks of size 2 each and the pair of treatments in
each sub block form the crosses, the treatments being the lines. Further, let
rq) denote the number of times the I™ cross appears ind, | =1, 2,.., p(p-1)/2 and
similarly sy denotes the number of times the i line occurs in the crosses in the
p(p-1)/2 b
whole designd, i = 1,2,...,p. Thenitiseasytoseethat > ry = > kj=n,the
I=1 j=1
p b
total number of observations, and > sy =2 > k; , (because in every cross there
i=1 j=1
are two lines).
For the data obtained from the design d, we postulate the model

Y =l + M0+ HS+e (3.16)
where Y is the nx1 vector of observed responses, u is a general mean effect, 1n
denotes an n - component column vector of all ones, g and S are vectors of p gca
effects and b block effects, respectively. A7 and A5 are the corresponding n x p

and n x b design matrices respectively, i.e., the (s, t)th element of A is 1 if the sth

th line and is zero otherwise. Similarly (s, t)th

h

observation pertains to the t

th

element of A5 is 1 if the s” observation comes from the " block and is zero

otherwise. e is the random error which follows a Np (O, ol n).

In the model (3.16) we have not included the specific combining ability effects.
Under this model, it can be shown that the coefficient matrix for reduced normal
equations for estimating linear functions of gca effects using a design d is

Cq=Ggq —Ng Kg'Nj
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where  Ggq =4 =((9gii)) Ng =214 =((ngij )} 9gii =sgiand  for
i # i', ggj is the number of times the cross (i xi’) appears in d; ng;j is the number
of times line i occurs in the block j of d.

A design d is said to be connected if and only if Rank (Cq)=p-1, or

equivalently, if and only if all elementary contrasts among the gca effects are
estimable using d. A connected design d is variance balanced if and only if all the
diagonal elements of the matrix Cq are equal and all the off diagonal elements are

also equal. In other words, the matrix Cq is completely symmetric.

For given positive integers p, b, k, n, Do (p,b,k,n) will denote the class of all

connected block designs d with p lines, b blocks each of size k and n experimental
units. On the similar lines, as given in Chapter 2, the condition for a block design
for a diallel cross experiment to be trend-free a block design for a diallel cross
experiment is given below:

Theorem 3.1: A necessary and sufficient condition for a connected block design
for diallel cross experiments to be trend-free block design for diallel cross

experiments is AqZ' =0. (3.17)

Further, if the NBIB design with parameters v = p, by, ki, b, = biki/ 2, ko =2 is
such that 1, = 1 or equivalently b;k; = p(p — 1), then the optimal design d* for
diallel crosses derived from this design has each cross replicated just once and
hence uses the minimal number of experimental units. Keeping in view the
above, we can say that the existence of a NBIB design d with parameters v =p, b;
= b, b, = bk; ki = 2k, ko = 2 implies the existence of a universally optimal
incomplete block design d* for diallel crosses. Thus by using the families of
NBIB designs that can be converted into trend-free NBIB designs (Table 3.1) and
result in Theorem 3.1, a catalogue of optimal block designs for diallel cross
experiments that can be converted into trend-free optimal block designs for diallel
cross experiments with p <30 is given in Table 3.4. First we consider an optimal

block designs for diallel cross experiments and illustrate how the condition (3.17)
holds good.

Example 3.2: An optimal design for diallel cross experiments with parameters
p=7, b=7, k =3 can be constructed into trend-free block design and is shown
below:

[1x6, 2x5, 3x4]; [2x7,3x6, 4x5]; [1x3,4x7, 5x6]; [2x4, 1x5, 6X7];

[3x5, 2x6 1x7]; [4x6, 3x7, 1x2]; [5x7,1x4, 2x3].

We have design matrix and matrix of orthogonal polynomials for linear and
quadratic trend as
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Here the condition for a block design for diallel cross experiments to be trend-free

block design is A;Z' =0is satisfied.

3.7 Catalogue of trend-free Universally Optimal Binary Balanced Block
Designs for Diallel Cross Experiments

A catalogue of universally optimal binary balanced block designs for diallel cross
Experiments with p < 30 that can be converted into trend-free optimal binary
balanced block designs for diallel cross experiments is given in Table 3.4below:

Table 3.4: Universally Optimal Binary Balanced Block Designs for Diallel
Cross Experiments that can be converted into trend-free block designs

Sr.No. p b k n Method of construction
1 4 3 2 6 Series 2: Gupta and Kageyama (1994)
2%P 5 5 2 10 Family 1 : Parsad, Gupta and Srivastava(1999)
3 5 10 2 20 Family 4 : Das, Dey and Dean (1998)
4 6 5 3 15 Series 2 : Gupta and Kageyama(1994)
5 6 30 2 60 Family 2 : Parsad, Gupta and Srivastava(1999)
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Sr.No. p b k n Method of construction
6*° 7 7 3 21 Family 1 : Parsad, Gupta and Srivastava(1999)

7 8 7 4 28 Series 2 : Gupta and Kageyama(1994)

8 8 14 2 28 Family 3: Das, Dey and Dean (1998)

9 8 56 3 168  Family 2 : Parsad, Gupta and Srivastava(1999)
10° 9 9 4 36 Family 1 : Parsad, Gupta and Srivastava(1999)
11° 9 18 2 36 Family 1 : Parsad, Gupta and Srivastava(1999)
12° 9 36 2 72 Family 4 : Das, Dey and Dean (1998)

13 10 9 5 45 Series 2 : Gupta and Kageyama(1994)

14 10 90 4 360  Family 2 : Parsad, Gupta and Srivastava(1999)
15° 11 11 5 55 Family 1 : Parsad, Gupta and Srivastava(1999)
16" 11 55 2 110  Family 2 : Parsad, Gupta and Srivastava(1999)
17 12 11 6 66 Series 2 : Gupta and Kageyama(1994)

18 12 132 5 660  Family 2 : Parsad, Gupta and Srivastava(1999)
19° 13 13 6 78 Family 1 : Parsad, Gupta and Srivastava(1999)
20° 13 26 3 78 Family 1 : Parsad, Gupta and Srivastava(1999)
21° 13 39 2 78 Family 1 : Parsad, Gupta and Srivastava(1999)
22¢ 13 78 2 156  Family 4 : Das, Dey and Dean (1998)

23 13 143 6 858  Family 2 : Parsad, Gupta and Srivastava(1999)
24 14 13 7 91 Series 2 : Gupta and Kageyama(1994)

25 14 182 3 546  Family 2 : Parsad, Gupta and Srivastava(1999)
26 15 15 7 105  Series 1: Gupta and Kageyama (1994)

27 15 105 2 210  Family 2: Parsad, Gupta and Srivastava (1999)
28 16 15 8 120  Series 2 : Gupta and Kageyama(1994)
29° 17 17 8 136  Family 1 : Parsad, Gupta and Srivastava(1999)
30 17 34 4 136  Family 1 : Parsad, Gupta and Srivastava(1999)
31° 17 68 2 136  Family 1 : Parsad, Gupta and Srivastava(1999)
32¢ 17 136 2 272  Family 4 : Das, Dey and Dean (1998)

33 18 17 9 153  Series 2 : Gupta and Kageyama(1994)

34 19 95 2 190  Family 3 : Das, Dey and Dean (1998)
35¢ 19 171 2 342  Family 2 : Parsad, Gupta and Srivastava(1999)
36 19 171 4 684  Family 2 : Parsad, Gupta and Srivastava(1999)
37 20 19 10 190  Series 2 : Gupta and Kageyama(1994)

38 20 95 2 190  Family 3: Das, Dey and Dean (1998)

39 20 380 2 760  Family 2 : Parsad, Gupta and Srivastava(1999)
40 21 21 10 210  Series 1 : Gupta and Kageyama (1994)

41 21 105 2 210  Family 2 : Parsad, Gupta and Srivastava(1999)
42 22 154 3 462  Family 2 : Parsad, Gupta and Srivastava(1999)
43° 23 23 11 253  Family 1 : Parsad, Gupta and Srivastava(1999)
44° 23 253 2 506  Family 4 : Das, Dey and Dean (1998)

45 24 23 12 276  Series 2 : Gupta and Kageyama(1994)
46° 25 25 12 300  Family 1 : Parsad, Gupta and Srivastava(1999)
47 25 50 6 300  Family 1 : Parsad, Gupta and Srivastava(1999)
48 25 75 4 300  Family 1 : Parsad, Gupta and Srivastava(1999)
49° 25 100 3 300  Family 1 : Parsad, Gupta and Srivastava(1999)
50° 25 150 2 300  Family 1 : Parsad, Gupta and Srivastava(1999)
51 25 225 4 900  Family 2 : Parsad, Gupta and Srivastava(1999)
52 25 300 2 600  Family 4 : Das, Dey and Dean (1998)

53 26 25 13 325  Series 2 : Gupta and Kageyama(1994)
54° 27 27 13 351  Family 1 : Parsad, Gupta and Srivastava(1999)
55¢ 27 351 2 702  Family 4 : Das, Dey and Dean (1998)
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Sr.No. p b k n Method of construction
56 28 27 14 378  Series 2 : Gupta and Kageyama(1994)
57 28 252 3 756  Family 2 : Parsad, Gupta and Srivastava(1999)
58° 29 29 14 406  Family 1: Parsad, Gupta and Srivastava(1999)
59 29 58 7 406  Family 1: Parsad, Gupta and Srivastava(1999)
60 29 203 2 406  Family 1 : Parsad, Gupta and Srivastava(1999)
61 29 406 2 812  Family 4 : Das, Dey and Dean (1998)
62 30 29 15 435  Series 2 : Gupta and Kageyama(1994)

#denotes that the design can also be obtained from Series 1: Gupta and Kageyama (1994)
® denotes that the design can also be obtained from Family 1: Das, Dey and Dean (1998)
“ denotes that the design can also be obtained from Family 2: Das, Dey and Dean (1998)
¢ denotes that the design can also be obtained from Family 4: Das, Dey and Dean (1998)
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Discussion

Trend-free block designs are quite useful in the experimental situations that may
have trend effect in the experimental units. As mentioned earlier such situations
may occur in Green house experiments where the source of heat is located on
sides of the house and the experimental units (pots) are kept in lines; in poultry
experiments where the source of heat is at the centre of the shed and chicks of
early age are in the cages; in animal experiments where littermates (animals born
in the same litter) are experimental units within a block i.e. litters are blocks.
Other such experiments are orchard and vineyard experiments on undulating
topography, experiments in which response variable of interest is affected by
slowly migrating insects entering the area from one side, laboratory experiments
where the responses to the experimental units may be affected within time periods
by instrument drift or analyst fatigue, etc.

A question is generally raised on the utility of trend-free block designs due to lack
of randomization. It is not exactly true although randomization is restricted to
some extent. Now we illustrate two examples, one each for completely
randomized design and balanced incomplete block design, to see that extent to
which randomization is restricted in trend-free design?

Suppose we have 2 treatments, each replicated 4 times in an experimental design
of 8 units and the treatments are allotted to plots in the following order

T T1 T1 T T1 T T T1

The same experimental material can be arranged in the following manner

Ty T T T T, Ty T, Ty

These both the arrangements are trend-free for linear effect. Other arrangements
can also be made by interchanging the positions of the treatments.

In block designs, if we have a trend-free block design, the randomization can be
done among the blocks as well as within first block i e. if we change the position
of treatments in the first block we get other arrangements by permuting the
treatments in other blocks accordingly. Therefore, one can generate all possible
layouts that are trend-free and select one among them randomly for
experimentation.

Consider the example of trend-free block design, given in example 2.1 with
parametersv =5, b =5, r =4, k =4 and A = 3 and blocks contents as:
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Block 1 4 2 3 1
Block 2 3 1 4 5
Block 3 2 3 5 4
Block 4 5 4 1 2
Block 5 1 5 2 3

Another trend-free design can easily be obtained by permuting the treatments
within the first block and permute the treatments in other blocks accordingly.
Hence the trend-free design is

Block 1 3 2 1 4
Block 2 1 3 4 5
Block 3 5 4 3 2
Block 4 4 5 2 1
Block 5 2 1 5 3

Similarly other trend-free designs can be constructed as discussed above.

It is of interest to highlight one point here that as we impose restriction on the
designs, the randomization is restricted step by step. For example, in the designs
with zero-way of elimination of heterogeneity, randomization is maximum; in the
designs with one-way of elimination of heterogeneity, randomization is reduced;
in the designs with two-way of elimination of heterogeneity, randomization is
again reduced to the significant extent e g. in Latin square design, there is no
randomization within the row or within the column. In this case the randomization
is at the selection of complete Latin square design among the available Latin
square designs.

Thus we see that as the randomization is restricted in Latin square design, the
randomization is restricted in trend-free designs in the similar way.

Now the question arises, to get a layout for trend-free design. For this, the
procedures given in the text can be utilized. So, one needs computation algorithm
for constricting the trend-free/ linear trend-free designs from the available design
with given parameters and layout. However, efforts in this direction have been
initiated and will be taken up in future study. Regarding the developing the
software, efforts have been started.

Chai (2002) has shown a very good application of trend-free block designs in
bioassays. He established a link between trend-free block designs and block
designs for parallel line assays. Using this relation he obtained necessary and
sufficient condition for the existence of a y -design with unequal block sizes and
gave a method of construction of \ -designs. The application of the designs
obtained in the present investigation in obtaining efficient designs for bioassays
needs further investigation.
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SUMMARY

The data generated from designed experiments are used to draw valid inferences
about the population. Heterogeneity in the experimental material is the major
source of variability to be reckoned within the statistical designing of scientific
experiments. Occasionally, one can find a certain factor (called nuisance factor)
that though not of interest to the experimenter, does contribute significantly to the
variability in the experimental material. Various levels of this factor are used for
blocking. In experimental situations with only one nuisance factor, block designs
are used. These designs are useful in controlling the heterogeneity of the
experimental units and it is ascribed to between blocks variability. Much of the
literature is available on block designs viz. randomized complete block designs,
balanced incomplete block designs, partially incomplete block designs, variance
balanced block designs, etc. But many times experimental situations arise in
which the response is dependent on the spatial or temporal position of the
experimental units within a block and thus trend in the experimental units become
another important nuisance factor. In such situations, a common polynomial
trend of a specified degree over units within experimental units may be
appropriately assumed. One way to account for the presence of trends is to use the
analysis of covariance, treating trend values as covariates. However, one may
think of suitable designs, in which treatment effects are orthogonal to trend
effects, in the sense that analysis of the design could be done in usual manner, as
if no trend effects were present. Such designs may be called trend-free designs.
When experimental units within blocks, in block designs, exhibit a trend we use
trend-free block designs. The meaning of trend-free block design is to assign
treatments to plots within blocks so that the known properties of ordinary analysis
of variance for treatment and block sum of squares are preserved and variation
due to trend effect is removed from the error sum of square. Such an arrangement
is called as trend-free block design.

The work on trend-free block designs in proper block settings under
homoscedastic model is available in the literature. There, however do occur
experimental situations where block designs with unequal block sizes and/ or with
unequal replications are to be used. For example, non-proper block design setting
occurs while experimenting with natural blocks such as littermates (animal
experiments), trusses per blossom (horticultural experiments), family sizes as
blocks (psychological experiments), batches of test material (industrial
experiments), etc. Experimenting on hilly areas, wastelands or salinity in field
experiments may also force the experimenter to have blocks of unequal sizes. It
is also known that in the class of binary block designs with unequal replications
under non-proper settings, binary variance balanced block (BBB) designs are the
most efficient designs for estimating all possible elementary contrasts among
treatments. In variance balanced block designs, generally it is assumed that intra-
block variances are constant. Through empirical investigations, however, it has
been shown that intra-block variances are proportional to non-negative real power
of block sizes.
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However, the work on trend-free block designs for heteroscedastic model under
non-proper block design settings and for nested balanced incomplete block
designs could not be traced from the available literature. This investigation,
therefore, deals with the trend-free block designs under heteroscedastic set up
when intra-block variances are proportional to non-negative real power of block
sizes. Further, there do occur experimental situations in which one or more factors
are nested within the blocking factor. In such situations nested block designs and
nested balanced incomplete block designs are quite useful. Such designs may also
have trend-effect at sub block or block level. Similar to block designs,
experimental units in block design for a diallel cross experiments may be subject
to trend-effect over space or time. Thus, trend-free nested balanced incomplete
block designs and trend-free block design for a diallel cross experiments have
been studied. Many times it may not be possible to convert every block design to
trend-free block design, we go for linear trend-free design because using linear
trend-free designs eliminates much of the trend. Sometimes, it is not possible to
make the design linear trend-free or trend-free and this provides a motivation to
go for nearly linear trend-free designs. Thus nearly linear trend-free designs have
also been investigated.

In Chapter I, various experimental situations have been described in which the
trend may exist in non-proper block designs and NBIB designs. Some examples
have been illustrated for better understanding of trend effect in complete
randomized, randomized block and in factorial designs.

In Chapter Il, a necessary and sufficient condition for a block design to be trend-
free block design under heteroscedastic set up when intra-block variances are
proportional to non-negative real power of block sizes is obtained. Using the
condition catalogues of trend-free BBB designs of Type a, both under
homoscedastic (oo = 0) and heteroscedastic model (for a = 1, 2, 3), is prepared.
Heteroscedasticity of the model increases as value of o increases. Catalogues of
trend-free balanced incomplete block (BIB) designs with replications, r < 20 and
two associate class partially balanced incomplete block (PBIB) designs are also
prepared. Sometimes it may not be possible to convert every design to trend-free
design then linear trend-free designs are given. Further, nearly linear trend-free
designs are identified when it is not possible to obtain even linear trend-free
designs.

Chapter 11l deals with nested balanced incomplete block (NBIB) designs and
block design for a diallel cross experiments. A necessary and sufficient condition
for a NBIB design to be trend-free block design at sub-block level is obtained.
Catalogues of trend-free/ linear trend-free NBIB designs at sub-block levels, of
NBIB designs given by given by Morgan, Preece and Rees (2001), are prepared.
NBIB designs with sub-block size 2 and designs for complete diallel cross
experiments have a one-to-one correspondence. Utilizing this relationship a
catalogue of trend-free optimal block designs for a diallel cross experiments with
number of inbred lines, p <30 is prepared.
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