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A]:‘-S'.['RAC’r Nested balanced treatment incomplete block (NBTIB) designs
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efﬁcxent NBTIB designs with v < 16 and » < 30. ’
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1. Introduction

A nested block design is a block design with two systems of blocks in
which the second system of blocks is nested within the first system. These
designs are useful for experimental situations in which a nuisance factor is

- nested within a blocking factor. For examp]e consider a field experiment on

some; crop conducted using a block design in ‘which harvesting is done bleck-

" wise.. The harvested samples are to be analyzed for their contents on quality

indicators such as protein content, etc. in the laboratory by different technicians
at the same time ar by a technician over different periods of time, The variaticn

- arising due to\tecluﬁc‘ians or due to different time periods within each block may
..be controlled "by another system of blocks called sub-blocks that are nested
"‘within blocks. For such situations, Preece [18] introduced nested balanced
. incomplete block (NBIB) designs. Jimbo and Kuriki [10]; Dey, Das and
" . Banerjee [4]; Parsad, Gupta and Srivastava [16] and Morgan, Preece and Rees

'[14] gave several n_mhods ‘of construction of NBIB designs. Morgan, Preece and
Rees [14] also presented an exhaustive catalogue of NBIB designs with v <16
and .»£30. NBIB designs are variance balanced in the sense that each

-~elementary tréatment contrast is estimated with the $ame variance. A NBIB
© - design may not exist for a particular parameter set; even if it exists, it may

require a large number of replications - which the experimenter may not be able
- to afford. To deal with such situations, Homel and Robinson [8] introduced
nested partially balanced incomplete block (NPBIB) designs. Several metheds
of construction of NPBIB designs are available in the literature {sec e.g.
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a '1‘_2]; Kagevama, Philip and Baneriee [11]; Philip,
L17]; Saha, Dey and Midha [19] and S';i!pati and Parsae;
,d [20] presented catalogues of two and three associate
for —'.=530and r<15. The nested block (NBIB and
useful for expm.'i mental situations where the experimenter is
o Hmve.":i;:!! t;‘)]c;:\;selblg paired compari§ons with as high a precision as
ssib SV CYER Meré do oceur experimental situations where the
expanmc.n‘ier !5 Interested in comparing several new treatments (called test
reatments) with existing practice (a control treatment) with high precision and

e comparisons among the test treatments are not of much importance. In the -

}_12'1':'::'1.‘.| bjock dgsigm setting, a lot of literature is available for obtaining efficient
designs for such experimental situations; details were provided by Bech-hcsfe‘
and Tamhane [3]; Hedayat, Jacroux and ‘Majumdar [6]: Parsad, Gupta ;
Pr?s,adl [15]; Majumdar [12] and Gupta and Parsad [5]. Nc; work seems }zo han
been done for obtaining nested block designs for making comparisons betwirte
test 1Tf:atments and a control treatment. Therefore. in this invc:ticratif_;n we d:?
‘wnh the combinatorial aspects of nested block desizns for rrdk.ini o con
ociween fest treatments and a control. . SR
) I:' is well known that for a nested block design set up, the coefficient matrix
ot reduced normal equations for estimating the line‘;func'.io»ns.of 1reatme:11t
obtained if the blocks are ignored in the analysis. For
¥ re.fer to Morgan [14] and Satpati and Parsad [20]).
:o;iﬁcncm matrix of reduced normal equations are
Gy the treatments vs sub-blocks incidence matrix, From
iz amangement of freatments in blocks is of no
sted balanced treatment sub-bock (NBTSB) design
nents vs control treatment contrasts with the same
sonstructed if there exists a balanced treatment block
2 and Majumdar [9]. To be clearer, consider a BTB
ntrol arranged in b, = gb) blocks of size £, each. Let

1 of the (est treatments

fT2c1s is the same

be replicated r times and the contro] treatment be
ey L o L
group o; blocks in & sets such that there are g blocks of

et. Take the sets as blocks and the hlocks of the original
ve procedure vields a NBTSB desien in which v

control reatment are arranged in | blocks of size & each
th Bing g sub-biochs of size £ = f./ ithi b bl The other
hfg withi - block. The other
~ i"‘
peramztlers  of the WRTSB  des - 5
I * e NpBISB design are A3 = D Nyprnap
: LTy
i'=]
b
- ‘=19 N s ?\..,. - 7
oflisge Vi=l| where ngeis the
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number of times treatment. ¢ occurs in sub-block ;' ; r=0,1,...,v;
J'=1,2,...,b5. However, in this arrangement, the characterization of the
coefficient matrix of the reduced normal equations for estimating treatment
effects using the block classification ignoring sub-blocks is of no consequence.
The property of variance balance may also be desirable on the block
classification ignoring sub-blocks, particularly when inference is required on the
characters that are observed on the blocks. More details of such experimental
situations were given in Satpati and Parsad [20]. Therefore, in this investigation
we concentrate on combinatorial aspects of nested block designs in which the
block classification ignoring sub-blocks leaves a BTB design and the sub-block
classification also forms a BTB design. Such designs have been termed nested
balanced treatment block (NBTB) designs. An NBTB design will be called a
pested balanced treatment incomplete block (NBTIB) design if block - ..
classifications as well as sub-block classifications ignoring the other
classification give a balanced treatment incomplete block (BTIB) design. The
parameters of the NBTB designs will be denoted by v, by, by, 7, ro, ki, ka2, A1, Ao,
Az, Zan, Where r and ry are respectively the replications of the test treatments and

b
control treatment and 4= Z Moylaey 3 Vi =i =12, wand
N,
“ j=l

Aip = i"an;”zu Vi=1,2,...,v, where n;is the number of times treatment ¢
1=l .
oceursinblock j; t=0,1,...,v; j=1,2,...,8,.

" Some methods of construction of NBTB designs are given in Section 2.
Once the designs are obtained, the next question arises “How efficient are these
designs with respect to treatment contrasts of interest?”. For studying the
efficiencies of these designs, we make use of the results of A-optimality of
general block designs for comparing test treatments with a control. The block
[sub-block] classification is ignored for studying the efficiency of the design
with the sub-block [block] classification. For this purpose, we consider D(v, by,
by, ky, k) as the class of all connected nested block designs in which v tests and
a control are arranged in b; blocks of size kjeach, there being &/ k5 sub-
blocks of size k; nested within each block. We make use of the sufficient
condition for establishing the A-optimality of BTB designs obtained by Jacroux
and Majumdar [9]. The sufficient condition gives the lower bound to the trace of
the variance-covariance matrix of all the test treatments vs control treatment
contrasts. A design that attains the lower bound is termed A-optimal. The
condition is given in result 1.1. '

Result 1.1: An NBTB design is A-optimal in the class of all designs with the
same values of v, &y, by, &y, ko if '
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. [z' is not p.ossi'ble to give 2 general method of construction which yields a )
A-optimal design in D (v, by, b, &, k2) by satisfying the condition givenyin (1 1)n
Henc_c, we adopt the indirect approach of using the A-efﬁ;:ienc crit -y
consfdered. by Stufken [21], to obtain A-optimal NBTB design); Theem;:,
3‘ﬂc1fznc3' is the ratio of the A-value of a hypothetical A-optimal desi. wh ;
criterion value given in (1.1) is minimum for makjné test treatmentgsrico :rsl
treatment c?.mpaﬁsons in a given class of designs, to t;lC ,b;—'value of the dcn' -
y-ho;e A-efficiency is to be obtained in the same class of designs. Here A-\'Z;tme
';s 1‘na '.ru:rc_ the varianca-covariance matrix of the estimated Ereal.ment
-,r'nrf‘;::.ts of inte A-efficiencies for the block designs are obtained by takin
p=1in Pres;‘i?t (1.1) and by taking h = 2 to get the same for the s:{b-blocﬁ
desions. Further 2 desi el 1
i 16 & ssizn {eiher block or sub-block design or boih) s A-
T the ciency is 1.0000. A-efficiencies of the designs for both
otk sl sul-blox ¢ structures obtained through the methods of construction
given is Bection' 2 ape computed and presented in the catalogues of NBTB
;:;:[. with v S 1 d ri.‘aU in the appendix. In these catalogues, E; [E;]
notes fes of t‘he block [sub-block] design ignoring the other
1y be noted here that the term A-efficiency used here is
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Example 2.1: An NBIB design with parameters v = 7,5, =7.b,=14,r =06,
=6k =3 4=5 Jp =2, q =2 exists and is obtained by developing the

4 initial block
1 [(1,2,4); (6,5, 3)) mod 7.
. On adding control treatment 0 once to each of the sub-blocks, we get an

5 ) NBTIB design with parameters v =7, b =7,b=14,r=6,1= 14, k=8, k=4,
=5 40=12, =2, A= 6. The design is A-optimal for both block and sub-

DI

_ ". il " block structures.

A total of 68 NBTIB designs with v < 16 and » < 30 obtainable from
Method 2.1 along with their A-cfficiencies are given in Tzble 1. All the designs
in Table 1 have A-efficiencies greater than 0.9000 for both the block and sub-
block designs. 9 designs are A-optimal for both the block structures. The total
number of A-optimal designs with sub-block structure is 14. 13 sub-block
designs and 17 block designs have A-efficiencies greater than 0.9900, 23 sub-

~ block designs and 19 block designs have A-efficiencies greater than 0.9500 but
1. - '-\]ess than or equal to 0.9900 and 18 sub-block designs and 23 block designs have
‘A-efficiencies greater than 0.9000 but less than or equal to 0.9500.

Sl g
b P

Method 2.2: Suppose there exists a BTTB design with parameters Vo s l'c:l,

1. K,A', Zq, where the symbols have their usual meaning. For details on BTIB
: ’ designs one may refer to Majumdar [12] and Gupta and Parsad [S]. Let there
i i also exist an NB(I)B design with parameters ', &%, ba", 1%, ke, kst A% At
f o Then writing each of the block contents of the BTIB design as an NB(I)B

design, we get an NBTIB design with parameters v = V', by = b'by*, by =567, r

1L = r'l'*, h = ro'l", k] = kl‘a kz = k:*, lll = /1:/24*, 7\10 =;‘:"U /2.)*, ;i.z: }\,;\.2*, ;‘ZU
19 =32 A*.
i ¢ )
1 Example 2.2 Consider a BTIB design with parameters v =9, =12,7 =4,
e Frg =12,k =4, 4 =1, A4 =4 with block contents (column wise) as
1 4 3 1 4 7 1 2 3 3 2 1
4 5 6 2 5 8 5 6 B 5 -4 6
7 6 9 3 6 9 9 7 g 7 9 8
: 0 0 0 0 0 0 0 0 0 0 0 0

There also exists an NBB design with parameters vi =k =4, b*=3
i by*=6,r*=3,k*=4, L*=2,4"*=3,%%=1 with block contents as
: [(A, B); (C,D)]; [(A,C); (B, D)); [(A, D); (B, C)]
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36, bo=T2r=12,10=36, ki =4, k=2, 24 =3,

o= 1. - = 4 with A-efficiencies 1.0000 and 0.9992 for block and

. design. raspectively.

fairiy gf:n?ml method of construction and the existence of any
1ens an ‘I\‘BIB design satisfying the conditions mentioned in
>, implizs the existence of an NBTIB design.

followinz families of NBTIB designs. s
: Existence of a BTIB design with parameters v, &', r, 1o, K =
d an NBIB design with parameters v =21+ 1 = b, b, = t(2t + 1),
+ - 20, & = 2, k=2, 2 =2t -1, 2 = 1 implies the existence of an NBTIB
c_::’_wg1‘1 with parameters v =V, by = b'(2t+1), by = tb'(2t +1), r =2r°t, ro =2tro', ky -
=l R By /1.1 = /..(:f — 1), ?\]Q — (2:— l) /16. }Lg: A.’, /:29 =/7-.6 .

e 2.2%: Exiztance of 1 1 =
v 2.2.2: Existence of a BTIB design with parameters v', &', ¥/, o', &'
] 2 £

A ijand 2n NBIB design with parameters v=mt + 1, b; = t(mt + 1), b,

it ";,. =m=2u. k=2, = m-1, 4, =1 implies the existence
: ith parameters v =V', b, = tb'(mt + 1), by = wb'(met + 1)/2,
e ST L K S ;x: = 2, /:; = /'.'(m = l). ).]g = (’7? - ].)Z_E,. /‘.3= A’, 120 =

24 Evisience of a BTIB design with parameters ', &', ¥, ry',
=AM+ T, r=12+T, k=4 k=2, 4 =3, =1
in NBTIB design with parameters v = v/, b;'=
T B2 ’\‘:f+2)(121+7),r=,(12r+7);’,r¢.=(121+7)r0’,k1= '
B = 3L, A A A= B Y

stznee of a BTIB design with parameters V', b, 7, 1o, ¥ =
an NBIB desien with parameters v=21+ 1, b; =2t + 1), by =

17 il 2 o A L =t b =) D= 7. = 1 1 1
K2 =il I & k=2, 2, =6, /s = 2 implies the existence of an NBTIB.
metars v by = 0B20 4 1), By = b2+ 1), v = 4PL rg =

67, Ao =645, Aa=24", A= 24;.

r{.": k’ =

e of a BTIB design with parameters ', &', v/,
3 design with parameters v=4t+ 1, b, =41 + 1, b, =
)

\y f.=2¢ i, =4 = g H } 3 ;
=21 A =411, Ay = 2t=1 implies the existence of

‘a2 NBIB designs of different parametric combinations, we gétfhé :

+ — 8, A" and an NBIB design with parameters v = 12t + 8, b, =

Ss=ore A0

e e

9 k=9, kp=13,4,=84, Ao = 826,/4'2:2/1', Aao=22-

en NBTIB design with parameters v = Vv, by = b'(4t+1), by = 20'(4 ) =ty
ro = At ky = A1, by = 20, Ay = A4 = 1), g = (4 = 1) g, A= (212 DA, 5ee =
(2e=1)7g.

L —

Family 2.2.6: Existence of a BTIB design with parameters vob Y T K=
6+ 1, A', Ay and an NBIB design with parameters v = 6141, by =t(6t + 1), b2 =
26t + 1), r =6tk = 6, k=3, =522=2 implies the existence of an NBTIB

design with parameters v = Vv, by = b6t + 1), b = 2ub'(6t + 1), r =671, 10 =

6irs by =6, k=3, A1 = SAs Ao =5 25, A= 24 Ao = 25

Family 2.2.7: Existende of a BTIB design with paramelers Vb, rd, K=
9 +1, A", Zgand an NBIB design with parameters v =9r+1, b =St +1),b:=
309t + 1), r=96k = 9, ky=3,4=8,/22=2 implies the existence of an NBTIB
design with parameters v = v, by =tb'(Gt + 1), by = b6t + 1), r=9rt, 10 =

Family 2.2.8: Existence of a BTIB design with parameters I U A R
12t + 1, &', pand an NBIB design with parameters v = 12¢ + 1, by = (12t + 1),
b =412t + 1), r =124, k=12, k=324 =11, A, =2 implies the existence of

“.an NBTIB design with parameters v= V. oby =tb'(12t+ 1), b, = ab(Q2+ 1), r=

2 rg= 1200, ky =12, k=3, A =114, Aio=114g, 2= 22" A =24y
Family 2.2.9: Existence of a BTIB design with parameters v, b, ek =
6t +1, A', 2pand an NBIB design with parameters v = 6t+1=by, by=21(6t+1),
r=6t k=64 k=3 4= 6t — 1, A, = 2 implies the existence of an NBTIB
design with parameters v = v, by = b'(6t + 1), by=2tb'(6t +1),r= 6r't, ro =
6trg', ky =6t kp =3, A = (61— DA, Ao = (61— Ay, =24, A= 244.
Family 2.2.10: Existence of a BTIB design with parameters ¥, B e k=
4t —1, A', Agand an NBIB design with parameters v = 4t =1, by=4t-1,b;=
24t 1), r=2(2t-1), ky=4t-2,k=2t-1,4 = 4¢ —3, A, = 2t—2 implies the
existenice of an NBTIB design with parameters v = v, by =b'(4t-1), b= 2b'(4t
_1), r= 2021 - 1), rg =202t = Do), by = 4 =2, ky = 21— 1,2 =@ -, Ao=
(4 -3) Ay, =2t =2)4, Ao =(2t—-2) 7.

If in place of an NBIB design, we take a nested balanced block (NEE)
design in .which each of the treatments appears exactly once in each of the
blocks, and the sub-blocks form a BIB design, then also we get an NBTIB
design. One such family of NBTIB designs is given below:

[S]
~l
~1




- Liere exdst a BTIB design with parameters v, 5 &, e, K =
37 exists a NBB design with parameters v* = 2,0 =2-1,
=21, kT =2 k* =2, 4% =20 1, 4,* = | obtained by
¢ initial block walh L
R (S Ul AR SO S PO ¢ ST G 1)] mod (2t 1)

with the v trealment as invarant,

Then following the procedure of Method 2.2, we get an NBTIR desigﬁ with -
paramelers as v =1, b = b'(2-1), 5, = th'(2t 1), r= (21 - D7, ro=(2t- l)fo', OR

="y
f

M=20 k=2, 4 = (2 - DA Mo =(2t=1) 45, la=A', Apg = A0S
Remuric 2.1: A BTIB design with parameters V', &', ¥, »; ;b;, k’,ul'l,'ﬂ{, = ;
<an be obtained by adding a control treatment once to each of the blocks of a -

SIB design v, ¥, ¥, ¥ — 1, 2.. Now, let there exist a BIB design with

parameters v, &', ¥/, ¥ =3, X' andfh block contents as Cryjy X3 x50, 7 = 1; 2, :
#. On adding the control trez ' Fhe 3 Blacks; we'eka
g the control treatment 0 once to each of the 4 blocks, we get a .
STIB design with parameters v/, &', /, rg =b', K =4, 2,4, =/.Let (x1 x25 E
4 { 7 ; t ’ - s A2 -
¥z, 0) denote the / block contents of the BTIB design, j =1, 2, ..., &', Now
STTENEE (Xy, X2 X3, 0) in three blocks in the following manner:
{[—"!_u 03; (E TS :c;,)]; [(1_ 0); (ij, x!j)]; [(-’:Bjr 0); (1 J’zj)]

ing this process for each of the b’ blocks of the BTIB design We get
B design with parameters v =/, b, = 3b, by =6b',r=3r,ry=3b k =
Sk =2 4 =30, ha= 3, A=A s =1, g

% contents of this BIB design can be obtained by developing
1 i) mod 4 Add a control treatment 0 to these blocks and
-3, 0) in three blocks in the following manner e

[(0.0): GB.2) [{2,0) G, D1 and [(3, 0); (1, 2)].

|

It anf t £

Repeat this process for all the blocks of the BIB désigﬁ and get an N'BTIB 2
: 1 ; 1 T“Lz:‘amc:ars v=4 0 =12, 55=24, r=9,25="12, k=4 k=24
O mir 7Y, Ay = 2, Aag = 3 which has A-efficiencies 1.0000 and 0.9429 for the

inck end sub-block dasigns, respectively, -« . !

TE _gesigns with v<i6and r< 30 obtainable from this method are
Fable 2. The designs included in Table 2 are those obtainable from
I wnd Family 2.2.11 and Remark 2.1, Here, BTIB designs v, &', ¥,

I (P I I | O, I i
“+ /oAy Are inose oblainable by adding a contro] treatment once to each of Ky

=J

onsider a BIB design with parameters v' = 4,b'=4, p = 3, K=

ASER N o e

N NP

*.

R e

the blocks of a BIB design V', &', , ¥ — 1, A'. Table 2 consists of 10 NBT:2
designs. All the block designs (ignoring the sub-block classification) and 7 sui-
block designs (ignoring the block classification) have A-efficiencies greater than
0.9900. Only one sub-block design has A-efficiency less than 0.9300.

Method 2.3: Let there exist an NBIB design with parameters as v + «, by, b2, .,
ky, ka, A1, Za. Let the treatments be denoted by 1, 2, ..., v, v +1, v+ 2, .., v+ a
On merging the treatments v +1, v + 2, .., and v + & to the (v + 1)* treatment
and calling this (v + 1)" treatment a control treatment, we get an NBTIB desizn
with parameters as v, by, by, 1, ro = ar, ki, kz, Ay = Ay, Ao = @Ay, Ao = Agy A =
Example 2.4: Consider an NBIB design with parameters v =7, E‘,'.h-'.?,’b; =2%.r
=6,k =6,k=2,4 =5, ;=1 with block contents as-

[(1,7);(2,6); 3,5 [(2, 1); 3, 7); (4, 6)); [(3,2); (4, 1% (5, 1)

[(4, 3); (5,2); (6, D)]; [(5, 4); (6,3); (7, 2)); [(6, 5); (7, 4); (1, 3)];

{7, 6); (1, 5); (2, 4)].

Now merge the treatments 6 and 7 and call the merged treatment the control
treatment 0. The new layout is given as '

M0 20 G IR0 G0y 40 [3,2) (4, 1) (5,005
N3 (5,2); (0,D)); 0 [€54 (0,3 (0,21 [(0,5); (0,4) (1,3))

[0, 0); (1, 5); (2,4)].

The above design is an NBTIB design with parameters v=>5, b, =7, b,=21,r=
6, = 12, kl =§, ;(2 =2, /11 =5,/..]g = IO, 12:: 1,120=2.

Note 2.1; This method can produce designs with useless sub-blocks, that is, sub-
blocks containing only the control and which therefore provide no information
for-the experiment. This may lead to sacrificing the efficiency for balance.
However, a small sacrifice in efficiency can be a worthwhile trade for the case
of interpretation offered by balance. However, this method should not be used
when it produces more than a very few useless blocks, nor when it produces
useless blocks of large size. !

" NBTIB designs with v<16and r <30 obtainable through this method for
a =2 are given in Table 3. All the 67 designs in Table 3 have A-efficiencies
more than 0.9000 for both block design and sub-block design. For the block
classification, ignoring the sub-blocks, 29 designs have A-efficiencies greater
than 0.9900 and 25 designs have A-efficiencies in the range of 0.9500-0.9200.
The sub-block designs ignoring the block classification have smaller
efficiencies. Only 2 designs have A-efficiencies greater than 0.9400, 2 designs

. have A-efficiencies in the range 0.9300-0.9400 and 21 designs have A-
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1B Designs with »< 16, r < 30 obtainable from Method 2.1.

E, E-

282

by by rory kikady Ao B E Rle)f:s‘;eg‘:fe

'S 510410633 81 4 1.0000 1.0000 MPR 1
26 153010 30 6 3.6 20 2 10 09932 0.9924 MPR 13
37 721621 93518 1 609824 0.9848 MPR 2
47 7146 14845122 6 1.0000 1.0000 MPR 3
$7.21 4212 42 63 6 24 212 09846 09847 .  MPRI9
6 8 14 28 7 28.6 3 3 14 7 09752 09767 . MPR4
78 28 8421 84 931563 321 09719 09766 MPR 50
$ 8 28 5621 56 8 415 42621 1.0000 1.0000 MPR 51
9 936 8 36123 7.32 1 8 0.9623 0.9686 MPR 8

9 9 13 8 1810°5 7 16 3 § 0.9933 1.0000 MPR 9

9 12 36 8 36 9-3 5 24 1 8 09614 0.9636 - MPR 6

9 12 24 8 24 845 16 2 8 1.0000 1.0000 MPR 7

9 18 36 8 36 6313 16 1 8 09657 0.9636 MPR 5

10 10 30 9 3012 478 27 29 09998 0.9999 MPR 12
10 15 45 9 45 93,5 27 1.9 09519 0.9608 MPRI0
15 30 9 30 845 18 2 9 0.9999 0.9999 MPR 11

45 9018 90 6 3.6 36 2 18 0.9563 0.9608 MPR 46

30 6018 60 8 410 36 4 18 0.9999 0.9998 MPR 47

45 9027.90 8 415 54 6 27 0.9999 0.9998 MPR 58
201111 5510 55153 950 1.10 0.9498 0.9534 MPR 14
2 SS11020110 6 3 6 40 2 20 0.9474 0.9534 MPR 49
2305516530165 9 315 90 3 30 0.9440 0.9534 MPR 66
ZPA1L5511030 110 8 415 60 6 30 0.9988 0.9988 MPR.67
2411011 2210 2212 6 9 20 '4-10 0.9775 0.9911 MPR 15
S3I1022 6611 66 9 3°5 33 1.11°0.9373 0.9465 MEPR 17
612 33 6611 66 6 3°3 22 1 11 0.9389 0.9465 MPR 16
712 331322213212 31488 2 22 0.9421_0.9465 MPR 53
2512 22 4411 44 845 22 2 11 09970 0.9971 MPR 18
133 6622-6610 514 44 6 22°1.0000 1.0000 MPR 54
13 7812 7818 311 72 1 12 0.9362 0.9399 MPR 23

26 7812 78 93 5 36 1 12 0.931S 0.9399 MER 21

39 7612 78 6 3.3 24 112 09309 0.9399 MPR20

39 156 24 156 12 3 14 96. 2 24 0.9357 0.9399 MPR 55

26 5212 52 8 4.5 24 2 12 0.9946 0.9950 MPR 22

15 5212 5216 411 48 2 12 0.9935 0.9950 MPR 24

ppamyn

* MPR# denotes the design at serial number

SLNo. v by by r ro ki ks 2y Zyp 2 Ay -
3613 26 7818 7212 54 3 18 0.9939 0.9950
3713 13 3912 3915 36 3 0.9999 1.0000
3813 39 7824 7810 48 6 1.0000 1.0000 MPR :G
3913 13 2612 2614 245 0.9616 0.9762 MPR 26
40 14 9118226182 6 2 2 0.9234 0.9338 MPR 37
4115 151051410521 98 1 0.9251 0.9280 MPR 31
4215 15 3014 3016 28 6 14 0.9496 0.9611] MPR 32
4315 211051410515 3 9 70 1 14 0.9228 0.9288 - MPR 29
4415 21 4214 4212 6 9 28 4 14 0.9950 0.9997 MPR 30
4515 3510514105 9 3 5 42 1 14 0.9210 0.9288 MPR 27
4615 35 7014 70 8 4 5 28 2 ]4 0.9890 0.9900 MPR’ZS
4715 351052110512 63 3 21 0.9879 0.9900 MPR 52
4815 352102821018 322168 2 28 0.9249 0.9280 MPR 62
4915 3514028 14016 422112 "4 28 0.9872 0.9900 . MPR 63
S0 15 351052810515 522 84 6 28 1.0000 1.0C00 MPR 64
5115 35 7028 7014 722 35610 28 0.9744 0.986] MPR 65
3215 422102821015 318140 2 28 0.9228 0.980¢C MPR 60
3315 42 8428 8412 56 8 28 0.9930 0.9997 _ MPR 61
54 1310521028210 6 56 2 28 0.9162 0.9230 MPR 59
5516 16 8015 8020 75 2 15 0.9842 0.9875 MPR 44
3616 16 48 15. 4818 45 4.15 0.9949 1.0000 S MPR 43
5716 201201512018 90 1 15 0.9195 0.9226 . MPR 40
s§16 20 8015 8016 60 2 15°0.9839 0.9873 " MPR 41
5916 20 6015 6015 45 3 15 1.0000 1.0000 MPR 42
6016 20 4015 4014 30 5 15 0.9793 0.9896 MBR 43
6116 241201512015 75 1 15 0.9175 0.9226 MPR 38
6216 24 4815 4812 6 9 30 4 15 0.9970 1.0000 MPR 39
6316 301201512012 3 7 60 I 15 0.9179 0.9226 PR 36
6416 30 6015 6010 5 7 30 3 15 1.0000 1.00G0 NIPR 37
6316 4012015120 9 3 5 45 1 15 0.9160 0.9226 M
66 16 40 8015 80 8 5 30 2 15 0.9860 0.987 MPE 2
6716 6012015120 6 3 30 1 15 0.9096 0.9226 MPR 33
6816 43 9630 9612 60 8 30 0.9970 1.0000 MPR 68
# in Morgan, Preace and Rees [14]
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Table 3: NBTIB Desigas With v < 16,7 < 30 abtaivable (rom Stethed 3.2 Jur
@ =2 using NBIB Designs of Morgan. Preece and Recs {14}

Reference

SLNo. v ro Ky ks By Rig As Aa 2 B
bl by r 0 I\‘ Ks /Ly A Az ;._(1 fl) £y DCS_%:.ZE.N_

(4,4,3,3,1)
(5,10,6,3,2)
(6,10,5,3,2)

{7,4,3,8:1)
9,12,4,3,1)

Reference
BiB Design

E E
1.0000 0.9429
1.0000 0.9706
1.0000 0.9850
1.0000 0.9943

1.0000 0.9999 ‘
9 0.9998 0.9998 " (10,30,9,3,1)

0.9999 0.9999 (106,20,5,4,1)

gns are obtainable from Family 2.2.1 and rest of the designs are

3
6
s
3

4 0.9971.0.9971 (13,13, 4,4, 1)
6 0.9950 0.9950 (13,26,6,3,1)
7 0.9900 0.9900 (15,35,7,3,1)

2'20
4

3
2
i
1
2
1
1
1

1

A

18
15
9
12
27
12
18
2]
15
2.1.

¥

6
9
-6
3
3
6
3
3
3

Ky ky A
42
42

3

12 42
2

o
1105 42

r

24 9

56 18 78 42
9

b 1

12
from Family 3.2.11 and Remark

b
5306018 30 42

3 6 °30.6015.30 42
4.7°21'42 9 2

4

]

610 9018027 90 42
*13 65130 16 5

813 781

9 .]5 105 210
10* 16100200 20 80 4 2

* denotes that the desi

oblained

5 9 36 7212 36 42

1
2

Table 2: NBTIB Designs with v < 16, r < 30 obtainable from Method 2.2,
/

SLNo.

1 4 15 3010 20 4 2 6 12 2 4 0.96%7 0.9143 MPR 13
25 721 612 6 2 2 10 1 209958 0.5246 MPR 2
35 714 6 12 6 3 5 10 2 409958 0.9246 MPR 3
"4 5 21 4212 24 4 2 6 12 2 409524 09245 NPR IO
5 614 28-7 14 4 2 3 6 1 209412 0.9282 MPR 2
6 6 28 8421 42 6 21530 3 609831 0.9279 MPR S0
7 6 28 5621 42 6 313 30 6 1209881 (.5279 MPR 51
8 7 9 36 8 16 8 2 7 14 1 20.9846 (.9279 MPR 8
9 7 9 18 8 16 8 4 7 14 3 609846 0.9333 AMPR 9
10 7 12 36 8 16 6 2 5 10 1 20.9792 09279 MPR 6
11 7 12 24 8 16 6 3 £ 10 2 40.9792 09279 MPR 7
12 7 18 36 8 16 4 2 3 6 1 20.9333 0.9279 MPR 3
13 8 10 30 9 18-9 3 8§ 16 2 4 0.9820 0.9259 MPR 12
14 8 15 45 9 18 6 2 = 10 1 20.839 0.5239 MPRI1Q
15 8 15 30 9 18 6 3 3 10 2 409396 0.9259 MPR 11
16 8 30 6018 36 6 31C 20 4 80.9396 0.9259 MPR 47
17 8 45 9027 54 6 313 30 6 12 0.9596 0.9239 MPR 8
18 8 45 9018 36 4 2 6 12 2 409275 0.9239 MPR 48
19 9 11 551@ 2010 2 9 18 1 20.9760 0.9229 MPR 14
20 9 3511020 40.4 2.6 .12 2 409231 0.9229 MPR 49
21 9 5516530 60 6 215 30 3 6 0.9600 0.9229 MPR 66
22 9 5511030 60 6 313 30 6 12 0.9600 0.922 MER 67
23 9 11 2210 2010 5 9 18 4 809760 0.9429 MPR 15
2410 22 6611 22 6 2 5 10 1 209509 09194 MPR 17
2510 33 6611 22 4 2 53 6 1 209194 09194 MFR 16
2610 3313222 44 8 214 28 2 40.9565 0.9194 MPR 53
2710 22 4411 22 6 3 5 10 2 409509 09194 MPRI18
2810 33 6622 44 8 414 28 6 1209565 0.9194 MPR 34
2911 13 7812 2412 211 22 1 2 0.9607 0.9156 MPR 23
3011 26 7812 24 6 2 5 10 1 209422 09136 MPR 2!
3111 39,7812 24 4 2 3 6 1| 209136 009156 MPR20
3211 3915624 48 8 214 28 2 409495 0.9136 MPR 55
3311 26 5212 24 6 3 5 10 2 409422 0.9156 MPR 22
341113 52'12 2412 - 311 22 2

4 0.9607 0.5156 MFR 24
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