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FOREWORD 

Trend-free block designs are quite useful in the experimental situations that may have trend 

effect in the experimental units. These designs have wide applications when experiments are 

conducted in Green house where the source of heat is located on sides of the house and the 

experimental units (pots) are kept in lines; in poultry experiments where the source of heat is at 

the centre of the cage and chicks of early age are in the different tiers and experiments in hilly 

areas where the land is undulated. Keeping in view the importance of trend-free designs, the 

Institute undertook a project A Study on Trend-Free Designs.  

 

The results available on trend-free block designs in the literature are for the experimental 

situations with blocks of equal sizes. There, however, do occur experimental situations where 

block designs are to be used with unequal block sizes. When the block sizes are unequal, then 

intra-block variances are not constant. Therefore, the present investigation is an attempt to 

obtain trend-free block designs under heteroscedastic model for non-proper block designs.  A 

trend-free block design is an arrangement of treatments to plots within blocks such that the 

known properties of ordinary analysis of variance for treatment and block sum of squares are 

preserved and variation due to trend effect is removed from the error sum of square.   

 

It is known that binary variance balanced block designs (BBB) designs of Type , where  

can take any non-negative real value, are the most efficient designs in the competing class of 

designs. Therefore, a necessary and sufficient condition for a block design to be trend-free 

block design under heteroscedastic set up when intra-block variances are proportional to non-

negative real power of block sizes is obtained. Using the condition catalogues of trend-free 

BBB designs of Type , both under homoscedastic ( = 0) and heteroscedastic model (for      

 = 1, 2, 3), is prepared. Heteroscedasticity of the model increases as value of  increases. 

Catalogue of trend-free balanced incomplete block (BIB) designs and two associate class 

partially balanced incomplete block (PBIB) designs are also prepared. Sometimes it may not 

be possible to convert every design to trend-free design then linear trend-free designs are 

given. Further, nearly trend-free designs are identified when it is not possible to obtain even 

linear trend-free designs. 

 

Nested block designs are required when there is need of making sub-blocks within a larger 

block. For such situations nested balanced incomplete block (NBIB) designs are quite useful. 

The condition for a NBIB design to be trend-free NBIB design at sub-block level is obtained. 

NBIB designs that are trend-free both at sub-block and block level have also been identified. 

Catalogues of trend-free and linear trend-free NBIB designs at sub-block levels are also 

prepared. NBIB designs with sub-block size 2 and designs for complete diallel cross 

experiments have a one-to-one correspondence. Utilizing this relationship a catalogue of trend-

free optimal block designs for a diallel cross experiments with number of inbred lines, p ≤30 is 

prepared. The catalogues of the trend-free/ linear trend-free designs, prepared in this project, 

will serve as a ready reckoner to the practicing statisticians and the experimenters. The 

scientists associated with the project deserve appreciation for carrying out this work.        
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PREFACE 
 

The data generated from designed experiments are used to draw valid inferences about the 

population. In several experimental situations, the response is dependent on the spatial or 

temporal position of the experimental units within a block and thus trend in the experimental 

units become another important nuisance factor. In such situations, a common polynomial 

trend of a specified degree over units within blocks may be appropriately assumed. One may 

think of suitable designs, in which treatment effects are orthogonal to trend effects, in the 

sense that analysis of the design could be done in usual manner, as if no trend effects were 

present. Such designs are called trend-free block designs.  

 

Most of the work on trend-free block designs is for the experimental situations having blocks 

of equal sizes. There, however do occur experimental situations where block designs with 

unequal block sizes and/ or with unequal replications are to be used. For example, non-proper 

block design setting occurs while experimenting with natural blocks such as littermates 

(animal experiments), trusses per blossom (horticultural experiments), family sizes as blocks 

(psychological experiments), batches of test material (industrial experiments), etc. 

Experimenting on hilly areas, wastelands or salinity in field experiments may also force the 

experimenter to have blocks of unequal sizes. When the block sizes are unequal, the intra 

block variances may not be constant. Through uniformity trial data, it has been shown in the 

literature that intra-block variances are proportional to non-negative real power of block sizes.  

 

Therefore, a necessary and sufficient condition for a block design to be trend-free block design 

under heteroscedastic set up when intra-block variances are proportional to non-negative real 

power of block sizes is obtained. This condition is simplified for homoscedastic model. It is 

known that binary variance balanced block (BBB) designs of Type , where  can take any 

non-negative real value and heteroscedasticity increases as value of  increases, are the most 

efficient designs in the competing class of designs. Therefore, catalogues of trend-free, linear 

trend-free and nearly linear trend-free BBB designs of Type  both under homoscedastic ( = 

0) and heteroscedastic model (for  = 1, 2, 3) is prepared. Catalogues of trend-free, linear 

trend-free and nearly linear trend-free balanced incomplete block (BIB) designs and two 

associate class partially balanced incomplete block (PBIB) designs are also prepared.  

 

In some experimental situations, the sources causing heterogeneity in the experimental 

material are nested within each other. To deal such situations nested block designs can be 

usefully employed. Seeing the usefulness of nested block designs in real life situations, a 

necessary and sufficient condition for a nested balanced incomplete block (NBIB) design to be 

trend-free NBIB design at sub-block level is obtained. Some NBIB designs that are trend-free/ 

linear trend-free/ nearly linear trend-free both at sub-block and block level have also been 



identified. NBIB designs with sub-block size 2 and designs for complete diallel cross 

experiments have a one-to-one correspondence. Utilizing this relationship a catalogue of trend-

free optimal block designs for a diallel cross experiments with p ≤30 is prepared. 

 

It is generally said that there is no randomization in trend-free designs. It is shown through 

examples that randomization in trend-free designs is restricted to some extent but not 

vanished. It is similar to that as we go from designs complete randomized design to 

randomized complete block design and then to Latin square design, the randomization goes on 

restricted. 
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CHAPTER I 

 

INTRODUCTION 

 
1.1 Introduction 

In several designed experiments, the experimental units exhibit a smooth trend 

over time or space and thus random allocation of treatments to the experimental 

units may no longer be appropriate for obtaining the efficient estimates of the 

parameters. Instead systematic run orders or designs, in which the treatments are 

to be allotted to experimental units in some order, may have to be used to 

eliminate the effects of such trend. The resulting designs are called as trend-free 

designs.   

 

Consider a sensory experiment where the quality of the product (say chicken, 

custard etc.) depends on temperature and thus treatments are different 

temperatures. In such experiments flavour of the product varies with temperature 

and the experimenter has to go from lower temperature to higher temperature 

stepwise and changing of temperature is technically difficult. Thus, there it is not 

possible to adopt the procedure of randomization. 

 

For better understanding, we shall illustrate some experimental situations where 

an experimenter has to use systematic (trend-free) designs in different 

experimental settings.   

 

1.2 Completely randomized designs 

Consider the following experiment described by Cox (1951). An experimenter 

wants to compare the effect in processing of a number of treatments applied to 

wool. The wool is divided into lots as alike as possible and the lots are numbered 

in random order. In each week, only one lot is processed with a certain treatment. 

The experimenter believes that age of the wool affects the process so that there 

will be a smooth trend due to aging. In this situation a systematic order of 

assignment of treatments or treatment combination to experimental units, instead 

of randomized order may be reasonable to do in order to reduce or eliminate the 

effect of the trend. The intention is to find the systematic run order so that the 

properties of the ordinary analysis of variance are preserved. He gave some 

systematic designs in which trend effect is eliminated in the designs of zero-way 

elimination of heterogeneity setting.  

 

Cox (1958) described an experimental situation in which the experimental units 

have a trend effect. This is described below: 

 

Experimental Situation 1.1: “[Cox (1958)]. Consider an experiment to 

investigate the effect on textile process of changing the relative humidity. 

Suppose that three relative humidities 50, 60 and 70% are to be used. To obtain 

uniform experimental units a suitable quantity of raw material was taken and 
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thoroughly mixed and then divided into, say, nine experimental units. The first 

batch was processed at one relative humidity in the first period, the second batch 

at different relative humidity in the second period, and so on. Superimposed on 

any treatment effects and on random variations remaining, is likely to be a smooth 

trend due to aging of the material. It would often be of interest to estimate this 

trend explicitly, as well as to set up the experiment so that the trend has little or no 

influence on the estimates of treatment effects.”  

 

Consider the following assignment or run order of treatments 

 

T60 T50 T70 T70 T60 T50 T50 T70 T60 

The mean influence on T50 is ,5)762(
3

1
  the mean influence on T60 is 

,5)951(
3

1
  and the mean influence on T70 is also .5)842(

3

1
  Thus any 

contrast among these treatments is not affected by the linear trend. 

 

Now we will illustrate an example how restricted randomization is possible in 

systematic designs. 

 

Suppose we have 2 varieties (treatments), each replicated 4 times in an 

experimental design of 8 units and the treatments are allotted to plots in the 

following order 

 

T2 T1 T1 T2 T1 T2 T2 T1 

-7 -5 -3 -1 1 3 5 7 

 

The same experimental material can be arranged in the following manner 

 

T1 T2 T1 T2 T2 T1 T2 T1 

-7 -5 -3 -1 1 3 5 7 

 

In both these arrangements sum of the positions is same or  
pi

 = 0, i = 1, 2 

where 
p

  is the orthogonal polynomial of order p (here p=1) and 
i

 denotes 

summation over all plots receiving treatments Ti. This makes the treatment 

differences orthogonal to the linear trend effect and the design is trend-free 

design for linear effect. Other arrangements can also be made by interchanging 

the treatments. Thus in trend-free designs estimate of treatment effects are 

improved by eliminating the trend effects at some cost of randomization.  

 

Now we illustrate with an example on a set of live data the role of trend in an 

experiment. 
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Experimental situation 1.2: In a nutritional avian research experiment, four 

feeds were the four treatments; say T1, T2, T3 and T4. The chicks were kept in 

Cage-tier system. In a cage there are four tiers one below the other. The 

experimenter knows from previous experiences that if chicks are kept from top 

tier to bottom tier there are chances of trend due to sun light, fresh air etc. But he 

is not aware of trend-free designs. He applied the same treatment to all the tiers in 

a cage to avoid the effect of any trend. In each tier there were 10 birds.  He 

measured the body weight of the birds from birth to sixth week of age.  

 

To confirm whether there is effect of trend among the tiers within the cage, the 

obtained data were analyzed by two methods; one by usual analysis of variance 

(ANOVA) and the other by using analysis of covariance (ANCOVA) assuming 

linear trend within each cage. The results revealed that the efficiency was 

obtained up to 21 per cent.  

 

Further, Sachdev et al. (1989) made a study to see the cage-tier effect on feed 

consumption, egg production and egg-quality traits of Japanese quails. The data 

used were on female adult quails, 200 each from line A and B, up to 50 weeks of 

age. Significant effect of cage-tier locations was observed in line A on feed 

consumption during 6 to 10th and 15 to 18 weeks of age, as well as on egg quality 

traits. Despite insignificant changes on total feed consumption and egg 

production, superior numerical values were recorded from the birds located in the 

top tier. Better quality eggs were produced by fourth (from top) quails. In line B, 

the feed consumption during 23rd and 26th weeks of age, total egg production, 

feed efficiency, yolk index and shell weight were significant influenced by cage-

tier locations. Better feed efficiency and egg quality were recorded in the birds 

placed in the first and fourth respectively.  

 

1.3 Designs for factorial experiments 

Factorial designs have been widely used in agricultural/ industrial experiments. 

The application of systematic designs in factorial settings has been investigated in 

industrial experiments.Athough these designs can also be used where the 

experimental resources are scarce/costly and the experimental units may exhibit 

trend-effect such as agricultural experiments conducted on hills, in animal science 

experiments where the experimental cost is much and the animals (experimental 

units) may exhibit a trend-effect due to change in birth weight from animal to 

animal. Box and Hay (1953) gave the method of construction of a certain class of 

designs with quantity factors by means of which trend occurring during a 

comparative experiment may be eliminated without loss of efficiency. The design 

and analysis is illustrated with an example of bio-assay. Philips (1964, 1968a, 

1968b) developed magic squares, magic rectangles of even orders for the 

balancing of linear, and occasionally quadratic or cubic trends in general class of 

factorial designs. To be clearer, we illustrate an example of linear trend-free 

design for factorial experiment given by Philips (1968b) by using magic square.  
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Experimental Situation 1.3: Consider the 2222 factorial design shown in 

Table 2.1, in which A, B, C and D represent the four treatments and their 

subscripts 1 and 2 are the two levels of each of them. The numbers of the 

occasions of measurement have been entered in the body of the table as a 

symmetric magic square.  

                                                    Table 1.1 

                   C1  C2  

  D1 D2 D2 D1 

A1 B1 16 2 3 13 

 B2 5 11 10 8 

A2 B2 9 7 6 12 

 B1 4 14 15 1 

 

In above square table of order nn, sum of each row, column and diagonal is 

)1n(n
2

1 2   i.e. 34. The main effects A, B, C and D are linear trend-free as the 

average for each of the factor is 5.8
8

68
 . Also for the interaction AB, AC, 

BD and CD the mean effect is same for each of its level e.g. in interaction 

AB for each level AiBj  i = 1,2; j = 1,2 mean effect is 5.8
4

34
 . But it is not true 

for interactions AD and BC. So these two interactions are not linearly trend-

free. Also averages of numbers of higher order interactions are not balanced (for 

example the numbers for third order interactions ABCD are inevitably 

unbalanced). 

 

1.4 Block Designs   

Heterogeneity in the experimental material is the most important problem to be 

reckoned within the statistical designing of scientific experiments. Occasionally, 

one can find a certain factor (called nuisance factor) that though not of interest to 

the experimenter, does contribute significantly to the variability in the 

experimental material. Various levels of this factor are used for blocking. In 

experimental situations with only one nuisance factor, block designs are used. 

These designs are useful in controlling the heterogeneity of the experimental units 

and it is ascribed to between blocks variability. There, however, do occur 

situations where the experimental units within blocks may be subjected to trend 

effects in one or more spatial or temporal dimensions. Some commonly 

encountered experimental situations in agricultural sciences are described in the 

sequel.  

 

We now illustrate with an example on live data given by Federer and Schlottfeldt 

(1954) for completely randomized block design, how trend has affected the units 

within blocks after the experiment is established and data is analyzed by analysis 

of covariance (ANCOVA). 
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Experimental situation 1.4: “[Federer and Schlottfeldt (1954)].  An 

experiment was devised in the spring of 1951, to determine whether the exposure 

of tobacco seeds to different dosages of cathode rays would affect the growth of 

the resulting plants. The seeds were from a strain of tobacco that had been under 

controlled pollination since 1909, and, hence, the material used in the experiment 

was highly uniform with respect to its genetical background.  The seven different 

treatments (the different doses of cathode rays) were laid out in a randomized 

complete block (RCB) design with eight   replicates. The plot   size was 2 rows by 

10 plants with 3 feet between rows and 1.5 feet between the plants. The following 

measurements were made 

i) plant height on 13-07-1951 and 14-08-1951, 

ii) length of longest leaf on 13-07-1951 and  14-08-1951 and  

iii) width of widest leaf on 13-07-1951.  

 

Shortly after the plants were transplanted to the field it became apparent that an 

environmental gradient existed from the center of the replicates outward. This was 

confirmed when the data were obtained.  The   data were analyzed using: a) usual 

analysis of variance (ANOVA), b) analysis of covariance (ANCOVA) with 

position of the treatments within a replicate as covariates. Upon fitting curvilinear 

covariance of second degree a considerable reduction in mean square error (MSE) 

is obtained. In fact, the MSE by ANCOVA was little more than half that obtained 

by ANOVA.  

 

In the above example the experimenter does not know in the beginning that some 

trend would occur in the experimental units, in later time. If the experimenter 

would have judged in the beginning before the start of the experiment by 

visualizing the experimental condition, it would better use the trend-free block 

design.  

 

To have precise estimates of treatment contrasts it is necessary to eliminate these 

trend effects. For this the treatments have to be assigned to the plots within the 

blocks in such a way that known properties of analysis of variance for the 

treatment and block sum of squares are preserved and variation due to trend is 

also removed from error sum of squares. Such designs are called trend-free block 

designs.  

 

Now we discuss, how trend-free designs are better to ANCOVA, once we have a 

trend-free design. It is because in ANCOVA, the position of the plots are taken as 

auxiliary variable and the treatments are adjusted to the values that would have 

been obtained had there been no variation in the auxiliary variable. Here we adjust 

the treatments for auxiliary variable. But in trend-free block designs, the designs 

are constructed such that the treatments are orthogonal to treatments. It means that 

the treatments are assigned to the plots within the blocks in such a way that 

adjusted treatment sum of squares and unadjusted block sum of squares do not 

change and the sum of squares due to trends is directly subtracted from the error 

and thus the error is reduced to the extent (degree) trend is present in the 
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experimental units. Also contrasts do not change in contrast analysis when 

analyzing the data using trend-free designs. Moreover, the analysis of ANCOVA 

gets complicated as the degree of trend increases while in trend-free designs only 

we have to work out the sum of squares separately for each degree of trend.  

 

Bradley and Yeh (1980) first gave the rigorous treatment to the theory of Trend-

free block designs. They have considered the situations where a common 

polynomial trend in one or more dimensions is assumed to exist over the plots in 

each block of a classical experimental design. They defined a trend-free block 

design as a block design in which the adjusted sum of squares due to treatments in 

a model with the trend effects remains the same as in the model without the trend 

effects. In other words, the presence of trend effects does not affect the adjusted 

sum of squares due to treatments. The error sum of squares, however, gets 

reduced when the trend effects are present in the model. They developed a 

necessary and sufficient condition for a block (complete or incomplete) design to 

be trend-free block design under a homoscedastic model. Yeh and Bradley (1983) 

discussed the existence of trend-free block (TFB) design for specified trends 

under a homoscedastic model when each treatment is equally replicated. Some 

results for linear and odd degree polynomial TFB designs are given. Bradley and 

Odeh (1988) gave an algorithm in FORTRAN77 for the construction of linear 

trend-free block (LTFB) design. Stufken (1988) gave a weak point of Yeh and 

Bradley (1983), " Every binary block design having r(k+1)   0 (mod 2) can be 

converted into Linear trend-free block design" with an example. Lin and Dean 

(1991) gave some general results on the existence of trend-free and partially 

trend-free designs for both varietals and factorial experiments. They also studied 

trend-free properties of cyclic, GC/n incomplete and complete block designs. Chai 

and Majumdar (1993) made a correction to Yeh and Bradley (1983) and proved 

that a binary block design can be converted into linear trend-free block (LTFB) 

design when i) the design is BIB design, or ii) k, the block size is an even number, 

or c) the design is balanced block design with b  3. They also gave a distinct 

definition of LTFB and strongly linear trend-free block (SLTFB) design.  

 

Let a design d be represented by a kb array of symbols 1, ..., v, with columns 

denoting blocks and rows periods. Thus, if the entry of a cell (i, j) of d is i, it 

means that under d, treatment i has to be applied in period l of block j. Also let 

D(v, b, k) denotes the class of all connected block designs in b blocks, k periods 

based on v treatments. Let d  D(v, b, k) and sdil denote the number of times 

treatment i appears in row (period )l. Then a design is LTFB design iff 

 


k

l

0l
1

1dil )(s  , i=1, ..., v                                                                                   (1.1) 

where 1 (l) is the orthogonal polynomials of degree 1, l = 1, ..., k and sdil denotes 

the number of times treatment i appears in row (period) l. 

 

Condition (1.1) holds for binary as well as non-binary designs, and also 

irrespective of whether k is large, equal or smaller than v (Lin and Dean (1991). 



 7 

The polynomials 1 (l) satisfy the condition 1 (l) = - 1 (k-l+1). In addition,   

1 ((k+1)/2) = 0, when k is odd. It follows that (1.1) is true whenever   

                   sdil = sdi(k-l+1) , l = 1, ..., [(k+1)/2], i = 1, ..., v                                   (1.2) 

 

with [.] denotes the largest integer function. It is to note here that, when k is odd 

condition (1.2) does not impose any restriction on sdi(k+1)/2. It can be easily seen 

that condition (1.1) does not in general implies condition (1.2) while the condition 

(1.2) always implies condition (1.1). Condition (1.2) is in fact necessary and 

sufficient condition for a design d to be "odd degree trend-free". Hence the 

condition (1.2) is known to be condition for a design to be strongly linear trend-

free (SLTF) design.  

 

Jacroux, Majumdar and Shah (1995, 1997) developed some methods for 

identifying efficient designs when different blocks may have linear trend effect of 

different slope. Majumdar and Martin (2002) extended the above study for 

quadratic cubic trend. Lin and Stufken (2002) considered the problem of strongly 

linear-trend free block design through the use of graph theory and gave algorithm 

for such designs. 

 

Sometimes it may not be possible to convert every design to trend-free design 

then we go for linear trend-free design because much of the trend effect is reduced 

by using linear trend-free designs. But sometimes it is not possible to make the 

design even linear trend-free and this provides a motivation to go for nearly trend-

free designs. Yeh, Bradley and Notz (1985) introduced the concept of nearly 

trend-free block (NTFB) designs. Let the usual additive model for a block design 

with polynomial trend terms added is written in terms of plot position t and block 

designation j as  

                
 


v

i

p

jtji

i

jt et
1 1

jt )(y


                                            (1.3) 

j=1, ..., b; t=1, ..., k, where yjt is the observation on plot t of block j; , i and j 

are respectively, the usual mean, treatment and block parameters; ejt are random 

errors assumed to be iid with zero mean; 
i
jt = 1 or 0 as the  treatment i  is  or is 

not on the plot (j, t), i = 1, . . . , v. A block design under model (1.3) is TFB 

design iff each trend component is orthogonal to the treatment allocation through 

the experiment i.e.  

0)(
1 1


 

t
v

i

i

jt

k

t

 ,  =1, ... , p; i=1, ... ,v. Then Yeh et al. (1985) gave two 

definitions of NTFB designs as below: 

 

Definition 1.1: A block design under model (1.3) is said to be NTFB design of 

Type A if 

  2

1 1 1 1

})({ 
   


p v

i

b

j

k

t

i

jt t


                                                               (1.4) 
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is minimum among class of connected designs with the same (treatment-block) 

incidence matrix. 

 

Definition 1.2: A block design under model (2) is said to be NTFB design of 

Type B if, among the class of connected designs with same incidence matrix  

  2
1

1 1 1 1

})({ 


   


p v

i

b

j

k

t

i

jt t


                                                               (1.5) 

is minimum and 

  2

1 1 1

})({ 
  


v

i

b

j

k

t

i

jt t                                                                   (1.6) 

is minimum among the designs satisfying (1.4). 

 

NTFB design of type A is natural. It can be interpreted as requiring the overall 

treatment arrangement to be as orthogonal to all specified trend components 

possible. The criterion for NTFB design of Type B focuses first on the lower 

degree components of the trend. It may be particularly useful when there exist 

designs completely free of trend effect up to degree p-1. Bradley and Odeh (1988) 

developed the algorithm for the construction of LTFB and NTFB design. 

 

Chai (1995) suggested that when the condition r (k+1)   0 (mod 2) for a proper 

block design to be TFB design does not hold (when k is even and r is odd) the 

best way, we can do in this case is to have a nearly linear trend-free version of 

design by permitting the treatment symbols (within block). Chai simplified and 

brought clarity for the condition of linear NTFB design as 

 



k

l
il ls

1

2

1          1))((      for   i = 1, ... , v.                        

Ultimately we can say that a block design is NLTFB design if 

v  







 

 

v

1i

k

1l

2
1il ))l(s( .                                                             (1.7) 

Chai (1995) gave some methods for construction of NTF version of BIB designs 

to be NTFB designs. He also discussed A-, D- and E- optimality of BIB designs 

for the model that include trend effects. 

 

In the sequel we illustrate the situation where TFB design does not exist and we 

have to go for NTFB design. 

 

Consider a BIB design with usual parameters v=4, b=6, r=3, k=2, =1.  The six 

blocks are  

 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

1 1 1 2 2 3 

2 3 4 3 4 4 
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In this design the condition r(k+1)   0 (mod 2) does not hold. So the best way is 

to go for NLTFB design that is given below:  

 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

1 3 1 2 4 3 

2 1 4 3 2 4 

 

Here 1)1(1  and 1)2(1  for all the treatments, as there are only two 

positions within each block. For the treatment 1, 211 s and 112 s , as treatment 1 

takes position 1 two times and position 2 one time only, in the NTF design. Now  

-1)(
2

1

1 
l

il ls and 1))((

22

1

1 
l

il ls as k = 2. This is true for the treatments i = 2, 

3, 4. Thus 4  ))((
4

1

2

1

2

1 







 

 i l

il ls . Thus condition (1.7) is satisfied and we can 

say that the said design is NLTFB design.  

 

Further, in the class of binary incomplete block designs under proper settings 

balanced incomplete block (BIB) designs are the best (universal optimal) designs 

for estimating all possible elementary treatment contrasts. However, there do 

occur situations in which block designs with unequal block sizes and/ or with 

unequal replications may be required. For example, non-proper block design 

setting occurs while experimenting with natural blocks such as littermates (animal 

experiments), trusses per blossom (horticultural experiments), family sizes as 

blocks (psychological experiments), batches of test material (industrial 

experiments), etc. Experimenting on hilly areas, wastelands or salinity in field 

experiments may also force the experimenter to have blocks of unequal sizes.  It 

is also known that in the class of binary block designs with unequal replications 

under non-proper setting variance balanced block designs are the most efficient 

designs for estimating all possible elementary treatment contrasts.  In variance 

balanced block designs, generally it is assumed that intra-block variances are 

constant. Through empirical investigations, however, it has been shown that intra-

block variances are proportional to non-negative real power of block sizes (see 

e.g. Sardana, Sreenath and Malhotra (1967), Bist, Malhotra and Sreenath (1975), 

Handa, Sreenath, Sastry, Rajpal and Shukla (1982)). This enforces one to extend 

from homoscedastic model set up to a heteroscedastic model, where intra block 

variances are proportional to non-negative real power of block sizes. This model 

under block design set up has been studied by Das, Gupta and Das (1992),  Gupta 

(1995), Gupta, Das and Dey (1991), Lee and Jacroux (1987),  Parsad and Gupta 

(1994), Parsad, Gupta and Singh (1996), among others. Chai (2002) has 

established a link between trend-free block designs and block designs for parallel 

line assays. Using this relation he obtained necessary and sufficient condition for 

the existence of a  -design with unequal block sizes and gave a method of 

construction of  -designs. It seems that no work has been done to obtain trend-

free block designs under heteroscedastic model. 
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 Above discussion relates to the experimental situations where there is only one 

nuisance factor. However, there do occur experimental situations in which one or 

more factors are nested within the blocking factor. Nested block designs, 

therefore, have been developed to deal with experimental situations where one 

nuisance factor is nested within blocking factor. Examples of such experiments 

are illustrated in Experimental situation 3.1 to Experimental situation 3.3 in 

Chapter III. 

 

A nested block design is defined as a design with two systems of blocks where the 

second system is nested within the first. We could not find any literature on 

obtaining trend-free NBIB designs.  

 

This investigation, therefore, aims to develop trend-free variance balanced,  and 

trend-free nested balanced incomplete block designs. If trend-free designs for 

variance balanced and NBIB designs are not possible then we shall go for nearly 

trend-free variance balanced and NBIB designs. 

 

The broad objectives of the proposed study are: 

 

1.5 Objectives 

1. To obtain trend-free and nearly trend-free non-proper variance balanced 

block designs under a homoscedastic and a hetroscedastic model. 

2. To obtain trend-free and nearly trend-free nested balanced incomplete 

block (NBIB) designs. 

3. To prepare a catalogue of trend-free/ nearly trend-free designs obtained in 

objectives 1 and 2. 

 

1.6 Practical Utility 
The designs obtained from this study are useful for research workers in adopting 

the suitable designs when trend of specified degree is expected to be present in the 

experimental units e.g. green house where source of heat is located on sides of the 

house, experiments conducted on hilly areas, poultry science experiments where a 

bulb is fixed in the centre of the shed to give heat to the birds in all directions, 

animal science experiments in which litter mates having different birth weight in a 

litter, orchard and vineyard experiments on undulated topography, experiments in 

which yields are affected by slowly migrating insects entering the area from one 

side, laboratory experiments where the responses to the experimental units may be 

affected within time periods by instrument drift or analyst fatigue, etc. The 

catalogues of the trend-free designs prepared will serve as a ready reckoner to the 

plasticizing statisticians and the experimenters.  
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CHAPTER II 

 

 TREND-FREE BLOCK DESIGNS UNDER 

HETEROSCEDASTIC SET UP 
 

2.1 Introduction 

In this chapter, we shall present some practical situations where the experimenter 

is forced to use unequal block designs and the experimental units within the 

blocks are subject to trend-effect over time or space. A necessary and sufficient 

condition is derived for a connected block design to be trend-free under 

heteroscedastic set up, when there is a common trend in experimental units within 

blocks. Using these results and results given in literature, a catalogue of balanced 

incomplete block (BIB), partially balanced incomplete block (PBIB) and variance 

balanced block designs with unequal replications in non-proper settings is also be 

given. 

 

The meaning of trend-free block design is to assign treatments to plots within 

blocks so that the known properties of ordinary analysis of variance for treatment 

and block sum of squares are preserved and variation due to trend effect is 

removed from the error sum of square.  Such an arrangement is called as trend-

free block design. We begin with some definitions: 

 

Definition 2.1:   A connected proper block design d (v, b, k) with v treatments in 

b blocks each of size k  v is said to be trend-free block (TFB) design if this 

design trend free of the order up to p  (k-1). The block design is said to be linear 

trend-free block (LTFB) if it is trend free of order one.  

 

Definition 2.2:  A connected block design d (v, b, k1,  …, kb) with v treatments in 

b blocks of size (k1, …, kb) v is said to be trend-free block (TFB) design if this 

design trend-free of  order up to p    {min (k1 ,... , ks) – 1}. This design is also 

said to be linear trend-free block (LTFB) if it is trend-free of order one.  

 

So when a TFB design exists for a specified order trend component, it is also a 

TFB for any subset of these components. If a TFB design does not exist for a 

specified order, a TFB design does not exist for any larger set of components. 

 

 

We consider some experimental situations where trend may be present in the 

experimental units within a block. 

 

Experimental situation 2.1: Tea-garden experiments are generally conducted in 

hilly areas. In hilly areas, usually the land is undulated. Different dulation of land 

are taken as blocks and the number of plots in a level is the block size. The 

number of plots in each block may or may not be equal because of limited 

available land in a particular dulation. Moreover different levels may be little 



 12 

sloppy due to hilly area and this may cause trend effect due to movement of 

nutrient in one direction or different soil depths, etc. 

 

Experimental situation 2.2: A nutritional experiment was conducted with four 

feeds. The experimental units are piglets, the litters are blocks and the number of 

piglets in a litter is block size. For this, we use block design. As litter size is 

varying from litter to litter and so generally the block sizes are not equal. The 

response variable is weekly body weight. This response variable depends upon 

birth weight of piglets. Birth weights are not equal for all the piglets within a litter 

(block). This increasing/ decreasing order of birth weight in each litter may cause 

a trend effect in the experimental units. It is thus required to eliminate the trend 

effect, which may exist due to varying birth weights of piglets in a litter. 

 

In such experiments usually one has to opt for designs in which block sizes are 

not equal. But the studies available in literature deal with obtaining trend-free 

block designs for equal block sizes under homoscedastic set up. No result seems 

to be available for non-proper block designs under a homoscedastic or 

heteroscedastic model. Hence, trend-free block designs for blocks of unequal 

sizes, needs to be investigated. Moreover when block sizes are unequal it is 

unrealistic to assume that the intra-block variances are equal. Keeping in view, 

following two-way classified, additive, fixed effects, heteroscedastic model is  

yiju =  + i + j + eiju , i = 1,…, v; j =1,…, b; u=1,… ,nij                                 (2.1) 

where yiju is the observation pertaining to u
th

 experimental unit receiving the i
th

 

treatment in the j
th

 block,   is general mean, i is effect of treatment i,  j is the 

effect of block j and eiju are random errors with 

                     E(eiju) = 0 ,  

                     
        0                        

uu,jj,ii          k e uji iju,

. otherwise

)e(cov α
j

2



  

 

Here ),0[α  . This model is in fact a generalization of Fairfield Smith's variance 

law {see e.g. Sardana, Sreenath and Malhotra (1967), Bist, Malhotra and Sreenath 

(1975), Handa, Sreenath, Sastry, Rajpal and Shukla (1982)}. In these 

investigations it was found that the intra-block variances are proportional to non-

negative real power of block sizes. The value of  was estimated by making use 

of uniformity trial data. This model was earlier been studied by Das, Gupta and 

Das (1992), Parsad and Gupta (1994a, 1994b), Gupta (1995), Parsad, Gupta and 

Singh (1996), Gupta and Parsad (2001), among others. A design is said to be 

binary balanced block design of type, if information matrix (C-matrix) for the 

block design under model (1.1) is completely symmetric. A special case of  = 1 

has been investigated by Lee and Jacroux (1987) and Gupta, Das and Dey (1991). 

For  = 0 we get the usual homoscedastic model. 
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2.2 Condition for a block design to be trend-free block design 

In this section we obtain the necessary and sufficient condition for a general block 

design (2.1) to be trend-free block design. Throughout this chapter we shall deal 

with only real matrices and vectors. Denote an n-component vector of all unities 

by 1n, an identity matrix of order n by In, 


A  and 1
A will respectively denote a-

generalized and true inverse of matrix A. E(.) and D(.) are respectively the 

expectation and dispersion. M is the transpose of matrix M . 



n

1i

iP denotes the 

direct sum of matrices Pi. When the order of matrix is clear, it is not mentioned. 

 

 

Consider model (2.1) in matrix notations, for the general block design with trend 

terms added  

y = 1 + '  + D'  +Z'  + e                                                       (2.2)  

E(e) = 0, D(e) = 2
 V,      V = }

tt kt

s

1t
b k{ II





  ,  

where y is an n1 observable random vector and let there are b1 blocks of size k1, 

b2 blocks of size k2, so on and bs blocks are of size ks such that 



s

1

t

t

bb .  Δ  is 

the nv design matrix for parameters of interest, ),...,τ( v1
 τ , the vector of 

treatment effects, D  is nb design matrix for nuisance parameters 

),...,( 1
 bβ , the vector  of block effects. Also, ,bnv 1D11Δ   

k1Dr1Δ  nn   , where ),...,(  v1 rrr  and ),...,1
 bk(kk are vectors of 

replications and block sizes, respectively. Further,  RΔΔ   

 rrdiag v ),,,( 1  ),,( 1 bkkdiag   KDD and ),[  0  is a known constant.  

 

Let d be the connected block design under model (2.2) when  = 0. We assume a 

common trend effect in all the blocks of degree p = {min (k1 ,... , ks) – 1}. Thus  

is a p1 vector of trend effects and the matrix Z' of order np, is matrix of 

coefficients given by )( 21 s     ZZZZ  where matrix tt t
F1Z b
 is of order 

bt kt p and tF  is ktp, t = 1, …, s matrix with columns consisting of equi-spaced 

normalized orthogonal polynomials. Also s t     tttt ...,,1,,0  IFFF1  

and p b IZZ  . Here problem is to assign treatments to plots within blocks so 

that the known properties of ordinary analysis of variance for treatments and for 

block sum of squares are preserved when variation due to the trend may be 

removed from error sum of squares in model (2.1). A design possessing above 

property is called a trend-free block design by Bradley and Yeh (1980). A formal 

definition of a trend-free block design is given as: 

 

Definition 2.3:  A connected block design d is said to be a trend-free block design 

if and only if the additional reduction in sum of squares due to fitting of 

parameters of interest over and above fitting of other parameters, for the two 
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models one containing the trend effect and the other without trend effects, is equal 

i.e.  

R(/ , , ) = R(/ , )                                                                                    (2.3) 

 

where R(/ , ) is the additional reduction in sum of squares due to fitting of , 

,  over and above fitting just ,   (Searle, 1971) . Similarly R(/ , , ) is the 

additional reduction in sum of squares due to fitting of , ,  and   over and 

above fitting just , , .   

 

Thus for deriving necessary and sufficient condition for a block design d to be 

TFB design, we consider the following two situations: 

 

Case I        When there is no trend effect i. e.  = 0 under model (2.2) 

The usual C-matrix (information matrix) is 

1

1

22

1

22

1

11

1

11 )( XVXXVXXVXXVXC
  , 

where  X1 = Δ  , X2 = (1   D ), 






















DDV1DV

DV11V1
XVX

11

11

2

1

2 )(     =   






 
 α

0
1

K0

0
 and 

22

1

22 )( XXVXX     =  DKD
α1 .   

So the C-matrix simplifies to 

111

1111

1 UHUDVKDVVC                                                    (2.4) 

where 2

α1

21 UKUIH
 ,                                                                               (2.5) 

 2/1

2

2/1

1             DVUΔVU                                    

and R   ),/( vHUCUHv 11111

                                                                  (2.6) 

yVv
-1/2 where  . 

 

Case II       When trend effect is present i. e.  ≠ 0 under model (2.2) 

 The C-matrix in presence of trend effect is, 

1

1

33

1

33

1

11

1

12 )( XVXXVXXVXXVXC
   

where X3 = (1   D       Z ),    )( 3
1

3 XVX   















 





p

1

1

m

0

I00

0K0

00
  and    

33

1

33 )( XXVXX     =  


 
b

1j

j

1-1-1 , -km       m ZZDKD . 

Thus the information matrix simplifies to 1212 UHUC  ,                                (2.7)   

where 2/12/1

2

1

2

  ZVZVUKUIH
-1

2 m ,                                            (2.8) 

and    R . ),/( 2122 vHUCUHvβ, 1

                                                            (2.9) 

Now we have following result: 
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Theorem 2.1 A necessary and sufficient condition for a connected block design 

d to be trend-free design is .1
0ZV                                                                             

 

Proof:  Necessary Part   For design d to be trend-free design, from (2.3), (2.6) 

and (2.9) we have 

11111212121111121212 HUCUHHUCUHvHUCUHvvHUCUHv
     or    (2.10) 

Pre- and post multiplying both sides of (2.10) by 1U  and 1U  respectively, we 

have 

11111111212121 UHUCUHUUHUCUHU   , 

or  11112 or         CCCCCCCC 222    

or   0UHHU  1121 )(         or   0UZVZVU  

1

2/12/1

1  

or   0ZVZΔV   11           or   .1
0ZΔV                                                  (2.11) 

 

Sufficient Part To prove sufficiency, (2.11) is used with (2.5) and (2.8) to show 

that 21 CC  and 2111 HUHU  and the equality of (2.6) and (2.9) follows. 

 

Now if n observations under model (2.2) are arranged block wise such that b1 

blocks of size k1  come first, b2 blocks of size k2 come next, so on, and last bs 

blocks of size ks appear in last, 



s

t
tt nkb

1

. Also, the design matrix Δ is also 

written block wise so that vn matrix )( 21
 s            ΔΔΔΔ  where tΔ is 

matrix of order bt ktv, t = 1, …, s. Then result of Theorem 2.1 simplifies as   

 

Corollary 2.1:   A necessary and sufficient condition for a connected block 

design d, under heteroscedastic model,  to be trend-free block design is 

                             0ZΔZΔZΔ  
sss222111 k...kk .                            (2.12) 

This result under homoscedastic set up ( = 0) is 

                           0ZΔ
1

tt 


s

t

                                                                       (2.13) 

 

Corollary 2.2:   If the model (2.2) is a homoscedastic model i.e. V = 
2
 In then 

the condition for a block design (proper or non-proper) to be TFB design is 

0ZΔ  .                                                                                                            (2.14) 

 

For proper block design settings under homoscedastic model, this condition is 

same as obtained by Bradley and Yeh (1980).  

 

Remark 2.1     There are some trivial results in which a block design is a trend-

free block design. A Latin square design of order k is always a trend-free block 

design of degree   (k-1) when rows are regarded as complete blocks, column 

effects become common effects of plot position within blocks. A symmetric 

balanced incomplete block (BIB) design can always be converted into trend-free 

block design of degree k-1, where k is the block size of the design. All the cyclic 



 16 

designs and full n-cyclic designs are trend-free designs when the treatment labels 

are systematically ordered within blocks. These designs have the property that 

each treatment is replicated equal number of times (once) in each block and 

because of this property, these designs are trend-free designs. 

 

Now we consider a simple example of a BIB design and show how the condition 

(2.14) is satisfied. 

 

Example 2.1 Consider a trend-free balanced incomplete block (BIB) design with 

parameters v = 5, b =5, r = 4, k = 4 and λ = 3 as 

 

Block 1 4 2 3 1 

Block 2 3 1 4 5 

Block 3 2 3 5 4 

Block 4 5 4 1 2 

Block 5 1 5 2 3 

 

The design matrix of the above BIB design and matrix coefficients of orthogonal 

polynomials is  

                                                                        

   Δ          Z     

                

 0 0 0 1 0      -3 +1 -1   

 0 1 0 0 0      -1 -1 +3   

 0 0 1 0 0      +1 -1 +1   

 1 0 0 0 0      +3 +1 -1   

 0 0 1 0 0      -3 +1 -1   

 1 0 0 0 0      -1 -1 +3   

 0 0 0 1 0      +1 -1 +1   

 0 0 0 0 1      +3 +1 -1   

 0 1 0 0 0      -3 +1 -1   

 0 0 1 0 0      -1 -1 +3   

 0 0 0 0 1      +1 -1 +1   

 0 0 0 1 0      +3 +1 -1   

 0 0 0 0 1      -3 +1 -1   

 0 0 0 1 0      -1 -1 +3   

 1 0 0 0 0      +1 -1 +1   

 0 1 0 0 0      +3 +1 -1   

 1 0 0 0 0      -3 +1 -1   

 0 0 0 0 1      -1 -1 +3   

 0 1 0 0 0      +1 -1 +1   

 0 0 1 0 0      +3 +1 -1   

 

In the above, it is seen that 0ZΔ   and hence this BIB design is trend-free. 

 

 



 17 

2.3      Catalogue of trend-free balanced incomplete block designs 

For completeness a BIB design is defined as 

 

Definition 2.4:   A BIB (v, b, r, k, λ) is an arrangement of v treatments in b blocks 

each of size k (<v) such that  

i) each treatment occurs at most once in each block, 

ii) each treatment occurs in exactly in r blocks, 

iii) each pair of treatments occur together in λ blocks. 

 The integers v, b, r, k, λ are known as parameters of the BIB design. These 

parameters are not independent and satisfy the following parametric relations: 

i) vr = bk 

ii) r(k-1) = λ(v-1) 

iii) b ≥ v, Fisher’s inequality. 

A BIB design is said to be symmetric if v = r and b = k. 

 

Several attempts have been made in the literature to prepare a catalogue of BIB 

designs [see e.g. Fisher and Yates (1956), Takeuchi (1961), Raghavarao (1971), 

Kageyama (1972), Hall Jr. (1986) and Street and Street (1987)]. But these 

catalogues are not exhaustive. Parsad, Gupta and Khanduri (2000) prepared an 

exhaustive catalogue of BIB designs containing replication number up to 30 for 

symmetric BIB designs and up to 20 for asymmetric BIB designs and thus total 

494 BIB designs are listed.   

 

Dhall (1986) has given a catalogue of trend-free BIB designs for 3  k  6 and 

linear trend-free BIB designs for  7  k  15.  

 

Here we give a catalogue of BIB designs for replications,  r  20 which can be 

converted trend-free and linear trend-free BIB designs. Some times it is neither 

possible to convert a design to trend-free nor to a linear trend-free design.  Then 

the best option is to convert the design to a nearly linear trend-free (NLTF) 

design, by permutation of treatments, as defined by Chai (1995) and is shown in 

(1.7). Thus trend-free, linear trend-free and NLTF balanced incomplete block 

designs are presented in Table 2.1.1, Table 2.1.2 and Table 2.1.3, respectively. 

Symmetric BIB designs and their copies are not included in the catalogue as these 

designs are trivially trend-free designs. Further if a BIB design is obtained that 

can be converted into trend-free BIB design and let another BIB design that is 

constructed by taking the copies of said trend-free BIB design then this BIB 

design  is not included in the catalogue because copies of a trend-free BIB designs 

is also trend-free block design.  
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Table 2.1.1: BIB designs for r  20 that can be converted into trend-free BIB 

designs 

 

Sr. No. v b r k  n 

1 4 12 6 2 2 24 

2 5 10 4 2 1 20 

3 5 10 6 3 3 30 

4 6 30 10 2 2 60 

5 6 30 15 3 6 90 

6 6 30 20 4 12 120 

7 7 21 6 2 1 42 

8 7 21 15 5 10 105 

9 8 56 14 2 2 112 

10 9 36 8 2 1 72 

11 9 36 12 3 3 108 

12 9 18 8 4 3 72 

13 9 18 10 5 5 90 

14 10 90 18 2 2 180 

15 10 30 9 3 2 90 

16 10 30 12 4 4 120 

17 10 30 18 6 10 180 

18 11 55 10 2 1 110 

19 11 55 15 3 3 165 

20 11 55 20 4 6 220 

21 13 78 12 2 1 156 

22 13 26 6 3 1 78 

23 13 39 15 5 5 195 

24 13 26 12 6 5 156 

25 13 26 14 7 7 182 

26 15 105 14 2 1 210 

27 16 80 20 4 4 320 

28 16 48 15 5 4 240 

29 17 136 16 2 1 272 

30 17 68 20 5 5 340 

31 17 34 16 8 7 272 

32 17 34 18 9 9 306 

33 19 171 18 2 1 342 

34 19 57 9 3 1 171 

35 19 57 12 4 2 228 

36 19 57 18 6 5 342 

37 21 210 20 2 1 420 

38 21 105 20 4 3 420 

39 21 42 12 6 3 252 

40 21 42 20 10 9 420 

41 25 50 8 4 1 200 

42 29 406 28 2 1 812 
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Sr. No. v b r k  n 

43 31 155 20 4 2 620 

44 31 93 15 5 2 465 

45 37 222 18 3 1 666 

46 37 111 12 4 1 444 

47 41 164 20 5 2 820 

48 46 92 20 10 4 920 

49 49 196 16 4 1 784 

50 49 98 18 9 3 882 

51 57 114 16 8 2 912 

52 61 305 20 4 1 1220 

53 61 183 15 5 1 915 

54 61 122 12 6 1 732 

55 61 122 20 10 3 1220 

56 81 324 20 5 1 1620 

57 85 170 14 7 1 1190 

58 91 273 18 6 1 1638 

59 145 290 18 9 1 2610 

60 181 362 20 10 1 3620 

 

 

Table 2.1.2: BIB designs for r  20 that can be converted into linear trend-

free BIB designs 

 

Sr. No. v b r k  n 

1 6 10 5 3 2 30 

2 6 15 10 4 6 60 

3 8 28 14 4 6 112 

4 9 12 4 3 1 36 

5 9 12 8 6 5 72 

6 10 15 6 4 2 60 

7 10 18 9 5 4 90 

8 12 44 11 3 2 132 

9 14 26 13 7 6 182 

10 15 35 7 3 1 105 

11 15 21 7 5 2 105 

12 15 35 14 6 5 210 

13 16 80 15 3 2 240 

14 16 40 10 4 2 160 

15 17 68 16 4 3 272 

16 18 102 17 3 2 306 

17 18 34 17 9 8 306 

18 20 76 19 5 4 380 

19 21 70 10 3 1 210 

20 21 28 8 6 2 168 

22 21 30 10 7 3 210 
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Sr. No. v b r k  n 

23 21 35 15 9 6 315 

24 21 30 20 14 13 420 

25 21 28 20 15 14 420 

26 22 77 14 4 2 308 

27 25 30 6 5 1 150 

28 25 40 16 10 6 400 

29 27 117 13 3 1 351 

30 27 39 13 9 4 351 

31 28 126 18 4 2 504 

32 28 36 9 7 2 252 

33 31 155 15 3 1 465 

34 33 176 16 3 1 528 

35 33 44 12 9 3 396 

36 33 48 16 11 5 528 

37 34 51 18 12 6 612 

38 35 119 17 5 2 595 

39 35 85 17 7 3 595 

40 36 84 14 6 2 504 

41 36 45 10 8 2 360 

42 36 48 20 15 8 720 

43 37 74 20 10 5 740 

44 39 247 19 3 1 741 

45 41 82 10 5 1 410 

46 45 99 11 5 1 495 

47 45 55 11 9 2 495 

48 45 60 16 12 4 720 

49 45 75 20 12 5 900 

50 46 138 18 6 2 828 

51 49 56 8 7 1 392 

52 51 85 10 6 1 510 

53 52 68 17 13 4 884 

54 55 66 12 10 2 660 

55 55 99 18 10 3 990 

56 57 76 20 15 5 1140 

57 64 144 18 8 2 1152 

58 65 208 16 5 1 1040 

59 65 80 16 13 3 1040 

60 66 78 13 11 2 858 

61 76 95 20 16 4 1520 

62 78 91 14 12 2 1092 

63 81 216 16 6 1 1296 

64 81 90 10 9 1 810 

65 85 102 18 15 3 1530 

66 91 195 15 7 1 1365 

68 100 150 18 12 2 1800 
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Sr. No. v b r k  n 

69 105 120 16 14 2 1680 

70 111 185 20 12 2 2220 

71 113 226 16 8 1 1808 

72 120 136 17 15 2 2040 

73 121 132 12 11 1 1452 

74 136 153 18 16 2 2448 

75 141 188 20 15 2 2820 

76 145 232 16 10 1 2320 

77 153 323 19 9 1 2907 

78 153 171 19 17 2 2907 

79 169 182 14 13 1 2366 

80 171 190 20 18 2 3420 

81 177 236 16 12 1 2832 

82 225 240 16 15 1 3600 

83 289 306 18 17 1 5202 

84 361 380 20 19 1 7220 

 

 

Table 2.1.3:  BIB designs for r  20 that can be converted into nearly linear 

trend-free BIB designs 

 

Sr. No. v b r k  n 

1 4 6 3 2 1 12 

2 6 15 5 2 1 30 

3 8 28 7 2 1 56 

4 10 45 9 2 1 90 

5 10 15 9 6 5 90 

6 12 66 11 2 1 132 

7 12 22 11 6 5 132 

8 14 91 13 2 1 182 

9 16 120 15 2 1 240 

10 16 24 9 6 3 144 

11 16 40 15 6 5 240 

12 16 24 15 10 9 240 

13 18 153 17 2 1 306 

14 18 51 17 6 5 306 

15 20 190 19 2 1 380 

16 20 38 19 10 9 380 

17 26 65 15 6 3 390 

18 28 378 27 2 1 756 

19 28 42 15 10 5 420 

20 32 496 31 2 1 992 

21 36 42 7 6 1 252 

23 46 69 9 6 1 414 

24 46 69 15 10 3 690 
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Sr. No. v b r k  n 

25 66 143 13 6 1 858 

26 76 190 15 6 1 1140 

27 96 304 19 6 1 1824 

28 136 204 15 10 1 2040 

29 196 210 15 14 1 2940 

30 324 342 19 18 1 6156 

 

2.4 Catalogue of trend-free partial balanced incomplete block designs 

Two-associate partially balanced incomplete block (PBIB) designs have 

extensively been used for the construction of binary balanced block designs. So 

we have studied the two-associate class PBIB designs given by Clatworthy 

(1973). Here we give a catalogue of PBIB designs which can be converted trend-

free, linear trend-free and nearly linear trend free PBIB designs. 

Table 2.2.1: Singular Group Divisible designs that can be converted into 

trend-free PBIB designs 

S-2 S-4 S-9 S-10 S-15 S-19 S-23 S-26 

S-29 S-33 S-42 S-44 S-52 S-56 S-60 S-65 

S-68 S-72 S-77 S-80 S-84 S-90 S-93 S-96 

S-99 S-104 S-105 S-111 S-115 S-119 S-123 S-124 

 

Table 2.2.2: Singular Group Divisible designs that can be converted into 

linear trend-free PBIB designs 

S-1 S-3 S-5 S-7 S-12 S-13 S-17 S-21 

S-22 S-24 S-25 S-31 S-35 S-36 S-37 S-39 

S-40 S-45 S-48 S-50 S-51 S-53 S-54 S-55 

S-57 S-58 S-59 S-62 S-66 S-67 S-70 S-71 

S-73 S-76 S-79 S-82 S-83 S-85 S-86 S-87 

S-88 S-89 S-91 S-92 S-94 S-95 S-97 S-98 

S-100 S-101 S-102 S-103 S-107 S-112 S-113 S-116 

S-120 S-121       

 

Table 2.2.3: Singular Group Divisible designs that can be converted into 

nearly linear trend-free PBIB designs 

S-18 S-20 S-27 S-28 S-30 S-32 S-34 S-38 

S-41 S-43 S-46 S-47 S-49 S-106 S-108 S-109 

S-110 S-114 S-117 S-118 S-122    
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Table 2.3.1:  Semi-regular Group Divisible designs that can be converted into 

trend-free PBIB designs 

SR-1 SR-2 SR-3 SR-4 SR-5 SR-7 SR-9 SR-10 

SR-11 SR-12 SR-13 SR-15 SR-17 SR-20 SR-23 SR-24 

SR-25 SR-30 SR-33 SR-36 SR-39 SR-44 SR-45 SR-49 

SR-60 SR-61 SR-65 SR-67 SR-68 SR-70 SR-72 SR-87 

SR-92 SR-95 SR-97 SR-102 SR-105 SR-108   

 

Table 2.3.2:  Semi-regular Group Divisible designs that can be converted into 

linear trend-free PBIB designs 

SR-18 SR-19 SR-21 SR-22 SR-26 SR-27 SR-28 SR-29 

SR-31 SR-32 SR-34 SR-35 SR-37 SR-38 SR-40 SR-42 

SR-47 SR-51 SR-52 SR-53 SR-54 SR-55 SR-56 SR-57 

SR-58 SR-59 SR-62 SR-63 SR-64 SR-66 SR-69 SR-71 

SR-74 SR-76 SR-78 SR-80 SR-81 SR-82 SR-83 SR-84 

SR-85 SR-86 SR-88 SR-89 SR-90 SR-91 SR-93 SR-99 

SR-100 SR-101 SR-103 SR-104 SR-106 SR-107   

 

Table 2.3.3:  Semi-regular Group Divisible designs that can be converted into 

nearly linear trend-free PBIB designs 

SR-6 SR-8 SR-14 SR-16 SR-73 SR-75 SR-77 SR-79 

SR-109 SR-110       

 

Table 2.4.1:    Regular Group Divisible designs that can be converted into 

trend-free PBIB designs 

R-1 R-4 R-8 R-9 R-10 R-14 R-15 R-16 

R-17 R-18 R-19 R-22 R-23 R-24 R-28 R-29 

R-30 R-32 R-33 R-34 R-35 R-36 R-37 R-38 

R-40 R-41 R-42 R-43 R-44 R-49 R-50 R-51 

R-52 R-54 R-55 R-56 R-57 R-58 R-60 R-64 

R-65 R-69 R-71 R-75 R-79 R-80 R-81 R-83 

R-84 R-86 R-87 R-89 R-90 R-91 R-92 R-94 

R-95 R-96 R-98 R-99 R-104 R-105 R-106 R-109 

R-110 R-112 R-113 R-114 R-115 R-116 R-117 R-120 

R-128 R-129 R-130 R-133 R-134 R-135 R-136 R-137 

R-138 R-139 R-141 R-142 R-143 R-144 R-145 R-146 

R-147 R-148 R-149 R-150 R-151 R-152 R-153 R-154 

R-158 R-159 R-160 R-162 R-163 R-166 R-168 R-170 

R-171 R-172 R-173 R-174 R-175 R-176 R-177 R-178 

R-179 R-180 R-182 R-183 R-186 R-187 R-188 R-189 

R-190 R-191 R-193 R-194 R-195 R-196 R-197 R-198 

R-199 R-200 R-201 R-202 R-203 R-204 R-205 R-206 

R-207 R-208 R-209      
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Table 2.4.2: Regular Group Divisible designs that can be converted into 

linear trend-free PBIB designs 

 

R-45 R-46 R-47 R-48 R-53 R-59 R-61 R-62 

R-63 R-66 R-67 R-68 R-70 R-72 R-73 R-74 

R-76 R-77 R-78 R-82 R-85 R-88 R-93 R-102 

R-103 R-107 R-108 R-111 R-118 R-123 R-127 R-131 

R-132 R-140 R-155 R-156 R-157 R-161 R-165 R-169 

R-181 R-184 R-185 R-192     

 

Table 2.4.3: Regular Group Divisible designs that can be converted into 

nearly linear trend-free PBIB designs 

R-2 R-3 R-5 R-6 R-7 R-11 R-12 R-13 

R-20 R-21 R-25 R-26 R-27 R-31 R-39 R-164  
R-167        

 

Table 2.5.1:    Triangular Group Divisible designs that can be converted into 

trend-free PBIB designs 

T-1 T-3 T-5 T-6 T-7  T-8 T- T-9 

T-10 T-11 T-12 T-13 T-16 T-17 T-19 T-23 

T-29 T-31 T-33 T-34 T-36 T-38 T-39 T-42 

T-52 T-53 T-55 T-56 T-58 T-60 T-61 T-67 

T-71 T-77 T-81 T-84 T-91 T-94 T-95 T-100 

 

Table 2.5.2: Triangular Group Divisible designs that can be converted into 

linear trend-free PBIB designs 

T-14 T-15 T-18 T-20 T-21 T-22 T-25 T-26 

T-27 T-28 T-30 T-32 T-35 T-37 T-40 T-43 

T-44 T-45 T-46 T-47 T-48 T-49 T-50 T-51 

T-54 T-62 T-63 T-64 T-65 T-66 T-68 T-69 

T-70 T-72 T-73 T-74 T-75 T-76 T-78 T-79 

T-80 T-82 T-83 T-85 T-86 T-87 T-88 T-89 

T-90 T-92 T-93 T-96 T-97 T-98 T-99  

 

Table 2.5.3: Triangular Group Divisible designs that can be converted into 

nearly linear trend-free PBIB designs 

T-2 T-4 T-57 T-59 
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Table 2.6.1:  Latin square type Group Divisible designs that can be converted 

into trend-free PBIB designs 

LS-1 LS-2 LS-3 LS-5 LS-6 LS-9 LS-12 LS-16 

LS-17 LS-18 LS-19 LS-20 LS-22 LS-24 LS-26 LS-27 

LS-30 LS-34 LS-38 LS-42 LS-45 LS-46 LS-47 LS-49 

LS-50 LS-60 LS-63 LS-66 LS-67 LS-68 LS-69 LS-70 

LS-71 LS-77 LS-78 LS-82 LS-83 LS-101 LS-104 LS-110 

LS-114 LS-116 LS-117 LS-118 LS-131 LS-134 LS-136 LS-146 

 

Table 2.6.2:  Latin square type Group Divisible designs that can be converted 

into linear trend-free PBIB designs 

LS-7 LS-8 LS-10 LS-11 LS-13 LS-14 LS-15 LS-21 

LS-23 LS-25 LS-28 LS-31 LS-32 LS-35 LS-40 LS-48 

LS-51 LS-52 LS-53 LS-54 LS-55 LS-56 LS-57 LS-58 

LS-59 LS-61 LS-62 LS-64 LS-65 LS-72 LS-73 LS-74 

LS-75 LS-76 LS-80 LS-81 LS-84 LS-85 LS-86 LS-87 

LS-88 LS-89 LS-90 LS-91 LS-92 LS-93 LS-94 LS-95 

LS-96 LS-97 LS-98 LS-102 LS-106 LS-108 LS-109 LS-111 

LS-112 LS-115 LS-119 LS-120 LS-121 LS-122 LS-123 LS-124 

LS-125 LS-126 LS-127 LS-128 LS-129 LS-130 LS-132 LS-133 

LS-135 LS-137 LS-139 LS-140 LS-141 LS-142 LS-143 LS-145 

 

Table 2.6.3: Latin square type Group Divisible designs that can be converted 

into nearly linear trend-free PBIB designs 

LS-4 LS-79 LS-138 LS-144 

 

2.5  Methods of Construction of block design under heteroscedastic model  

As discussed earlier, non-proper block designs are quite useful in many 

experimental situations. When block sizes are unequal it is unrealistic to assume 

that the intra-block variances are equal. Thus, two-way classified, additive, fixed 

effects, heteroscedastic model (2.1) is considered for the present study. The 

information matrix (C-matrix) of a block design under the heteroscedastic model 

(2.1), obtained by using the principle of generalized least squares is given by 

 ][
1

1

j

b

j
jjjj kk NNRC  



                                                                   (2.15) 

where Nj is the j
th

 column of vb treatment vs blocks incidence matrix, N and    

Rj = diag(n1j, …, nvj), where nij is the number of times treatment i is applied to 

block j. A design is said to be a binary variance balanced block design of type , 

if C-matrix given in (2.15) is complete symmetric. For  = 0, all results reduce to 

that of usual homoscedastic setup. For detail, one may refer to Parsad, Gupta and 

Khanduri (2000). Now, we give some results for trend-free block designs under 

heteroscedastic model.  
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Most of the binary variance balanced block (BBB) designs under heteroscedastic 

set up of Type  ( 0) are constructed by using component BBB designs under 

homoscedastic model. Let BBB design under homoscedastic model be connected 

and have v treatments, b1 blocks of size k1, b2 blocks of size k2, so on, and bs 

blocks of size ks. By taking copies of block sizes k1, …, ks in the ratio of 

1k : … : 


sk  respectively, we have a BBB design of Type  ( 0) which  also remains 

connected. Now we have the following result: 

 

Theorem 2.2:  If there exists a trend-free binary balanced block (TFBBB) design 

with blocks of unequal sizes under homoscedastic model, then it can be expanded 

into TFBBB design of Type  ( 0) under heteroscedastic model. 

 

Proof   For a TFBBB design under homoscedastic set up (2.13) holds. If we take 

c

k1


copies of b1 blocks of size k1, 
c

k 2


copies of b2 blocks of size k2, so on, and 

c

k s


copies of bs blocks of size ks then the design obtained is BBB of type  

( 0), c being the highest common factor of 

1k , …, 

sk . With this each factor 

tt ZΔ   in condition (2.12) is multiplied by
c

k t



  s,1,t    and thus the condition 

(2.12) reduces to (2.13) which clearly holds to start with. 

 

Binary balanced block designs are known to be efficient in D(v, b, n), the class of 

connected block designs in which v treatments are arranged in b blocks and total 

number of experimental units is n. Here we give a method to develop trend-free 

binary balanced block (TFBBB) designs obtained by the method of Khatri (1982).  

Consider an unreduced BIB design with parameters v, 









k

v
b , 














1

1

k

v
r , k, 















2k

2v
 , where v, b, r and k are the number of treatments, blocks, replication 

number of each treatment and block size respectively and  is the number of 

blocks in which every pair of treatments occur together. Now select any p disjoint 

blocks out of b blocks such that kp < v. Put these kp treatments in one block and 

repeat this block 0p times where 













2

2
0

k

kp
 .  Now from the b blocks delete 











k

kp
b0  blocks in which all replicates of the selected kp treatments occur.  This 

process yields a binary balanced block (BBB) design with parameters  

v
*
 = v,  b1

*
 = 0 p, k1

*
 = kp, b2 = b-b0, k2

*
 = k, r

*
 = [(0p + r – r0) kp1 , r kp-v1 ] 
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where 













1

1
0

k

kp
r .                                                                                         (2.16) 

For such type of BBB designs we have the following different cases for 3k   

under homoscedastic set up i. e. α = 0. 

 

Case A.  For k=2, when v and p both are odd, we get a linear trend free 

block (LTFB) design 

For k=2, the parameters (3.1) simplify to  

v* = v, b1
*
 = p, k1

*
 = 2p, b2

*
 = b - b0, k2

*
 = 2, 

ri
*
 = p + r - r0 = v-p for i =  1, …, 2p   

   = r = v-1, v. , 1,2pi    

First we consider the treatment numbers 2p+1, 2p+2, …, v which are replicated v-

1 (even number) times. We, therefore, can permute these treatments in a block of 

size 2 such that half of treatments get first position and the other half gets the 

second position. Further first 2p treatments are replicated p times in blocks of size 

2p and v-2p times in blocks of size 2. Now these 2p treatments can easily be 

permuted in such a way that the design is LTFB design. We illustrate this 

procedure by an example. 

Example 2.2:  Let the unreduced BIB design be v = 7, b = 21, r = 6, k = 2,  = 1. 

Let p = 3, then we have a variance balanced block design with parameters v
* 

= 7, 

b1
* 

= 3, k1
* 

= 6, b2
* 

= 6, k2
* 

 = 2, ri
*
  =  4 for i =1, …, 6 and r7

* 
= 6. This variance 

balanced block design, under homoscedastic set up ( = 0), can be converted into 

TFB design of degree {min (k1,  k2) – 1} = 1 which is given below with rows as 

blocks.      
   Block No.       

1 4 1 2 5 6 3 

2 6 3 1 4 5 2 

3 5 2 3 6 4 1 

(Polynomial coefficients -5 -3 -1 1 3 5) 

4 1 7     

5 2 7     

6 3 7     

7 7 4     

8 7 5     

9 7 6     

(Polynomial coefficients -1 1)     

 

For variance balanced block design, under heteroscedastic set up ( 0 ), we take 

the copies of blocks of size, k1
*
, k2

* 
in the ratio of (k1

*
)

 : (k2

*
)

. So from Theorem 

2.2, above design under heteroscedastic set up of type, for any value of , will 

also be TFBBB design.  
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We can obtain a series of BBB designs which can be converted into TFB designs 

by the method given in Case A.  Thus TFBBB designs for {max (r1, r2)} 10 are 

given below.  

 

Table 2.7:  Variance balanced block designs which can be converted into 

TFB designs for {max (r1, r2)} 10 

p v b1
*
 k1

*
 b2

*
 k2

*
 r1

*
 r2

*
 

3 7 3
+1 6 6 2 4 6 

3 9 3
+1

 6 21 2 6 8 

3 11 3
+1

 6 40 2 8 10 

5 11 5
+1

 10 10 2 6 10 

 

Note: Above designs are TFB designs for any value of . 

 

Case B  For k=2, when v is even LTFB design is not possible 

When v is even and k = 2, v-kp=u (say) is even. These u treatments will be 

replicated r = v-1 (an odd number) times in block of size 2. So, LTFB design is 

not possible. [Theorem 3.1, Yeh and Bradley (1983)]. 

Case C For k=2, when v is odd and p is even LTFB design is not 

possible 

When v is odd and p is even, 2p is even. First 2p treatments will appear p times in 

block size 2p and r- r0 or v - 2p times in block of size 2. But v - 2p is an odd 

number. So LTFB design is not possible. 

Case D For k=3, when p is even LTFB design is possible 

If p is even kp treatments will appear in 0 p blocks i.e. an even number of blocks. 

So these kp treatments can be permuted to LTFB design. These kp treatments and 

the remaining v - kp treatments will appear in block of size 3 with different 

replications. Now m  (v - kp) treatments will appear in each of the blocks of size 

3. Thus these blocks of size 3 can easily be permuted to LTFB design. (Theorem 

3.2, Chai and Majumdar (1993)). 

Example 2.3: Let the unreduced   BIB design be v = 7, b = 35, r = 15, k = 3,  = 

5. Let p = 2, then for kp = 6, and 0 p = 8, we have a variance balanced block 

design with parameters v
*
=7, b1

* 
= 8, k1

* 
= 6, b2

* 
= 15, k2

* 
 = 3, ri

*
 = 13 for i = 1, 

…, 6 and r7
*
= 15. This variance balanced block design can be converted into TFB 

design with rows as blocks for any value of . 
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Block No.                            
 1   2 3 1 6 4 5 

 2   4 5 3 2 6 1 

 3   6 1 5 4 2 3 

 4   1 2 6 5 3 4 

 5   6 5 4 3 2 1 

 6   5 6 4 3 1 2 

 7   3 4 2 1 5 6 

8   1 2 3 4 5 6 

 (Polynomial coefficients      -5          -3          -1           1           3           5) 

 9   1 7 2 

 10   7 4 1 

 11   7 5 1 

 12   7 1 6 

 13   2 3 7 

 14   2 4 7 

 15   7 5 2 

 16   7 2 6 

 17   7 6 3 

 18   7 5 4 

 19   6 4 7 

 20   6 5 7 

 21   1 3 7 

 22   4 3 7 

 23   3 5 7 

(Polynomial coefficients -1 0 1) 

 

Theorem 2.3: If a BBB design is obtained as a union of two block designs, the 

BBB design thus obtained will be trend-free block design if the two block designs 

can be converted into trend-free block designs, individually. 

Proof simplifies from Corollary (2.1). 

 

2.6 Analysis of data from trend-free block designs 

In a trend-free block design we assign treatments to plots within blocks so that the 

known properties of ordinary analysis of variance for treatment and block sum of 

squares are preserved and variation due to trend effect is removed from the error 

sum of square.   So the analysis of a trend-free block design is same as that the 

analysis of block design without trend-effect, the only difference is that sum of 

squares due trend effects are worked out separately and is subtracted from the 

error sum of squares. Now the steps for the analysis of a trend-free block design 

are given below. 

 

Under the model (2.2), let the block design d is a connected design. Then the 

reduced normal equations for estimating linear functions of treatment effects, 

using the design d, are 
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, where G is the grand total. 

Now sum of square due to i
th

 component of trend Wi is the i
th

 component of the 

vector W = Z’ y 

 

Thus the analysis of variance table for a trend-free design is as follows: 

 

ANOVA 

 

Source d.f. SS 

Treatment effects v - 1 
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Block effects 1b   ( )
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2.7 Catalogue of trend-free binary variance balanced block designs  

On the basis of above results, a catalogue of BBB designs of type   with 

replication number of treatments r  30 and for values of   = 0, 1, 2 and 3 with 

two distinct block sizes, which can be converted trend-free, linear trend-free and 

nearly linear trend free BBB designs are given in Table 2.8 to Table 2.11. 

 

Table 2.8.1: BBB designs with two distinct block sizes for  = 0  that can be 

converted into trend-free BIB designs. 

Sl. No. v r b1 k1 b2 k2 n Reference Design 

1 6 8 6 4 12 2 48 2 S1 : 1 R18 

2 6 8 12 3 6 2 48 3 SR18 : 2 (3 2) 

3 6 9 18 2 6 3 54 2 SR6 : 3 (2 3) 

4 6 14 12 4 12 3 84 4 S1 : 3 SR18 

5 6 16 12 4 24 2 96 4 S1 : 1 R23 

6 6 16 24 3 12 2 96 3 SR19 : 4 (3 2) 

7 6 17 24 2 18 3 102 2 R18 : 3 R42 

8 6 18 12 3 36 2 108 3 SR18 : 2 R19 

9 6 19 48 2 6 3 114 2 R24 : 3 (2 3) 

10 6 22 18 2 24 4 132 1 SR7 : 4 R94 

11 6 23 42 3 6 2 138 3 R46 : 2 (3 2) 

12 6 24 18 4 36 2 144 2 S3 : 3 R18 

13 6 24 18 2 36 3 144 2 SR6 : 3 R43 

14 6 26 12 4 54 2 156 1 S4 : 2 R27 

15 6 26 24 3 42 2 156 3 SR19 : 2 R21 

16 6 27 54 2 18 3 162 2 SR8 : 9 (2 3) 

17 6 27 36 4 6 3 162 4 SR35 : 3 (2 3) 

18 6 28 24 4 24 3 168 8 S1 : 3 SR19 

19 6 29 12 4 42 3 174 4 S1 : 3 R46 

20 8 9 8 6 8 3 72 2 S18 : 1 R54 

21 8 10 16 4 8 2 80 1 SR39 : 2 (4 2) 

22 8 11 24 3 8 2 88 1 R57 : 2 (4 2) 

23 8 12 8 4 32 2 96 1 SR36 : 1 R30 

24 8 18 16 6 16 3 144 4 S18 : 1 R55 

25 8 20 16 2 32 4 160 1 SR9 : 2 R98 

26 8 22 48 3 16 2 176 3 R55 : 4 (4 2) 

27 8 22 24 4 40 2 176 3 SR36 : 1 R33 

28 8 24 16 4 64 2 192 1 SR39 : 2 R30 

29 8 25 64 2 24 3 200 2 R30 : 3 R54
 

30 8 26 24 6 16 4 208 6 S18
 
: 1 SR39 

31 8 27 40 5 8 2 216 5 R134 : 2 (4 2) 

32 8 27 24 3 24 6 216 1 R58 : 2 R164 

33 8 29 24 3 40 4 232 3 R54 : 4 R97 

34 8 30 24 4 48 3 240 4 S6 : 3 R55 

35 8 30 24 6 48 2 240 3 S19 : 2 R29 

36 9 10 27 2 9 4 90 1 R34 : 1 R104 
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Sl. No. v r b1 k1 b2 k2 n  Reference     Design 

37 9 12 9 6 27 2 108 3 S21 : 1 R34 

38 9 12 18 2 18 4 108 1 LS1 : 2 LS26 

39 9 15 54 2 9 3 135 2 R34 : 3 (3 3) 

40 9 17 27 3 18 4 153 3 SR23 : 2 R104 

41 9 20 54 2 18 4 180 2 R34 : 1 R105 

42 9 20 18 4 18 6 180 2 LS26 : 3 LS72 

43 9 21 18 6 27 3 189 6 S21 : 1 SR25 

44 9 22 27 6 9 4 198 3 SR65 : 1 R104 

45 9 22 18 3 36 4 198 3 LS7 : 4 LS26 

46 9 24 36 2 36 4 216 1 LS2 : 4 LS26 

47 9 24 18 6 54 2 216 3 S22 : 2 R34 

48 9 26 36 2 54 3 234 2 LS1 : 3 LS12 

49 9 27 54 2 45 3 243 2 R34 : 3 R59 

50 9 28 27 6 45 2 252 3 SR65 : 1 R35 

51 9 29 27 3 90 2 261 3 SR23 : 2 R35 

52 9 29 63 3 18 4 261 3 R62 : 2 R104 

53 9 30 36 6 18 3 270 4 SR65 : 1 R60 

54 10 12 20 5 10 2 120 1 SR55 : 2 (5 2) 

55 10 12 20 3 10 6 120 1 T12 : 2 T57 

56 10 14 30 2 20 4 140 2 T2 : 1 T31 

57 10 14 10 6 40 2 140 1 S26 : 1 R36 

58 10 15 50 2 10 5 150 2 SR11 : 5 (2 5) 

59 10 15 30 2 30 3 150 2 T2 : 3 T9 

60 10 15 10 3 20 6 150 1 T9 : 2 T60 

61 10 16 20 5 20 3 160 1 SR55 : 1 R69 

62 10 17 30 3 20 4 170 1 T13 : 4 T28 

63 10 21 60 2 30 3 210 2 T1 : 1 T13 

64 10 22 50 2 20 6 220 1 SR12 : 2 R166 

65 10 22 10 4 30 6 220 2 T28 : 3 T60 

66 10 22 80 2 20 3 220 2 R36 : 1 R69 

67 10 22 20 6 20 5 220 2 S26 : 1 SR55 

68 10 23 20 4 30 5 230 4 T28 : 5 T44 

69 10 24 20 8 40 2 240 4 S51 : 1 R36 

70 10 24 40 5 20 2 240 5 SR52 : 4 (5 2) 

71 10 24 30 2 30 6 240 1 T1 : 3 T60 

72 10 24 30 3 30 5 240 3 T9 : 5 T44 

73 10 25 30 3 40 4 250 3 T9 : 4 T33 

74 10 26 60 3 20 4 260 3 T12 : 4 T28 

75 10 26 30 2 50 4 260 1 T1 : 2 T37 

76 10 27 60 2 30 5 270 2 T1 : 5 T44 

77 10 28 60 2 40 4 280 2 T1 : 4 T33 

78 10 27 30 3 30 6 270 1 T13 : 6 T57 

79 10 29 30 3 50 4 290 1 T13 : 2 T35 

80 10 30 20 5 100 2 300 1 SR55 : 2 R37 

81 10 30 60 2 60 3 300 2 T1 : 3 T12 
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Sl. No. v r b1 k1 b2 k2 n  Reference     Design 

82 10 30 20 3 40 6 300 1 T10 : 4 T60 

83 12 14 24 6 12 2 168 3 SR66 : 2 (6 2) 

84 12 14 12 6 24 4 168 1 SR67 : 2 R109 

85 12 15 12 6 36 3 180 2 S27 : 1 R75 

86 12 15 36 4 12 3 180 4 SR41 : 3 (4 3) 

87 12 16 48 3 12 4 192 3 SR26 : 4 (3 4) 

88 12 16 12 8 48 2 192 4 S53 : 1 R38 

89 12 17 60 3 12 2 204 3 R70 : 2 (6 2) 

90 12 18 60 2 24 4 216 1 R40 : 2 R109 

91 12 21 108 2 12 3 252 2 R39 : 3 (4 3) 

92 12 25 12 5 24 10 300 1 R145 : 2 R203 

93 12 26 12 8 36 6 312 4 S53 : 3 SR68 

94 12 27 24 9 36 3 324 6 S82 : 1 R75 

95 12 28 24 8 48 3 336 8 S53 : 3 SR26 

96 12 28 12 8 60 4 336 1 S56 : 2 R111 

97 12 28 60 5 12 3 336 5 R145 : 3 (4 3) 

98 12 28 24 6 48 4 336 3 SR66 : 4 R109 

99 12 28 48 6 24 2 336 3 SR69 : 4 (6 2) 

100 12 29 60 5 24 2 348 5 R144 : 4 (6 2) 

101 12 30 24 6 72 3 360 2 SR67 : 3 R71 

102 13 14 39 2 26 4 182 1 C10 : 1 C21 

103 13 21 39 3 26 6 273 1 C19 : 2 C23 

104 13 25 39 3 52 4 325 3 C16 : 2 C21 

105 13 26 26 4 39 6 338 1 C21 : 3 C23 

106 14 16 14 8 28 4 224 2 S59 : 1 R113 

107 14 18 14 6 56 3 252 1 S33 : 2 R79 

108 14 20 84 3 14 2 280 3 R79 : 2 (7 2) 

109 14 21 98 2 14 7 294 2 SR14 : 7 (2 7) 

110 14 30 28 10 28 5 420 2 R205 : 1 OTR16 

111 15 9 15 3 15 6 135 1 T16 : 1 T61 

112 15 18 30 3 30 6 270 1 T17 : 2 T61 

113 15 19 45 3 30 5 285 3 T16 : 5 T48 

114 15 19 60 4 15 3 285 4 R114 : 3 (5 3) 

115 15 20 60 2 30 6 300 1 T5 : 3 T62 

116 15 20 15 10 75 2 300 5 S100 : 1 R41 

117 15 20 75 3 15 5 300 3 SR28 : 5 (3 5) 

118 15 22 90 2 30 5 330 2 T6 : 5 T48 

119 15 24 90 2 60 3 360 2 T6 : 3 T14 

120 15 24 15 6 30 9 360 1 T61 : 3 T83 

121 15 25 150 2 15 5 375 2 R41 : 5 (3 5) 

122 15 25 120 2 45 3 375 2 T5 : 3 T16 

123 15 26 15 10 60 4 390 5 S100 : 2 R117 

124 15 26 45 2 30 10 390 1 T6 : 5 T92 

125 15 27 45 3 45 6 405 1 T19 : 3 T61 

126 15 30 90 2 45 6 450 2 T6 : 3 T61 
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Sl. No. v r b1 k1 b2 k2 n  Reference     Design 

127 16 21 48 3 48 4 336 3 LS18 : 4 LS29 

128 16 22 48 2 64 4 352 1 LS3 : 2 LS42 

129 16 22 96 3 16 4 352 3 R86 : 4 (4 4) 

130 16 25 32 8 48 3 400 2 SR92 : 1 OTR01 

131 16 26 144 2 32 4 416 2 LS4 : 1 LS34 

132 17 24 34 4 34 8 408 1 C22 : 2 C26 

133 17 24 68 2 68 4 408 1 C11 : 2 C22 

134 18 20 36 9 18 2 360 3 SR99 : 2 (9 2) 

135 18 21 54 6 18 3 378 2 SR73 : 3 (6 3) 

136 18 23 90 4 18 3 414 2 OTR11 : 3 (6 3) 

137 18 26 144 3 18 2 468 3 R88 : 2 (9 2) 

138 18 27 162 2 18 9 486 2 SR16 : 9 (2 9) 

139 20 24 80 5 20 4 480 5 SR58 : 4 (5 4) 

140 20 25 100 4 20 5 500 4 SR46 : 5 (4 5) 

141 20 29 180 3 20 2 580 3 R90 : 2 (10 2) 

142 21 16 105 2 21 6 336 1 T8 : 3 T65 

143 21 27 21 9 126 3 567 3 S88 : 2 R91 

144 21 28 147 3 21 7 588 3 SR31 : 7 (3 7) 

145 24 28 96 6 24 4 672 3 SR74 : 4 (6 4) 

146 24 29 120 5 24 4 696 5 R153 : 4 (6 4) 

147 26 29 78 9 26 2 754 3 R199 : 2 (13 2) 

148 27 15 27 9 27 6 405 1 SR102 : 1 R170 

 

 

Table 2.8.2: BBB designs with two distinct block sizes that can be converted 

into linear trend-free BIB designs for  = 0. 

 

Sl. No. v r b1 k1 b2 k2 n Reference Design 

1 6 14 18 2 16 3 84 2 SR6 : 1 R47 

2 6 24 48 2 16 3 144 2 R24 : 1 R47 

3 8 6 16 2 4 4 48 1 SR9 : 2 (2 4) 

4 8 15 12 4 24 3 120 2 S6 : 3 R54 

5 8 16 24 2 20 4 128 1 R29 : 2 R97 

6 8 18 12 4 48 2 144 1 S7 : 2 R29 

7 8 26 32 2 36 4 208 1 R30 : 2 R101 

8 9 7 6 6 9 3 63 2 S21 : 1 SR23 

9 9 14 18 3 12 6 126 1 LS12 : 2 LS72 

10 9 17 18 6 15 3 153 2 SR65 : 1 R59 

11 9 18 36 2 30 3 162 2 LS1 : 1 LS15 

12 9 18 30 3 12 6 162 1 LS14 : 2 LS72 

13 9 19 54 2 21 3 171 2 R34 : 1 R61 

14 9 22 12 6 42 3 198 1 S24 : 2 R62 

15 9 23 9 3 30 6 207 1 SR23 : 2 R165 

16 9 24 24 3 24 6 216 1 LS13 : 4 LS72 

17 9 27 21 3 30 6 243 1 R62 : 2 R165 
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Sl. No. v r b1 k1 b2 k2 n  Reference     Design 

18 10 28 25 4 30 6 280 1 T35 : 3 T60 

19 10 29 50 4 15 6 290 2 T37 : 1 T59 

20 12 10 8 6 24 3 120 1 SR66 : 1 R71 

21 12 10 48 2 6 4 120 1 R38 : 2 (3 4) 

22 12 14 16 3 20 6 168 1 SR26 : 1 OTR24 

23 12 14 6 8 30 4 168 2 S53 : 1 R111 

24 12 16 15 8 12 6 192 1 S58 : 1 SR67 

25 12 19 12 9 40 3 228 3 S82 : 1 R78 

26 12 19 24 6 28 3 228 3 SR66 : 1 R73 

27 12 20 15 8 60 2 240 1 S58 : 1 R40 

28 12 20 36 6 6 4 240 3 SR68 : 2 (3 4) 

29 12 20 16 6 48 3 240 1 SR69 : 2 R71 

30 12 20 18 8 24 4 240 2 SR90 : 1 OTR05 

31 12 23 20 3 36 6 276 1 R70 : 2 OTR22 

32 12 24 36 2 54 4 288 1 SR13 : 2 OTR06 

33 12 24 15 8 42 4 288 1 S58 : 2 OTR03 

34 12 24 40 3 28 6 288 1 R77 : 2 OTR21 

35 12 25 20 6 60 3 300 2 S28 : 3 R70 

36 12 26 12 6 80 3 312 1 S29 : 2 R78 

37 12 26 96 2 40 3 312 2 R38 : 1 R76 

38 12 27 120 2 28 3 324 2 R40 : 1 R73 

39 12 28 32 3 40 6 336 1 SR27 : 2 OTR24 

40 12 30 20 6 120 2 360 1 S31 : 2 R40 

41 14 8 7 8 14 4 112 1 S59 : 1 R112 

42 14 28 84 3 35 4 392 3 R79 : 1 OTR09 

43 15 12 10 6 30 4 180 1 S35 : 2 R114 

44 15 12 10 9 30 3 180 1 S85 : 1 R81 

45 15 12 20 3 20 6 180 1 T14 : 2 T62 

46 15 16 50 3 15 6 240 1 T18 : 1 T61 

47 15 22 20 3 30 9 330 1 T14 : 3 T83 

48 15 23 15 3 50 6 345 1 T16 : 2 T63 

49 15 24 40 3 40 6 360 1 T15 : 4 T62 

50 15 24 20 6 60 4 360 1 S36 : 4 R114 

51 15 26 20 6 90 3 390 2 S35 : 3 R81 

52 15 26 50 3 60 4 390 1 R85 : 4 R114 

53 15 30 50 3 50 6 450 1 T18 : 2 T63 

54 16 12 48 2 24 4 192 1 LS3 : 2 LS36 

55 16 12 64 2 8 8 192 1 SR15 : 4 (2 8) 

56 16 14 12 8 32 4 224 1 S62 : 2 SR44 

57 16 18 24 4 24 8 288 1 LS40 : 2 LS98 

58 16 22 16 4 36 8 352 1 LS30 : 2 LS100 

59 16 24 12 8 72 4 384 1 S62 : 2 R122 

60 16 24 48 2 36 8 384 1 LS3 : 2 LS100 

61 18 8 36 3 6 6 144 1 SR30 : 2 (3 6) 

62 18 15 12 9 54 3 270 1 SR99 : 1 R89 
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Sl. No. v r b1 k1 b2 k2 n  Reference     Design 
63 18 18 24 6 45 4 324 1 R169 : 1 OTR11 

64 18 22 20 9 36 6 396 1 S87 : 2 SR72 

65 18 26 24 6 36 9 468 2 S37 : 3 SR99 

66 18 28 36 9 60 3 504 3 SR99 : 1 OTR02 

67 20 16 15 8 20 10 320 1 S67 : 1 SR108 

68 21 18 70 3 28 6 378 1 T22 : 4 T65 

69 21 20 105 2 35 6 420 1 T8 : 1 T70 

70 24 11 72 3 8 6 264 1 R92 : 2 (4 6) 

71 25 23 20 10 75 5 575 2 S112 : 3 SR60 

72 25 28 60 5 40 10 700 3 LS61 : 2 LS135 

73 27 12 81 3 9 9 324 1 SR33 : 3 (3 9) 

74 32 10 64 4 8 8 320 1 SR49 : 2 (4 8) 

75 36 22 126 4 36 8 792 2 T41 : 1 T81 

76 36 28 84 3 84 9 1008 1 T24 : 3 T85 

77 48 28 192 6 24 8 1344 3 SR78 : 4 (6 8) 

78 54 21 162 6 18 9 1134 2 SR79 : 3 (6 9) 

79 78 29 234 9 26 6 2262 3 R201 : 2 (13 6) 

 

Table 2.8.3: BBB designs with two distinct block sizes that can be converted 

into nearly linear trend-free BIB designs for  = 0. 

 

Sl. No. v r b1 k1 b2 k2 n Reference Design 

1 6 13 12 3 21 2 78 3 SR18 : 1 R21 

2 6 21 24 3 27 2 126 6 SR18 : 1 R26 

3 6 28 21 2 42 3 168 1 R21 : 3 R46 

4 8 15 12 6 24 2 120 3 S18 : 1 R29 

5 8 18 36 2 24 3 144 1 R31 : 3 R54 

6 9 11 6 6 21 3 99 2 S21 : 1 R62 

7 9 13 18 6 3 3 117 2 SR65 : 1 (3 3) 

8 10 11 25 2 10 6 110 1 SR11 : 1 R166 

9 10 12 15 2 15 6 120 1 T2 : 3 T57 

10 12 7 12 6 6 2 84 1 SR67 : 1 (6 2) 

11 12 9 36 2 6 6 108 1 SR13 : 3 (2 6) 

12 12 12 20 3 14 6 144 1 R70 : 1 OTR21 

13 12 13 6 6 40 3 156 1 S27 : 1 R78 

14 12 15 10 6 60 2 180 1 S28 : 1 R40 

15 12 17 32 3 18 6 204 2 SR26 : 1 R167 

16 12 27 18 6 108 2 324 3 S27 : 2 R39 

17 14 9 7 6 28 3 126 1 S32 : 1 R79 

18 14 27 21 6 84 3 378 1 S34 : 3 R79 

19 18 7 18 6 6 3 126 1 SR72 : 1 (6 3) 

20 18 11 10 9 18 6 198 1 S86 : 1 SR72 

21 20 11 20 10 10 2 220 1 SR108 : 1 (10 2) 

22 20 15 100 2 10 10 300 1 SR17 : 5 (2 10) 

23 27 10 27 9 9 3 270 1 SR102 : 1 (9 3) 
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Table 2.9.1: BBB designs with two distinct block sizes for  = 1 that can be 

converted into trend-free BIB designs. 

 

Sr. 

No. 

v r b1 k1 b2 k2 n Reference Design 

1 6 12 12 4 12 2 72 4 S1 : 1 R18 

2 6 21 36 2 18 3 126 4 SR6 : 9 (2 3) 

3 6 22 36 3 12 2 132 9 SR18 : 4 (3 2) 

4 6 24 24 2 24 4 144 1 R24 : 4 R94 

5 8 8 16 2 8 4 64 1 SR9 : 4 (2 4) 

6 8 15 16 6 8 3 120 4 S18 : 1 R54 

7 8 16 32 2 16 4 128 1 SR10 : 8 (2 4) 

8 8 26 24 2 40 4 208 1 R29 : 4 R97 

9 8 30 32 6 16 3 240 8 S18 : 1 R55 

10 9 14 27 2 18 4 126 1 R34 : 2 R104 

11 9 20 18 2 36 4 180 1 LS1 : 4 LS26 

12 9 24 27 6 27 2 216 9 S21 : 1 R34 

13 10 18 20 3 20 6 180 1 T12 : 4 T57 

14 10 22 30 2 40 4 220 1 T3 : 8 T28 

15 10 26 30 6 40 2 260 3 S26 : 1 R36 

16 10 27 10 3 40 6 270 1 T9 : 4 T60 

17 12 12 48 2 12 4 144 1 R38 : 4 (3 4) 

18 12 21 24 6 36 3 252 4 S27 : 1 R75 

19 12 26 60 2 48 4 312 1 R40 : 4 R109 

20 13 22 39 2 52 4 286 1 C10 : 2 C21 

21 14 12 14 6 28 3 168 2 S32 : 1 R79 

22 14 12 14 8 14 4 168 2 S59 : 1 R112 

23 14 24 28 8 28 4 336 4 S59 : 1 R113 

24 15 15 15 3 30 6 225 1 T16 : 2 T61 

25 15 24 30 9 30 3 360 3 S85 : 1 R81 

26 15 28 30 6 60 4 420 3 S35 : 4 R114 

27 15 30 30 3 60 6 450 1 T17 : 4 T61 

28 16 18 48 2 48 4 288 1 LS3 : 4 LS36 

29 16 24 64 2 32 8 384 1 SR15 : 1 6 (2 8) 

30 18 27 36 9 54 3 486 3 SR99 : 1 R89 

31 21 28 105 2 63 6 588 1 T8 : 9 T65 

32 27 18 81 3 27 9 486 1 SR33 : 9 (3 9) 
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Table 2.9.2: BBB designs with two distinct block sizes for  = 1 that can be 

converted into linear trend-free BIB designs. 

 

Sr. 

No. 

v r b1 k1 b2 k2 n Reference Design 

1 8 12 12 4 24 2 96 2 S6 : 1 R29 

2 8 22 16 2 36 4 176 1 SR9 : 2 R100 

3 9 11 12 6 9 3 99 4 S21 : 1 SR23 

4 9 22 24 6 18 3 198 8 S21 : 1 SR24 

5 12 14 16 6 24 3 168 2 SR66 : 1 R71 

6 12 16 12 6 40 3 192 2 S27 : 1 R78 

7 12 18 12 8 30 4 216 4 S53 : 1 R111 

8 12 20 36 2 42 4 240 1 SR13 : 2 OTR04 

9 12 26 32 3 36 6 312 1 SR27 : 2 R167 

10 12 30 30 4 120 2 360 1 S12 : 2 R40 

11 15 11 25 3 15 6 165 1 SR28 : 1 R168 

12 15 22 50 3 30 6 330 1 SR29 : 2 R168 

13 16 10 12 8 16 4 160 2 S61 : 1 SR44 

14 16 20 24 8 32 4 320 4 S61 : 1 SR45 

15 16 30 24 4 48 8 480 1 LS40 : 4 LS98 

16 16 30 36 8 48 4 480 2 S64 : 3 SR44 

17 18 10 36 3 12 6 180 1 SR30 : 4 (3 6) 

18 18 13 36 6 6 3 234 2 SR72 : 1 (6 3) 

19 18 27 30 9 36 6 486 3 S86 : 2 SR72 

20 24 13 72 3 16 6 312 1 R92 : 4 (4 6) 

21 27 28 81 9 9 3 756 3 SR102 : 1 (9 3) 

22 32 12 64 4 16 8 384 1 SR49 : 4 (4 8) 

 

Table 2.9.3: BBB designs with two distinct block sizes for  =1 that can be 

converted into nearly linear trend-free BIB designs 

Sr. 

No. 

v r b1 k1 b2 k2 n Reference Design 

1 6 27 36 3 27 2 162 9 SR18 : 1 R26 

2 9 15 12 6 21 3 135 4 S21 : 1 R62 

3 9 25 36 6 3 3 225 4 SR65 : 1 (3 3) 

4 9 26 30 3 24 6 234 1 LS14 : 4 LS72 

5 9 29 36 6 15 3 261 4 SR65 : 1 R59 

6 10 23 25 2 30 6 230 1 SR11 : 3 R166 

7 10 30 15 2 45 6 300 1 T2 : 9 T57 

8 12 13 16 3 18 6 156 1 SR26 : 1 R167 

9 12 15 15 4 60 2 180 1 S11 : 1 R40 

10 12 15 36 2 18 6 180 1 SR13 : 9 (2 6) 

11 12 19 36 6 6 2 228 3 SR67 : 1 (6 2) 

12 12 19 20 3 28 6 228 1 R70 : 2 OTR21 

13 12 24 16 3 40 6 288 1 SR26 : 2 OTR24 

14 12 25 30 6 60 2 300 3 S28 : 1 R40 

15 15 20 20 3 40 6 300 1 T14 : 4 T62 

16 21 26 70 3 56 6 546 1 T22 : 8 T65 
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Table 2.10.1: BBB designs with two distinct block sizes for  = 2 that can be 

converted into trend-free BIB designs 

 

Sr. No. v r b1 k1 b2 k2 n Reference Design 

1 6 20 24 4 12 2 120 8 S1 : 1 R18 

2 8 12 16 2 16 4 96 1 SR9 : 8 (2 4) 

3 8 18 24 4 24 2 144 4 S6 : 1 R29 

4 8 24 32 2 32 4 192 1 SR10 : 1 6 (2 4) 

5 8 27 32 6 8 3 216 8 S18 : 1 R54 

6 9 22 27 2 36 4 198 1 R34 : 4 R104 

7 10 30 20 3 40 6 300 1 T12 : 8 T57 

8 12 16 48 2 24 4 192 1 R38 : 8 (3 4) 

9 14 18 28 6 28 3 252 4 S32 : 1 R79 

10 14 20 28 8 14 4 280 4 S59 : 1 R112 

11 15 27 15 3 60 6 405 1 T16 : 4 T61 

12 16 30 48 2 96 4 480 1 LS3 : 8 LS36 

13 32 16 64 4 32 8 512 1 SR49 : 8 (4 8) 

 

Table 2.10.2: BBB designs with two distinct block sizes for  = 2 that can be 

converted into linear trend-free BIB designs 

 

Sr. 

No. 

v r b1 k1 b2 k2 n Reference Design 

1 9 19 24 6 9 3 171 8 S21 : 1 SR23 

2 12 20 30 4 60 2 240 2 S11 : 1 R40 

3 12 22 32 6 24 3 264 4 SR66 : 1 R71 

4 12 22 16 3 36 6 264 1 SR26 : 2 R167 

5 12 22 24 6 40 3 264 4 S27 : 1 R78 

6 12 26 24 8 30 4 312 8 S53 : 1 R111 

7 15 17 25 3 30 6 255 1 SR28 : 2 R168 

8 16 16 24 8 16 4 256 4 S61 : 1 SR44 

9 18 14 36 3 24 6 252 1 SR30 : 8 (3 6) 

10 18 25 72 6 6 3 450 4 SR72 : 1 (6 3) 

11 24 17 72 3 32 6 408 1 R92 : 8 (4 6) 

 

 

 

Table 2.10.3: BBB designs with two distinct block sizes for  = 2 that can be 

converted into nearly linear trend-free BIB designs 

 

Sr. No. v r b1 k1 b2 k2 n Reference Design 

3 9 23 24 6 21 3 207 8 S21 : 1 R62 
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Table 2.11.1: BBB designs with two distinct block sizes for  = 3 that can be 

converted into trend-free BIB designs 

 

S.No. v r b1 k1 b2 k2 n 
Reference Design 

1 8 20 16 2 32 4 160 1 SR9 : 16 (2 4)  

2 8 30 48 4 24 2 240 8 S6 : 1 R29  

3 12 24 48 2 48 4 288 1 R38 : 16 (3 4)  

4 12 30 60 4 60 2 360 4 S11 : 1 R40  

5 14 30 56 6 28 3 420 8 S32 : 1 R79  

6 16 28 48 8 16 4 448 8 S61 : 1 SR44  

7 32 24 64 4 64 8 768 1 SR49 : 16 (4 8)  

 

Table 2.11.2: BBB designs with two distinct block sizes for  = 3 that can be 

converted into linear trend-free BIB designs 

 

S.No. v r b1 k1 b2 k2 n 
Reference Design 

1 15 29 25 3 60 6 435 1 SR28 : 4 R168  

2 18 22 36 3 48 6 396 1 SR30 : 16 (3 6)  

3 24 25 72 3 64 6 600 1 R92 : 16 (4 6)  

 

Remark 2.1  No BBB designs with two distinct block sizes for  = 3 could be 

obtained that can be converted into nearly linear trend-free BIB designs 
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CHAPTER III 

 
  

TREND-FREE NESTED BALANCED INCOMPLETE 

BLOCK DESIGNS AND DESIGNS FOR DIALLEL 

CROSS EXPERIMENTS 
 

3.1 Introduction 

In Chapter II we have discussed the experiments where there is only one nuisance 

factor. However, there do occur experimental situations in which one or more 

factors are nested within the blocking factor. Nested block designs have been 

developed to deal with experimental situations where one nuisance factor is 

nested within blocking factor. In this chapter, we shall present some practical 

situations where the experimenter has to use nested block designs. A nested block 

design is a design with two systems of blocks where the second system is nested 

within the first. To be clearer let us consider the following experimental situation:  

   

Experimental situation 3.1:   This example relates to a virological experiment, 

quoted by Preece (1967). Suppose the half-leaves of a plant form the experimental 

units, on which a number of treatments, say, inoculations with sap from tobacco 

plants infected with tobacco necrosis virus, are to be applied. Suppose the number 

of treatments is more than the number of suitable half-leaves per plant. Now, 

there is one source of variation present due to variability among plants. Further, 

leaves within a plant may exhibit variation among themselves due to their being 

located on the upper branch, middle branch or on the lower branch of the same 

plant. Thus leaves within plants form a nested 'nuisance' factor, the nesting being 

within the plants The half-leaves being experimental units, we then have two 

systems of 'blocks', leaves (which may be called sub-blocks) being nested within 

plants (which may be called blocks). 

 

For this type of situations, Kleczkowski (1960) devised a form of nested 

incomplete block design with eight treatments for a series of experiments in 

which bean plants, in two primary leaves stage, were inoculated with the sap from 

tobacco plants infected with the tobacco necrosis virus. The treatments were eight 

different virus concentrations. Each leaf had two inoculations, one for each half-

leaf; ignoring the leaf positions, plants and leaves were, respectively, the blocks 

(of size 4) and sub-blocks (of size 2) of a nested balanced incomplete block 

(NBIB) design (which shall be discussed later).      

 

Experimental situation 3.2: In animal experiments, generally littermates 

(animals born in the same litter) are experimental units within a block i.e. litters 

are blocks. However, animals within the same litter may be varying in their initial 

body weight. If body weight is taken as another blocking factor, we have a system 

of nested blocks within a block.  
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Experimental situation 3.3: Consider a field experiment conducted using a 

block design and harvesting is done blockwise.  To meet the objective of the 

experiment, the harvested samples are to be analyzed for their contents in the 

laboratory by different technicians over different periods of time. Therefore, to 

control the variation due to technicians it is taken as another blocking factor. 

Hence, we have a system of nested (sub) blocks i.e. technicians.  

 

In the experimental situation 3.1, the position of the leaves is nested within plants. 

This position of leaves may exhibit trend effect in the order in which they are 

nested. In the experimental situation 2, units nested within the block do not have 

exactly same body weight and may give the trend effect in the experimental units. 

And in experimental situation 3.3 different technicians may exhibit the trend 

effect in the experimental units. In general we can say that nested block designs 

may have trend-effect at sub-block or at block level over space and time. In such 

situation, it is required to have trend-free block designs. The information matrix 

(C-matrix) of a nested block design is in terms of parameters of sub-block. Thus a 

necessary and sufficient condition, for a nested block design to be trend-free 

design at sub-block level, is derived. Using this condition a catalogue of nested 

balanced incomplete block (NBIB) designs will be given. A nested block design 

with sub-block size 2 has a one to one correspondence with designs for diallel 

crosses. The question whether these optimal block designs for diallel crosses can 

be converted into trend-free designs is investigated. A catalogue of optimal proper 

block designs for diallel cross experiments that can be converted into trend-free 

designs is also prepared.  

  

We begin with some preliminaries of nested block designs. 

 

3.2. Nested block designs 

A nested block design is an arrangement of v treatments in a nested block design 

with b1 blocks, there being qj mutually exclusive sub-blocks nested within the j
th

 

block,  j = 1,2,…,b1 and b2 = 


1b

1j

jq be the total number of sub blocks. Let             

N  = (( nij )) be the v  b1  treatment-block incidence matrix, where nij is the 

number of times the i
th

 treatment appears in the j
th

 block, i = 1,2,…, v . N1 = r = ( 

r1, …,rv ) , 1N = k = ( k1, …, 
1bk ), where ri and kj denote the replication of the i

th
 

treatment and j
th 

block size respectively with nkr
1b

1j

j

v

1i

i 


, total number of 

observations. Let M = (( mij(j) )) denote v  b2 treatment-sub block incidence 

matrix, where mij`(j) denote the number of times the i
th

 treatment appears in the j th 

sub block nested within the j
th

 block, j = 1,…, qj. M1 = r and 1M = 1b1
h  = ( 

h(1), ,…, )(b1
h ), where  h(j) = ),,( )j(q)j(1 j

hh  . R = diag ( r1, …,rv ), K = diag ( k1, 

…, 
1bk ). Let Hj and H are the diagonal matrices whose diagonal elements are the 
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successive elements of hj and h and W is the b1  b2 block vs sub-block incidence 

matrix. The model under consideration can be written as 

          yij(j)u = j)u (ji(j)jji eηβτμ                                         (3.1) 

where yij`(j)u is the u
th 

observation obtained from the i
th

 treatment in the j th 
 sub 

block of the j
th 

block; u = 1, 2, …, mij`(j) ,   is the general mean, i  is the i
th 

 

treatment effect, j is the j
th 

block effect, ij (j) is the effect of the j`
th 

 sub block 

nested within the j
th

 block and  eij`(j)u is the uncorrelated errors with mean zero and 

common variance 2
. The model (3.1) can be written in matrix notations as 

 y 1 eΦD                                                        (3.2) 

where 

y = (y1, …, yn)  is an n1 observable random vector. 

),...,( b1
β , is the b11 vector of block effects. 

)η,ηη( )b(q),l(2),l((1 jbj
 η , is the b21 vector of sub-block effects nested within 

the block effects. 

Δ  is the nv observations vs treatments incidence matrix, 

D  is the nb1 observations vs blocks incidence matrix, 

Φ  is the nb2 observations vs sub-blocks nested within the blocks incidence 

matrix, 

e  is the n1 vector of random errors. 

 

The following relations can easily be seen 

RΔΔ  ,  ),r,,r(diag v1  r 1Δ , MΦΔ  , NDΔ  ,Φ1=h, Φ Φ= H,      

Φ D= W  KDD  , D1 = k, n11 .  

 

Without loss of generality, we assume that the observations are assumed to be 

arranged in the order of ( j, j). Therefore, we can write W =



jb

1j

jh and H 

=



1b

1j

jH . L =



1b

1j

jl . Then we have  

N=ML, W= LH, K = LHL = WL, n = 
11 bb H11 , k = 

jbH1L  and 

kWLWWH 1 .  

The reduced normal equation for estimating treatment contrasts is  

        MMHRC  1 .                                                                          (3.3) 

 

It can be seen that the coefficient matrix of the reduced normal equations for 

estimating the treatments effects is same as obtained if blocks are ignored and the 

design is analyzed as sub-blocks. Therefore, as far as the estimation of the 

treatment effects are considered it is the sub block structure that only matters. The 

properties of the C-matrix are completely determined by treatments versus sub-

blocks incidence matrix. Therefore, for obtaining the trend-free designs for nested 

block designs, it is proper to consider the trend effect at the sub-block level. 
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Further, if the experimenter is interested in estimating all elementary treatment 

contrasts with same precision, then we require nested block designs that are 

variance balanced. In the sequel we shall give some definitions and results on 

nested variance balanced block designs. 

 

Definition 3.1: A connected nested block design is said to be sub-block variance 

balanced if and only if all the non-zero eigenvalues of C matrrix are equal.  

 

The information matrix MMHRC  1 for a variance balanced design is given 

by 

)11I(C 
v

1
                                                                                   (3.4) 

where ]/tm[n
1)(v

1
(j)j

v

1i

b

1j

q

1j

2

(j)ji

1 j



  




  is unique non-zero eigen value of C 

matrix. A nested block design is said to be binary if 1    0m (j)ji or . For a binary 

nested sub-block balanced design 
1)(v

)b(n 1




 . The above definition considered 

the variance balanced property with respect to sub-blocks only. However, one 

may consider that the block classification ignoring sub-blocks also forms a 

variance balanced block design. Most of the available literature relates to the 

combinatorial aspects of the nested block designs that are variance balanced with 

respect to block classification as well as sub-block classification ignoring other 

classification. Such designs have been called as nested variance balanced block 

designs. A binary, proper and equireplicated nested variance balanced block 

design is the nested balanced incomplete block (NBIB) design that was 

introduced by Preece (1967). A NBIB design is defined as follows:  

 

Definition 3.2: A NBIB design with parameter (v, r, b1, k1, 1, b2, k2, 2, m) is an 

arrangement of v treatments, each replicated r times with two system of blocks 

such that: 

 

a) The second system is nested within the first, with each block of the first 

system containing exactly m blocks from the second system. 

b) Ignoring the second system leaves a balanced incomplete block (BIB) 

design with b1 blocks each of k1 units and with 1 concurrences and 

c) Ignoring the first system leaves a BIB design with b2 blocks each of k2 

units and, 2 concurrences. 

 

The following parametric relations hold good in case of a NBIB design 

1. vr = b1 k1 = m b1k2 =b2 k2 ;  

2. (v -1) 1  = (k1 -1)r  ;    (v-1)2 = (k2-1) r and 

3. (v-1)( 1 - m2) = (m – 1)r. 

 



 45 

The work on combinatorial aspects of NBIB designs was initiated by Preece 

(1967) who gave some trail and error solutions of NBIB designs and provided a 

list with r  15. Jimbo and Kuriki (1983) gave theorems in order to construct 

NBIB designs. Dey, Das and Banerjee (1986) have given some methods of 

construction of NBIB designs through initial solutions and resolvable BIB designs 

as special cases. Morgan, Preece and Rees (2000) presented an excellent review 

of NBIB designs and provided a catalogue of NBIB designs with v  16, r  30. 

Satpati (2001) has given an exhaustive review of nested balanced block, nested 

balanced incomplete block and nested partially balanced incomplete block 

designs alongwith generalization of methods of construction of NBIB designs.  

 

3.3 Trend-free nested balanced incomplete block designs  

In this section we obtain the necessary and sufficient condition for a nested 

balanced incomplete block to be trend-free block design when experimental units 

within the blocks are subject to trend effect over space or time.  

Consider the NBIB design d with parameter (v, r, b1, k1, 1, b2, k2, 2, m) under 

model 3.2 with trend terms added  

 eψZηφβDτΔ1y                                                            (3.5)  

E(e) = 0, D(e) = 2
 I.  

 

Let d be the connected block design under model (3.5) when ψ = 0. ψ is a p1 

vector of trend effects. We assume a common trend effect in all the blocks of 

degree p = (k2 – 1). The matrix Z' is matrix of coefficients given by matrix 

F1Z b


2
is of order n p and F  is k2p, matrix with columns consisting of 

equi-spaced normalized orthogonal polynomials. Also , , PIFF0F1   

and p2b IZZ    . Here problem is to assign treatments to plots within blocks so 

that the known properties of ordinary analysis of variance for treatments and for 

block sum of squares are preserved when variation due to the trend may be 

removed from error sum of squares in model (3.2). A formal definition of a trend-

free block design is given as: 

 

Definition 3.3:  A NBIB block design d is said to be a trend-free block design if 

and only if the additional reduction in sum of squares due to fitting of parameters 

of interest over and above fitting of other parameters, for the two models one 

containing the trend effect and the other without trend effects, is equal i.e.  

         ),,,/(R ψηβ   =    ),,/(R ηβ                                                             (3.6)                                

where ),,,/(R ψηβ  is the additional reduction in sum of squares due to fitting 

of ψηβ   and,, over and above fitting just  ηβ,, . Similarly ),,/(R ηβ  is the 

additional reduction in sum of squares due to fitting of   and  , ηβ over and above 

fitting just β, . 

Thus for deriving necessary and sufficient condition for a NBIB design to be 

trend-free design, we consider the following two situations: 
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Case I      When there is no trend effect i. e. ψ = 0 under model (3.5) 

The usual C-matrix (information matrix) is 

1222211 ])([ XXXXXIXC   , 

where  X1 = Δ  , X2 = ]        [   DΦ1    























KWk

WHh

kh

XX

n

22        and    















 

 

000

0H0

00

XX 1
22

0

)(  

2222 )( XXXX     =  ΦHΦ
1 .   

So the C-matrix simplifies to 

ΔΔΩΔΦHΦIΔC  
1

1
1 )(                                                                         (3.7) 

where, ΦHΦIΩ
11                                                                                    (3.8) 

 and ),,/(R ηβ =   yΔΩCΔΩy 111
 .                                                               (3.9) 

                                                                              

Case II      When trend effect is present i. e. ψ ≠ 0 under model (3.5)  

 The C-matrix in presence of trend effect is, 

1333312 ])([ XXXXXIXC    

where X3 = ]                [ ZD1   ,  

  )( 33XX    

























ZZDZZ1Z

DZKWk

ZWHh

Z1khn

  =   

























pI000

0KWk

0WHh

0kh

2b

n

  and 

 )( 33XX   =   



















 





pI000

0000

00H0

000

1
2b

0

. 

Thus the information matrix simplifies to  

ΔΔΩZZHIC  
2

1
2

1
2 )b(                                                       (3.10) 

where )b( 1
2

1
2 ZZHIΩ   ,                                                               (3.11)                                                                                 

 and ),,,/(R ψηβ =   yΔΩCΔΩy 222
                                                          (3.12)                                                                     

Now we have following result: 

Theorem 3.1:  A necessary and sufficient condition for a NBIB design d to be 

trend-free at sub-block level is .0Z                                                                             

Proof:  Necessary Part  For design d to be trend-free design, from (3.6), (3.9) 

and (3.12) we have 

  yΔΩCΔΩy 222
 =   yΔΩCΔΩy 111

         

or      ΔΩCΔΩ 222
 =   ΔΩCΔΩ 111

                                                                (3.13) 

Pre- and post multiplying both sides of (3.13) by   Δ and  respectively, we have 
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  ΔΩCΔΩ 222   =  
  ΔΩCΔΩ 111  

or  12111222 or         CCCCCCCC    

or    Δ )Ω-ΩΔ 2


1( = 0       or      ΔZZΔ 1
2b = 0. 

or   ZΔ   = 0.                                                                                                     (3.14) 

 

Sufficient Part To prove sufficiency, (3.14) is used with (3.8) and (3.11) to show 

that 21 CC  and  ΩΔΩ1 2 so the equality of (3.9) and (3.12) follows. 

 

The necessary and sufficient condition for a NBIB design to be trend-free designs 

at the sub-block level is given in (3.14). Here the matrix F1Z b


2
is of order 

n p,   p (k2 – 1) and F  is k2p, matrix with columns consisting of equi-spaced 

normalized orthogonal polynomials. This condition is obtained in terms of sub-

block because the C-matrix is in terms of sub-block. 

 

Similarly when the trend effect is at block level, we can say that the condition for 

a NBIB design to be trend-free at block level if *ZΔ  = 0.                               (3.15) 

 where ** 1
F1Z b
 is of order n q q=(k1 – 1), q>p and *F  is k1q, matrix with 

columns consisting of equi-spaced normalized orthogonal polynomials.    

Now to be clearer, we define a NBIB design to be trend-free as  

 

Definition 3.3: A NBIB design with parameter (v, r, b1, k1, 1, b2, k2, 2, m) is said 

to be completely trend-free design if it is trend-free at block and sub-block level. 

A NBIB design is said to be trend-free design at block level if it trend-free at 

block level only and it is said to be trend-free design at sub-block level if it is 

trend-free at sub-block level only. 

 

Here we give an example of a complete trend-free NBIB design and show how 

the condition (3.14) and (3.15) are satisfied. 

 

Example 3.1: Consider NBIB design with parameters v = 5, b1 = 5, b2 = 10, r = 4, 

k1 = 4,, k2 = 2, 1 = 3, 2 = 1 as [(1,4),(2,3)]; [(2,5),(3,4)]; [(3,1),(4,5)]; [(4,2),(5,1)]; 

[(5,3),(1,2)]. 

 

For this NBIB design the matricesΔ , Z  and *Z  of order 205, 201 and 203 

respectively are 
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  Δ      Z     
*Z   

1 0 0 0 0   -1   -3 +1 -1 

0 0 0 1 0   +1   -1 -1 +3 

0 1 0 0 0   -1   +1 -1 +1 

0 0 1 0 0   +1   +3 +1 -1 

0 1 0 0 0   -1   -3 +1 -1 

0 0 0 0 1   +1   -1 -1 +3 

0 0 1 0 0   -1   +1 -1 +1 

0 0 0 1 0   +1   +3 +1 -1 

0 0 1 0 0   -1   -3 +1 -1 

1 0 0 0 0   +1   -1 -1 +3 

0 0 0 1 0   1   +1 -1 +1 

0 0 0 0 1   +1   +3 +1 -1 

0 0 0 1 0   -1   -3 +1 -1 

0 1 0 0 0   +1   -1 -1 +3 

0 0 0 0 1   -1   +1 -1 +1 

1 0 0 0 0   +1   +3 +1 -1 

0 0 0 0 1   -1   -3 +1 -1 

0 0 1 0 0   +1   -1 -1 +3 

1 0 0 0 0   -1   +1 -1 +1 

0 1 0 0 0   +1   +3 +1 -1 

 

Here we see that ZΔ   = 0 and *ZΔ  = 0. Thus in the above design trend effect is 

completely eliminated.  

 

3.4 Construction of trend-free nested balanced incomplete block designs  

 

In this section we shall study some families of NBIB designs that can be 

converted into trend-free design. A catalogue of NBIB designs that can be 

converted into completely trend-free design, trend-free designs at sub-block 

levels, trend-free designs at block level and nearly linear trend-free designs will 

be given. 

 

Families of NBIB designs given by Dey, Das and Banerjee ((1986), Gupta and 

Kageyama (1994), Das and Gupta (1997), Das, Dey and Dean (1998), Parsad, 

Gupta and Srivastava (1999) and Parsad, Gupta and Gupta (2000) have been 

studied and families of NBIB designs (with parameters) that can be converted into 

trend-free NBIB designs at sub-block and block levels are given in Table 3.1. 
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Table 3.1: Families of NBIB designs that can be converted into trend-free 

NBIB designs at the block and at the sub-block level 

 

S. 

No. 

v b1 b2 r k1 k2 λ1 λ2 Remark 

1. 2t+1 2t+1 t(2t+1) 2t 2t 2 2t-1 1  

2. mt+1 t(mt+1) ut(mt+1) Mt 2u 2 m-1 1 m = 

2u, 

u ≥ 2 

3. 2t+1 t(2t+1) 2t(2t+1) 4t 4 2 6 2  

4. 4t+1 4t+1 2(4t+1) 4t 4t 2t 4t-1 2t-1  

5. 6t+1 t(6t+1) 2t(6t+1) 6t 6 3 5 2  

6. 9t+1 t(9t+1) 3t(9t+1) 9t 9 3 8 2  

7. 12t+

1 

t(12t+1

) 

4t(12t+1) 12t 12 3 11 2  

8. 6t+1 6t+1 2t(6t+1) 6t 6t 3 6t-1 2  

9. 4t-1 4t-1 2(4t-1) 2(2t-1) 4t-2 2t-1 4t-3 2t-2  

Note:    i)     t ≥ 1 for all the cases. 

            ii)     v is prime or prime power for all the cases except at Sl. No. 1. 

A general method of construction of NBIB (Parsad, Gupta and Srivastava (1999)) 

is given below: 

 

Suppose there exists a BIB designs with parameters  ,,,, krbv  and there also 

exists an NBIB designs with parameters *
2

*
1

*
2

*
1

**
2

*
1 ,,,,,,, kkrbbk . Then writing 

each of the block contents of BIB design as NBIB design, we get an NBIB design 

with 

parameters *
22

*
11

*
22

*
11

**
22

*
11 ,,,,,,,   kkkkrrrbbbbbbvv . 

Using this result we have families of NBIB that can be converted into trend-free 

NBIB designs at sub-block and block levels are given in Table 3.2. 

Table 3.2   Some other families of NBIB designs that can be converted into 

trend-free NBIB designs at the block and at the sub-block level 

Sr. 

No. 

b1 b2 r k1 k2 λ1 λ2 

1. b (2t+1) b t(2t+1) 2t r  2t 2 (2t-1)    
2. b t(mt+1) bmt(mt+1) mt r  M 2 (m-1)    
3. b t(2t+1) 2 b t(2t+1) 4t r  4 2 6  2  
4. b (4t+1) 2b (4t+1) 4t r  4t 2t (4t-1)  (2t-1)   
5. tb (6t+1) 2tb (6t+1) 6t r  6 3 5  2  
6. tb (9t+1) 3tb (9t+1) 9t r  9 3 8  2  
7. tb (12t+1) 4tb (12t+1) 12t r  12 3 11  2  
8. b (6t+1) 2tb (6t+1) 6t r  6t 3 (6t-1)  2  
9. b (4t-1) 2(4t-1) 2(2t-1) 

r  

4t-2 2t-1 (4t-3)  (2t-2)  

Note:  i) vv   for all the designs 

   ii)      t ≥ 1 for all the cases. 
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          iii) v is prime or prime power for all the cases except at Sr. No. 1. 

Now we have the following result: 

 

Result 3.1: Let there exist a nested BIB design with parameters 

21,   ,k ,k r, ,b ,b  v, 2121  that is linear trend-free with respect to sub blocks. Then 

this design can be converted in linear trend-free with respect to blocks if 

(i) either replication r is even, or 

(ii) for r odd, k2, and m both are odd, where k1 = m k2. 

 

Out of 68 NBIB designs given by Morgan, Preece and Rees (2001), 44 designs 

satisfy condition (i) and 4 designs satisfy condition (ii) 

 

Result 3.3:  NBIB designs   obtained by   the method given in Theorem 3.1, 

Kageyama, Philip and Banerjee (1995) with parameters 

),(),(2),)(1(,2,
2

, 21121  






 
 kkkkkvrbb

v
bvv  

),2(),2()( 2
2

1   kvkvk where  ,, krbv are the 

parameters of a symmetric BIB design, can be converted into complete trend-free 

NBIB designs if  v is odd and trend-free NBIB design at sub-block level, 

otherwise. 

 

3.5 Catalogue of trend-free Nested Balanced Incomplete Block Designs 

 A catalogue of NBIB designs with v ≤ 16, r ≤30 is prepared by Morgan, Preece 

and Rees (2000). In this catalogue, the NBIB design obtainable as copies of other 

NBIB designs have been excluded. Here we give a catalogue of above NBIB 

designs that can be converted into completely trend-free, linear trend-free at sub-

block level and nearly linear trend-free at sub-block level NBIB designs. 

Table 3.3.1   NBIB designs that can be converted into completely trend-free 

NBIB designs 

Sr. 

No. 

v b1 b2 r k1 k2 λ1 λ2 Source 

1. 5 5 10 4 4 2 3 1 MPR 1 

2. 7 7 21 6 6 2 5 1 MPR 2 

3. 7 7 14 6 6 3 5 2 MPR 3 

4. 7 21 42 12 4 2 6 2 MPR 19 

5. 9 9 36 8 8 2 7 1 MPR 8 

6. 9 9 18 8 8 4 7 3 MPR 6 

7. 9 18 36 8 4 2 3 1 MPR 5 

8. 10 10 30 9 9 3 8 2 MPR 12 

9. 10 30 60 18 6 3 10 4 MPR 47 

10. 11 11 55 10 10 2 9 1 MPR 14 

11. 11 55 110 20 4 2 6 2 MPR 49 

12. 11 55 165 30 6 2 15 3 MPR 66 

13. 11 55 110 30 6 3 15 6 MPR 67 

14. 11 11 22 10 10 5 9 4 MPR 15 
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Sr. 

No. 

v b1 b2 r k1 k2 λ1 λ2 Source 

15. 13 13 78 12 12 2 11 1 MPR 23 

16. 13 26 78 12 6 2 5 1 MPR 21 

17. 13 39 78 12 4 2 3 1 MPR 20 

18. 13 39 156 24 8 2 14 2 MPR 55 

19. 13 26 52 12 6 3 5 2 MPR 22 

20. 13 13 52 12 12 3 11 2 MPR 24 

21. 13 26 78 18 9 3 12 3 MPR 48 

22. 13 13 39 12 12 4 11 3 MPR 25 

23. 13 39 78 24 8 4 14 6 MPR 56 

24. 13 13 26 12 12 6 11 5 MPR 26 

25. 15 15 105 14 14 2 13 1 MPR 31 

26. 15 15 30 14 14 7 13 6 MPR 32 

27. 15 105 210 28 4 2 6 2 MPR 59 

28. 16 16 80 15 15 3 14 2 MPR 44 

29. 16 16 48 15 15 5 14 4 MPR 45 

30. 16 48 96 30 10 5 18 8 MPR 68 

 

 

Table 3.3.2   NBIB designs that can be converted into trend-free NBIB 

designs at the sub-block level 

 

Sr. 

No. 

v b1 b2 r k1 k2 λ1 λ2 Source 

1. 6 15 30 10 4 2 6 2 MPR 13 

2. 8 28 56 21 6 3 15 6 MPR 51 

3. 9 12 36 8 6 2 5 1 MPR 9 

4. 9 18 36 8 4 2 3 1 MPR 5 

5. 10 15 30 9 6 3 5 2 MPR 11 

6. 10 45 90 27 6 3 15 6 MPR 58 

7. 10 45 90 18 4 2 6 2 MPR 46 

8. 12 33 132 22 8 2 14 2 MPR 53  

9.  14 91 182 26 4 2 6 2 MPR 57 

10. 15 21 105 14 10 2 9 1 MPR 29 

11. 15 35 105 14 6 2 5 1 MPR 27 

12. 15 35 105 21 9 3 12 3 MPR 52 

13. 15 35 210 28 12 2 22 2 MPR 62 

14. 15 35 105 28 12 4 22 6 MPR 64 

15. 15 42 210 28 10 2 18 2 MPR 60 

16. 16 20 80 15 12 3 11 2 MPR 41 

17. 16 24 48 15 10 5 9 4 MPR 39 
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Table 3.3.3   NBIB designs that can be converted into linear trend-free NBIB 

designs at the sub-block level 

 

Sr. 

No. 

v b1 b2 r k1 k2 λ1 λ2 Source 

1. 9 18 36 8 4 2 3 1 MPR 5 

2. 12 33 66 22 8 4 14 6 MPR 54 

3. 15 21 42 14 10 5 9 4 MPR 30 

4. 15 35 70 14 6 3 5 2 MPR 28 

5. 15 35 140 28 12 3 22 4 MPR 63 

6. 15 35 105 28 12 4 22 6 MPR 64 

7. 15 35 70 28 12 6 22 10 MPR 65 

8. 15 42 84 28 10 5 18 8 MPR 61 

 

Table 3.3.4   NBIB designs that can be converted into nearly linear trend-free 

NBIB designs at the sub-block level 

 

Sr. No. v b1 b2 r k1 k2 λ1 λ2 Source 

1. 8 14 28 7 4 2 3 1 MPR 4 

2. 8 28 84 21 6 2 15 3 MPR 50 

3. 10 15 45 9 6 2 5 1 MPR 10 

4. 12 22 66 11 6 2 5 1 MPR 17 

5. 12 33 66 11 4 2 3 1 MPR16 

6. 12 22 44 11 6 3 5 2 MPR 18 

7. 16 20 120 15 12 2 11 1 MPR 40 

8. 16 20 40 15 12 6 11 5 MPR 43 

9. 16 24 120 15 10 2 9 1 MPR 38 

10. 16 30 120 15 8 2 7 1 MPR 36 

11. 16 40 120 15 6 2 5 1 MPR 34 

12. 16 40 80 15 6 2 5 1 MPR 35 

13. 16 60 120 15 4 2 3 1 MPR 33 

 

 

3.6 Designs for Diallel Cross Experiments 

The diallel cross is a type of mating design used to study the genetic properties of 

a set of inbred lines. Suppose there are p inbred lines and it is desired to  perform 

a diallel  cross  experiment  involving p(p-1)/2 cross of type (i  j) for i < j, i, j = 

1,2, ... , p. This is a type IV mating design of Griffing.  

 

The problem of generating optimal mating designs for experiments with diallel 

crosses has been recently investigated by several authors [see e.g., Gupta and 

Kageyama (1994), Dey and Midha (1996), Mukerjee (1997), Das, Dey and Dean 

(1998), Parsad, Gupta and Srivastava (1999), Chai and Mukerjee (1999)].  These 

authors used nested balanced incomplete block (NBIB) designs of Preece (1967) 

for this purpose.   
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Similar to block designs, experimental units in block design for a diallel cross 

experiments may be subject to trend-effect over space or time.  So condition for a 

block design for a diallel cross experiments to be trend-free block design for a 

diallel cross experiment has been obtained. Further, a catalogue of trend-free 

block design for a diallel cross experiments will be prepared.  

 

3.6.1 Necessary and Sufficient Condition 

Let d be a block design for a diallel cross experiments of the type IV involving p-

inbred lines, b blocks each of size k1.  This means that there are k1 crosses and  2k2  

lines, respectively in each block. It may be mentioned here that the designs for 

diallel crosses have two types of block sizes, 
@
1k , the block sizes with respect to 

crosses and @

2k , the block sizes with respect to the lines and @

1

@

2 k2k  .  It, 

therefore, follows that the block designs for diallel crosses may also be viewed as 

nested block designs with sub blocks of size 2 each and the pair of treatments in 

each sub block form the crosses, the treatments being the lines.  Further, let 

dlr denote the number of times the l
th

 cross appears in d, l  = 1, 2,.., p(p-1)/2 and 

similarly dis  denotes the number of times the i
th

 line occurs in the crosses in the 

whole design d, i = 1,2,…,p.  Then it is easy to see that nkr
b

1j
j

2/)1p(p

1l
dl  







, the 

total number of observations, and 



b

1j
j

p

1i
di k2s , (because in every cross there 

are two lines). 

For the data obtained from the design d, we postulate the model  

 

eg1Y   21n                                         (3.16) 

where Y is the nx1 vector of observed responses,  is a general mean effect, 1n 

denotes an n - component column vector of all ones, g and  are vectors of p gca 

effects and b block effects, respectively.   1 and 2   are the corresponding n x p 

and n x b design matrices respectively, i.e., the (s, t)
th

 element of 1  is 1 if the s
th

 

observation pertains to the t
th

 line and is zero otherwise.  Similarly (s, t)
th

 

element of 2  is 1 if the s
th

 observation comes from the t
th 

block and is zero 

otherwise. e is the random error which follows a Nn  n
2  , I0  . 

 

In the model (3.16) we have not included the specific combining ability effects. 

Under this model, it can be shown that the coefficient matrix for reduced normal 

equations for estimating linear functions of gca effects using a design d is 

 d
1

dd  NKNGC dd           
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where dG  = 11       didiidij21idi sg  n   g  ,, dN and for 

idig ,ii  is the number of times the cross  ixi   appears in d; dijn  is the number 

of times line i occurs in the block j of d. 

 

A design d is said to be connected if and only if Rank   ,1pd C  or 

equivalently, if and only if all elementary contrasts among the gca effects are 

estimable using d.  A connected design d is variance balanced if and only if all the 

diagonal elements of the matrix Cd are equal and all the off diagonal elements are 

also equal. In other words, the matrix Cd is completely symmetric.  

 

For given positive integers p, b, k, n, D0 ),,,( nkbp  will denote the class of all 

connected block designs d with p lines, b blocks each of size k and n experimental 

units.  On the similar lines, as given in Chapter 2, the condition for a block design 

for a diallel cross experiment to be trend-free a block design for a diallel cross 

experiment is given below: 

 

Theorem 3.1: A necessary and sufficient condition for a connected block design 

for diallel cross experiments to be trend-free block design for diallel cross 

experiments is .1 0Z                                                                                   (3.17) 

 

Further, if the NBIB design with parameters v = p, b1, k1, b2  = b1k1 / 2, k2 = 2 is 

such that 2 = 1 or equivalently b1k1 = p(p – 1), then the optimal design d* for 

diallel crosses derived from this design has each cross replicated just once and 

hence uses the minimal number of experimental units.  Keeping in view the 

above, we can say that the existence of a NBIB design d with parameters v = p, b1 

= b, b2 = bk; k1  = 2k, k2 = 2 implies the existence of a universally optimal 

incomplete block design d* for diallel crosses. Thus by using the   families of 

NBIB designs that can be converted into trend-free NBIB designs (Table 3.1) and 

result in Theorem 3.1, a catalogue of optimal block designs for diallel cross 

experiments that can be converted into trend-free optimal block designs for diallel 

cross experiments with 30p   is given in Table 3.4. First we consider an optimal 

block designs for diallel cross experiments and illustrate how the condition (3.17) 

holds good. 

 

Example 3.2: An optimal design for diallel cross experiments with parameters 

p=7, b=7, k =3 can be constructed into trend-free block design and is shown 

below: 

      

 [1x6, 2x5, 3x4];  [2x7,3x6, 4x5];  [1x3,4x7, 5x6]; [2x4, 1x5, 6x7]; 

 [3x5, 2x6 1x7];     [4x6, 3x7, 1x2];  [5x7,1x4, 2x3].  

We have design matrix and matrix of orthogonal polynomials for linear and 

quadratic trend as 
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1′Δ      Z   

1 2 3 4 5 6 7  L Q 

1 0 0 0 0 1 0  -1 1 

0 1 0 0 1 0 0  0 -2 

0 0 1 1 0 0 0  1 1 

0 1 0 0 0 0 1  -1 1 

0 0 1 0 0 1 0  0 -2 

0 0 0 1 1 0 0  1 1 

1 0 1 0 0 0 0  -1 1 

0 0 0 1 0 0 1  0 -2 

0 0 0 0 1 1 0  1 1 

0 1 0 1 0 0 0  -1 1 

1 0 0 0 1 0 0  0 -2 

0 0 0 0 0 1 1  1 1 

0 0 1 0 1 0 0  -1 1 

0 1 0 0 0 1 0  0 -2 

1 0 0 0 0 0 1  1 1 

0 0 0 1 0 1 0  -1 1 

0 0 1 0 0 0 1  0 -2 

1 1 0 0 0 0 0  1 1 

0 0 0 0 1 0 1  -1 1 

1 0 0 1 0 0 0  0 -2 

0 1 1 0 0 0 0  1 1 

 

Here the condition for a block design for diallel cross experiments to be trend-free 

block design is 0Z 1 is satisfied. 

 

3.7 Catalogue of trend-free Universally Optimal Binary Balanced Block 

Designs for Diallel Cross Experiments  
 

A catalogue of universally optimal binary balanced block designs for diallel cross 

Experiments with p ≤ 30 that can be converted into trend-free optimal binary 

balanced block designs for diallel cross experiments is given in Table 3.4below:  

 

Table 3.4: Universally Optimal Binary Balanced Block Designs for Diallel 

Cross Experiments that can be converted into trend-free block designs 

 

Sr. No. p b k n Method of construction 

1 4 3 2 6 Series 2: Gupta and Kageyama (1994) 

2
a,b 

5 5 2 10 Family 1 : Parsad, Gupta and Srivastava(1999) 

3 5 10 2 20 Family 4 : Das, Dey and Dean (1998) 

4 6 5 3 15 Series 2 : Gupta and Kageyama(1994) 

5 6 30 2 60 Family 2 : Parsad, Gupta and Srivastava(1999) 
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Sr. No. p b k n Method of construction 
6

a,c 
7 7 3 21 Family 1 : Parsad, Gupta and Srivastava(1999) 

7 8 7 4 28 Series 2 : Gupta and Kageyama(1994) 

8 8 14 2 28 Family 3: Das, Dey and Dean (1998) 

9 8 56 3 168 Family 2 : Parsad, Gupta and Srivastava(1999) 

10
a 

9 9 4 36 Family 1 : Parsad, Gupta and Srivastava(1999) 

11
b 

12
d 

9 

9 

18 

36 

2 

2 

36 

72 

Family 1 : Parsad, Gupta and Srivastava(1999) 

Family 4 : Das, Dey and Dean (1998) 

13 10 9 5 45 Series 2 : Gupta and Kageyama(1994) 

14
 

10 90 4 360 Family 2 : Parsad, Gupta and Srivastava(1999) 

15
a 

11 11 5 55 Family 1 : Parsad, Gupta and Srivastava(1999) 

16
d 

11 55 2 110 Family 2 : Parsad, Gupta and Srivastava(1999) 

17 12 11 6 66 Series 2 : Gupta and Kageyama(1994) 

18
 

12 132 5 660 Family 2 : Parsad, Gupta and Srivastava(1999) 

19
a 

13 13 6 78 Family 1 : Parsad, Gupta and Srivastava(1999) 

20
c 

13 26 3 78 Family 1 : Parsad, Gupta and Srivastava(1999) 

21
b 

13 39 2 78 Family 1 : Parsad, Gupta and Srivastava(1999) 

22
d 

13 78 2 156 Family 4 : Das, Dey and Dean (1998) 

23 13 143 6 858 Family 2 : Parsad, Gupta and Srivastava(1999) 

24 14 13 7 91 Series 2 : Gupta and Kageyama(1994) 

25 14 182 3 546 Family 2 : Parsad, Gupta and Srivastava(1999) 

26 15 15 7 105 Series 1 : Gupta and Kageyama (1994) 

27 15 105 2 210 Family 2: Parsad, Gupta and Srivastava (1999) 

28 16 15 8 120 Series 2 : Gupta and Kageyama(1994) 

29
a 

17 17 8 136 Family 1 : Parsad, Gupta and Srivastava(1999) 

30 17 34 4 136 Family 1 : Parsad, Gupta and Srivastava(1999) 

31
b 

17 68 2 136 Family 1 : Parsad, Gupta and Srivastava(1999) 

32
d 

17 136 2 272 Family 4 : Das, Dey and Dean (1998) 

33 18 17 9 153 Series 2 : Gupta and Kageyama(1994) 

34 19 95 2 190 Family 3 : Das, Dey and Dean (1998) 

35
d 

19 171 2 342 Family 2 : Parsad, Gupta and Srivastava(1999) 

36 19 171 4 684 Family 2 : Parsad, Gupta and Srivastava(1999) 

37 20 19 10 190 Series 2 : Gupta and Kageyama(1994) 

38 20 95 2 190 Family 3: Das, Dey and Dean (1998) 

39 20 380 2 760 Family 2 : Parsad, Gupta and Srivastava(1999) 

40 21 21 10 210 Series 1 : Gupta and Kageyama (1994) 

41 21 105 2 210 Family 2 : Parsad, Gupta and Srivastava(1999) 

42 22 154 3 462 Family 2 : Parsad, Gupta and Srivastava(1999) 

43
a 

23 23 11 253 Family 1 : Parsad, Gupta and Srivastava(1999) 

44
d 

23 253 2 506 Family 4 : Das, Dey and Dean (1998) 

45 24 23 12 276 Series 2 : Gupta and Kageyama(1994) 

46
a 

25 25 12 300 Family 1 : Parsad, Gupta and Srivastava(1999) 

47 

48 

49
c 

25 

25 

25 

50 

75 

100 

6 

4 

3 

300 

300 

300 

Family 1 : Parsad, Gupta and Srivastava(1999) 

Family 1 : Parsad, Gupta and Srivastava(1999) 

Family 1 : Parsad, Gupta and Srivastava(1999) 

50
b 

25 150 2 300 Family 1 : Parsad, Gupta and Srivastava(1999) 

51 25 225 4 900 Family 2 : Parsad, Gupta and Srivastava(1999) 

52 25 300 2 600 Family 4 : Das, Dey and Dean (1998) 

53 26 25 13 325 Series 2 : Gupta and Kageyama(1994) 

54
a 

27 27 13 351 Family 1 : Parsad, Gupta and Srivastava(1999) 

55
d 

27 351 2 702 Family 4 : Das, Dey and Dean (1998) 
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Sr. No. p b k n Method of construction 
56 28 27 14 378 Series 2 : Gupta and Kageyama(1994) 

57 28 252 3 756 Family 2 : Parsad, Gupta and Srivastava(1999) 

58
a 

29 29 14 406 Family 1 : Parsad, Gupta and Srivastava(1999) 

59 29 58 7 406 Family 1 : Parsad, Gupta and Srivastava(1999) 

60 29 203 2 406 Family 1 : Parsad, Gupta and Srivastava(1999) 

61 29 406 2 812 Family 4 : Das, Dey and Dean (1998) 

62 30 29 15 435 Series 2 : Gupta and Kageyama(1994) 
 

a 
denotes that the design can also be obtained from Series 1: Gupta and Kageyama (1994) 

b
 denotes that the design can also be obtained from Family 1: Das, Dey and Dean (1998) 

c 
denotes that the design can also be obtained from Family 2: Das, Dey and Dean (1998) 

d
 denotes that the design can also be obtained from Family 4: Das, Dey and Dean (1998) 
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Discussion 

 
Trend-free block designs are quite useful in the experimental situations that may 

have trend effect in the experimental units. As mentioned earlier such situations 

may occur in Green house experiments where the source of heat is located on 

sides of the house and the experimental units (pots) are kept in lines; in poultry 

experiments where the source of heat is at the centre of the shed and chicks of 

early age are in the cages; in animal experiments where littermates (animals born 

in the same litter) are experimental units within a block i.e. litters are blocks. 

Other such experiments are orchard and vineyard experiments on undulating 

topography, experiments in which response variable of interest is affected by 

slowly migrating insects entering the area from one side, laboratory experiments 

where the responses to the experimental units may be affected within time periods 

by instrument drift or analyst fatigue, etc. 

 

A question is generally raised on the utility of trend-free block designs due to lack 

of randomization. It is not exactly true although randomization is restricted to 

some extent. Now we illustrate two examples, one each for completely 

randomized design and balanced incomplete block design, to see that extent to 

which randomization is restricted in trend-free design? 

 

Suppose we have 2 treatments, each replicated 4 times in an experimental design 

of 8 units and the treatments are allotted to plots in the following order 

 

T2 T1 T1 T2 T1 T2 T2 T1 

 

The same experimental material can be arranged in the following manner 

 

T1 T2 T1 T2 T2 T1 T2 T1 

 

These both the arrangements are trend-free for linear effect. Other arrangements 

can also be made by interchanging the positions of the treatments. 

 

In block designs, if we have a trend-free block design, the randomization can be 

done among the blocks as well as within first block i e. if we change the position 

of treatments in the first block we get other arrangements by permuting the 

treatments in other blocks accordingly. Therefore, one can generate all possible 

layouts that are trend-free and select one among them randomly for 

experimentation. 

 

Consider the example of trend-free block design, given in example 2.1 with 

parameters v = 5, b = 5, r = 4, k = 4 and λ = 3 and blocks contents as: 
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Block 1 4 2 3 1 

Block 2 3 1 4 5 

Block 3 2 3 5 4 

Block 4 5 4 1 2 

Block 5 1 5 2 3 

 

Another trend-free design can easily be obtained by permuting the treatments 

within the first block and permute the treatments in other blocks accordingly. 

Hence the trend-free design is 

 

Block 1 3 2 1 4 

Block 2 1 3 4 5 

Block 3 5 4 3 2 

Block 4 4 5 2 1 

Block 5 2 1 5 3 

 

 Similarly other trend-free designs can be constructed as discussed above.  

 

It is of interest to highlight one point here that as we impose restriction on the 

designs, the randomization is restricted step by step. For example, in the designs 

with zero-way of elimination of heterogeneity, randomization is maximum; in the 

designs with one-way of elimination of heterogeneity, randomization is reduced; 

in the designs with two-way of elimination of heterogeneity, randomization is 

again reduced to the significant extent e g. in Latin square design, there is no 

randomization within the row or within the column. In this case the randomization 

is at the selection of complete Latin square design among the available Latin 

square designs.    

 

Thus we see that as the randomization is restricted in Latin square design, the 

randomization is restricted in trend-free designs in the similar way. 

  

Now the question arises, to get a layout for trend-free design. For this, the 

procedures given in the text can be utilized. So, one needs computation algorithm 

for constricting the trend-free/ linear trend-free designs from the available design 

with given parameters and layout. However, efforts in this direction have been 

initiated and will be taken up in future study. Regarding the developing the 

software, efforts have been started. 

 

Chai (2002) has shown a very good application of trend-free block designs in 

bioassays. He established a link between trend-free block designs and block 

designs for parallel line assays. Using this relation he obtained necessary and 

sufficient condition for the existence of a  -design with unequal block sizes and 

gave a method of construction of  -designs. The application of the designs 

obtained in the present investigation in obtaining efficient designs for bioassays 

needs further investigation. 
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SUMMARY 

 
The data generated from designed experiments are used to draw valid inferences 

about the population. Heterogeneity in the experimental material is the major 

source of variability to be reckoned within the statistical designing of scientific 

experiments. Occasionally, one can find a certain factor (called nuisance factor) 

that though not of interest to the experimenter, does contribute significantly to the 

variability in the experimental material. Various levels of this factor are used for 

blocking. In experimental situations with only one nuisance factor, block designs 

are used. These designs are useful in controlling the heterogeneity of the 

experimental units and it is ascribed to between blocks variability. Much of the 

literature is available on block designs viz. randomized complete block designs, 

balanced incomplete block designs, partially incomplete block designs, variance 

balanced block designs, etc. But many times experimental situations arise in 

which the response is dependent on the spatial or temporal position of the 

experimental units within a block and thus trend in the experimental units become 

another important nuisance factor.  In such situations, a common polynomial 

trend of a specified degree over units within experimental units may be 

appropriately assumed. One way to account for the presence of trends is to use the 

analysis of covariance, treating trend values as covariates. However, one may 

think of suitable designs, in which treatment effects are orthogonal to trend 

effects, in the sense that analysis of the design could be done in usual manner, as 

if no trend effects were present. Such designs may be called trend-free designs. 

When experimental units within blocks, in block designs, exhibit a trend we use 

trend-free block designs.  The meaning of trend-free block design is to assign 

treatments to plots within blocks so that the known properties of ordinary analysis 

of variance for treatment and block sum of squares are preserved and variation 

due to trend effect is removed from the error sum of square.  Such an arrangement 

is called as trend-free block design.  
 

The work on trend-free block designs in proper block settings under 

homoscedastic model is available in the literature. There, however do occur 

experimental situations where block designs with unequal block sizes and/ or with 

unequal replications are to be used. For example, non-proper block design setting 

occurs while experimenting with natural blocks such as littermates (animal 

experiments), trusses per blossom (horticultural experiments), family sizes as 

blocks (psychological experiments), batches of test material (industrial 

experiments), etc. Experimenting on hilly areas, wastelands or salinity in field 

experiments may also force the experimenter to have blocks of unequal sizes.  It 

is also known that in the class of binary block designs with unequal replications 

under non-proper settings, binary variance balanced block (BBB) designs are the 

most efficient designs for estimating all possible elementary contrasts among 

treatments. In variance balanced block designs, generally it is assumed that intra-

block variances are constant. Through empirical investigations, however, it has 

been shown that intra-block variances are proportional to non-negative real power 

of block sizes. 
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However, the work on trend-free block designs for heteroscedastic model under 

non-proper block design settings and for nested balanced incomplete block 

designs could not be traced from the available literature. This investigation, 

therefore, deals with the trend-free block designs under heteroscedastic set up 

when intra-block variances are proportional to non-negative real power of block 

sizes. Further, there do occur experimental situations in which one or more factors 

are nested within the blocking factor. In such situations nested block designs and 

nested balanced incomplete block designs are quite useful. Such designs may also 

have trend-effect at sub block or block level. Similar to block designs, 

experimental units in block design for a diallel cross experiments may be subject 

to trend-effect over space or time. Thus, trend-free nested balanced incomplete 

block designs and trend-free block design for a diallel cross experiments have 

been studied. Many times it may not be possible to convert every block design to 

trend-free block design, we go for linear trend-free design because using linear 

trend-free designs eliminates much of the trend. Sometimes, it is not possible to 

make the design linear trend-free or trend-free and this provides a motivation to 

go for nearly linear trend-free designs. Thus nearly linear trend-free designs have 

also been investigated. 

 

In Chapter I, various experimental situations have been described in which the 

trend may exist in non-proper block designs and NBIB designs. Some examples 

have been illustrated for better understanding of trend effect in complete 

randomized, randomized block and in factorial designs. 

  

In Chapter II, a necessary and sufficient condition for a block design to be trend-

free block design under heteroscedastic set up when intra-block variances are 

proportional to non-negative real power of block sizes is obtained. Using the 

condition catalogues of trend-free BBB designs of Type , both under 

homoscedastic ( = 0) and heteroscedastic model (for  = 1, 2, 3), is prepared. 

Heteroscedasticity of the model increases as value of  increases. Catalogues of 

trend-free balanced incomplete block (BIB) designs with replications, r ≤ 20 and 

two associate class partially balanced incomplete block (PBIB) designs are also 

prepared. Sometimes it may not be possible to convert every design to trend-free 

design then linear trend-free designs are given. Further, nearly linear trend-free 

designs are identified when it is not possible to obtain even linear trend-free 

designs. 

 

Chapter III deals with nested balanced incomplete block (NBIB) designs and 

block design for a diallel cross experiments. A necessary and sufficient condition 

for a NBIB design to be trend-free block design at sub-block level is obtained. 

Catalogues of trend-free/ linear trend-free NBIB designs at sub-block levels, of 

NBIB designs given by given by Morgan, Preece and Rees (2001), are prepared. 

NBIB designs with sub-block size 2 and designs for complete diallel cross 

experiments have a one-to-one correspondence. Utilizing this relationship a 

catalogue of trend-free optimal block designs for a diallel cross experiments with 

number of inbred lines, p ≤30 is prepared. 
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