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F O R E W O R D 
 
Data generated from designed experiments is analyzed assuming that observations are 
independently and identically distributed as normal with same variance. It is also assumed that 
the data set contains no abnormally high or low observations, i.e., the data set contains no 
outlying observations. These assumptions, however, get violated during experimentation.  For 
instance, during the experimentation, there might be an infestation of a disease or insect attack 
on some plots in the field, or there may be unintentional heavy irrigation on some particular 
block(s) or plot(s) of the experiment, or at times there may be mistakes creeping in during 
recording of data, etc. The presence of abnormally high or low observations may cause non-
normality and/or heteroscedastic errors and may influence the conclusion drawn. It is, therefore, 
important to detect deviations from assumptions and suggest remedial measures. Keeping this in 
view, this project entitled Outliers in Designed Experiments, funded by APCESS fund of 
Indian Council of Agricultural Research, was taken at the Institute. 

For identification of outliers several available statistics like Cook-statistic, AP-statistic and Qk-
statistic were applied. Special emphasis has been given to study the problem of masking effect of 
outliers.   

Another way of tackling outliers is to use robust methods of analysis of data. The popular robust 
methods of estimation viz., M-estimation and Least Median of Squares (LMS) were 
appropriately modified so as to make them applicable in designed experiments. All these 
methods are illustrated with some examples.  

One can also minimize the influence of outlying observations by adopting a design that is 
insensitive to the presence of outlying observations. Such designs are known as robust designs. A 
criterion has been developed to identify robust designs that are robust against the presence of any 
two outliers. It has been found that all binary proper variance balanced block designs are robust 
against the presence of any two outliers. 
  
One significant feature of the study is the development of statistical software for handling 
outliers. With the development of new methodologies for tackling outliers in designed 
experiments, user-friendly software for implementing these new techniques will be quite useful 
in drawing statistically valid conclusions. 
 
For disseminating the findings of the project, a workshop was organized at IASRI, New Delhi. It 
gives me pleasure to mention here that the deliberations on the findings of the project were well 
received by the statisticians as well as the experimenters.   I would like to complement Dr. L. M. 
Bhar, Dr. Rajender Parsad and Dr. V.K.Gupta for undertaking this project and obtaining very 
useful results. It is hoped that this report will be immensely useful for the practicing statisticians 
and the experimenters. 
 
 
 

(S.D. Sharma) 
Director, IASRI, New Delhi 



PREFACE 


The study of outliers is now diversified to aln}ost e\'cry field of scientilic study. The 
pro blem of outl iers has been studied extensively in linear regression models. Approaches 
to study of outli ers are generally divided into two broad catcgorjes: (i) to identify the 
outli er(s) for further study and (ii ) to accommodatc the possibility of outlier(s) by suitable 
modili cations of the models and or method of analysis. The first approach relate" to 
detection of outlicr(s) whi lc the second one re lates to [he study of robust methods or 
estimat ion of parameters that minimize tbe influence of out/ier(s) on inference 
concerning parameters. The second one relates the robust method of estimation. 

111011gh, the general set up of an experimental design is that of a linear model, yet 
detecti on and testi ng of outlier(s) and appl ication of robust methods in experimental 
designs need special attention because (i) the design matrix does not have full column 
rank (ii ) interest is on ly in a sub set ofparameters rather than \vhole vector ofparamelers. 

ot m uch research appears to have been done on detection of outliers and robust method!:> 
of estimation in designed experiments. 

f11 the present investigation an attempt has been taken to explore applicability or the 
available test-statistic s in designed experiments. Nov. a number of test statistics hme 
been developed to detect outliers in designed experiments viz. Cook-statistic. AP and 0k­
stati st ic. These statistics are applied to real exoerimental data taken from Agricultmal 
Fie ld Experiments Information System (AFEIS). IASRl. 11 has been found that milll) or 
these experiments contain outliers. Tlle detection of influential subsets or multiple 
outli ers is more di fficu lt, owing to masking and swamping problems. A method has also 
been deve loped for tackl ing outliers in designed experiments in presence of masking and 
swamping. The proposed method bas been illustrated with an example. 

Among robust methods. M-estimation and Least Median of Squares (LM~) method have 
been appli ed to experimental data after doing suitable modifications. In M-estimation a 
functi on of errors is minim ized to obtain parameter estimates and thus each observation 
gets di fferent we ights for estimating parameters. This function is called objective 
functi on. A good number of object ive functions such as Huber's function. Andre\\-'s 
function etc. are now available. Most of these objective [ullctions invol"ed some tuning 
constants. The efficiency of the M-estimation procedures depends upon ho\\ best. UH~se 
tuning constants ru'e selected. For application to designed expenments the appropriate 
va lues of these constants have been proposed. A. new objective function has also be~n 
proposed. Al l these fW1ctions have been illustrated with some examples. In LMS method l:. med ian of the square errors is minimized to obtain the parameter estimate!'>. This method 
bas been appropriately modified for application in designed experiments and illustrated 
wi th some examples. 

One can, however, instead or lakll1g post experimcntal remedial measures. taJ..:e pre­
experimental measures by adopting a robust design for experimcntation A robust design 
is insensit ive to the presence of outlying observations in the sense that the inference 
problem on linear [unction of treatment effects is not affected by the presence of oulliers 



in the experimental data. A criterion has been developed to identify robust designs that 
are robust against the presence of any two outliers. It has been found that all binary 
proper variance balanced block designs are robust against til(' presence of any two 
ou tliers. 

The problem of outliers in linear regression models can be handled by using several 
statistical packages . These statistical packages are not capable of handling outliers in 
designed experiments. Thus with the development of new methodologies for tackling 
outliers in des igned experiments, a user-friendly software for implementing these nev~ 
techniques is also required . In the present study a user-friendly software has also been 
developed to analyze experimental data in presence of outliers. 

To disseminate the findings of the project a workshop was organized on .Iuly 26. 2007 at 
lASRJ. TIle fi ndings of the project were well received by the statisticians as well as thL' 
experimenters. Prof. Aloke Dey. [SI Delhi Centre, gave his remarks on the project and 
the find ings. He was appreciative of the elforts made in this project. He also felt that the 
Gildings of the project should be published in reputed journals. 

Thjs research was supported by the AP.Cess fund of Indian Council of Agricultural 
Research (ICAR). We express our sincerest and heartfelt thanks to ICAR for sponsoring 
the research. We are grateful to Dr. J.P .Mishra, Assistant Director General (ES&M) for 
his help and support during the course of the present investigation and granting us the 
necessary faci lities through A.P.Cess fund. 

We express our deep sense of gratitude to Dr. S.D.Sharma, Director. LA.S.R.I., New 
Delhi who was instrumental and supportive in taking up this study and for hiS 

encouragement dming the course of study. We are also thankful to Dr. V.K.Sharma, cx­
Head, Division of Design of Experiments, IASRI, New Delh.i for the support provided for 
conducting this study. 
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Sh Jawa id Ashrat~ and Sh. Amit Bharmoria. Research Associates under this project and 
Smt. Jyot i Gangwani and Sh. Naresb Chand, Technical Officers, deserves special tlumks 
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Chapter I 
 

Introduction and Review of Literature 
 
 
1.1 Introduction 
The scientists in National Agricultural Research System (NARS) conduct a large number of 
experiments for their research and consequently generate a huge amount of information in the 
form of data collected through experimentation. This information is converted into knowledge by 
statistically processing the data using sophisticated statistical tools. This knowledge helps in 
identifying most promising agricultural technologies for making recommendations to the 
farmers. Hence, designing of experiments and analysis of experimental data forms an integrated 
component for improving the quality of agricultural research.   

 
For statistical processing of data, several assumptions are made. However, in practice there is a 
tendency to forget about the assumptions and to go ahead with the statistical processing of data 
as if the assumptions were satisfied. The assumptions, however, get violated during 
experimentation and as such the statistical analysis that is carried out no longer remains valid.  
For instance, during the experimentation, there might be an infestation of a disease or insect 
attack on some plots in the field, or there may be unintentional heavy irrigation on some 
particular block(s) or plot(s) of the experiment, or at times there may be mistakes creeping in 
during recording of data, etc. It is, therefore, important to detect deviations from assumptions and 
suggest remedial measures. 
 
From the time when human beings started exploiting and employing the information in the 
collected data as an aid to understand the world they live in, there has been a concern over the 
unrepresentative or outlying observations in the data set. Outlier(s) in a set of data is (are) 
defined to be an observation (or sub-set of observations) that appears to be inconsistent with the 
remainder  set of data. Occurrence of outlier(s) is (are) very common in every field involving 
data collection and outlier(s) arises from heavy tailed distributions or is simply bad data point 
due to error. When outliers are present in the data, the result from the analysis of such data may 
lead to erroneous inference. To be clearer, consider the following example. 
  
Example 1.1: An experiment with seven chemical treatments was conducted in a randomized 
complete block (RCB) design with three replications at the Regional Agricultural Research 
Station, Nandyal, Andhra Pradesh  with a view to evaluate the effect of Mepiquaet Chloride on 
the yield of mustard crop [net plot size: 5.60m × 2.40m]. The table below shows the data on 
yield in kilogram per plot for different treatments: 
 

Table 1.1: Yield of mustard in kg/plot 
Replications Treatments 

1 2 3 4 5 6 7 
1 0.55 0.50 0.45 0.63 0.55 0.35 0.30 
2 0.45 0.64 0.54 0.62 0.50 0.30 0.35 
3 0.41 0.45 0.45 0.30 0.60 0.65 0.40 
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Analysis of the data is presented in Table 1.2. It is observed that the treatment effects are not 
significant at 5% level of significance. 
 

Table 1.2: ANOVA (With original data) 
Source DF SS MS F- 

Value 
Significance 

Level 
Treatment (adj.) 6 0.00120952 0.01410000 0.92 0.5141 
Replication 2 0.08460000 0.00060476 0.04 0.9615 
Error 12 0.18405714    
Total 20 0.26986667    

Note: Here DF means degree of freedom, SS means Sum of Squares, MS means mean squares 
error, F-value means calculated F-value and significance level means the probability at which the 
null hypothesis is rejected. 
 
It was then followed by residual analysis of this data. Standardized residuals are presented in 
Table 1.3. 

Table 1.3: Standardized Residuals 
Serial 

No. 
Replica

tion  
Treatment  Std. 

Residual  
Serial 

No. 
Replica

tion  
Treatment  Std. 

Residual  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 

1 
2 
3 
4 
5 
6 
7 
1 
2 
3 
4 

0.84944 
-0.36114 
-0.25432 
1.20549 
-0.00509 
-0.89521 
-0.53916 
-0.31027 
1.04272 
0.50864 
1.00712 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2 
2 
2 
3 
3 
3 
3 
3 
3 
3 

5 
6 
7 
1 
2 
3 
4 
5 
6 
7 

-0.63072 
-1.52085 
-0.09664 
-0.53916 
-0.68158 
-0.25432 
-2.21260 
0.63581 
2.41606 
0.63581 

 
It is observed from the table that the observation at serial number 18 and 20 stand out because of 
their high value of standardized residuals. These two observations seem to be influential. We 
carry out the analysis again after removing these two observations. The results of this analysis 
are presented in the Table 1.4. The dramatic effect of removing these two observations is worth 
noticing. The treatment effects now become significant at 5% level of significance. Removal of 
any other observation or pair of observations does not affect the analysis. These two 
observations, therefore, definitely are influential. 
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Table 1.4: ANOVA (After removing two observations) 
Source of 
variation 

DF SS MS F- Value Significance 
Level 

Treatment (adj) 6 0.16439143 0.02739857 6.40 0.0054 
Replication 2 0.00159048 0.00079524 0.19  0.8334 
Error 10 0.04284286    
Total 18 0.20861053    

 
The present example clearly shows how the presence of outliers affects the analysis of the data 
and inferences drawn.  
 
The presence of an outlier is often an indication of weakness in the model, the data or both. 
Examples of such types are contained in Atkinson (1981, 1982) and Carroll (1982). Examination 
of the outlier(s) allows a more appropriate model to be formulated, or enable us to assess any 
dangers that may arise from basing inferences on the normality assumption. This is very much 
the way in which outlier(s) has (have) been discussed in the statistical literature, and seems a 
fruitful avenue of enquiry. We begin by defining an outlier 
 
1.2 What is an outlier ? 
Daniel (1960) defines an outlier as “an observation whose value is not in the pattern of values 
produced by the rest of the data”.  
 
A more comprehensive definition is due to Beckman and Cook (1983). They defined the 
following: 
Discordant observation: Any observation that appears surprising or discrepant to the 
investigator. 
Contaminant: Any observation that is not a realization from the target distribution. 
Outlier: A collective to refer to either a contaminant or discordant observation. 
Influential cases: An outlier need not be influential in the sense that the result of an analysis 
may remain essentially unchanged when an outlying observation is removed. It is useful to 
regard an influential observation as a special type of outlier. 

 
1.3 Approaches of Studying Outliers 
Following Barnett (1978) and Barnett and Lewis (1984) approaches to outliers are divided into 
two broad categories. 

 
• To identify the outlier(s) for further study. This forms the detection part. When an outlier 

is detected, the analyst is faced with a number of questions: 
 
Is the measurement process out of control? 
Is the model wrong?  
Is some transformation required? 
Is there an identifiable subset of observations that is important in its different behaviour? 
  

These issues effect the interpretation and confidence in the resulting estimates and predictions. 
For a general discussion one may refer to Box (1979, 1980) and Cook and Weisberg (1982). 
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• To accommodate the possibility of outlier(s) by suitable modifications of the models and 

or method of analysis. The robust methods of estimation or analysis, which were created 
to modify least squares procedure so that the outliers do not have much influence, fall 
under this category. For detailed discussion on robust methods of analysis in presence of 
outliers, one may refer to books by Huber (1981) and Tiku et al. (1986).  
 

The literature on the study of outlier(s) is very vast and much in common with almost every area 
like robust estimation, data analysis, each of which is important in its own right. For an excellent 
review a reference may be made to Beckman and Cook (1983) and Hadi and Simonoff (1993). A 
critical review of literature on the study of outlier(s) in designed experiments is available in 
Gopalan and Dey (1976), Singh et al. (1987), Bhar (1997),  Sarkar(2002) and Nandi (2007) and 
references cited therein. For useful survey of literature the books by Atkinson (1985), Barnett 
and Lewis (1984) and Rousseeuw and Leroy (1987) may also be referred. 
 
1.3.1 Detection of Outliers 
1.3.1.1 Detection of Outlier(s) in Normal Sample Data 
Presence of outlier in the data is the most serious illness to the linear statistical model and this 
necessitated research work in the area of detection and handling of outliers.  The existence of the 
problem of doubtful values or outliers has been recognized for a very long time, certainly since 
the middle of the eighteenth century when Bernoulli (1777) questioned the assumption of 
identically distributed errors and condemned the widespread practice of discarding discordant 
observations in the absence of prior information. From this period until the middle of the 
nineteenth century, the main point of discussion in the literature with regard to outlying values 
was whether rejection is justified. Some other research workers also took the same view as 
Bernoulli (1777) that observations should not be rejected purely on the ground of appearing 
inconsistent with the remaining data. Historically objective methods for dealing with outlier were 
employed only after the outliers were identified through the normal inspection of the data. The 
first published objective test for outlier detection is due to Peirce (1852), according to which, k 
doubtful observations in a sample of size n should be rejected if the probability of the system of 
errors obtained by retaining them is less than that of the system of errors obtained by their 
rejection. Chauvenet (1863) developed a test for a single doubtful observation. An observation is 
rejected if it lies outside the lower and upper (1/4n) points of the null distribution. With this 
procedure the chance of wrongly rejecting a non-influential observation is 40% in large samples. 
Stone (1868) introduced a rejection test based on the concept of a modulus of carelessness, m, 
that can be expressed in the following way; a given observer in a given sampling situation makes 
on an average one mistake in each set of m observations taken. An observation is to be discarded 
if its deviation can be attributed with more probability to the observer’s carelessness than to the 
random variation. 

 
The adhoc rejection tests such as Peirce (1852), Chauvenet (1863) and Stone (1868) dominated 
the literature until the period of First World War. These methods, however, generated much 
controversy and these methods were not widely used. 

 
After the work of Pierce, Chauvenet and Stone that continued in the 20th century, many formal 
objective techniques for the identification of outlier(s) were developed. While some authors 
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viewed these techniques as a way of improving the estimation of mean and others prefer to 
consider them as tests that help us in understanding of concomitant variables. 

 
Irwin (1925) proposed a test statistic for known population standard deviation. Tippett (1925) 
proposed the use of range for the detection of outliers. Grubbs (1950) proposed a statistic that is 
based on studentized residuals. Walsh (1950) proposed the use of a non-parametric test for 
detecting outliers. The most popular models for the study of outlier(s) perhaps are the models 
proposed by Dixon (1950) that are known as Dixon’s location shift and scale shift model. 
Dixon’s model for a single outlier can be described as: a location shift model is one in which out 
of n observations (n−1) observations come from N (µ, σ2) except the one which comes from N 
(µ+λ, σ2). Likewise a scale shift model is one in which (n−1) observations come from N (µ, σ2) 
and the remaining one comes from N (µ, λσ2), where λ is some nonzero scalar quantity.   
 
There are many more studies on detection of outliers in normal sample data (i.e., sample of 
observations following normal distribution). In the sequel we summarize studies carried out in 
general linear models.   

 
1.3.1.2 Detection of Outliers in Linear Models 
The study of detection of an outlier in linear models gained special attention soon after Ferguson 
(1961) and Srikantan (1961) explicitly defined mean-shift and variance inflation model on using 
Dixon’s concept. A brief description of mean-shift model and variance inflation models is given 
in the sequel.   
 
Mean shift model: The justification behind this procedure is that the basic normal theory 
model is valid except that the expectation of at most one unknown response is shifted.  In other 
words , in the presence of an outlier, say the ith observation to be an outlier, the mean of the ith 
observation will be shifted from µi to µi + c, where c is some non-zero quantity. 
 
Consider the following linear model: 

 eXβy +=                                                                                            (1.1) 
where y is an n × 1 vector of observations, X is an n × p full rank matrix of known constant, β  is 
a p × 1 vector of unknown parameters and e is an n × 1 vector of randomly distributed errors 
such that E(e) = 0 and V(e) = σ2In , 0  σ >2 . Here E(.) denotes the expectation and V(.) denotes 
the variance. 0 is a null vector and nI  is an identity matrix of order n. Let ui denote an n-
component vector with 1 in the ith position and zero elsewhere. Then mean shift model for k 
outlying observations for the model (1.1) can be written as 
  y = Xβ + Dγ + e                                                                             (1.2) 
Here γ is a k component vector of unknown parameters, D is an n × k matrix with column u1,u2, 

…, uk. Nonzero values of the component of the vector γ imply the presence of k outlying cases. 

Variance inflation model: In contrast to the mean shift model, the variance inflation model for 
a single outlier is based on the assumption that the variance of an unknown response is larger 
than the remaining observations.   

 
The well-known Cook-statistic (Cook, 1977), Qk- statistic (Gentleman and Wilk, 1975) and AP- 
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statistic (Andrew and Pregibon, 1978) are based on mean shift model. For an excellent study on 
outlying observation in mean-shift model a reference may be made to Cook and Weisberg 
(1982). 
 
Removal of the individual suspected case or group of suspected cases in turn may change the 
result of the analysis of the data. This is the idea behind the study of the influential cases in linear 
models. Using this idea Gentleman and Wilk (1975) proposed the Qk- statistic which can be 
described as the reduction in the residual sum of squares after deleting the k suspected outliers. 
For defining Qk- statistic, rewrite  the model (1.2) as  

 

                              








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




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  E
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y
y
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1            (1.3) 

where 1y  is the vector of (n−k) clean observations, 2y is the vector of k suspected outlying 
observations, 1X  has (n −k) rows of X corresponding to the (n−k) clean observations, 2X has k 
rows of X corresponding to the k outlying observations. After fitting the original data y to the 
model (1.3) we get the residuals as 
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r
r
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where  j
1

iij )( XXXXH ′′= − , i, j = 1,2. 
 

Using the above,  Gentleman and Wilk statistic is obtained as 
                         2

1
222 )( rHIr −−′=kQ                                                                    (1.4) 

 

F- statistic for testing the hypothesis H0: 0γ = is 

                  
k

k
k Q

Q
k

kpnF
−′

−−
=

22
.

rr
  with k and n−p−k degrees of freedom. 

Cook (1977) proposed a new measure based on confidence ellipsoid for judging the contribution 
of each data point to the determination of the least squares estimator of the parameter vector in 
full rank linear regression models. If )(ˆ iβ  is the least squares estimator of β  with the ith point 
deleted, then the suggested measure of the critical nature of each data point is defined to be 

2
ii

i
ps

D
)ˆˆ()ˆˆ( )()( ββXXββ −− ′′

=  , i = 1,2,…,n                                            (1.5)   

      = 
ii

ii
2
i

h1
h

p −
r

   

Where s2 is an estimate of σ2  and hii is the ith diagonal element of the matrix  
XXXXH ′′= −1)(  .                                                                     (1.6)                                   

H is also known as “Hat” matrix. 
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This is known as Cook-statistic. It provides a measure of distance between   ˆ β and  ˆ )(iβ  in terms 
of descriptive levels of significance. Di can be compared to the percentage point of an F-
distribution with p and n−p degrees of freedom. This measure was developed under implicit 
assumption that β  is the parameter of interest. In some situations, the interest may be in q 
linearly independent combinations of β , rather than the whole β . For such situations it would be 
more reasonable to measure the influence of each data point on the determination of the least 
squares estimates of these combinations of interest. Let Pβ  denote the parametric combinations 
of interest, where P is a q× p matrix with rank q. A generalized measure of the importance of the 
ith point is   

2
)(

11
)(

i ˆ

)ˆˆ(][)ˆˆ(
D

σq
ii βPβPPX)XP(βPβP −′′′−

=
−−

                    (1.7)                   

    
         

Using model (1.2) Andrews and Pregibon (1978) also proposed a statistic for detection of 
outlier(s) and is known as AP-statistic 

                 
00

00AP
XX
ZZ
′
′

=                                                                                                 (1.8) 

where [ ] [ ]yXXyDXZ :  and   :: 00 ==  
 

The statistic given in (1.5) can be rewritten as 

         [ ]22)(  )
RSS
Q1(AP HI −−= k

k .                                        (1.9) 

Here RSS is the residual sum of squares obtained from fitting the full model (1.1), Qk is given by 
(1.4) and H22 is as defined earlier. According to Andrews and Pregibon (1978) the quantity (1-
AP(k)) corresponds to the proportion of volume generated by X0 attributable to the k suspected 
outlying observations. If this subset of observations lie far out in the factor space, it will account 
for a large proportion of volume of the factor space thus giving some realistic interpretation to 
the term outliers. Hence small values of AP-statistic correspond to the influential subset. 

 
The relative merits of Cook-statistic and AP-statistic were examined by Draper and John (1981). 
They showed that a case based on AP- statistic might not be the same as based on Cook-statistic. 
However, two components of the AP-statistic given in (1.9) will provide considerable 
information not only on outlying and influential observations but also on the remoteness of the 
observations in the factor space. The first factor of (1.9) will be small if Qk is large and so 
identifies sets of outliers. The second term [ ]22 HI −  provides a measure of the remoteness of 
the set of observations in the factor space, smaller value of [ ]22 HI −  indicating more remote 
points. 

 
Three most important test statistics for detection of influential observations are discussed above. 
There are, however, a number of statistics available in the literature. Hocking and Pendleton 
(1983) discussed the relative merits of some commonly used influential diagnostics. Here we 
give a brief account of the statistics available in the literature. Hoaglin and Welsch (1978) 
consider the role of hat matrix in the identification of influential cases.  The ith diagonal element 
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of H, hii reflects the role of yi in predicting itself. Hoaglin and Welsch (1978) used the criterion 

n
p2hii >  to identify high influential points. 
 

Belsley et al. (1980) presented several diagnostics based on the distance between the parameter 
estimates with full data and the parameter estimates after deleting the ith observation. This 
statistic is known as DFBETA. Belsley et al. (1980) also suggested the statistic  COVRATIO, 
which is based on ratio of the determinant of the covariance matrices of the parameter estimates 
from full data and the parameter estimates after deleting the ith observation.                                   
Daniel and Wood (1980) introduced the weighted squared standardized distance for the case j, 
WSSDj, which measures the distance of case j from the center of the data weighted by the 
relative importance of the variable. 

 
Polasek (1984), de Gruttola et al. (1987) and Martin (1992) developed some methods to study 
the influence of outliers in regression when errors are correlated. Rousseeuw and Leroy (1987) 
discussed many robust techniques of outlier identification of which they preferred the one based 
on least median of squares (LMS) residuals. Putterman (1988) discussed the influence of 
outlying observation when errors follow first order autoregression. Schall and Dunne (1988) 
gave a comprehensive general discussion of much of the theory of an outlier and influence. In 
the normal general linear model  ( VXβy, 2σ, ) with arbitrary known variance and covariance 
structure three types of outliers namely distributional outlier, outlier by additive shift and 
transformational outlier were distinguished and test statistics associated with each type of outlier 
were presented.  

 
Bian and Tiku (1997a, 1997b) proposed a method of robust estimation, which uses the Bayesian 
prior. They first robustified the prior distribution and then used modified maximum likelihood 
estimator (MMLE). Wong et al.(1996) considered robust estimation procedure in time series 
data. Moreover, their result is applicable to a wide class of symmetric and skew symmetric 
distributions.   

               
1.3.1.3 Detection of more than one outlier 
If the data set contains more than one outlier or influential observation, which is likely to be the 
case in most of the data sets, the problem of identifying such observations becomes more 
difficult. This is due to masking and swamping effects. Masking occurs when an outlying subset 
goes undetected because of the presence of another, usually adjacent, subset. Swamping occurs 
when “good” observations are incorrectly identified as outliers because of the presence of 
another, usually remote, subset.  As a result consecutive application of single outlier test leads to 
the problem. Realizing this fact many researchers proposed test statistics for simultaneous 
detection of more than one outliers. 

 
The first proposed test was the optimal block test of Murphy (1951). Tietjen and Moore 
(1972,1979) proposed two Grubbs type statistics for the identification of multiple outliers. 
Rosner (1975) developed test statistics for identification of more than one outlier that are free 
from masking and swamping effects. John and Draper (1978) proposed a two-stage test for the 
presence of two or one outlier in a two-way table by using Qk- statistic of Gentleman and Wilk 
(1975). Draper and John (1980) further extended the previous work to the study of testing for 
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three or fewer outliers in a two-way table. An aspect of design of experiments in the general 
regression situation when it is feared that outlier may also occur was also briefly discussed. A 

new statistic Fk = 
S

)Q(S *
k−  was proposed by Marasinghe (1985) for detection of several outliers 

in linear models, where  S = (n-p) s2 and *
kQ is the reduction in the residual sum of squares after 

deleting the subset of size k of observations, where n is the total number of observations, p is the 
total number of parameters and s2 is error sum of squares. This statistic was incorporated into the 
following multistage procedure. Initially a subset of k observations is selected for testing outliers. 
If Fk is found to be significant, the most extreme observation in the subset as determined by the 
largest studentized residual is deleted. The test procedure is repeated for the (k−1) observations 
in the subset using the remaining sample. The procedure is stopped when a test fails to reject the 
non-outlier hypothesis.  

 
Paul and Fung (1991) proposed a two-phase procedure for detecting multiple outliers in linear 
regression based on generalized extreme studentized residual (GESR). In phase one two sets of 
suspected observations are identified, one based on GESR and the other based on either Di or 
least median squares (LMS) method. In the second phase list of potential outliers are prepared by 
the union of these two sets. GESR procedure, which is used to detect multiple outliers in y, 
controls Type 1 error rate most adequately. Hadi (1992) proposed a procedure for the detection 
of multiple outliers on multivariate data. The procedure is based on the division of the data set 
into basic and non-basic subsets using an appropriately chosen robust measure of outlyingness. 
Other test procedures for detection of multiple outliers that are free from masking and swamping 
effects are due to Davies and Gather (1993), Hadi and Simonoff (1993), Hadi (1994) and 
Simonoff (1988). Atkinson (1994) gave a robust method for the detection of multiple outliers 
based on a series of forward search method and LMS method. Each of the forward search 
method involves successively using least squares to fit subset of size m, m+1, … with m ranging 
from p, the number of parameters, to n, the number of observations. Each field yields a value of 
LMS criterion and a set of residuals by taking the observations with large residuals from the fit.  
Recently Juan and Prieto (2001) described a procedure for the detection of multivariate outliers 
based on angular properties of the observations. 
  
1.3.2 Accommodation of Outliers 
As mentioned earlier, to tackle the problem of outlying observations and non-normal error 
variances, robust method of analysis has been advocated. Robust analysis of data is such that it is 
insensitive to the presence of outlying observations and departure from the assumption of 
normality of error variance. For a detailed descriptions of different robust regression procedures 
one may refer to Atkinson and Riani (2000), Tsou and Cheng (2004), Cheng (2005) and Jajo 
(2005). In the sequel, we discuss the most commonly used robust methods of data analysis.  
 
1.3.2.1 Breakdown Point 
The performance of many robust regression methods is evaluated on the basis of breakdown 
point. The finite-sample breakdown point is the smallest fraction of the anomalous data that can 
cause the estimator to be useless. The smallest possible breakdown point is 1/n, that is, a single 
observation can distort the estimator so badly that it is of no practical use to the regression 
model-builder. The breakdown point of the OLS (Ordinary Least Squares) is 1/n. The breakdown 
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point of the class of M-estimators (to be discussed shortly) is also 1/n.  Most experienced data 
analysts believe that the fraction of data that are contaminated by erroneous data typically varies 
between 1 and 10 %. This has lead to the development of high-breakdown-point estimators. 
Least Median of Squares (LMS) estimator has 50% breakdown point. 
 
1.3.2.2  Robust Analysis in Linear Regression Models 
Consider the linear model (1.1) again. When the observations y in the linear model are normally 
distributed, the method of least squares is a good parameter estimation procedure in the sense 
that it produces an estimator of the parameter vector β  that has good statistical properties. 
However there are many situations where we have evidence that the distribution of the response 
variable is considerably non- normal, and/or there are outliers that affect the regression model. 
 
To deal with such type of situations robust regression comes into picture. A robust regression 
procedure is one that dampens the effect of observations that would be highly influential if least 
squares were used. That is a robust procedure tends to leave the large residuals associated with 
outliers, there by making the identification of influential points much easier. In addition to 
insensitivity to outliers, a robust estimation procedure should be able to produce essentially the 
same results as least squares when the underlying distribution is normal and there are no outliers.   
 
A robust procedure tries to accommodate the majority of the data. Bad points, lying far away 
from the pattern formed by the good ones, will consequently possess large residuals from the 
robust fit. So in addition to insensitivity to outliers, a robust regression estimator makes the 
detection of these points an easy job. Of course residuals from least square fit can not be used for 
this purpose, because the outliers may posses very small residuals as the least square fit is pulled 
too much in the direction of these deviating points. 
  
1.3.2.2.1 M-estimator 
The motivation for much of the work in robust estimation was due to Huber (1964). His class of 
M-estimator has been specifically designed to be insensitive to outliers and to retain high 
efficiency when the errors are heavier tailed than the normal, two properties not possessed by 
least squares.   
  
In M-estimation actually some function of the errors is minimized to get the parameter estimates, 
where as in least squares, sum of squares of errors is minimized. A number of minimizing 
functions are proposed in the literature. For example, Huber’s t-function (Huber, 1964), 
Andrews’s wave function, Hampel’s function (Andrews et al., 1972 and Andrews, 1974) and 
Ramsay’s function (Ramsay, 1977). Some recent developments on  M-estimation are available in 
Stefansky and Boos(2002) and Cui et al. (2004). The details of M-estimation are given in chapter 
III.  
 
1.3.2.2.2 Least Median of Squares (LMS) Estimator   
Rousseeuw (1984) introduced a very robust method known as   Least Median of Squares (LMS) 
method, which has a very high break down point of around 50 %. In this method actually median 
of square residuals is minimized. Giloni and Padberg (2002) compared LMS regression with 
other regression procedures. Leontitsis and Pange (2004) considered statistical significance of 
LMS regression. 
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1.3.2.2.3 Least Trimmed (Sum of) Squares (LTS) Estimator   
The least trimmed (sum of) squares estimator is found by finding the regression model 
parameters that satisfy. 
 

∑
=
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i
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)(Minimize , 

where 2
)1(e < 2

)2(e < … < 2
)(ne are the ordered squared residuals and h must be determined. The 

best robust properties are obtained when h  = n/2. 
  
1.3.3 Robustness Aspects 
Another way to deal with outliers is to adopt a robust design. A robust design means that the 
design is insensitive to the presence of outliers. In the recent years robust designs have been an 
active area of research. A substantial amount of literature is now available on the subject of 
robust designs. Reviews on the subject, on specific aspects have been done by Herzberg (1982), 
Akhtar and Prescott (1987), Srivastava et al. (1990) and Atkinson (1982). The  review by Akhtar 
and Prescott (1987) is limited to the case of response surface designs only. Broadly speaking, a 
statistical procedure is said to be robust if it is not sensitive to departures from assumptions on 
which it is based. Several such statistical procedures are available in Huber (1981). However, the 
available literature reveals that the robustness of experimental designs mainly deals with the 
unavailability of data (missing observations). Not much work on robustness of experimental 
designs in the presence of outliers is available. Robustness of experimental designs in the 
presence of outliers was first studied by Box and Draper (1975). However, their study was 
confined to the case of response surface designs. 
 
1.4 Outlier(s) in Designed Experiments 
The important features of the statistics developed for identifying outliers in linear regression 
models are that they are developed from the point of view of whether outliers affect the 
parameter estimation and/or estimation of residual sum of squares for linear models in which 
design matrix has full column rank. The data generated from designed experiments may be prone 
to the occurrence of outlier(s). Though, the general set up of an experimental design is that of a 
linear model, yet detection and testing of outliers in this field has some problems. Firstly, in 
experimental designs the design matrix does not have full column rank; thus available test 
statistics cannot be applied as such to this setting. Secondly, in experimental designs the 
experimenter is interested only in a sub set of parameters. One may, therefore, be interested to 
see the effect of the outliers on the estimation of this subset of parameters.  Unfortunately not 
much work in this field is available in the literature. In the following section we shall present the 
work done on the study of outliers in the field of designed experiments. 

 
1.4.1 Identification 
John (1978) studied the problems that arise in detecting the presence of outliers in the results 
from factorial experiments. He actually applied the techniques of Gentleman and Wilk (1975) 
and John and Draper (1978), who investigated the problem of detecting outliers in two-way table 
and provided a statistic Qk which is difference between the sum of squares of residuals from the 
original data and sum of squares of revised residuals resulting from fitting the basic model after 
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deleting k- influential observations. Ben and Yohai (1992) studied the asymptotic theory of M- 
estimates and their associated test for a one-factor experiment in randomized block design. They 
have also studied a test for treatment effects derived from M- estimates. Bhar (1997) modified 
Cook-statistic, Qk- statistic and AP- statistic for application to the field of design of experiments. 
He found out the modified statistics for identification of single as well as multiple outliers using 
both mean shift and variance inflation models. He showed that when all the outliers belong to a 
particular block the above mentioned statistics do not exist. Sarker (2002) showed that the 
statistic also does not work for detection of a single outlier when block size is 2.  
 
1.4.2 Robust Analysis in Designed Experiments  
Not much work on robust analysis of experimental data is available in the literature. The first 
work in this direction is found in Lehman (1964). He obtained robust estimate of contrasts in 
treatment effects for experiments with one observation per cell. This estimate is based on 
robustly estimated treatment means. Robust treatment means are obtained by L2 estimator. This 
concept of robust estimation was extended to incomplete block designs by Greenberg (1965). He 
also studied the asymptotic properties of these estimators. However, these estimators are not 
reliable as these estimators developed on the basis of data, completely ignored the model. Most 
of the robust methods in the modern days are developed from the model point of view. 
 
Carroll (1980) applied so called modern robust methods to analysis for factorial experiments. He 
applied M-estimation procedure using Huber’s function, Andrews’s function and Hampel’s 
functions to find the significance level of the different treatment contrasts.  
 
Robustness of ANOVA with respect to interactions in some orthogonal block designs was 
studied by Zhang (1992). He gave a sufficient condition under which the structure of covariance 
of the model without interactions remains unchanged when interactions are included. 
 
Huggins (1993) applied robust approach to the analysis of repeated measured data. 
 
Chi (1994) provided robust methods for analysis for Cross-Over Trials. He proposed a robust 
procedure, combined M-estimation for analyzing cross over data with possible within- and 
between subject outliers. The mean squared error properties of these combined M- estimates for 
direct treatment effect contrasts and carryover treatment effect contrasts are examined through 
simulation studies. They are found to be superior to those of the generalized least squares 
estimates when there are possible within and between subject outliers. 
 
Muller (1995) studied breakdown point for designed experiments. He derived the break down 
point for situations that often appear in designed experiments. In particular he derived the 
breakdown point for replicated experimental conditions and showed that a design that maximizes 
the breakdown point should minimize the maximal number of experimental conditions, which lie 
in a subspace of the parameter space. 
 
1.4.3 Robustness Aspects 
As mention earlier, Box and Draper (1975) were the first to study the robustness of experimental 
designs in presence of outlier(s). Let us consider the model (1.1) where Rank (X) = p. Suppose 
that in the model uth observation was added to it an aberration h making it an outlier. They have 
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defined the overall discrepancy in the estimated value of y, which is caused by the effect of h on 
the uth observation. Box and Draper suggested that in order to make a designed experiment 
insensitive to outlier(s), the variance of overall discrepancy should be made minimum. The main 
feature of the robustness criterion of Box and Draper is that it cannot be applied to the linear 
model for which the design matrix is deficient in rank. 
   
Gopalan and Dey (1976) developed a criterion of robustness on the lines similar to those given 
by Box and Draper (1975) in other experimental situations where the design matrix is not of full 
rank. Instead of taking the overall discrepancy in the estimated value of y they considered the 
discrepancy in the estimation of σ2. They studied the robustness aspect of experimental designs 
by minimizing the variance of this discrepancy. The designs identified as robust against the 
presence of a single outlier by this method are: 

a.   Randomized complete block designs. 
b.   BIB designs. 
c. All non-group divisible two associate, connected PBIB designs with λ2 =0. 
d. All semi-regular group divisible designs. 
e.   All triangular PBIB designs satisfying   r + (n-4) λ1 – (n-3) λ2 = 0. 
f. All L2 type PBIB designs satisfying r + (s-2) λ1 – (s-1) λ2 = 0. 
 

Where the notations are as usual, details of these notations are available in Dey (1986). Singh et 
al. (1987) extended the results of Gopalan and Dey (1976) to find out robust designs for two-way 
elimination of heterogeneity. They showed that important class of variance balanced row- 
column designs that satisfy the property of adjusted orthogonality are robust in the presence of a 
single outlier. 

 
Bhar (1997) and Bhar and Gupta (2001) used a different criterion of robustness to find robust 
designs in presence of a single outlier. He suggested the use of minimum value of average Cook-
statistic as the criterion and also got the same result of Gopalan and Dey (1976) and Singh et al. 
(1987) using this criterion. He also showed that all E-optimal block designs are robust against the 
presence of single outlier. Sarker et al. (2005) showed that both the criteria are equivalent. 
  
Sarker (2002) and Sarker et al. (2003) extended these results to the experimental situations 
where the interest of the experimenter is only in a subset of all possible elementary treatment 
contrasts rather than the complete set of all the possible elementary contrasts. They obtained the 
Cook-distance (single response) for the set of treatment contrasts of interest. This statistic is used 
to identify the outlying observation.  
 
Sarker et al. (2005) proposed a test statistic for detection of a single outlier in block designs for 
diallel crosses. They have established a correspondence between two existing criteria of 
robustness against a single outlier i.e. minimization of average Cook-statistic and minimization 
of variance of discrepancy or bias in estimation of error variance. It has been shown that a proper 
binary balanced block design for diallel crosses is robust against the presence of a single outlier. 
Block designs for diallel crosses in which every line appears an equal number of times in each 
block are also found to be robust against the presence of a single outlier.   
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In most of these studies dealing with the problem of outlier(s) in block designs, the mean-shift 
model has been considered for studying the effect of outlier on the estimation of parameter in 
block design for univariate response. Bhar and Gupta (2003) studied the robustness aspects of 
designs under variance inflation models. 
   
1.5 Motivation 
A vast literature on outliers clearly indicates its importance in statistics. Primarily this concept 
was developed for an univariate sample but it started attracting people working in other fields of 
statistics. Mean-shift model developed by Srikantan (1961) and Ferguson (1961) becomes a 
strong basis for studying outliers in regression models. Various diagnostic procedures are now 
available in the literature for identification of outliers. Since least squares tries to avoid large 
residuals, the presence of a single outlier may result in a generally poor fit as the equation tries to 
accommodate this case at the expense of the rest of the observations. Thus large absolute value 
of residuals should be flagged off for further study. Most of the test-statistics for testing outliers 
are developed using this basic idea.  
 
Example 1.1 clearly shows that the residuals play a significant role in identifying influential 
observations. For identifying outliers that have a large influence on the estimation of parameters, 
a number of statistics based on distance measure, which reflects the effects of deleting the 
suspected outlying observations, are developed.   
 
The study of outliers is now diversified to almost every field of scientific study. The problem of 
outliers has been studied extensively in linear regression models. As mentioned earlier 
approaches to study of outliers are generally divided into two broad categories: (i) to identify the 
outlier(s) for further study and (ii) to accommodate the possibility of outlier(s) by suitable 
modifications of the models and or method of analysis. The first approach relates to detection of 
outlier(s) while the second one relates to the study of robust methods of estimation of parameters 
that minimize the influence of outlier(s) on inference concerning parameters. A number of test 
statistics have been developed to detect outliers in linear regression models. Among them Cook-
statistic is a widely used statistic. Other important test statistics for detection of outlier(s) are AP 
and Qk-statistic. M-estimation procedure is a very powerful robust method of estimation used in 
linear regression model. In M-estimation a function of errors is minimized to obtain parameter 
estimates, unlike least squares method where sum of square of errors is minimized. Each 
observation gets different weights for estimating parameters where as in the usual procedure of 
least squares all observations get equal weights. This function is called objective function. A 
good number of objective functions such as Huber’s function, Andersons’s function etc. are now 
available.  Another procedure of robust estimation of parametric function is Least Median of 
Squares (LMS) method wherein median of the errors is minimized to obtain the parameter 
estimates. 
 
Though, the general set up of an experimental design is that of a linear model, yet detection and 
testing of outlier(s) and application of robust methods in experimental designs need special 
attention because (i) the design matrix does not have full column rank (ii) interest is only in a sub 
set of parameters rather than whole vector of parameters. Not much research appears to have 
been done on detection of outliers and robust methods of estimation in designed experiments. 
The available test statistic and robust procedures of estimation cannot be applied directly to this 
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situation. Bhar and Gupta ( 2001) modified Cook statistic for detecting outliers in block designs. 
John (1978) provided some statistics for detecting outliers in factorial experiments. Therefore, 
there is a need to develop test statistic for detection of more than one outlier in experimental data. 
The robust method of estimation of parameters need to be modified so as to to be useful in 
experimental data. 
 
One can, however, instead of taking post experimental remedial measures, take pre-experimental 
measures by adopting a robust design for experimentation. A robust design is insensitive to the 
presence of outlying observations in the sense that the inference problem on linear function of 
treatment effects is not affected by the presence of outliers in the experimental data. Box and 
Draper (1975) obtained robust regression designs in presence of a single outlier. Gopalan and 
Dey (1976) identified robust block designs through minimization of variance of discrepancy or bias 
in estimation of error variance. Bhar and Gupta ( 2001) used the minimization of average Cook-
statistic to identify robust designs against presence of a single outlier. Sarker et al. (2005) 
established the equivalence of these two criteria. All these investigations were restricted to single 
outlier experimental situations only. Therefore, there is a need to define a new criterion for 
identification of designs that are robust against the presence of more than one outlier. 
 
The problem of outliers in linear regression models can be handled by using several statistical 
packages. These statistical packages are not capable of handling outliers in designed 
experiments. Thus with the development of new methodologies for tackling outliers in designed 
experiments, a user-friendly software for implementing these new techniques is also required.   
 
In view of the above discussion, Indian Agricultural Statistics Research Institute (IASRI), New 
Delhi undertook a project entitled, Outliers in Designed Experiments, financed by AP-CESS 
fund of ICAR with the following objectives: 
 

1. To develop/identify suitable methodologies for detecting outliers in design of 
experiments.  

2. To develop/identify robust estimates of parameters of interest in designed 
experiments with special emphasis on M-estimation.  

3. To study the robustness of block designs against the presence of more than one 
outlier. 

4. To develop user-friendly software for detecting outliers and analyzing   
experimental data in presence of outlier(s). 
 

1.6 Scope of the Present Investigation 
The present investigation is an attempt to give an comprehensive study of the problem of 
outliers.  Outlier(s) may be identified for further scrutiny or it may be accommodated in such a 
way that its influence may be nullified. For identification of outliers several test procedures are 
now available in the context of linear regression model. Bhar and Gupta (2001) modified some 
of these statistics for application into designed experiments. All these statistics are discussed in 
the first chapter. The other way handling outliers in linear regression model is robust method of 
analysis. There are some applications of robust methods in designed experiments also available. 
All these methods of detecting outliers as well as robust methods of data analysis have been 
reviewed in the first chapter. 
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In the second chapter, statistics available for detecting outliers in designed experiments are 
applied to a large number of real experimental data sets. Statistics developed by Bhar and Gupta 
(2001) viz. Cook-statistic, Qk-statistic and AP-statistic are applied to designed experiments. This 
chapter also deals with the problem of masking, a typical problem in case of detection of 
multiple outliers as described earlier. A new method of identification of multiple outliers in 
presence of masking in designed experiments has been proposed and illustrated with some 
examples. 
 
Robust methods of analysis of experimental data is the subject matter of the Chapters III and IV. 
Among robust methods, M-estimation and Least Median of Squares (LMS) have been chosen for 
application in designed experiments. In Chapter III, we deal with M-estimation. Appropriate 
procedures for both estimation and testing of hypotheses have been proposed in this chapter and 
illustrated with some examples. LMS method has actually developed from linear regression point 
of view. This method has been appropriately modified for application in designed experiment. 
All these are discussed in Chapter IV. The modified method is illustrated with the help of real 
life examples.  
 
As discussed earlier, in case of designed experiments the problem of outliers can also be handled 
by adopting a robust design, i.e., the design is insensitive to the presence of outliers. So far 
robustness study was confined to the presence of a single outlier. This study has been extended 
for more than one outlier. Some designs that are robust against the presence of two outliers have 
been identified. This is the subject matter of Chapter V. 
 
For application of the techniques developed for handling outliers in designed experiments under 
this project, a user friendly software has been developed. Various aspects of this software have 
been discussed in Chapter VI. 
  
A dissemination workshop organized under this project. Many scientists from different parts of 
the country participated in this workshop. Some suggestions and recommendations have emerged 
from this workshop. These are enlisted in Chapter VII.    
 
The report is concluded with a summary of the report and a list of references. 
 
1.7 Practical/Scientific Utility 
Generally data generated from experiments are analyzed without taking any care of the presence 
of outliers. But the presence of outliers may drastically affect the conclusions drawn from the 
experiment. Even a single outlier may alter the conclusions drawn. With the proper application 
of methodologies emerging from the present investigation, the researchers would be able to draw 
statistically valid conclusions. Further, the catalogue of designs identified as robust against in the 
presence of outliers, will be useful for designing experiments. 
 
The presence of an outlier is often an indication of weakness in the model, the data or both. Once 
an observation is identified as an outlier, one would be able to critically examine their 
experiment. Why did the outlier occur? Is there anything wrong with the measurement process? 
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With such questions, scientists would be able to visualize his experiment more properly and can 
take appropriate measures accordingly. 
The newly developed software would be helpful in to analyzing data appropriately. A mass 
awareness about the serious consequences of the presence of outliers would be established 
through the Workshop. 
 
The proper and appropriate analysis of experiments will help in improving the research output of 
agricultural sciences research, which in turn will enable it to be globally competitive. 
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Chapter II 
 

Detection of outliers 
 
2.1 Introduction 
We begin with the problem of detection of outliers in designed experiments. As mentioned in 
Chapter 1 that the statistics’ developed for linear regression models can not directly be used in 
designed experiments because of the rank deficiency of the design matrix. Moreover, in designed 
experiments, we are mainly interested in the estimation of some functions of subset of 
parameters rather than whole set of parameters. Bhar and Gupta (2001) modified some of these 
statistics’ for application into designed experiments. We present these statistics for detecting 
outliers in designed experiments in the present chapter in  Section 2.2. In Section 2.3 we applied 
these statistics to real experimental data sets taken from Agricultural Field Experimental 
Information System (AFEIS), IASRI, New Delhi.  However, these statistics are not free from the 
problem of masking. In masking, the effect of an outlier is suppressed by the presence of another 
outlier and therefore, if one applies single outlier detection procedure; both the outliers may 
remain undetected. In the context of regression analysis,  there are now many statistics available 
for tackling the problem of masking. The approach by Pena and Yohai (1995) is quite appealing. 
The essence of this approach is utilized for developing a new statistic for detecting outliers in 
presence of masking in designed experiments in the present investigation. This is the subject 
matter of the Section of 2.4. Every method is illustrated with some examples. 
 
2.2 Detection of Outliers in Designed Experiments 
2.2.1 Cook-statistic 
In this section we begin with Cook-statistic, given by Cook (1977, 1979). This statistic is useful 
in determining the degree of influence the ith data point has on the parameter estimation. 
Consider the general linear model as mentioned in (1.1)  
 
Cook-statistic as given in (1.5) is rewritten here as a definition 
Definition 2.1: If β̂ and )(ˆ iβ are the least squares estimates of β  with and without the ith data 
point respectively, then the Cook-statistic  
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where )ˆ()ˆ()(ˆ 12 βXyβXy −′−−=σ −pn . 
The statistic iD provides a measure of the distance between )(ˆ iβ  and β̂  in terms of descriptive 

levels of significance, because iD  is actually 100( α−1 )% confidence ellipsoid for the vector 

β̂ under normal theory, which satisfy iD )1,,( α−−≤ pnpF . 
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Suppose, for example, iD )1,,( α−−≈ pnpF  then the removal of the ith data point moves the 

least squares estimate to the edge of the 50% confidence region for β  based on β̂ . Such a 
situation may be a cause for concern. For any analysis one would like each )(ˆ iβ to stay well 
within 10%, say, confidence region (See Cook, 1977). Cook has also shown that this statistic can 
be used to assess the degree of influence for a subset of parameters as well as can be extended 
for more than one outlier. 
 
Though the general set up of an experimental design is that of a linear model, yet Cook statistic 
cannot be applied as such for testing outliers in this field because of some problems as described 
earlier.  Therefore there is a need to develop this statistic for experimental designs. 
 
Cook Statistic in Designed Experiments 
Consider the general linear model for an experimental design d (say) 
 εXθy += ; 0ε =)(E , n

2)(D Iε σ= , 02 >σ                      (2.1) 
where y is an n×1 vector of observations. X is n×p  design matrix with rank )( pm < , θ  is a p×1 
vector of unknown parameters and ε is an n×1 vector of independent random variables each with 
zero mean and variance )0(2 >σ . 

Let ( )′′′= 21 θθθ , where 1θ is a v-component vector containing all parameters of interest to 
the experimenter and 2θ  is (p-v) component vector containing the set of nuisance parameters in 
the model which are not of much interest to the experimenter.  
 

Thus  ( ) ε
θ
θ

XXy +







=

2

1
21 ,                           (2.2) 

where X is partitioned in conformity with the parameters, 1X is an n×v matrix of rank v and 

2X is an n× (p−v) matrix such that [ ]21 XXX = . The normal equations obtained by least 
squares method for estimating the parameters are given by  
 XyXθX =′  
From these equations  on eliminating 2θ , we obtain the reduced normal equations involving only 

1θ as  
11 1 θθ QθC = ,                         (2.3) 

where     12222111 )(
1

XXXXXXXXCθ ′′′−′= −  

  = 11BXX′ . 

     yXXXXXyXQθ 222211 )(
1

′′′−′= −  

  = ByX1′ .  

   2222 )( XXXXIB ′′−= −
n                         (2.4) 

The matrix B is symmetric and idempotent. 
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We assume that the design d considered here is connected, i.e., all (v−1) orthonomalized 
contrasts for the parameters 1θ are estimable or equivalently Rank (

1θC ) = v−1, and let the set of 

all (v−1) orthonormalized contrasts for the parameters 1θ be given by 1Pθ . The (v−1)×v matrix P 

is such that 1−=′ vIPP , vv v
JIPP 1

−=′  and the least squares estimator of 1Pθ is given by 1θ̂P , 

where 1θ̂ is any solution of the normal equations (2.3). 
 
For a connected design, the dispersion matrix of 1θ̂P can be written as D ( 1θ̂P ) = 

21)(
1

σ−′PPCθ . 
 
Let k observations be suspected of being outliers in the sense that their expected values are 
shifted from the expected values of other observations. We keep k known (we take first k 
observations as outliers) and considered the following model: 

( ) εUδ
θ
θ

XXy ++







=

2

1
21 ,                         (2.5)   

where ( )kuuuU ...21= , ( )′= 00...)(1...00 th
i iu and ( )′= kδδδ ...21δ . 

 
The coefficient matrix of reduced normal equations C and adjusted treatment total vector Q 
vector are 

 
)())(( 122221111

AXXAXXAXXAXXCθ ′′′−′= −
Z

 

)())(( 2222111
AyXAXXAXXAyXQθ ′′′−′= −

Z
, 

where UUUUIA ′′−= −1)(n . 
 
As a third option we consider, a model where the k observations suspected to be outliers are 
actually omitted 

 ( ) )(
2

1
)(2)(1)( kkkk ε
θ
θ

XXy +







=                       (2.6) 

where )(ky and )(kε have (n−k) elements and )(kX has (n−k) rows. 

Similarly the reduced normal equations for 1θ̂ under this model are given by 
 

)(1)(1 )(1 kk k θθ QθC =              (2.7) 

where )())(( )(1)(2)(2)(2)(2)(1)(1)(1)(1 kkkkkkkkk
AXXAXXAXXXXCθ

−−′=  

           )())(( )()(2)(2)(2)(2)(1)()(1)(1 kkkkkkkkk
AyXAXXAXXyXQθ

−−′= .  

 
Consider the models in (2.5) and (2.6) respectively, then the following two statements hold: 
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(i) The information matrix 
Z1θC under model (2.5) equals the information matrix 

)(1 kθC under 

the model (2.6) 
(ii) The vector 

Z1θQ for adjusted totals for the parameters 1θ under the model (2.5) equals the 

corresponding vector 
)(1 kθQ under the model (2.6). 

 
The best linear unbiased estimator (BLUE) of all ortho-normalized contrasts for 1θ  under the 
model (2.5) equals the BLUE of all ortho-normalized contrasts for 1θ  under the model (2.6), i.e., 

Z1θ̂P = )(1ˆ kθP . 
 
The difference between the estimators of contrasts of 1θ  under the model (2.2) and (2.6) can be 

expressed as )ˆˆ( )(11 kθθP − = VyUVUUBUXPC ′′′ −+
θ

1
1 )(

1
,             (2.8) 

where B is as given in (2.4) and XXXXIV ′′−= −)(n .         
Now following the Definition 2.1 we give the Cook-statistic for the contrasts 1Pθ of 1θ  in 
experimental designs as: 
 
Definition 2.2: Cook-statistic for the set of contrasts 1Pθ  is given by 
 

kD = 
[ ]

[ ])ˆ(Rank

)ˆˆ()ˆ()ˆˆ(

1

)(11
1

1)(11

θP

θPθPθPθPθP

D

D kk −′−
−

 

 = 
2

)(11)(11

ˆ)1(

)ˆˆ)(()ˆˆ(
1

σ
θ

−

−′′−

v
kk θPθPPPCθPθP

           (2.9) 

 
Now using the fact that 01Cθ =

1
, we get 

kD = 
2

1
11

1

ˆ)1(

)()(
1

σ−

′′′′′′ −+
θ

−

v

VyUVUUBUXCBXUVUUVUy
 

The Cook statistic kD can also be written as  

 
2

11

ˆ)1(

ˆˆ
1

σ−

′′
=

+

v
Dk

δBUXCBXUδ θ  

  
2ˆ)1(

ˆˆ

σ−

′
=

v
δSUUδ               

where VyUVUUδ ′′= −1)(ˆ  and BXCBXS 11 1

+
θ= .        (2.10) 

A convenient formula for kD  can be obtained by noting that 2rVyU =′ and SBV −= , so that 
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kD = 
2

2
11

2
ˆ)1(

))(()(

σ−

′−′′′−′′ −−

v

rSUUBUUSUUSUUBUUr .             (2.11) 

Insight into kD  can be obtained by applying the spectral decomposition to SUU′ . Let 

kλλλ ≤≤≤≤ ...0 21 be the eigenvalues of SUU′ , then SUU′ = ΛEE′  

where ),...,(diag 1 kλλ=Λ and E is orthogonal matrix. Then 
2ˆ)1(

ˆˆ

σ−

′′
=

v
Dk

δΛEEδ . 

Let gδE =ˆ , thus (2.10) alternatively be written as 

kD = 
2ˆ)1( σ−

′

v
Λgg = 

2
1

2

ˆ)1( σ

λ

−
∑
= v

g m
k

m
m                       (2.12) 

 
Distribution of kD  
A generalization of squared Studentized residuals to k outlying cases is given by (see also Cook 
and Weisberg, 1980), 

2
22

σ̂

′′ VUrUr
= δVUUδ ˆ)(ˆ ′′ . 

The residual sum of squares under the model (2.5) is 2
1

2 )( rVUUrVyy −′−′ . Thus the additional 

sum of squares due to fitting the parameters δ is 22 VUrUr ′′ . Assuming normality, the test 
statistic for testing the hypothesis 0δ = is 

      
t
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The null distribution of this statistic is F(k, n− m− k). 

Now, 22 VUrUr ′′ = δSUUδδBUUδ ˆˆˆˆ ′′−′′ = i
k

i
ig λ∑

=
−′′

1

2ˆˆ δBUUδ . 

Therefore, kD  can be compared with 

kmn

gkmn
F

i
k

i
i

k
))(ˆ)((

ˆˆ)(

2
1

2
2

1

2

rVUUr

δBUUδ

−
=

′′−σ−

λ−′′−−

=
∑

 ∼ F(k, n −m−k)  (See Cook and Weisberg, 1980). 

 
Computation of kD  
One goal in examining subset of k >1 cases is to find groups of cases that, while not individually 
influential when taken as a group are influential. Finding influential subsets which include cases 
that are individually influential may add little information because the observed influence of the 
subset will be due, in part to the influence of the single influential case. Conversely, finding an 
uninfluential subset that includes one or more cases that are singly influential would not decrease 
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the interest in those cases. Thus good candidates for inclusion in subsets will have small distance 
values for k = 1, but they may well have relatively large values of residuals. Thus only a subset 
of all possible k

nC subsets of kD need to be tested. Therefore, a method of subset selection 
should be written to find subsets of cases with large values of kD . But in every subset, the 
eigenvalues of SUU′  are needed, which is a tedious job. A realistic technique for finding 
influential subsets should use only the residuals and the diagonal entries of V. Following Cook 
and Weisberg (1980), we give two upper bounds for kD  for computational purpose. 
 
Form I 
Since lk λλ ≥  ∀ i =1,2, …, k, (2.9) can be approximated by, 

 ∑
=−

≤
k

i
i

k
k g

v
D

1

2
2ˆ)1( σ

λ
.           (2.13) 

Again kλ must be replaced by an approximation that can be computed without need for obtaining 
SUU′ . The easiest approximation to use is kλ ≤  SUU′ . Thus from (2.11), we get  

∑
=σ−

′
≤

k

i
ik g

v
D

1

2
2ˆ)1(

)(trace SUU .                       (2.14) 

 
Form II 
For a fixed k, let T = )](trace[max SUU′∈ t

n ck  

And ∑
=

∈=
k

i
ick gR

t
n

1

22 max  

Then the bounds of kD  are given by,  

 2
2ˆ)1(

)(trace R
v

Dk
σ−

′
≤

SUU                                   (2.15) 

 

and ∑
=−

≤
k

i
ik g

v
TD

1

2
2ˆ)1( σ

.                      (2.16) 

These two bounds may combine to give another bound for kD as 

2

2

ˆ)1( σ−
≤

v
TRDk .           (2.17) 

When k = 1, all the approximations are exact. An algorithm for finding all relevant subsets with 
fixed k can be based on these approximations. Exact computation is required if these 
approximation values are larger than a selected cut-off point. 
 
2.2.2 AP-statistic 
In this section, we give  AP-statistic, proposed by Andrews and Pregibon (1978). This statistic is 
also useful in determining the degree of influence of outliers on parameter estimation. This 
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statistic is appropriately modified by Bhar and Gupta (2001) for application into designed 
experiments. 
 
Consider again the model (2.1), i.e., εXβY += , and assume that X has full column rank, and 
similar to the model (2.4) we also consider the model, ( ) εγUXy += , where U is as defined 
earlier. Then AP-statistic is defined as,  

**
*

XX
ZZ
′

′
=

*
APk  

where ( )yXX =*  and ( )yUXZ =*  and . denote the determinant value of a square matrix. 
 
According to Andrews and Pregibon (1978) the quantity (1-APk) corresponds to the proportion 
of volume generated by X* attributable to the k outlying observations. If this subset of 
observations lies “far out” in the factor space, it will account for a large proportion of the volume 
of the space, lending some realistic interpretation to the term ‘outliers’. Hence small values of 
AP-statistic are associated with deviant or influential observations. 
 
However, this statistic can not be applied as such to experimental designs situation because in 
case of experimental designs, the matrices X*X and Z*Z* are singular. We, therefore, define this 
statistic for experimental designs suitably. We reparameterize the model (2.5) in the following 
way: 
Since the rank of X is m, there are at most m linearly independent eastimable parametric 
functions and we let θP* be such a set of m linearly independent estimable functions, where  

*P is an m×p matrix. Hence, every estimable linear parametric function must be a linear 
combination of the elements of θP* . Hence, Xθwhich is estimable must be expressible as 
 θMPXθ *=  
for some n ×m matrix M of rank m. so the original model (2.4) is transformed into  

εXβy +=  
    = εMβ +               (2.18) 

where θPβ *= . 
The model (2.18) now becomes full model and from (2.18), 

yMMMβ ′′= −1)(ˆ . 
It can be shown that βθP ˆˆ* = . 

We now define the following two matrices [ ]yMX =*
0  and [ ]yUMZ =*

0 . Now  AP-
statistic is defined in the context of designed experiments as, 
 

*
0

*
0

*
0

*
0

XX

ZZ

′

′

=kAP . 
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After simplification it can be shown that   

 =kAP 








 ′′
−′

−

RSS
2

1
2 )(1 rVUUrVUU           (2.19) 

where RSS is the residual sum of squares.   
 
Following, Draper and John (1981), AP-statistic is factorized in (2.19). The first factor involves 
only independent variables and provides a measure of remoteness of the set of observations in 
the factor space; smaller value of VUU′  indicating more remote points. The second will be 

small if 2
1

2 )( rVUUr −′′  is large and so identifies set of outliers as in John and Draper (1978). 
 
2.2.3 ‘Qk’ - statistic 
In this section we present another useful statistic for testing outliers in experimental designs. 
This statistic is known as ‘Qk’ – statistic or outlier sum of squares given by Gentleman and Wilk 
(1975). This statistic is modified by Bhar and Gupta (2001) for application in designed 
experiments. The n-component observations vector y is partitioned as ( )′′′= 21 yyy , where 

1y is an (n−k) component vector containing observations which are possibly suspected outliers. 
Correspondingly, the general linear model can be rewritten as, 

 

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y
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

2

1  = Xθ . 

Accordingly the matrix X is partitioned into L1 and L2. Normally, L2 contains k rows of X-
matrix. The residuals for fitting this model by least squares are,  
 yXXXXIVyr ])([ ′′−== −  
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r           (2.20) 

where ijR = ji LXXL ′′ −)( , i, j = 1,2. 
Now the model given in (2.5)can alternatively be written as  

 ( ) 







=

δ
θ

UXy)(E = 















δ
θ

IL
0L

2

1 . 

A solution of δ̂  is  given  (2.10) as VyUVUU ′′ −1)(                    (2.21) 
Note that the matrix 2L can be written as  
 XUL ′=2 . 

Thus 22RI − = 22 )( LXXLI ′′− −  

 = UXXXXUI ′′′− −)(  

 = UXXXXIU ))(( ′′−′ − = VUU′ . 
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Replacing, 2y  by ‘missing value’ estimate δy ˆ2 −  in (2.20) gives new residuals *r  whose 
components are  

121
1

221211
*
1 ])([ yRRIRRIr −−−−= , 0r =*

2 . 
These are the same residuals as obtained from the model θLy 11)( =E . Thus, the additional sum 
of squares due to fitting δ   as compared to model (2.5), is given by 
     '' kQ = 2

1
222 )( rMIr −−′  

  = 2
1

2 )( rVUUr −′′ . 
 This statistic measures the effect of an outlier and can be used to form a test-statistic as 
described by Gentleman and Wilk (1975) and John and Draper (1978). 
 
2.3 Outliers in Experimental Data 
Detection of outliers in experimental data was carried out. For this purpose data of block designs 
were taken from “Agricultural Field Experiments Information System (AFEIS)”, IASRI, New 
Delhi. The experimental data from these experiments were investigated for the presence of any 
kind of problems like non-normality or heterogeneity of error variance under a project entitled 
‘A diagnostic study of field experiments’ conducted at IASRI, New Delhi by Parsad et al (2004). 
Based on the normality and homogeneity of errors, these data were grouped into the  following 
groups: 
 

(i) Experiments having non-normal and heterogeneous error variance 
(ii) Experiments having non-normal and homogeneous error variance 
(iii) Experiments having normal and heterogeneous error variance 
(iv) Experiments having normal and homogeneous error variance 

 
Experiments from the first three groups have some problems. One of the reasons of such   
problems may be presence of outlier(s). We, therefore,  applied test – statistic  in the category (i), 
(ii) and (iii) of these experiments for detection of outlier(s). In most of these experiments 
presence of outliers is detected. A summary of the results obtained is given follows: 
 
 Total number of 

experiments 
Total number of 
experiments having 
at least one outlier 

(i) Experiments having non-normal and 
heterogeneous error variance 
 

205 125 

(ii) Experiments having non-normal and 
homogeneous error variance 
  

209 129 

(iii) Experiments having normal and 
homogeneous error variance 

 

165 118 

 
Once outlier(s) are identified, next question may arise what to do with these outliers? One way to 
handle outliers is to simply discard the observations. The second way is to perform a analysis of 
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covariance by taking one as the value of the covariate for the outlying observation and zeros for 
the rest of the observations. We performed both types of analysis for those experiments where 
outliers were found. Results obtained are same. One example is given in the sequel. 
 
Another way and perhaps the best way is to perform a robust analysis of the data.  This is one of 
the objectives of the present study and will be discussed in the 3rd   and 4th chapters. 
 
2.3.1 Example  
An experiment with twelve  treatments was conducted in a randomized complete block (RCB) 
design with three replications at Punjab Rao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra 
in 1989 to study the effect of micnelf and other micro nutrients on the yield of groundnut  crop 
[net plot size: 1.80m × 4.20m]. The treatment details are 
 
T1 =  Control 
T2 =  One spray of micnelf + magsulf at 20 days after sowing (DAS) 
T3 =  Two spray of micnelf + magsulf at 20 DAS and 40 DAS 
T4 =  Three spray of micnelf + magsulf at 20 DAS, 40 DAS and 55 DAS 
T5 =  One spray of micnelf + m-o-potash at 55 DAS 
T6 =  Three spray of micnelf  at 20 DAS, 40 DAS and 55 DAS 
T7 =  Two spray of borax at 40 DAS and 55 DAS 
T8 =  Three spray of urea+ dap at 20 DAS, 40 DAS and 55 DAS 
T9 =  Two spray of 0.5 ml/lit nutron  at 20 DAS and 40 DAS 
T10 = Two spray of 1.0 ml/lit nutron  at 20 DAS and 40 DAS 
T11 = Three spray of ferrus sulphate 
T12 =  Water spray  
 
The table below shows the data on yield per plot in kilogram for different treatments: 
 

Table 2.1: Yield of groundnut in kg/plot 
Replications Treatments 

1 2 3 4 5 6 7 8 9 10 11 12 
1 0.55 0.72 0.62 0.67 0.59 0.65 0.75 0.95 0.57 0.61 0.57 0.62 
2 0.54 0.62 0.53 0.57 0.58 0.49 0.61 0.51 0.53 0.58 0.52 0.56 
3 0.50 0.60 0.57 0.54 0.48 0.47 0.71 0.51 0.48 0.60 0.53 0.54 

   
 

Table 2.2: ANOVA (With original data) 
Source DF SS MS F Value Significance 

Level 
Replication 2 0.09223889 0.04611944 9.53 0.0010 
Treatment (adj) 11 0.09735556 0.00885051 1.83 0.1100 
Error 22 0.10649444 0.00484066   
Total 35 0.29608889    
 

Analysis of this data is presented in Table 2.2. It is observed that the treatment effects are not 
significantly different at 5% level of significance. We then computed cook statistic for each of 
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the observations. The values of Cook-statistic for each of the observations are presented in Table 
2.3. It is observed from the table that the observation at serial number 8 stands out. We tested it 
with the F-statistic (The table value of F (11, 22)(0.90) is 0.472245) and found that this observation 
is an outlier.  
 
We carry out the analysis again after removing this observation. The results of this analysis are 
presented in the Table 2.4. The dramatic effects of removing this observation are worth noticing. 
The treatment effects now become significantly different at 5% level of significance. Removal of 
any other observation does not affect the analysis.   

 
Table 2.3: Cook-statistics 

Serial 
No. 

Replica
tions 

Treatments Cook-
statistics 

Serial 
No. 

Replica
tions 

Treatments Cook-
statistics 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
1 
2 
3 
4 
5 
6 

0.0405781 
0.0000581 
0.0093913 
0.000428 
0.0151393 
0.0270335 
0.001993 
0.7569051 
0.0120946 
0.0517893 
0.0263221 
0.0093913 
0.02597 
0.0003035 
0.0022954 
0.0009295 
0.0573843 
0.0037181 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

7 
8 
9 
10 
11 
12 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.036726 
0.2051798 
0.0182302 
0.0032059 
0.001897 
0.0048563 
0.0016231 
0.0006272 
0.0209725 
0.002619 
0.0135742 
0.0107003 
0.05583 
0.1739184 
0.0006272 
0.0292245 
0.0140864 
0.000741  

 
 

 
Table 2.4: ANOVA (After removing observation No.8) 

Source DF SS MS F Value Significance 
Level 

Replication  2 0.04919076      0.02459538      19.95    <.0001 
Treatment 11 0.08356098      0.00759645       6.16    0.0002 
Error 21 0.02588826      0.00123277   
Total 34 0.15864000    

  
Note: Analysis of covariance gives similar results 
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2.4 Detection of Outliers in Presence of Masking 
In previous sections we have discussed several statistics for detection of a single outlier or an 
isolated influential point in designed experiments. Some statistic for detection of influential 
subsets of observations are also given.  The detection of influential subsets or multiple outliers is 
more difficult, owing to masking and swamping problems. Masking occurs when one outlier is 
not detected because of the presence of others, swamping when a non-outlier is wrongly 
identified owing to the effect of some hidden outliers. Several procedures have been proposed 
for dealing with multiple outliers in linear regression models. Marasinghe (1985) and Kianifard 
and Swallow (1990) have suggested a sequential testing strategy to identify a set of k points, 
where the maximum number of outliers in the sample, k, is fixed in advance. Atkinson (1986), 
Rousseeuw and Leroy (1987) and Rousseeuw and van Zomeren (1990) have suggested the use of 
robust estimates with high breakdown point for the regression parameters to overcome the 
masking problem. These estimates are computed by using a resampling scheme. Hawkins  
(1980) have proposed a diagnostic procedure which is also based on a resampling scheme. Gray 
and Ling (1984) proposed the use of cluster analysis. Hocking (1984) has suggested that the 
eigenstructure of the matrix ):():( yXyX ′ should be computed, where y is the vector of 
responses and the matrix X contains the explanatory variables. Pena and Yohai (1995) proposed 
a method to identify influential subsets by looking at the eigenvalues of an ‘influence matrix’. 
This matrix is defined as the uncentred covariance of a set of vectors which represent the effect 
on the fit of the deletion of each data point. This matrix is normalized to have the univariate 
Cook (1979) statistics on the diagonal.  
 
In the present section this method has been modified for application into designed experiments. 
In section 2.4.1 modified statistic is presented. In section 2.4.2 procedure for identifying the 
influential sets has been discussed. The computational aspects of this method are given in 
Section 2.4.4 and in Section 2.4.4 we illustrate the method with an example.  
 
2.4.1 Development of the Statistic 
Consider the general linear model for experimental designs as considered in (2.1), then the effect 
of deleting ith data point on the set of treatment contrasts can be obtained from (2.8) as 

)ˆˆ( )(11 ii θθPf −= = VyVBXPC uuuu ′′′ −+
θ

1
1 )(

1
,                    (2.22) 

where ( )′= 00...1...00 thiu .  
The vector if summarizes the effect on the set of treatment contrasts of deleting the observation i. 
The individual deletion statistics identify influential points as those with large values of if  in 
some suitable norm. For instance, Cook statistic for a set of treatment contrasts is given 

by fPPCf θ )(
ˆ)1(

1
12

′′
σ−v

. However, when masking is present, the if  values corresponding to 

outliers tend to be small, and therefore they are not detected. 
 
One of the most important types of masking situations occurs when several observations have 
similar effects on the least squares fit. Two observations i and j have similar effects on the set of 
treatment contrasts when ji ff λ≈ for some scalar 0>λ . They will have opposite effects when 

0<λ . However, this is not the only case for every masking effect. There are many situations 
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where this condition does not hold good. That is, all types of masking does not imply 
proportional effects. Moreover, there are different types of proportional subsets that do not 
produce masking. However, this situation is particularly interesting because the standard 
procedures based on individual deletion will not work in this case. To detect possible sets of 
influential observations having similar or opposite effects on the fit, it seems sensible to look at 
the uncentred covariance matrix of if . Let us call F the (v−1)×n matrix ( )nffF ...1=  whose 
columns are the vectors if . Then we define the n×n influence matrix M as  

 FPPCFM θ )(
ˆ)1(

1
12

′′
σ−

=
v

                      (2.23) 

After doing some algebra it can easily be shown that the ijth element of M is  

  
2ˆ)1)(1)(1( σ−−−

=
vhh

hrr
m

jjii

ijji
ij ,                                (2.24) 

where tr is the tth residual and ijh is the ijth element of the matrix XXXXH ′′= −)( . 
 
Let I be an index set corresponding to a subset of k data points. Cook and Weisberg (1982) 
proposed to measure the joint influence of the data points with index in I by  
 211 ˆ)1/()()(( σ−−−′= −− vD IIIIII rHIHHIr                                         (2.25) 
where the components of Ir are the least squares residuals and IH the submatrix of H 
corresponding to the set I. A large value of ID may be due to a single influential observation 
included in the set I. This can also be due to the sum of small individual effects of a set of 
observations that are masking each other. In the first case this single observation will be easily 
identified. A subset of individually highly influential points can cancel out others and this will 
lead to a small value of ID . Therefore, we shall concentrate here on the most interesting case in 
which masking is due to points that can only be identified by looking at them jointly. 
 
Let ije be the uncentred correlation coefficient between if and jf . This actually measures the 
effects on the least square fit of the ith and jth points. Then 

 2/12/1
jjii

ij
ij

mm

m
e = .                                                                    (2.26) 

Following Pena and Yohai(1995), suppose that there are k groups of influential observations 
kII ,....,1 , such that  

(a) if hji I∈, , then 1=ije  (this means that the effects on the least squares fit produced 

by the deletion of two points in the same set hI have correlation 1 or  −1), 
(b) if ji I∈ and hl I∈  with hj ≠ , then 0=ije  ((this means that the effects produced on 

the least squares fit by observations i and j belonging to different sets are 
uncorrelated) and , 

(c) if i does not belong to any hI , ijm = 0 for all j (this means that data points outside 
these groups have no influence on the fit) 
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Now, according to (a) we can split each set hI  in 1
hI  and 2

hI such that  

(i) if q
hji I∈, , then 1=ije  and  

(ii) if 1
hi I∈ and 2

hj I∈ , then 0=ije  

 
Let ( )′= nvv 1111 ,...,v , ..., ( )′= knkk vv ,...,1v be defined by 2/1

jjhj mv = if 1
hj I∈ , 

2/1
jjhj mv −= if 2

hj I∈  and 0=hjv , if 2
hj I∉ . Then, if (a) to (c) hold, by equation (2.23) the 

matrix M is  

  ∑ ′=
=

k

i
ii

1
vvM                                             (2.27) 

and since the iv ’s are orthogonal the eigenvectors of M are kvv ,...,1 , and the 
corresponding eigenvalues kλλ ,...,1  are given by  
  ∑=λ

∈ hi
iih m

I
.                                            (2.28) 

When the matrix M satisfies (a) to (c), the only sets I with large ID are q
hI , kh ≤≤1 , q = 1, 2, 

and these sets may be found by looking at the eigenvectors associated with non-null eigenvalues 
of M. Equation (2.26) can also be written as  
 

  
2/1)(

)(sign)(sign

jjii

ijji
ij

hh

hrr
e = ,                                     (2.29) 

which means that, in the extreme case that we have presented, the H matrix and the signs of the 
residuals can, by themselves, identify the set of points that are associated with masking. For real 
data sets, conditions (a) to (c) do not hold exactly. However, the masking effect is typically due 
to the presence in the sample of blocks of influential observations having similar or opposite 
effects. These blocks are likely to produce a matrix M with a structure close to that described by 
(a) to (c). Infact two influential observations i and j producing similar effects should have 

ije close to 1, and close to −1 when they have opposite effects. Influential observations with non-

correlated effects have ije close to 0. The same will happen with non-influential observations. 

Therefore, the eigenvectors will have approximately the structure described above. This suggests 
the following procedure to identify influential sets. 

(a) Find the eigenvectors corresponding to the p non-null eigenvalues of the influence 
matrix M   

(b) Consider the eigenvectors corresponding to large eigenvalues, and define the set 
1
hI  and 2

hI by those components with large positive and negative values 
respectively. 
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2.4.2 Procedure for detecting influential sets 
It is obvious from the previous discussion that to identify influential sets, we need to look at the 
eigenvectors corresponding to the largest non-zero eigenvalues of the influence matrix. 
However, different influential subsets may have different eigenvectors.  In nutshell, it is a useful 
to develop a strategy to look at all the eigenvectors corresponding to non-zero eigenvalues to 
find influential sets. In each eigenvector we must search for sets of co-ordinates with relatively 
large value and the same sign. When the set of influential points has many components, and the 
eigenvectors are standardized to norm 1, the individual value cannot be very large. Therefore, we 
must compare the relative value of the components to identify the elements of the set. Pena and 
Yohai (1995) suggested in case of regression analysis to look at the ratio between the 
components in decreasing order, searching for a clear cut-off point, to form a set of candidate 
outliers, and then to test the points in this set to identify the outliers. We also follow the line of 
this procedure in case of designed experiments. 
 
2.4.3 Computational Aspects 
Step 1: Identifying Sets of outlier Candidates.  
A  set of candidate outliers is obtained by analyzing the eigenvectors corresponding to the non-
null eigenvalues of the influence matrix M, and by searching in each eigenvector for a set of co-
ordinates with relatively large value and the same sign. The search is done in the following way. 
 

(a) Order the co-ordinates of the eigenvector iv , obtaining )()2()1( ... niii vvv ≤≤≤ , and 

let us call )()1( ,..., nii the indices of the ordered co-ordinates of the eigenvector. 

(b) Compute the ratios 
)1(

)(

−
=

ji

ji
j v

v
a for j = n, . . .,  1cn − and 

)1(

)(

+
=

ji

ji
j v

v
b for j = 1, . . . , 

2c . The constants 1c and 2c  smaller than n/2 and will be discussed shortly. Look for 

the first 0J such that ka j > and the first 0I such that kb j >  

(c) If 10 >i and/or 10 >j , consider the sets { })1()1()(0 0
,...,, +−−= innn iiiJ  

and/or { })1()2()1(0 0
,...,, −= jiiiI  as candidate outlier. 

 
Choice of  1c and 2c is related to the desired breakdown point of the procedure will be smaller 
than min )/,/( 21 ncnc . Pena and Yohai (1995) suggested that 1c and 2c should be close to 1. This 
number seems to be sufficiently small to avoid numerical instability due to denominators in the 
ratios close to 0. In any case the ratios should be computed so that dv ji >− )1(  where d is a 

small value. Since the candidate outlier will be further scrutinized, as outlined in step 2, taking 
large value for k may have more serious consequences. In case of regression analysis Pena and 
Yohai (1995) suggested this value to be 2.1. In case of designed experiments we took this value 
in the neighborhood of 2.0.  
 
Step 2: Checking for outliers 

(a) Remove all candidate outliers. 
(b) Use the standard F statistic to test for groups or individual outliers. Reject sets of 

individual points with F statistic larger than some constant c.   
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(c) If the number of candidate outliers is larger than n/2, the previous procedure can be 
applied separately to points identified in each eigenvector. 

 
According to Pena and Yohai (1995) in most regression applications the sample size n is much 
larger than p, the rank of X. Since we are only interested in the eigenvectors corresponding to the 
non-null eigenvalues, the direct computation of the eigenvalues and eigenvectors of M can be 
obtained by using spectral decomposition of the matrix M. However, for designed experiments 
this may not be a serious problem. We directly calculate the eigenvalues and eigenvectors. 
 
2.4.4 Illustration 
The test statistic developed in the previous sub-section was applied to experimental data from 
Agricultural Field Experiments Information System, New Delhi.  It is observed that in some 
experiments some observations are not influential individually, but jointly with some other 
observations, they are influential, that is, some observations were masked by some other outlying 
observations and, therefore, could not be detected when diagnostic test procedure  for detecting 
for single outlier is applied. To make the exposition clear consider the following example.  
 
An experiment with 10 treatments was conducted  in the randomized complete block (RCB) 
design with 4 replications at Sugarcane Research Institute, Shahjahanapur, Uttar Pradesh in 1988 
to find out the suitable herbicide to control weeds in Sugarcane (net plot size: 8.00m × 5.40m.). 
The treatment details are 
  

T0 = Control weeded check 
T1 = Local conventional method 
T2 = Trash mulching 
T3 = 1.0 kg active ingredient (a.i.)/ha of 2,4-D sodium salt and 0.50 kg a.i./ha of 

gramoxone at 3 weeks  of planting followed by application of the same at 6-8 weeks 
of planting. 

T4 = 2.0 kg a.i./ha of Atrazine as Pre-emergence spray 
T5 = 1.00 kg a.i./ha of 2,4-D Sodium Salt at 8-10 weeks after planting 
T6 = 2.0 kg a.i./ha of 2,4-D (Amine) as Pre-emergence spray followed by spray of the same 

at 8-10 weeks after planting. 
T7 = 2.0 kg a.i./ha of Atrazine as Pre-emergence spray followed by spray of Glyphosate at 

1.0 kg a.i./ha at 6-8 weeks after planting. 
T8 = 1.00 kg a.i./ha of Arochlor and 1.00 kg a.i./ha of Atrazine as pre-emergence spray 
T9 = 2.00 kg a.i./ha of Arochlor as pre-emergence spray 
 

The table below shows the data on yield per plot in quintal for different treatments: 
 

Table 2.5: Yield of sugarcane in q/plot 

Replications Treatments 
1 2 3 4 5 6 7 8 9 10 

1 2.52 2.82 2.42 2.67 2.50 3.01 2.65 2.62 2.18 2.57 
2 2.77 2.77 2.52 3.69 3.21 3.05 2.64 2.53 2.47 2.82 
3 2.32 2.38 2.44 2.30 1.90 2.46 2.35 2.47 2.15 2.26 
4 2.31 2.14 2.38 2.13 2.51 2.79 2.21 2.52 2.66 2.35 



34 
 

 
Analysis of this data is  presented in Table 2.6. The treatment effects were not significantly 
different at 5% level of significance. Cook statistic for each  observation is computed and values 
are given in Table 2.7. It is observed from the Table 2.7 that the observation number 14 stands 
out. We tested it with F value (The table value of F (9, 27)(0.95) is 0.472245)  and found  this 
observation is statistically influential. No other observation is found to be influential. 
  

Table 2.6: ANOVA (With original data) 
Source DF SS MS F Value Significance 

Level 
Replication 3 1.73105000       0.57701667        8.64     0.0003 
Treatment (adj.) 9 0.63781000       0.07086778        1.06     0.4206 
Error 27 1.80225000       0.06675000   
Total 39 4.17111000    
 

Table 2.7: Cook-Statistics 
Serial 

No. 
Replica

tions 
Treatments Cook-

statistics 
Serial 

No. 
Replica

tions 
Treat
ments 

Cook-
statistics 

1 1 1 0.0003126 21 3 1 0.0044407 
2 1 2 0.0446265 22 3 2 0.0060796 
3 1 3 0.0051954 23 3 3 0.0448183 
4 1 4 0.0062219 24 3 4 0.022109 
5 1 5 0.0065846 25 3 5 0.1292313 
6 1 6 0.0124363 26 3 6 0.0147602 
7 1 7 0.0134679 27 3 7 0.0120352 
8 1 8 0.0005345 28 3 8 0.0233389 
9 1 9 0.0491404 29 3 9 0.0002813 
10 1 10 0.0000906 30 3 10 0.0000347 
11 2 1 0.0003455 31 4 1 0.0009225 
12 2 2 0.003801 32 4 2 0.0517879 
13 2 3 0.043674 33 4 3 0.0048107 
14 2 4 0.3823402 34 4 4 0.1526988 
15 2 5 0.1122303 35 4 5 0.0111566 
16 2 6 0.0063657 36 4 6 0.0080566 
17 2 7 0.0145407 37 4 7 0.0110611 
18 2 8 0.0818239 38 4 8 0.0121348 
19 2 9 0.034714 39 4 9 0.1530533 
20 2 10 0.0000742 40 4 10 0.0001498 

 
We then applied our new statistic to identify the group of observations that are influential. It was 
found that observation number 14 and 39 are likely to be influential jointly. We then applied the 
present method for multiple outlier detection and found that these two observations are really 
influential (Value of Cook-statistic is 0.4521055). The interesting point to note here is that 
though the observation number 14 was detected as outlier yet observation number 39 was not. Its 
effect was masked by the observation number 14. It is an interesting example of masking. 



35 
 

 
The data was reanalyzed after deleting these two observations. The result is presented in table 
2.8. The dramatic effect to note here is that the treatment effects are now significant at 5% level 
of significance. Removal of any other pair of observations does not have any effect on the 
analysis. 
  

Table 2.8: ANOVA (With 2 data points deleted) 
Source DF SS MS F Value Significance 

Level 
Replication 3 1.20704269 0.40234756 11.58 <.0001 
Treatment (adj) 9 0.70698849 0.07855428 2.26 0.0519 
Error 25 0.86835040 

 
0.03473402   

Total 37 2.78238158    
 
  
2.5 Discussion 
Conclusions drawn from an experiment may be misleading due to presence of some outliers as 
we have demonstrated through an example. Therefore, detection of outliers in the experimental 
data is of major concern. Once an observation is detected to be an outlier, further scrutiny of the 
observation is done. Firstly, it is ensured that there is no transcription error. Generally the 
outlying observations are deleted and usual analysis is carried out with the remaining 
observations. Alternatively analysis of covariance may also be performed. However, discarding 
an observation is not recommended since each observation carries some information and it 
should be exploited. As mentioned earlier, robust method of analysis is an alternative. This 
method has been discussed in the 3rd and 4th chapters. 
 
The problem of multiple outliers has been studied intensively in linear regression model. Many 
statistics are now developed to tackle the problem of masking. In the present study we have used 
the concept of Ben and Yohai (1995). However, there are some statistics that are used to detect 
multiple outliers in presence of masking. Their applicability in designed experiments need to be 
explored. These statistics need to be explored.  
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Chapter III 
 

Robust Analysis of Designed Experiments  
I:M-estimation 

 
3.1 Introduction 
In the earlier Chapter II, we have discussed about the procedures of detection of outlier(s). If 
there are outlier(s) present in the data, then detection of outlying observations or analysis of 
covariance is suggested. Each observation, however, contains some information and it should not 
be deleted. Alternatively, way of handling of the problem of outlying observations is robust 
methods of estimation of parameters or robust analysis of data. When the observations in the 
linear model are normally distributed and free from outlying observations, the method of least 
squares is a good parameter estimation procedure in the sense that it produces an estimator of the 
parameter vector that has good statistical properties. However there are many situations where 
we have evidence that the distribution of the response variable is considerable non- normal, 
and/or there are outliers that affect the assumptions of linear model. To deal with such type of 
situations robust regression comes into picture. A robust regression procedure is one that 
dampens the effect of observations that would be highly influential if least squares were used. 
That is a robust procedure tends to leave the large residuals associated with outliers, there by 
making the identification of influential points much easier. In addition to insensitivity to outliers, 
a robust estimation procedure should produce essentially the same results as least squares when 
the underlying distribution is normal and there are no outliers.   
 
A robust procedure tries to accommodate the majority of the data. Bad points, lying far away 
from the pattern formed by the good ones, will consequently possess large residuals from the 
robust fit. So in addition to insensitivity to outliers, a robust regression estimator makes the 
detection of these points an easy job. Of course residuals from Least Squares (LS) cannot be 
used for this purpose, because the outliers may possess very small residuals as the LS fit is pulled 
too much in the direction of these deviating points. Among robust procedures, M-estimation 
method is most widely used. 
 

In the present chapter the concept of M-estimation is introduced and then applied to designed 
experiments. In M-estimation an objective function (a function of errors) is minimized to obtain 
the parameter estimates.  There are many objective functions of M-estimation for linear 
regression model available in the literature. Some of these objective functions are discussed in 
the present chapter and their applicability to designed experiments has been explored. In Section 
3.2 we have introduced how M-estimator is used in linear regression model and listed some of 
the commonly used objective functions. Most of these objective functions involved some tuning 
constants. The efficiency of the M-estimation procedures depends upon how best these tuning 
constants are selected. For application to designed experiments the appropriate values of these 
constants have been proposed. Since parameters are estimated through robust methods, usual 
way of testing hypotheses may not be applicable. Appropriate testing procedures have been 
developed in the literature. In Section 3.2.1 we have described some of these procedures.  In 
Section 3.3 applications of M-estimation procedures to designed experiments has been 
considered. The existing objective functions have been modified by suitably choosing the 
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constants. A new objective function has been proposed. In designed experiments we are mainly 
interested in estimation of treatment contrasts. In view of this objective, Bhar and Gupta (2001) 
developed Cook-statistic for application to detection of outliers in experimental data. The 
proposed function is based upon Cook-statistic and, therefore, addressed the basic requirement of 
design of experiments. In the Section 3.3.3 we have applied the M-estimation procedures along 
with the newly proposed objective function to some real experimental data. A discussion on 
merits of the M-estimation procedure is given in Section 3.4. 

3.2 M-estimator in Linear Regression (Montgomery and Peck, 2001) 
Consider the linear model (1.1) again. In general, we may define a class of robust estimators that 
minimize a function ρ  of the errors, i.e, 
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n
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MinimizeMinimize βxρρ

ββ
,                                                   (3.1) 

where ix′  denotes the ith row of  X. 
 
An estimator of this type is called an M-estimator, where M stands for maximum likelihood. 
That is, the function ρ is related to the likelihood function for an appropriate choice of the error 
distribution. If the method of least squares is used (implying the error distribution is normal), 

then ρ (z) = 
2
1 z2 , where z is the error term. 

 
Generally instead of ρ (ei), the function ρ (ei/σ ) is minimized, where σ  is a scale parameter. To 
minimize the equation (3.1), equate the first p partial derivatives of ρ with respect to jβ (j = 0, 1, 
2,…, p) to zero, yielding a necessary condition for a minimum. This gives the system of p 
equations 
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where s is the robust estimate of scale parameter σ , ρψ ′=  and ijx  is the ith observation on the 

jth regressor and 10 =ix , s is an approximately unbiased estimator of σ .  
 
In general the ψ  function is non linear and the equation (3.2) must be solved by iterative 
methods. Iterative Reweighted Least Squares (IRLS) is most widely used procedure. This 
approach is usually attributed to Beaton and Tukey (1974). 
 
To use Iteratively Reweighted Least Squares, suppose that an initial estimate 0β̂ is available and 
that s is an estimate of scale. Then write p equations in (3.2),  
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as  ( ) 0/0 =′−∑ sywx iiiij βx ,                                                                                  (3.4) 
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                  1=                               if 0β̂x iiy ′=  
 
In matrix notations (3.4) can be written as 

yWXXβWX 00 ′=′ ,                                                                                            (3.6) 
where 0W  is an n×n diagonal matrix of “weights” with diagonal elements 02010 ,...,, nwww  
given by equation (3.5). We recognize equation (3.6) as the usual weighted lest-squares normal 
equations. Consequently the one step estimator is  

( ) yWXXWXβ 1
001ˆ ′′= − .                                                                                    (3.7) 

At the next step we recomputed the weights from equation (3.5) but using 1β̂  instead of 0β̂ . This 
process is continued till the convergence criterion is met. Some robust criterion functions 
available in the literature are given below. 

 
Table 3.1: Commonly used objective functions 

Criterion ( )zρ  ( )zψ  ( )zw  Range 

Least squares ( ) 22/1 z  z  1.0 ∞<z  

Huber’s t 
function 
 

( ) 22/1 z  
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z   
t sign(z) 

1.0 
 
zt /  
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Ramsay’s 
function  
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Andrews’ wave 
function 
 

a[1-cos(z/a)] 
 
 

2a 

Sin (z/a) 
 
 
0 

Sin (z/a)/(z/a) 
 
0 

πaz ≤  
 
 
πaz >  
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Hampel’s 
function 
 
 
 
 

 
(½)z2 
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(a(c z -(½)z2))/(c-b)-
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a(b+c-a) 
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a sign (z) 
 

(a sign (z)(c-
z ))/(c-b) 

 
 
0 

 
1.0 

 
 

a/ z  
 

a(c- z )/( z (c-
b)) 

 
0 

 
az ≤  
 

bza ≤<  
 

czb ≤<  
 
 
 

cz >  

Source: Montgomery and Peck (2001) 
Note: Here ( )zρ indicates the function of error i.e., z, ( )zψ  is the first derivative function of   
( )zρ , ( )zw is the weight function and range defines the range of residuals. 

 
Robust regression procedures can be classified on the basis of the behavior of their ψ -function. 
The ψ -function controls the weight given to each residual and apart from a constant of 
proportionality is sometimes called the influence function. For example the ψ -function for least 
squares is unbounded and thus least squares tends to be non robust when used with data arising 
from a heavy tailed distribution. The Huber’s t-function (Huber, 1964) has a monotone ψ -
function and does not weight large residuals as heavily as least squares. These influence 
functions actually redescent as the residuals becomes larger. Ramsay’s function is soft 
redescender that is the ψ  function is asymptotic to zero for large z . Andrews wave function 
and Hampel’s function (Andrews et al., 1972 and Andrews, 1974) are hard redescenders, that is, 
the ψ -function equals zero for sufficiently large z . It is to be noted that the ρ functions 
associated with the redescending ψ functions are not convex, and this in theory can cause 
convergence problems in the iterative estimation procedure. However this is not a common 
occurrence. 
 
In case of M-estimation a number of estimators of 2σ  are proposed. The commonly used 
estimate of the error mean square is taken as (Huber, 1973) 
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, where )(Xδ  is the rank of X matrix.                 (3.8) 

 
3.2.1 Test of Linear Hypothesis 
In linear model the sensitivity of the classical least squares estimates to departures from 
normality, such as possible presence of outliers, has led to various proposals for robust methods 
of estimation. Parameter estimation is usually only a first step in the analysis of data arising from 
a linear model. A classical least squares analysis often focused upon the analysis of variance, 
which tests simultaneous hypothesis in large subsets of the parameters. Since the terms in a 
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classical analysis of variance are quadratic forms in least squares estimates, one would expect 
that the sensitivity of the estimates to departures from normality should be inherited by the tests. 
In fact, for moderate to heavy tailed distributions or in the presence of outliers, it appears that 
there is a loss of power in classical F test. In view of this fact, many attempts have been made to 
develop appropriate   procedures for testing linear hypotheses. Some of these procedures are 
discussed in the sequel. 
 
3.2.1.1 Test Proposed by Schrader and Hettmansperger (1979) 
Consider the linear model (1.1) again. In many experimental designs, particularly analysis of 
variance and covariance, the main interest is in the parameters that can be summarized by the 
linear hypothesis as   

hβH =:0H ,                       (3.9) 
where H is (p − q) ×  p and h is (p − q) ×  1 (0<q<p). In classical theory, the maximum likelihood 
criterion for estimation naturally leads to likelihood ratio tests for hypothesis such as (3.9). When 
the likelihood function corresponds to the distribution of the errors, maximum likelihood 
estimates are well known to be asymptotically normal. Huber (1973) extended this asymptotic 
theory for M-estimate when the likelihood function and the error distribution do not match. 
 
Define D(F) as the minimum value of ( )∑ σρ /ir  and D(R) as the minimum value of 

( )∑ σρ /ir  subject to (4.9), dispersion of the residuals under the full and reduced models, 
respectively, where ri is the ith residual. Schrader and Hettmansperger (1979) proposed to base a 
test of (4.9) upon the pseudo likelihood ratio 
 

( ){ } ( ){ }FDRD −−=Λ exp/exp .                                                                     (3.10)  
 
This is a likelihood ratio type test since the density of ie  is of the form ( ){ }σρ /exp ir− .  
 
When Λ  corresponds to the actual distribution of the ie ’s, then Λ− log2  converges in 

distribution to a 2
qp−χ , central chi-squared random variable with p − q degrees of freedom. 

Similarly to the least squares result, Huber showed that the M-estimate β̂  is asymptotically 

multivariate normal with mean β  and covariance matrix proportional to ( ) 1−′XX as in case of 
least square fit. The only effect of ρ  on this asymptotic distribution is in the constant of 

proportionality, which is ( ){ } ( ){ }σψσψσ /// 222 eEeE ′ , where ( ) ( ) dxxdx /ρψ =  and 

( ) ( ) 22 / dxxdx ρψ =′ . Since the choice of ρ  function has little impact on the form of the 
asymptotic distribution of β̂ , it seems reasonable to hope that the test based upon (3.10) is also 

well behaved. Infact ( ){ } ( ){ }[ ] 222 log///2 qpeEeE −→Λ′− χσψσψ .                             (3.11)       
 
The test statistic  is very similar in form to the familiar F-statistic for testing 0H . Notice that 

( ) ( )FR DD ββ ˆˆlog −=Λ−  is the reduction in dispersion of the residuals obtained by passing from 
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the reduced to the full model; hence a direct generalization of the classical F test for 0H  may be 
based upon the statistic 

( ) ( ){ } ( )qpDDF FRM −−= − /ˆˆ1 ββλ ,                                                       (3.12) 

where ( ){ } ( ){ }σψσψλ ///
2
1 2 eEeE ′= , ( ) ( ) ( ){ }∑∑ ′−= −− σψσψλ ˆ//ˆ/

2
1ˆ 121 enrpn i   

and σ̂  is a residual scale estimate. For small sample sizes it is better to follow the classical 
method and compare MF  with a critical value from a central F distribution with p − q and N − p 
degrees of freedom. 
 
3.2.1.2  Test Based upon Quadratic Form [Huber, 1973] 
Huber’s asymptotic theory suggests a test of 0H  based upon the quadratic form 

( )( ) ( ){ } ( ) DqpQM ˆ/ˆˆ 11 hβHHXXHhβH −′′
′

−−=
−− ,                (3.13) 

where D is the asymptotic covariance scale factor and estimated as  

( ) ( ){ } ( ){ }21212 ˆ//ˆ/ˆˆ ∑∑ ′−= −− σψσψσ ii rnrpnD . 

Furthermore, Huber’s correction for bias in D̂  should be employed; that is D̂  should be 

multiplied by an estimate of ( ) ( ) ( ){ }22/var/1 ψψ ′′+ Enp . For Huber’s function, this term is 

( )( ){ }2/1/1 µµ−+ np  where ( )∑ ′= − σψµ ˆ/ˆ 1
irn . It has been shown that MQ  and MF  are 

asymptotically equivalent. 
  
3.2.1.3 Test Based on Bickel’s Pseudo Observations 
Bickel (1976) proposed a robust analysis that is based on standard least squares analysis of 
pseudo observations. If Mβ̂  is the M-estimate which can be obtained from (3.7) 

( ) ( ){ } 11 ˆ//ˆ/ˆˆ~ −− ∑ ′+′= σψσψσ iiMii rnry βx  ,                             (3.14) 
  iy~  is the ith pseudo value, where ix′  is the ith row of X.  

Let y~  be the vector { }iy~ . Then the least squares estimates ( Lβ̂ , say) are obtained for the model 

εXβy += L
~ . Bickel (1976) showed that Lβ̂  and Mβ̂  are same. He suggested that defining the 
pseudo values and using them in the conventional Least Squares method could obtain 
asymptotically correct tests. The least squares estimate of β  based upon y~  is 

( ) ML βyXXXβ ˆ~ˆ 1 =′′= − . It is easy to verify that the classical F-test based upon y~  is MQ .   
 
3.2.1.4 Test Based Upon Weighted Least Squares 
The most natural tests based on first deriving Mβ̂  from the Iteratively Reweighted Least Squares 
algorithm  (Holland and Welsch, 1977) and then by using the final configuration of the weights 
as fixed and given a priori, a least squares weighted analysis of variance could be done. This may 
be a reasonable procedure with small sample sizes. Asymptotic theory, however, does not 
support it. 
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3.3 M-estimator in Design of Experiments 
In this section M-estimation procedures are modified for application in the design of 
experiments. As mentioned earlier, the efficiency of the M-estimation procedures is based on the 
value of the constants used in different objective functions. We have suitably chosen the value of 
the constants for their application in the design of experiments. First we have introduced the 
concept of block designs in brief and then apply the M-estimation in the analysis of data 
generated through block designs. For a detailed description of block designs one may refer to the 
book by Dey (1986), Nigam, Puri and Gupta (1988) and Parsad et al. (2000) 
  
Block Designs 
It is an arrangement of v treatments in b blocks such that jth block contains jk  experimental units 
and the ith treatment appears ir  times in the entire design, i =1,2,…,v and j =1,2,…,b. Underlying 
any block design there exists a matrix N of order v×b , whose (i, j)th element is ijn  where ( )0≥ijn  
is the number of times the ith  treatment appears in the jth  block. The matrix N is called the 
incidence matrix of the design. The model for general block design is given by  
 εθD1τΔy +′++′= µ            (3.15) 
   
where y is a n×1  vector of observations, Δ′  is n × v incidence matrix of treatments, τ  is a  v×1 
vector of treatment effects,  D′  is a n × b incidence matrix of blocks, θ  is a b×1  vector of block 
effects,1  is a unit vector of order n×1 and ε  is a n×1 vector of errors. 
Following  notations generally used in block design. ( )′= bkkk ,...,, 21k , the column vector of 

block sizes, ( )′= vrrr ,...,, 21r , the column vector of replications; ( )bkkk ,...,,diag 21=K ; 
( )vrrr ,...,,diag 21=R ; T = yΔ  and  B = Dy.                 

The reduced normal equations for estimating the linear function of treatment effects are    
QCτ = , 

where NNKRC 1−−=                      (3.16) 
and BNKTQ 1−−= .                   (3.17)  
We also define the matrix 

ΦΔCΔΦM −′=                                                                                            (3.18) 

where DKDIΦ 1−′−=  and −A  is a g-inverse of A. 
Now we compare this model with the linear model as given in (2.1), i.e., e+= βXy . Here the 
rank of X is p = v+b+1. We now partition X matrix as  

[ ]21 XXX =   
where ΔX ′=1  and [ ]D1X ′=2                      (3.19) 

Similarly, 







=
















=

2

1
β
β

θ

τ
β µ , 

where  [ ]τβ =1  and 







=

θ
β

µ
2 .                    (3.20) 
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The problem of using least squares method of analysis for a data set containing outlier(s) is that 
all the observations including the outlying observations get same weight and the weight is unity. 
But if any observation is found to be outlier then it must get some lesser weight than the clean 
observations. This concept is utilized in the analysis of the design of experiments. For giving 
appropriate weight to different observations we make use of functions available for M-estimation 
frequently used in the regression analysis. Now following the normal equations for estimating β  
as given in (3.6), the normal equations for estimating the parameters in designed experiments are 
given as 

yWXβXWX ′=′  









′
′

=















′′
′′

yWX
yWX

β
β

XWXXWX
XWXXWX

2

1

2

1

2212

2111 ,                            (3.21) 

where X1 X2, 1β  and 2β  are as given in equations  (3.20). 
From (3.21), we get 
 yWXβXWXβXWX 1221111 ˆˆ ′=′+′                           (3.22) 
 yWXβXWXβXWX 2222112 ˆˆ ′=′+′ .                          (3.23) 
From (3.23), we can get 

 ( ) [ ]1122222 ˆˆ βXWXyWXXWXβ ′−′′= − . 
Substituting  this 2β̂  in (3.22) we get  

( ) [ ] yWXβXWXyWXXWXXWXβXWX 111222221111 ˆˆ ′=′−′′′+′ − , 
or 

( )( ) 112222111 β̂XWXXWXXWXXWX ′′′−′ −   

( ) yWXXWXXWXyWX 222211 ′′′−′= −  
The above equations are written as 
   QβC =1ˆ ,                                                (3.24) 
where  

( )[ ]12222111 XWXXWXXWXXWXC ′′′−′= −                           (3.25) 

and      ( ) yWXXWXXWXyWXQ 222211 ′′′−′= − .                           (3.26) 
 
Treatment Contrasts  
In designed experiments, the experimenter is generally interested in estimation of treatment 
contrasts. Let P be a (v− 1) × v matrix of all (v−1) set of orthonormalized treatment contrasts. M-
estimates of this set of contrasts are  

 1β̂P = τPˆ = QPC− .                             (3.27) 

The variance of τPˆ  is given as 

 Var( τPˆ ) = 2σ̂ PPC ′− ,                                (3.28) 

where 2σ̂ is obtained from (3.8) and A′ is a transpose of A . 
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The contrasts sum of squares are given by   

 ( ) ( ) ( )τPPCPτP ˆˆ
−− ′′    

 
The test statistic for testing the significance of τPˆ , i.e., 0τP =ˆ:H0  against 0τP ≠ˆ:H0  is  

( ) ( ) ( )
dferrorvFF ,12ˆ

ˆˆ
−

−−
→

′′
=

σ

τPPCPτP . 

 
For testing a particular elementary treatment contrast say τp ˆi′  where ip′  is the ith row of 
contrast matrix the test statistic is  

( ) ( ) ( )
dferror

iiii FF ,12ˆ

ˆˆ
→

′′′′
=

−−

σ

τppCpτp
. 

 
3.3.1 Development of a New Objective Function 
Considerable work has been done on robust regression in the last 20 years. Despite all the 
advances, robust regression is not widely used in practice (see, Chatterjee and Machler, 1997) 
According to Chatterjee and Machler (1997) several reasons have been advanced for this state of 
affairs, some of them quite superficial, other substantive. Among the superficial reasons are (i) 
robust methods have not been presented to the statistical community vigorously. (ii) no 
commercial software is available for the general user, though this picture is changing. Although 
there is some truth to (ii), but (i) does not hold well. Robust regression methods have 
concentrated primarily though not exclusively, in guarding against outliers. Guarding against 
outliers is very important.   

In standard regression analysis the linear model is fitted by the principle of least squares which is 
called the Gaussian paradigm. The paradigm may be stated as for a body of data, the best fit to a 
given model is obtained by minimizing the sum of squares of residuals. The problem associated 
with the application of least squares to model fitting has been discussed widely and extensively 
by Chatterjee and Machler (1997). The problems from the least squares fit arise due to two main 
causes. These may be summarized by saying that the Gaussian paradigm gives too much weight 
to outliers and high leverage points. This feature distorts the fitted line.  

The difficulties associated with the least squares fit can be removed by modification of Gaussian 
paradigm. Chatterjee and Machler (1997) proposed to modify the paradigm as follows: for a 
given model the best fit is obtained by minimizing the sum of squares of the residuals without 
allowing observations which do not fit the given model or are far from the main body of the data 
from exercising substantial influence over the fit. The modified paradigm will generate the fitting 
principle for the procedure they proposed. The fitting principle they stated that the best fit for a 
data set to a given model is obtained by a fitting procedure that gives less weight to observations 
lying far from the main body of the data and also to those, which are not fitted (well) by the 
model. 

Motivated by the work of Chatterjee and Machler (1997), we propose an objective function to be 
minimized for application in the designed experiments. 
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It is well known that outlying observations may distort the overall conclusion to be drawn. 
Therefore, outlying observations should be detected before analyzing any data set. In case of 
designed experiments, we are interested in estimating certain treatment contrasts. In view of this 
fact Bhar and Gupta (2001) modified Cook-statistic for application to designed experiments. Our 
new objective function is based on this Cook-statistic. Since it is based on Cook-statistic, the 
overall robust analysis will give a clear picture on the behaviour of treatment effects. We propose 
the function as follows: 

 ( ) ( )( )112

2

−−







=

vh
hzz
ii

iiρ                      if ( )[ ] picook >      

        









=

2

2z                                                 otherwise.  

The derivative of this function, i.e., ψ  is given as 

( ) ( )( )11 −−
=

vh
h

zz
ii

iiψ                               if  ( )[ ] picook >                                                                           

z=                                                          otherwise. 
Finally weights are obtained as 

 ( ) ( )( )11 −−
=

vh
h

zw
ii

ii                                  if   ( )[ ] picook >                                                    

                    =1                                                           otherwise. 
where iih  is the ith diagonal element of   H  as given in section 2.2.1. The value of p depends on 
the corresponding experiment, this actually the F-value for which an observation becomes 
outlier. For example, in an experiment with 10 treatments and 3 replications, corresponding F-
value for 9 and 18 degrees of freedom is 0.425. If the value of Cook-statistic for any observation 
exceeds this value, then the observation becomes outlier. Therefore value of p for this 
experiment is 0.425. For other experiments, this value can be calculated before applying this 
method. 

  
3.3.2 Robust Testing of Hypotheses in Designed Experiments  
In design of experiments, we generally test whether all treatments are equally effective,  i.e., we 
compare among the treatment effects. As mentioned earlier, many robust testing procedures are 
developed in regression analysis. These procedures are applied to designed experiments for 
testing hypotheses of  interest. 
 
3.3.2.1 Test as Proposed by Schrader and Hettmansperger (1979) 
This statistic thoroughly described in sub-section 3.3.1. For testing the equality of treatment 
effects we use the statistic MF as given in (3.12). In this situation substitute H matrix in (3.9) by 
P and h by 0. If treatment effects are found to be significantly different, then the individual 
treatment contrasts are tested using the same statistic MF . In this case, however, H is substituted 
by a vector p of treatment contrast of interest and h by 0. Since this test is asymptotically 
equivalent to test given by Bickel (1976), therefore, we apply only Bickel’s test. 
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3.3.2.2 Test Based on Bickel’s Pseudo Observations 
The testing procedure based upon Bickel’s pseudo observations is as given in (3.14). Analysis of 
variance is performed by substituting usual observation iy  by pseudo observations iy~ . 
  
3.3.3 Robust Analysis of Experimental Data 
In this  M-estimation procedure have been illustrated through real experimental data retrieved 
from AFEIS.  For performing such analyses, relevant SAS/IML codes are written and these 
codes are given in APPENDIX 3.1. 
 
Examples  having Clearcut Suspected Outlier 
Firstly we present two examples where outlier could be suspected on the basis of the 
observations themselves. We study the effects of these outlying observations. 
 
Example 3.1: An experiment with 10 treatments was conducted in the randomized complete 
block (RCB) design with 3 replications at Sugarcane Research Institute, Shahjahanpur in 2003 
with a view to study the comparative performance of 10 manural treatments  on cane yield and 
juice quality of sugarcane (net plot size  8.00 m × 2.70 m). The treatment details are given as 
follows: 
  
T1 Full recommended dose of N through organic manure 
T2 1/3 Recommended dose of N through bio-compost + 2/3 recommended dose of N 

through inorganic fertilizer 
T3 1/2 Recommended dose of N through bio-compost + 1/2 recommended dose of N 

through inorganic fertilizer 
T4  2/3 Recommended dose of N through bio-compost + 1/3 recommended dose of N 

through inorganic fertilizer 
T5  1/3 Recommended dose of N through F.Y.M. + 2/3 recommended dose of N through 

inorganic fertilizer 
T6  1/2 Recommended dose of N through F.Y.M. + 1/2 recommended dose of N through 

inorganic fertilizer 
T7 1/3 Recommended dose of N through F.Y.M. + 2/3 recommended dose of N through 

inorganic fertilizer 
T8  1/3 Recommended dose of N through sulphitated pressmud cakes + 2/3 recommended 

dose of N through inorganic fertilizer 
T9 1/2 Recommended dose of N through sulphitated pressmud cakes + 1/2 recommended 

dose of N through inorganic fertilizer 
T10 2/3 Recommended dose of N through sulphitated pressmud cakes + 1/3 recommended 

dose of N through inorganic fertilizer 
 
Doses of recommended fertilizers : 120 kg/ha of F.Y.M. + 180 kg/ha of N + 90 kg/ha of P2O5   
The data on grain yield per plot in quintals for different treatments is given in Table 3.2: 

 
Table 3.2: Yield of sugarcane in kg/plot 

 
Treatments 

Replication 
1 2 3 

1 169.00 177.00 160.00 
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2 174.00 181.00 185.00 
3 192.00 188.00 181.00 
4 179.00 182.00 166.00 
5 176.00 159.00 166.00 
6 186.00 177.00 184.00 
7 169.00 157.00 165.00 
8 164.00 153.00 160.00 
9 170.00 101.00 176.00 
10 159.00 154.00 152.00 

 
Analysis of variance was performed on the original data and results are given in Table 3.3.   
From the table one can observe that both the treatment effects and block effects are not 
significant at 5% level of significance.  
 

Table 3.3: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 9 4185.200  465.022  2.30 0.06  
Block 2 602.866  301.433  1.49 0.25  
Error 18 3637.800  202.100    
Total 29 8425.866     
Average variance for the set of elementary treatment contrasts is obtained as 134.82  
 

It is suspected that observation pertaining to treatment 9 in replication 2 is low and may be an 
outlier. Therefore, we perform robust analysis using various objective functions.  Different 
values of the constants used in the objective functions are  
For Huber’s function the value of the constant t =1.5 
For Andrew’s function a =1.339 
For Ramsay’s function a =0.3 
For Hampel’s function a =1.7, b =3.4, c = 8.5 
Results are presented in the following tables. 

 
Table 3.4: Analysis of variance (Huber’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 4339.029 482.114 10.12 0.00002 
Block 2 156.258 78.129 1.64 0.22167 
Error 18 857.515 47.639   
Total 29 5352.803    
Average variance for the set of elementary treatment contrasts is obtained as 22.759333 
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Table 3.5: Analysis of variance (Andrew’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 6604.162 733.795 11.21 0.00001 
Block 2 187.213 93.606 1.43 0.26523 
Error 18 1178.263 65.459   
Total 29 7969.637    
Average variance for the set of elementary treatment contrasts is obtained as 31.759333 

 
Table 3.6: Analysis of variance (Ramsay’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 3798.729 422.081 9.87 0.00002 
Block 2 121.449 60.724 1.42 0.26753 
Error 18 769.752 42.764   
Total 29 4689.931    
 Average variance for the set of elementary treatment contrasts is obtained as 23.509333 
 

Table 3.7: Analysis of variance (Hampel’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 2291.184 254.576 7.77 0.00012 
Block 2 83.875 41.937 1.28 0.30216 
Error 18 589.751 32.763   
Total 29 2964.812    
Average variance for the set of elementary treatment contrasts is obtained as 24.84 
 

Table 3.8: Analysis of variance (Newly developed function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 2398.574 266.508 8.89 0.00005 
Block 2 82.740 41.370 1.38 0.27695 
Error 18 539.611 29.978   
Total 29 3020.926    
Average variance for the set of elementary treatment contrasts is obtained as 19.985333 
Note: Value of p = 0.425 

From the above tables, one can observe that all the M-estimation procedures give similar results. 
The treatment effects have become highly significant now.   
 
Analysis Based on Bickel’s (1976) Proposal 
The pseudo observations obtained from equation (3.14) for different M-estimation procedures 
and then ordinary analysis of variance was conducted as per procedure of Bickel (1976). The 
results are summarized in the sequel. 

 
 



49 
 

Table 3.9: Analysis of variance (Huber’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj.) 9 5049.601 561.067 11.03 0.00001 
Block 2 181.088 90.544 1.78 0.19707 
Error 18 915.612 50.867   
Total 29 6146.301    
Average variance for the set of elementary treatment contrasts is obtained as 20.23170 

 
Table 3.10: Analysis of variance (Andrew’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 5604.467 622.719 10.76 0.00001 
Block 2 179.408 89.704 1.55 0.23928 
Error 18 1041.723 57.873   
Total 29 6825.598    
Average variance for the set of elementary treatment contrasts is obtained as 31.582317 
 

Table 3.11: Analysis of variance (Ramsay’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 4379.857 486.651 9.19 0.00004 
Block 2 170.513 85.257 1.61 0.22737 
Error 18 953.179 52.954   
Total 29 5503.549    
Average variance for the set of elementary treatment contrasts is obtained as 21.90412 

 
Table 3.12: Analysis of variance (Hampel’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 2814.824 312.758 8.01 0.00010 
Block 2 108.548 54.273 1.39 0.27456 
Error 18 702.828 39.045   
Total 29 3624.180    
Average variance for the set of elementary treatment contrasts is obtained as 21.030655 

 
Table 3.13: Analysis of variance (New function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 2801.685 311.298 9.47 0.00003 
Block 2 101.246 50.622 1.54 0.24133 
Error 18 591.697 32.872   
Total 29 3494.628    
Average variance for the set of elementary treatment contrasts is obtained as 19.914703 
Note: Value of p = 0.425 
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Here also it is observed from the above tables that all the M-estimation procedures give similar 
results. The treatment effects are significantly different even at 1% level of significance in robust 
analysis of data. We then applied Cook-statistic for identifying outlying observations, if any. It 
was found that the observation number 19 corresponding to treatment number 9 in the 2nd 
replication is an outlier. This observation was deleted and analysis of variance is obtained again. 
Result is presented in Table 3.14. Interestingly, analysis is found to be similar to that as obtained 
through robust analysis. 

 
Table 3.14: Analysis of variance (After deleting observation No. 19) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 9 2895.196 321.688 8.11 0.0001 
Block 2 110.246 55.123 1.39 0.2761 
Error 17 674.420 39.671   
Total 28 3679.862    
 Average variance for the set of elementary treatment contrasts is obtained as 27.182516 
  
Example 3.2: An experiment with 4 treatments was conducted in the randomized complete 
block (RCB) design with 7 replications at jonal Agricultural Research Station, J.N.K.V.V., 
Jabalpur   to study the effect of raised beds on the yield of soyabean  (net plot size: 15.00m × 
6.00m). The treatment details are 

4 Widths of Raised Beds 
T1=6m 
T2=9m 
T3=12m 
T4=15m 

The data on the grain yield per plot in quintal for different treatments are given below 

Table 3.15: Yield of soyabean in quintal/plot 
 

Replication 
Treatments  

1 2 3 4 
1 14.3 13.59 11.92 12.18 
2 14.08 13.22 12.56 12.06 
3 14.14 11.53 12.53 12.31 
4 12.97 12.55 11.32 17.76 
5 14.05 13.22 12.6 11.64 
6 13.39 12.3 12.75 11.09 
7 13.19 14.58 12.61 11.76 

 
Analysis of variance was performed on the original data and results are given in Table 3.15.   
From the table one can observe that both the treatment effects and block effects are not 
significant at 5% level of significance.  
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Table 3.16: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment (adj.) 3 7.489 2.496 1.23 0.326 
Block 6 3.721 0.620 0.31 0.925 
Error 18 36.418 2.023   
Total 27 47.629    
Average variance for the set of elementary treatment contrasts is obtained as 0.578073 
 
Robust Analysis through M – estimation 
We now applied different M-estimation procedures to this data and obtained the analysis of 
variance. We have taken the different values of the constants used in the objective functions as 
follows.  
For Huber’s function the value of the constant t=1.23 
For Andrew’s function a=1.5 
For Ramsay’s function a=0.23 
For Hampel’s function a=1.5, b=3.0, c=7.5 
Weighted Analysis 
Firstly weighted analysis of variance has been done. The results are given in the sequel. 

 
Table 3.17: Analysis of variance (Huber’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 17.495 5.831 3.342 0.042 
Block 6 6.417 1.069 0.612 0.717 
Error 18 31.425 1.745   
Total 27 55.338    
  Average variance for the set of elementary treatment contrasts is obtained as 0.08934 
  

Table 3.18: Analysis of variance (Andrew’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 18.017 6.005 3.576 0.034 
Block 6 5.162 0.860 0.512 0.791 
Error 18 30.213 1.678   
Total 27 53.393    
Average variance for the set of elementary treatment contrasts is obtained as 0.0923 
 

Table 3.19: Analysis of variance (Ramsay’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 20.029 6.676 3.658 0.032 
Block 6 4.866 0.811 0.444 0.831 
Error 18 32.853 1.825   
Total 27 57.748    
Average variance for the set of elementary treatment contrasts is obtained as 0.09453 
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Table 3.20: Analysis of variance (Hampel’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 17.910 5.970 3.368 0.038 
Block 6 5.232 0.872 0.492 0.805 
Error 18 31.907 1.772   
Total 27 55.049    
Average variance for the set of elementary treatment contrasts is obtained as 0.09143 

 
Table 3.21: Analysis of variance (New function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 19.830 6.610 3.994 0.024 
Block 6 4.588 0.764 0.462 0.824 
Error 18 29.174 1.655   
Total 27 53.592    
Average variance for the set of elementary treatment contrasts is obtained as 0.08454 
Note: Value of p = 0.425 
 
It is observed from the above tables that all the M-estimation procedures give similar results. The 
treatment effects have become highly significant now.   
 
Analysis Based on Bickel’s (1976) Proposal 
The pseudo observations obtained from equation (3.14) for different M-estimation procedures 
and then ordinary analysis of variance was conducted as per procedure of Bickel (1976). The 
results are summarized in the sequel. 

 
Table 3.22: Analysis of variance (Huber’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 3 18.848 6.282 3.432 0.039 
Block 6 5.923 0.987 0.539 0.731 
Error 18 32.952 1.830   
Total 27 57.723    
Average variance for the set of elementary treatment contrasts is obtained as 0.08834 
 

Table 3.23: Analysis of variance (Ramsay’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 3 19.511 6.503 3.712 0.030 
Block 6 5.073 0.845 0.482 0.813 
Error 18 31.538 1.752   
Total 27 56.122    
Average variance for the set of elementary treatment contrasts is obtained as 0.09356 
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Table 3.24: Analysis of variance (Andrew’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 3 18.444 6.148 3.681 0.031 
Block 6 5.243 0.873 0.523 0.783 
Error 18 30.065 1.670   
Total 27 53.752    
Average variance for the set of elementary treatment contrasts is obtained as 0.09287 
 

Table 3.25: Analysis of variance (Hampel’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 3 18.203 6.067 3.496 0.037 
Block 6 5.384 0.897 0.517 0.787 
Error 18 31.242 1.735   
Total 27 54.829    
Average variance for the set of elementary treatment contrasts is obtained as 0.091568 

 
Table 3.26: Analysis of variance (New function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 3 19.320 6.440 4.015 0.023 
Block 6 4.954 0.825 0.514 0.790 
Error 18 28.873 1.604   
Total 27 53.147    
Average variance for the set of elementary treatment contrasts is obtained as 0.086758 
Note: Value of p = 0.425 
 

Table 3.27: Analysis of variance (After deleting observation No. 25) 
Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 3 14.537      4.845      12.03   0.0002 

Block 6 2.108  0.351         0.87     0.5351 

Error 26 23.493  26   

Total 27 53.147    
Average variance for the set of elementary treatment contrasts is obtained as 0.1193571        
 
Here also it is observed from the above tables that all the M-estimation procedures give similar 
results. The treatment effects have become significant now and level of significance of block 
effects has been lowered significantly.  We then applied Cook-statistic for identifying outlying 
observations, if any. It was found that the observation number 1 corresponding to treatment 
number 4 in the 4th replication is an outlier. This observation was deleted and analysis of 
variance is obtained again. Result is presented in Table 3.27. Interestingly, analysis is found to 
be similar to that as obtained through robust analysis. 
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Example having Outlier but Data within Range 
We now present two examples where outliers could not be detected on the basis of the data. We 
have to apply formal tests to detect them 
 
Example 3.3: An experiment with 6 treatments was conducted in a randomized complete block 
(RCB) design with 3 replications at Sugarcane Research Station, Buralikson, Golaghat in 2000 to 
study the effect of green manuring on the urea use efficiency on yield of sugarcane (net plot size  
5.00m × 4.50m). The treatment details are  
 
T1 100% of recommended dose of N + 70 kg/ha of P2O5 as S.S.P. + 60 kg/ha of K2O as 

Mur.Pot. 
T2  T1 + 10 t/ha of FYM 
T3  75% of recommended dose of N + 70 kg/ha of P2O5 + 60 kg/ha of K2O + Green manure 
T4  T3 + 5 t/ha of FYM 
T5  50% of recommended dose of N + 70 kg/ha of P2O5 + 60 kg/ha of K2O + Green manure 
T6  T5 + 5 t/ha of FYM 
  
The data on grain yield per plot in kg for different treatments is given in Table   

 
Table 3.28: Yield of sugarcane in kg/plot 

 
Treatments 

Replication 
1 2 3 

1 84.44 77.78 80.44 
2 84.00 80.00 83.56 
3 87.56 84.44 94.67 
4 87.11 86.67 95.11 
5 84.00 88.44 84.89 
6 85.78 83.11 90.22 

 
Analysis of variance was performed on the original data and results are given in Table 3.29.   
From the table one can observe that the treatment effects are significant at 5% level of 
significance and block effects are not significant at 5% level of significance.  
 

Table 3.29: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 178.061 35.612 3.52 0.0429 
Block 2 67.800 33.900 3.35 0.077 
Error 10 101.255 10.125   
Total 17 347.116    
Average variance for the set of elementary treatment contrasts is obtained as 6.7503771 
 
Robust Analysis through M – estimation 
We now applied different M-estimation procedures to this data and obtained the analysis of 
variance. We have taken the different values of the constants used in the objective functions as 
follows.  
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For Huber’s function the value of the constant t=1.44 
For Andrew’s function a =1.243 
For Ramsay’s function a =0.285 
For Hampel’s function a =1.65, b=3.3, c=8.25  
 
Weighted analysis 
Firstly weighted analysis of variance has been done. The results are given in the sequel. 

  
Table 3.30: Analysis of variance (Huber’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 172.744 34.548 2.75 0.08143 
Block 2 74.122 37.061 2.95 0.09840 
Error 10 125.632 12.563   
Total 17 372.498    
Average variance for the set of elementary treatment contrasts is obtained as 4.5687 
 

Table 3.31: Analysis of variance (Andrew’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 163.211 32.642 2.51 0.10107 
Block 2 61.643 30.821 2.37 0.14371 
Error 10 130.048 13.004   
Total 17 354.902    
Average variance for the set of elementary treatment contrasts is obtained as 5.4732 
 

Table 3.32: Analysis of variance (Ramsay’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 174.806 34.961 2.44 0.10780 
Block 2 65.624 32.812 2.29 0.15177 
Error 10 143.284 14.328   
Total 17 383.714    
 Average variance for the set of elementary treatment contrasts is obtained as 5.5132 
 

Table 3.33: Analysis of variance (Hampel’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 140.821 28.164 2.26 0.12763 
Block 2 64.055 32.027 2.57 0.12571 
Error 10 124.621 12.462   
Total 17 329.497    
Average variance for the set of elementary treatment contrasts is obtained as 5.7231 
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Table 3.34: Analysis of variance (Newly developed function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 178.653 35.730 2.64 0.08982 
Block 2 67.671 33.835 2.50 0.13168 
Error 10 135.343 13.53432   
Total 17 381.667    
Average variance for the set of elementary treatment contrasts is obtained as 4.7689 
Note: Value of p = 0.315 
 
Analysis Based on Bickel’s (1976) Proposal 
The pseudo observations obtained from equation (3.14) for different M-estimation procedures 
and then ordinary analysis of variance was conducted as per procedure of Bickel (1976). The 
results are summarized in the sequel. 
 

Table 3.35: Analysis of variance (Huber’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 172.020 34.404 2.89 0.07205 
Block 2 74.760 37.380 3.14 0.0874 
Error 10 119.045 11.904   
Total 17 365.825    
Average variance for the set of elementary treatment contrasts is obtained as 3.2657 
 

Table 3.36: Analysis of variance (Andrew’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 128.117 25.623 2.35 0.11723 
Block 2 48.412 24.206 2.22 0.15928 
Error 10 109.036 10.903   
Total 17 285.565    
Average variance for the set of elementary treatment contrasts is obtained as 5.6572 
 

Table 3.37: Analysis of variance (Ramsay’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 171.405 34.281 2.69 0.08589 
Block 2 77.228 38.614 3.03 0.09359 
Error 10 127.439 12.743   
Total 17 376.072    
Average variance for the set of elementary treatment contrasts is obtained as 4.1452 
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Table 3.38: Analysis of variance (Hampel’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 161.868 32.373 2.48 0.10389 
Block 2 69.446 34.723 2.66 0.11849 
Error 10 130.538 13.053   
Total 17 361.852    
Average variance for the set of elementary treatment contrasts is obtained as 5.0352 
Note: Value of p = 0.315 
 

  Table 3.39: Analysis of variance (After deleting observation No. 7) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 5 41.323 28.264 2.54 0.1059 
Block 2 54.576 27.288 2.46 0.1409 
Error 9 100.002 11.111   
Total 16 195.791    
 Average variance for the set of elementary treatment contrasts is obtained as 9.629853 
 
Here also it is observed from the above tables that all the M-estimation procedures give similar 
results. The treatment effects have become non-significant now and level of significance of block 
effects has been increased significantly.  We then applied Cook-statistic for identifying outlying 
observations, if any. It was found that the observation number 7 corresponding to treatment 
number 2 in the 2nd replication is an outlier. These observations were deleted and analysis of 
variance is obtained again. Result is presented in Table 3.39. Interestingly, analysis is found to 
be similar to that as obtained through robust analysis. 
 
Example 3.4: An experiment with 4 treatments was conducted in a randomized complete block 
(RCB) design with 3 replications at Regional Agriculture Test & Demonstration Centre, 
Varanasi in 2005 to study the effect of Sulphur on yield of mustard (net plot size  5.00 m x 3.00 
m). The treatment details are  
  
4 Methods of application of Sulpher : 
T1 Control 
T2  20 kg/ha of Sulpher  through Super as basal 
T3 150 kg/ha of Gypsum as soil application before sowing 
T4  2.50 kg/ha of wettable sulphur as basal   
The data on grain yield in quintals per plot for different treatments is given in the following table  

 
Table 3.40: Yield of mustard in quintal/plot 

 
Treatments 

Replication 
1 2 3 

1 1.00 1.10 1.05 
2 1.15 1.20 1.15 
3 1.15 1.25 1.35 
4 1.35 1.15 1.20 
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Analysis of variance was performed on the original data and results are given in Table 3.41.   
From the table one can observe that both the treatment effects and block effects are not 
significant at 5% level of significance.  
 

Table 3.41: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.074 0.024 3.15 0.1077 
Block 2 0.001 0.001 0.08 0.9244 
Error 6 0.047 0.007   
Total 11 0.122    
Average variance for the set of elementary treatment contrasts is obtained as 0.0052315 
 
Robust Analysis through M – estimation 
We now applied different M-estimation procedures to this data and obtained the analysis of 
variance. We have taken the different values of the constants used in the objective functions as 
follows.  
For Huber’s function the value of the constant t=1.9 
For Andrew’s function a=1.41 
For Ramsay’s function a= 0.5 
For Hampel’s function a=1.9, b=3.8, c=9.5 
  
Weighted analysis 
Firstly weighted analysis of variance has been done. The results are given in the sequel. 

Table 3.42: (Huber’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.050 0.016 6.89 0.02270 
Block 2 0.011 0.005 2.34 0.17731 
Error 6 0.014 0.002   
Total 11 0.075    
Average variance for the set of elementary treatment contrasts is obtained as 0.000134 

 
Table 3.43: (Andrew’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.047 0.015 6.43 0.02647 
Block 2 0.010 0.004 1.97 0.21993 
Error 6 0.015 0.002   
Total 11 0.072    
Average variance for the set of elementary treatment contrasts is obtained as 0.000146 
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Table 3.44: (Ramsay’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.053 0.017 7.21 0.02048 
Block 2 0.009 0.004 1.83 0.23961 
Error 6 0.015 0.002   
Total 11 0.077    
Average variance for the set of elementary treatment contrasts is obtained as 0.000152 

 
Table 3.45: (Hampel’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.060 0.019 6.92 0.02248 
Block 2 0.012 0.005 2.03 0.21215 
Error 6 0.017 0.002   
Total 11 0.089    
Average variance for the set of elementary treatment contrasts is obtained as 0.000141 

 
Table 3.46: (Newly developed function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.065 0.021 7.43 0.01895 
Block 2 0.017 0.008 2.87 0.13349 
Error 6 0.018 0.002   
Total 11 0.100    
Average variance for the set of elementary treatment contrasts is obtained as 0.000123 
Note: Value of p = 0.1850000 
It is observed from the above tables that all the M-estimation procedures give similar results. The 
treatment effects have become highly significant now. The level of significance for block effects 
has been lowered significantly.   
 
Analysis based on Bickel’s (1976) Proposal 
The pseudo observations obtained from equation (3.14) for different M-estimation procedures 
and then ordinary analysis of variance was conducted as per procedure of Bickel (1976). The 
results are summarized in the sequel. 

 
Table 3.47: Analysis of variance (Huber’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.045 0.014 7.09 0.02128 
Block 2 0.009 0.004 2.18 0.19425 
Error 6 0.013 0.002   
Total 11 0.067    
Average variance for the set of elementary treatment contrasts is obtained as 0.000124 
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Table 3.48: Analysis of variance (Andrew’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.060 0.019 6.79 0.02345 
Block 2 0.013 0.006 2.23 0.18873 
Error 6 0.018 0.002   
Total 11 0.091    
Average variance for the set of elementary treatment contrasts is obtained as 0.000138 

 
Table 3.49: Analysis of variance (Ramsay’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.049 0.016259 7.61 0.01810 
Block 2 0.009 0.004508 2.11 0.20234 
Error 6 0.013 0.0021365   
Total 11 0.071    
Average variance for the set of elementary treatment contrasts is obtained as 0.000143 

  
Table 3.50: Analysis of variance (Hampel’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.065 0.021 7.11 0.02114 
Block 2 0.014 0.006 2.23 0.18873 
Error 6 0.018 0.003   
Total 11 0.097    
Average variance for the set of elementary treatment contrasts is obtained as 0.000132 

 
Table 3.51: Analysis of variance (New function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.072 0.024 7.57 0.01832 
Block 2 0.019 0.009 2.92 0.13013 
Error 6 0.019 0.003   
Total 11 0.110    
Average variance for the set of elementary treatment contrasts is obtained as 0.000118 
Note: Value of p = 0.1850000 

 
Table 3.52: Analysis of variance (After deleting observation No. 1) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 3 0.061 0.020 7.43 0.0273 
Block 2 0.014 0.007 2.59 0.1692 
Error 5 0.013 0.002   
Total 10 0.088    
 Average variance for the set of elementary treatment contrasts is obtained as 0.0024383 
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Here also it is observed from the above tables that all the M-estimation procedures give similar 
results. The treatment effects have become significant now and level of significance of block 
effects has been lowered significantly.  We then applied Cook-statistic for identifying outlying 
observations, if any. It was found that the observation number 1 corresponding to treatment 
number 1 in the 1st replication is an outlier. This observation was deleted and analysis of 
variance is obtained again. Result is presented in Table 3.52. Interestingly, analysis is found to 
be similar to that as obtained through robust analysis. Here interesting point to note that even an 
observation which does not appear to be very high or low can be an outlier. Above two examples 
are for single outlier, we now give an example with two outliers. 
 
Example of Two Outliers 
Here we present one examples in which data sets contain two outliers. 
 
Example 3.5: An experiment with 5 treatments was conducted in a randomized complete block 
(RCB) design with 4 replications at Crop Research Centre, G.B.P.U.A.T., Pantnagar in 2006 to 
study the effect of different Phosphorus levels and Phosphate Solubilizing Bacteria (P.S.B.) on 
the productivity of urd (net plot size  4.00 m × 1.80 m). The treatments of the experiments are as 
follows: 
 
Treatments:      
T1 0 
T2 20 kg/ha of P2O5 as Super 
T3  40 kg/ha of P2O5 as Super 
T4 P.S.B. 
T5 20 kg/ha of P2O5 as Super + Phosphorus 

Solublizing Bacteria (P.S.B.) 
  
The data on grain yield in quintals per plot for different treatments is given in Table 3.53: 

 
Table 3.53: Yield of urd in quintal/plot 

 
Treatments 

Replication 
1 2 3 4 

1 1.23 1.27 1.30 1.23 
2 1.32 1.50 1.35 1.38 
3 1.40 1.55 1.40 1.37 
4 1.32 1.38 1.55 1.43 
5 1.47 1.63 1.45 1.50 

 
Analysis of variance was performed on the original data and results are given in Table 3.54.   
From the table one can observe that both the treatment effect is highly significant where as block 
effects are not significant at 5% level of significance.  
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Table 3.54: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.149 0.037 8.24 0.0020 
Block 3 0.039 0.013 2.88 0.0802 
Error 12 0.054 0.004   
Total 19 0.242    
Average variance for the set of elementary treatment contrasts is obtained as 0.0022688 
 
Robust Analysis through M – estimation 
We now applied different M-estimation procedures to this data and obtained the analysis of 
variance. We have taken the different values of the constants used in the objective functions as 
follows.  
For Huber’s function the value of the constant t =2.0 
For Andrew’s function a =1.51 
For Ramsay’s function a =0.41 
For Hampel’s function a =2.01, b = 4.02, c =10.05 
 
Weighted analysis 
Firstly weighted analysis of variance has been done. The results are given in sequel. 

 Table 3.55: Analysis of variance  (Huber’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.234 0.058 2.27 0.12197 
Block 3 0.128 0.042 1.65 0.23023 
Error 12 0.310 0.025   
Total 19 0.672    
 Average variance for the set of elementary treatment contrasts is obtained as 0.000981 
 

Table 3.56: Analysis of variance  (Andrew’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.232 0.057 1.94 0.16668 
Block 3 0.117 0.039 1.32 0.31349 
Error 12 0.357 0.029   
Total 19 0.707    

Average variance for the set of elementary treatment contrasts is obtained as 0.00114 
 

Table 3.57: Analysis of variance (Ramsay’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.235 0.058 1.86 0.18236 
Block 3 0.114 0.038 1.21 0.34816 
Error 12 0.379 0.031   
Total 19 0.738    
 Average variance for the set of elementary treatment contrasts is obtained as 0.00113 
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Table 3.58: Analysis of variance (Hampel’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.235 0.049 2.01 0.15707 
Block 3 0.114 0.037 1.53 0.25729 
Error 12 0.296 0.024   
Total 19 0.735    

Average variance for the set of elementary treatment contrasts is obtained as 0.00114 
 

Table 3.59: Analysis of variance (Newly developed function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.228 0.057 2.13 0.13963 
Block 3 0.116 0.038 1.44 0.27989 
Error 12 0.322 0.026   
Total 19 0.666    
Average variance for the set of elementary treatment contrasts is obtained as 0.000967 
Note: Value of p = 0.250 
 
It is observed from the above tables that all the M-estimation procedures give similar results. The 
treatment effects have become non significant now. The level of significance for block effects 
has been increased significantly.   
 
Analysis Based on Bickel’s (1976) Proposal 
The pseudo observations obtained from equation (3.14) for different M-estimation procedures 
and then ordinary analysis of variance was conducted as per procedure of Bickel (1976). The 
results are summarized in the sequel. 

 
Table 3.60: Analysis of variance (Huber’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.245195 0.061299 2.36 0.1119577 
Block 3 0.137922 0.045974 1.77 0.2062995 
Error 12 0.311688 0.025974   
Total 19 0.694805    

Average variance for the set of elementary treatment contrasts is obtained as 0.000977 
 

Table 3.61: Analysis of variance (Andrew’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.242 0.060 1.99 0.16020 
Block 3 0.136 0.045 1.49 0.26707 
Error 12 0.365 0.030   
Total 19 0.743    
Average variance for the set of elementary treatment contrasts is obtained as 0.00125 
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Table 3.62: Analysis of variance(Ramsay’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.237 0.059 1.92 0.171 
Block 3 0.123 0.041 1.33 0.310 
Error 12 0.371 0.030   
Total 19 0.731    

Average variance for the set of elementary treatment contrasts is obtained as 0.00127 
 

Table 3.63: Analysis of variance (Hampel’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.229 0.057 2.18 0.13302 
Block 3 0.135 0.045 1.71 0.21789 
Error 12 0.316 0.026   
Total 19 0.680    

Average variance for the set of elementary treatment contrasts is obtained as 0.00106 
 

Table 3.64: Analysis of variance (New function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.241 0.060 2.21 0.12922 
Block 3 0.130 0.043 1.59 0.24334 
Error 12 0.327 0.027   
Total 19 0.698    
Average variance for the set of elementary treatment contrasts is obtained as 0.000956 
Note: Value of p = 0.250 

 
Table 3.65: Analysis of variance (After deleting observation No. 8 and 16) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 4 0.136 0.034 1.22 0.3611 
Block 3 0.067 0.022 0.80 0.5202 
Error 10 0.279 0.027   
Total 17 0.511    
 Average variance for the set of elementary treatment contrasts is obtained as 0.017768 

 
Here also it is observed from the above tables that all the M-estimation procedures give similar 
results. The treatment effects have become non-significant now and level of significance of block 
effects has been increased significantly.  We then applied Cook-statistic for identifying outlying 
observations, if any. It was found that the observation number 8 and 16 corresponding to 
treatment number 3 in the 2nd  replication and treatment number 1 in the 1st replication are 
outliers. These observations were deleted and analysis of variance is obtained again. Result is 
presented in Table 3.65. Interestingly, analysis is found to be similar to that as obtained through 
robust analysis. 
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 Example having No Outlier 
Here we present another example in which no outlier is present. 
 
Example 3.6: An experiment with 3 treatments was conducted in the randomized complete 
block (RCB) design with 7 replications at Agricultural Research Station, Dharwad to asses the 
crop loss due to foliar disease  alternaria blight in hybrid cotton   (net plot size: 2.40m × 6.00m). 
The treatment details are 
3 Plant Protective Measures: 

T0 Control(natural infection) 

T1 Supplementing artifical inoculum to create epiphytotic 

T2 Complete protection of the crop by spraying cuman l  

 The data on the yield per plot in kg for different treatments are given below 

Table 3.66: Yield of cotton in Kg/plot 
Replications Treatments 

1 2 3 
1 2.37 2.30 2.55 
2 2.57 2.75 2.51 
3 2.64 2.70 2.89 
4 2.78 2.89 2.77 
5 3.14 2.90 3.07 
6 2.78 2.53 2.45 
7 2.83 2.74 2.58 

 
Analysis of variance was performed on the original data and results are given in Table 3.67.   
From the table one can observe that the treatment effects are not significant at 5% level of 
significance.  

Table 3.67: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 2 0.0082952 0.00414762 0.23 0.8015725 
Block 6 0.7059238 0.117654 6.39 0.0032546 
Error 12 0.22090476 0.01840873   
Total 20 0.9351238    
  Average variance for the set of elementary treatment contrasts is obtained as 0.00526 
Robust Analysis through M – estimation 
We now applied different M-estimation procedures to this data and obtained the analysis of 
variance. We have taken the different values of the constants used in the objective functions as 
follows.  
For Huber’s function the value of the constant t=1.79 
For Andrew’s function a=1.65 
For Ramsay’s function a=0.47 
For Hampel’s function a=1.6, b=3.20, c=8.23 
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Weighted Analysis 
Firstly weighted analysis of variance has been done. The results are given in the sequel. 

 
Table 3.68: Analysis of variance (Huber’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment 2 0.0082  0.0041  0.23 0.8015  
Block 6 0.7059  0.1176  6.39 0.0032  
Error 12 0.2209  0.01840    
Total 20 0.9351     
  Average variance for the set of elementary treatment contrasts is obtained as 0.00526 
  

Table 3.69: Analysis of variance (Andrew’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 2 0.008 0.004 0.269 0.768 
Block 6 0.745 0.124 8.227 0.001 
Error 12 0.181 0.015   
Total 20 0.935    
Average variance for the set of elementary treatment contrasts is obtained as 0.00442 
 

Table 3.70: Analysis of variance (Ramsay’s function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 2 0.006 0.003 0.117 0.89013 
Block 6 0.829 0.138 4.763 0.01045 
Error 12 0.348 0.029   
Total 20 1.184    
Average variance for the set of elementary treatment contrasts is obtained as 0.010214 

 
Table 3.71: Analysis of variance (Hampel’s function: Weighted analysis) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 2 0.008 0.004 0.23 0.80157 
Block 6 0.705 0.117 6.39 0.00326 
Error 12 0.220 0.018   
Total 20 0.935    
Average variance for the set of elementary treatment contrasts is obtained as 0.00526 
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Table 3.72: Analysis of variance (New function: Weighted analysis) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment(adj) 2 0.008 0.004 0.23 0.80157 
Block 6 0.705 0.117 6.39 0.00325 
Error 12 0.220 0.0184   
Total 20 0.935    
Average variance for the set of elementary treatment contrasts is obtained as 0.00526 
Note: Value of p = 0.105 
 
It is observed from the above tables that all the M-estimation procedures give similar results. The 
treatment effects remain non significant.   
 
Analysis Based on Bickel’s (1976) Proposal 
The pseudo observations obtained from equation (3.14) for different M-estimation procedures 
and then ordinary analysis of variance was conducted as per procedure of Bickel (1976). The 
results are summarized in the sequel. 

 
Table 3.73: Analysis of variance (Huber’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 2 0.008  0.004  0.43 0.6604 
Block 6 0.705  0.117  12.19 0.0002 
Error 12 0.115  0.009    
Total 20 0.830     
Average variance for the set of elementary treatment contrasts is obtained as 0.08834 

 
Table 3.74: Analysis of variance (Ramsay’s function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 2 0.008  0.004  1.72 0.2202 
Block 6 0.714  0.119  49.22 <.0001 
Error 12 0.029  0.002    
Total 20 0.751     
Average variance for the set of elementary treatment contrasts is obtained as 0.09356 
 

Table 3.75: Analysis of variance (Andrew’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 2 0.008  0.004  1.72 0.2202 
Block 6 0.714  0.119  49.22 <.0001 
Error 12 0.029  0.002    
Total 20 0.751     
Average variance for the set of elementary treatment contrasts is obtained as 0.09287 
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Table 3.76: Analysis of variance (Hampel’s function: Bickel’s pseudo observations) 
Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 2 0.008  0.004  0.35 0.7100 
Block 6 0.766  0.127  10.70 0.0003 
Error 12 0.143  0.011    
Total 20 0.918     
Average variance for the set of elementary treatment contrasts is obtained as 0.091568 

 
Table 3.77: Analysis of variance (New function: Bickel’s pseudo observations) 

Source of 
variation 

DF SS MS F-value Significance 
level 

Treatment(adj) 2 0.008  0.004  0.43 0.6576 
Block 6 0.705  0.117  12.32 0.0002 
Error 12 0.114  0.009    
Total 20 0.828     
Average variance for the set of elementary treatment contrasts is obtained as 0.086758 
Note: Value of p = 0.105 

Here also it is observed from the above tables that all the M-estimation procedures give similar 
results. The treatment effects remain non significant. We then applied Cook-statistic for 
identifying outlying observations, if any. It was found that there is no outlying observation 
present in the data. From the above tables, it is clear that analysis through Huber’ function and 
Newly developed function and through original data analysis give same results, since there is no 
outlier, each observation got same weight. 
 
3.4 Discussions 
Different M-estimation procedures as available in the literature, along with the newly developed 
function were applied to a number of experiments taken from AFEIS, IASRI. Some of these 
analyses are presented in Section 3.3.3 In some of the examples treatment effects are not 
significant with the original data. But robust analysis revealed that the treatment effects are 
actually significant at 5% level of significance, where as in some examples, non-significant 
treatment effects become significant through robust analysis. That is, inferences to be drawn are 
reversed through robust analysis. Actually all these experiments contain some outlying 
observations.  Once the outlying observations are deleted, results become similar to those 
obtained through robust analysis. However, from statistical point of view it is not advised to 
delete any observation. Because, every observation carries some information that should be 
exploited. Robust analysis actually gives small weights to those outlying observations, thus 
extracting some information from that observation.   
 
However, a question may arise in our mind that which M-estimation procedure should we use? It 
is difficult to answer this question, because these procedures depend on weights and weights are 
determined by observations. From experiences of analyzing a good number of experiments, it is 
observed that Huber’s function and newly developed function perform well. This is observed 
from the fact that the average variance of the set of elementary treatment contrasts is small for 
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most of the experiments for these two functions comparing to other M-estimation functions. 
However, this is an empirical evidence true, there is no theoretical proof.  
 
In those experiments where no outlier is present, there is a little difference between the analysis 
with original data and analysis through robust regression, as we have seen from the last example. 
Off course the levels of significance are changed a little bit. It is therefore, generally advised to 
carryout analysis through ordinary least squares (OLS), if we are sure that the data do not contain 
any outlying observation and the errors are normal. Because OLS estimates posses some good 
statistical properties. But in general we do not know the form of distribution of the errors in 
advance. It is therefore, suggested to always apply robust analysis. Even the error distribution is 
normal, we may not loose much efficiency.    
 
Another point to note here is that robust analysis is also used to detect outlying observations. As 
mentioned in Chapter 1, robust analysis leaves the residuals of the outlying observations large 
and thereby helps to identify them easily. For example consider the Example 3.5. The 
standardized residuals obtained from different robust fits are presented in Table 3.78. 
 
It is observed from the table that the residual for the observation 17.76 from all these functions is 
very high, indicating that this observation is an outlier. In fact, this observation which 
corresponds to treatment number 4 in replication number 4 is an outlier indicated through Cook-
statistic. Deleting this observation and carrying out usual analysis gives similar results as 
obtained through robust analysis. Therefore, robust analysis is a very good tool for identifying 
outlying observation also. 
 

Table 3.78: Standardized Residuals of Different Observations in Different Functions 

Observation Huber Andrews Ramsay Hampel New 

14.30 0.630 0.110 0.703 0.721 0.724 
13.59 0.769 0.216 0.785 0.511 0.767 
11.92 -3.839 -3.874 -1.393 -2.798 -1.101 
12.18 0.113 -0.052 -0.186 0.464 -0.389 
14.08 0.187 0.079 0.285 0.219 0.345 
13.22 -0.434 -0.503 0.042 -0.566 0.107 
12.56 0.072 0.041 0.053 0.001 0.128 
12.06 0.176 0.376 -0.387 0.346 -0.581 
14.14 0.376 -0.223 1.004 0.014 1.117 
11.53 -9.106 -8.835 -3.030 -7.488 -2.395 
12.53 -0.194 -0.674 0.577 -0.550 0.732 
12.31 1.327 0.946 0.743 0.870 0.545 
12.97 -0.805 -0.236 -1.136 -0.062 -1.417 
12.55 0.802 1.202 -0.426 0.841 -0.832 
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11.32 -1.578 -0.870 -1.650 -0.779 -1.877 

17.76 33.664 31.310 12.945 26.199 10.400 
14.05 0.554 0.392 0.421 0.497 0.481 
13.22 0.085 -0.052 0.243 -0.173 0.299 
12.60 0.793 0.675 0.340 0.548 0.395 
11.64 -1.432 -1.100 -1.097 -0.872 -1.176 
13.39 0.568 0.882 0.126 0.319 0.172 
12.30 -1.217 -0.755 -0.615 -1.349 -0.496 
12.75 4.909 4.882 1.800 3.478 1.602 
11.09 -0.860 -0.106 -1.153 -0.628 -1.278 
13.19 -3.808 -3.103 -1.636 -2.571 0.724 
14.58 6.963 6.639 2.995 5.278 0.767 
12.61 0.836 1.172 0.168 0.818 -1.101 
11.76 -0.832 -0.098 -1.031 -0.179 -0.389 
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APPENDIX 3.1 

 
SAS Code: Robust analysis of designed experiments using M-estimation  
 
options ls=72 ps=2000; 
data ran; 
input trt blk y; 
datalines; 
  
; 
proc iml; 
 use ran; 
  read all into X; 
   mrowX=nrow(X); 
   ncolX=ncol(X); 
   v=max(X[,1]); 
  x1=j(mrowX,v,0); 
 X2=j(mrowX,1,1); 
 y=X[,ncolX]; 
/*Create Delta matrix*/ 
do i=1 to mrowX; 
 x1[i,X[i,1]]=1; 
end; 
/*Create the matrix for the nuisance factor*/ 
do j=2 to ncolX-1; 
 order=max(X[,j]); 
 D1=J(mrowX,order,0); 
 intB=max(X[,2]); 
/*Create the diagonal matrix of block size*/ 
 K=J(intB,intB,0); 
 do i=1 to mrowX; 
  D1[i,X[i,j]]=1; 
  K[X[i,2],X[i,2]]=K[X[i,2],X[i,2]]+1; 
 end; 
 X2=X2||D1; 
end; 
x=x1||x2; 
/*Calculation of parameter vector*/ 
betahat0=j(ncol(x),1,0); 
betahat0=ginv(x`*x)*x`*y; 
yhat=x*betahat0; 
resid=y-yhat; 
n=nrow(resid); 
rank=round(trace(ginv(x)*x)); 
s1=median(abs(resid-median(resid)))/0.6745; 
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/*Calculation of the standarized residuals*/ 
z1=j(n,1,0); 
z1=resid/s1;print z1; 
a=1; 
g=1.5; 
 w0=j(n,1,0); 
 w=j(n,n,0); 
/*Calculation of weight matrix by using Huber’s function */ 
do while(a>0.005); 
 do i=1 to n; 
  z1[i,1]=abs(z1[i,1]); 
  if z1[i,1]<=g then    
  w0[i,1]=1; 
  else w0[i,1]=g/z1[i,1]; 
 end; 
 w=diag(w0); 
 

 
 
 
 
………………….A 

betahat1=j(ncol(x),1,0); 
 betahat1=ginv(x`*w*x)*(x`*w*y); 
 yhat1=x*betahat1; 
 resid2=(y-yhat1); 
 s2=median(abs(resid2-median(resid2)))/0.6745; 
 z2=(y-yhat1)/s2; 
 a=abs((s2-s1)/s1); 
 z1=z2; 
 s1=s2; 
end; 
ww=sqrt(w); 
C=(x1`*w*x1)-(x1`*w*x2)*(ginv(x2`*w*x2))*(x2`*w*x1); 
Q=x1`*w*y-x1`*w*x2*(ginv(x2`*w*x2))*x2`*w*y; /*Q is the treatment total vector*/ 
tauhat=ginv(c)*Q; 
TSS=Q`*ginv(c)*Q; 
B=D1`*ww*Y;/*B is the block total vector*/ 
one=j(n,1,1); 
cf=(one`*ww*y)*(one`*ww*y)/n; 
BSS=B`*inv(k)*B-cf; 
bms=bss/(intB-1); 
TMS= TSS/(v-1); 
totss=(y`*w*y)-cf; 
ess=totss-tss-bss; 
ems=ess/(n-rank); 
print totss tss  bss ess; 
print tms bms ems; 
FT=TMS/ems; 
FB=bms/ems; 
pvalt=1 - probf(ft,v-1,n-rank); 
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pvalb=1 - probf(fb,intB-1,n-rank); 
print "Huber function data set" 25; 
print pvalt pvalb ft fb; 
/*Calculation of the all possible elementary contrasts*/ 
p=j((v-1),v,0); 
do i=1 to v-1; 
 p[i,1]=1; 
 j=i+1; 
 p[i,j]=-1; 
end; 
print p; 
conout=j((v-1),4,0); 
contss=j((v-1),1,0); 
do i=1 to nrow(p); 
pi=p[i,]; 
/*Calculation of t statistics*/ 
contst=((pi*tauhat)`*ginv((pi*ginv(c)*pi`))*(pi*tauhat))/ems; 
conpval=1 - probf(contst,1,n-rank); 
conout[i,3]=contst; 
conout[i,4]=conpval; 
end; 
varcon=j(v-1,v-1,0); 
varcon=p*ginv(c)*p`*ems; 
abgvar=trace(varcon)/(v-1); 
print '  trt vs' 'trt ' ' F Value ' 'Pr > F '; 
print varcon abgvar; 
run; 
quit; 
 
 
Note: Calculation of the weight matrix for other functions is done accordingly by replacing “A” 
by appropriate codes. 
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Chapter IV 
 

Robust Analysis of Designed Experiments 
II:LMS Estimation 

 
4.1 Introduction 
In Chapter III, we have presented the M-estimation for robust analysis of experimental data in 
details. In the present chapter we discuss another robust method of analysis of data viz.  Least 
Median of Squares (LMS) method. We begin with the concept of LMS method and then make 
appropriate modification for its application in designed experiments.  
 
In the last few decades, studies on handling of outliers in regression be classified into two groups 
viz. i) regression diagnostics and ii) robust regression. Both approaches are closely related and 
are used for identifying outliers and pointing out inadequacies of the model. They, however, 
proceed in a different way. Regression diagnostics first attempt to identify points that have to be 
deleted from data set, before applying a regression method.  Robust regression tackles these 
problems in the inverse order, by designing estimators that dampen the impact of points that 
would be highly influential otherwise.  
 
As mentioned earlier least squares (LS) model can be distorted even by a single outlying 
observation. The fitted line or surface might be tipped so that it no longer passes through the bulk 
of the data. It will introduce many small or moderate errors in order to reduce the effect of a very 
large error. For example, if a large error is reduced from 200 to 50, its square is reduced from 
40,000 to 2,500. Increasing an error from 5 to 15 increases its square from 25 to 225(Chatterjee 
and Machler, 1997). Thus, a least squares fit might introduce many small errors in order to 
reduce a large one. A complete name for the LS method would perhaps be least sum of squares, 
but apparently few people have objected to the deletion of the word “sum” – as if the only 
sensible thing to do with n positive numbers would be to add them. Perhaps as a consequence of 
its historical name, several people have tried to make this estimator robust by replacing the 
square by something else, not touching the summation sign (M-estimator). One may think of 
replacing sum by a median as it is more robust than sum. This yields the least median of squares 
estimator, given by  

2
ˆ i

i
rmedMinimize

θ
,                                     (4.1) 

where θ  is the parameter vector and ri is the ith  residual. This estimator was proposed by 
Rousseeuw (1984) who actually materialized an idea of Hampel (1975). It turns out that this 
estimator is very robust with respect to outliers.  Since it focuses on the median residual, up to 
half of the observations can disagree without masking a model that fits the rest of the data. 
Therefore, the breakdown point of this estimator is 50%, the highest possible value. In Section 
4.2, this concept is thoroughly discussed in the context of linear regression model. In Section 4.3 
its applicability to designed experiments has been explored and in Section 4.4 this method is 
actually applied to some real experimental data. The Chapter is concluded with a section on 
discussion. 
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4.2 LMS Estimation in Linear Regression Model (Rousseeuw, 1984) 
Consider the linear regression model as given in (1.1), i.e., E(y) = βX , with X of full column 
rank p. Let b be the LS estimate of β . With n observations the residuals from this LS estimate 

are ( ) bb ′−= iii xye , (i=1,2,…,n). The LMS estimate p
∧
β  is the value of b minimizing the 

median of the square residuals ( )bei
2 . Thus p

∧
β  minimizes the scale estimate 

 ( ) [ ]( )bb 22
mede=σ ,                                                                               (4.2) 

where [ ]( )b2
ke  is the kth ordered squared residual. In order to allow for estimation of the 

parameters of the linear model the median is taken as  
 med = The integer part of (n+p+1)/2.                                                   (4.3) 
 
The parameter estimate satisfying (4.2) has asymptotically, a break down point of 50%. Thus, for 
large n, almost half the data can be outliers, or come from some other model and LMS can still 
provide an unbiased estimate of the regression coefficients. This is the maximum break down 
point that can be tolerated. For a higher proportion of outliers there is no longer a model that fits 
the majority of the data. The very robust behavior of the LMS estimate is in the contrast to that 

of the least squares estimate 
∧
β  minimizing 

 ( ) ( ) ( )XβyXβyβ −′−=S ,                                                                                    (4.4) 
which can be written as  

( ) ( )bb 2

1
i

n

i
eS

=
∑= .                                                                                      (4.5) 

Only one outlier needs to be moved towards infinity to cause an arbitrarily large change in the 

estimate
∧

β , the breakdown point of 
∧

β  is zero.  

The definition of p
∧
β  in (4.2) gives no indication of how to find such a parameter estimate. Since 

the surface to be minimized has many local minima, therefore, approximate methods may be 
used.   
 
Fitting an LMS regression model poses some difficulties. The first is computational. Unlike least 
squares regression, there is no formula that can be used to calculate the coefficients for an LMS 
regression. In fact, it appears that this computational complexity is inherent to all high 
breakdown regression estimators. Rousseeuw (1984) has proposed an algorithm to obtain LMS 
estimator, which we shall discuss in section 4.3.  
 
In this algorithm all possible sample of size p are drawn. A regression surface is fitted to each set 
of observations and the median squared residual is calculated (This is merely a matter of solving 
set of p linear equations with p unknown parameters). The model that had the smallest median 
squared residual is used. Evaluating all possible subsets of p observations can be computationally 
infeasible for large data sets. When n is large, Rousseeuw and Leroy (1987) recommended taking 
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random samples of observations and using the best solution obtained from these randomly 
selected subsets.  
 
The second problem is that there is no theory for constructing confidence intervals for LMS 
regression coefficients or for testing hypotheses about them. Rousseeuw and Leroy (1987) has 
proposed calculating a distance measure based on LMS regression and using it to identify 
outliers with respect to the LMS regression. These observations are set aside and least squares 
regression is fitted to the remaining data. The procedure is called reweighted least squares 
regression.  
 
This approach has some obvious appeal. In this approach, multiple regression line is fitted 
through the clean data points only, outlying observations, if any, remained outside of the fitted 
line. The only drawbacks of the LMS estimate are that it does not consider all the data set for 
estimation of parameters.  
 
4.2.1 Computational Algorithm (Rousseeuw and Leroy, 1987) 
The computation of the least median squares regression coefficients is quite difficult. It may not 
be possible to write down a straightforward formula for the LMS estimator. In fact, it appears 
that this computational complexity is inherent to all (known) affine equivariant high breakdown 
regression estimators, because they are closely related to projection pursuit methods. The 
algorithm implemented is similar in spirit to the bootstrap. 
 
The algorithm proceeds by repeatedly drawing subsamples of p different observations. For such 
a sub sample, indexed by },...{ ,,2,1 piii=J , one can determine the regression surface through 

the p points and denote the corresponding vector of coefficients by Jβ . We call such a solution 

Jβ  a trial estimate. For each Jβ  one also determines the corresponding LMS objective function 
with respect to the whole data set. This means that the value     

( )
ni

ymed ii
...1

2

=

′− Jβx                                                                                                   (4.6) 

is calculated. Finally, one will retain the trial estimate for which this value is minimal. Now the 
question is how many sub samples should one consider? In principle, one may repeat the above 
procedure for all possible sub samples of size p, of which there are p

nC  sub samples. 

Unfortunately, p
nC  increases very fast with increase in n and p, in many applications, this 

would become infeasible. In such cases, one may perform a certain number of random selections, 
such that the probability that at least one of the m sub samples is good is almost 1. A sub sample 
is good if it consists of p good observations of the sample, which may contain up to a fraction ε  
of bad observations. The expression for this probability, assuming that n/p is large, is 

( )( )mpε−−− 111 .                                                                                                           (4.7) 
By requiring that this probability must be near 1 (say at least 0.95 or 0.99), one can determine m 
for given value of p andε . 
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4.2.2 Calculation of Scale Parameter  
Apart from the regression coefficients, we have to obtain a robust estimate of the scale parameter 
σ  (the dispersion of the errors ie ) also. Rousseeuw and Leroy (1987) also proposed a robust 

method for calculating this parameter. According to this method an initial scale estimate 0s (say) 
is calculated. This 0s  is based on the minimal median and multiplied by a finite sample 
correction factor (which depends on n and p) for the case of normal errors: 

( )( ) ( )
i

rmedpns i β̂/514826.1
2

0 −+=                                                                           (4.8) 

the factor ( )75.0/14826.1 1−Φ=  was introduced because ( )75.0/ 1−Φii zmed  is a consistent 

estimator of σ  when the iz  are distributed like N (0, 2σ ), where ( )75.01−Φ  is standard normal 
ordinate value. From an empirical study Rousseeuw and Leroy (1987) showed that this factor 
1.4806 alone was not enough, because the scale estimate became too small in regression with 
normal errors, especially for small samples. It  was not obvious at all to find an appropriate 
factor in practice. The behaviour of the original scale estimate through simulation, both in 
normal error situation and in situations where there was contamination in the response or in the 
explanatory variables revealed that multiplication with the factor 1+5/(n−p) gave a satisfactory 
solution (of course for large n). This preliminary scale estimate 0s  is then used to determine a 
weight iw  for the ith observation, namely  
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By means of these weights the final scale estimate *σ  for LMS regression is calculated as 
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2*σ .                                                                             (4.9) 

The main advantage of this formula for *σ  is that it is not influenced by outliers.   
 
4.2.3 LMS Estimator in Designed Experiments 
As mentioned in Section 4.2, LMS estimator has a high break down point. This method, 
however, did not find much favour in designed experiments. LMS method gives parameter 
estimates based on clean observations only and thus outliers or distributional extreme 
observations cannot create any problem in parameter estimation or rather they do not have any 
impact on parameter estimation. One of the possible reasons why LMS method is not being used 
in designed experiments might be its computational difficulties.  An algorithm for computing this 
estimator in linear regression models by Rousseeuw (1984) helped its use in regression. As 
mentioned earlier, by this algorithm all possible subsets of size p, where p is the number of 
parameters in the model are fitted separately. Residuals from each of these fitted models are 
calculated. The median of the squared residuals for each set is calculated. The subset that gives 
minimum median is chosen as the final set and analysis is carried out on this sub set. Application 
of this algorithm to designed experiments possesses some problems. The main problem is the 
problem of connectedness of the subset of observations. If we choose the size of subset as p, the 
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design may become disconnected for some subsets or all subsets. Connectedness property is a 
very important property for designed experiments. Secondly, in case of design of experiments, 
interest is in estimation of some functions of treatment effects rather than the whole set of 
parameters. This may be severely affected if we choose a very small subset of data for estimating 
the treatment effects. Combating all these problems, we propose an appropriate LMS procedure 
in the next section that is suitable for application to designed experiments. 
  
4.3 Application of LMS to Designed Experiments 
In this section we modify the LMS procedure for its suitability and applicability in designed 
experiments. As mentioned in the previous section that the connectedness is the main problem in 
designed experiments, LMS method as such cannot be applied. Therefore, this is appropriately 
modified and then applied to experimental data taken from AFEIS. The LMS method is 
primarily designed to tackle the problem of outliers. In case of designed experiments, generally 
one or two outlying observations are present in a particular data set. We, therefore, proposed 
LMS method in the following manner: 
 

i) Consider the size of the subset as n – 1 or n – 2. Here, we assume that the 
design remains connected after losing one or two observations. 

ii) Obtain least squares residuals for each subset. There are 1−n
nC or 2−n

nC  
subsets of data. 

iii) Square the residuals and obtain the median for each subset. 
iv) Retain that subset which yields minimum median among all subsets. 
v) Carry out usual analysis on the chosen subset 

 
It is well known that all Randomized Complete Block (RCB) designs are robust against the loss 
of any two observations, i.e., these designs remain connected even after loosing two 
observations. Therefore, there is no problem to apply LMS technique to RCB designs, by taking 
the size of the subset as n − 2. There are also many block designs that are robust against the loss 
of one or two observations (see Krishan Lal et al., 2001). However, this size of subset can be 
increased for those designs that are robust against the loss of more than two observations. This 
method is applied to data of a number of experiments retrieved from AFEIS. Relevant program 
for carrying out the analysis has been written in SAS/IML. The listing of the program is given in 
APPENDIX 4.1. Some of these analyses are presented in the sequel. 
 
4.4 Illustration 
Example 4.1: An experiment with 4 treatments was conducted  in the randomized complete 
block (RCB) design with 4 replications at  Regional Agriculture Test & Demonstration Centre, 
Azamgarh in 1987 to study the effects of different methods of application of paras on the yield of 
paddy (net plot size  5.00m × 3.00m). The treatment details are   
  
T0 Control 
T1 Paras liquid at 2.50 p.p.m.as foliar spray only once 
T2 Paras liquid at5.00 p.p.m.as foliar spray twice 
T3 Paras granules at 25kg/ha broadcasted 
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Table 4.1: Yield of paddy in quintal/plot  

 
Treatments 

Replication 
1 2 3 4 

1 6.50 6.70 6.40 5.20 
2 6.90 6.00 6.50 6.60 
3 6.90 5.80 6.90 7.20 
4 6.30 5.90 6.20 5.80 

 
Analysis of variance was performed on the original data and results are given in Table 4.2.   
From the table one can observe that both the treatment effects and block effects are not 
significant at 5% level of significance.  
 

Table 4.2: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 3 1.027  0.342  1.33 0.3251 
Block 3 0.787  0.262  1.02 0.4295 
Error 9 2.322  0.258    
Total 15 4.137     
Average variance for the set of elementary treatment contrasts is obtained as 0.129 
 
LMS Method 
We now applied LMS technique to this data set. Size of the subset is chosen as n−1. The results 
of analysis of variance on the chosen subset are presented in Table 4.3. 
 

Table 4.3: Analysis of variance through LMS (Size of subset is n-1) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 3 1.581  0.527  3.27 0.0800 
Block 3 1.487  0.495  3.08 0.0904 
Error 8 1.288  0.161    
Total 14 4.0160     
Average variance for the set of elementary treatment contrasts is obtained as 0.086463 
 

The dramatic change through this analysis observed is that the significant levels of both 
treatment and block effects have been lowered. Treatment differences are now significant at 8% 
level of significance. There is huge reduction in the average variance for the estimated 
elementary treatment contrasts. Observation number 5 corresponding to treatment number 2 in 
the 1st block is actually deleted in the chosen set. We then applied Cook-statistic for 
identification of outlier (s), if any. It was found that the observation number 5 is an outlier. In the 
chosen set this observation was deleted. 
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Example 4.2: An experiment with 8 treatments was conducted in the randomized complete 
block (RCB) design with 3 replications at Institute of Agriculture Science., B.H.U., Varanasi in 
2005  to  find out long term effect of inorganic and organic sources of nutrients on productivity 
and soil health of lentil crop  (net plot size  10.00 m × 9.00 m). The treatment details of the 
experiments are as follows: 
 
T1 =Control 
T2 =120 kg/ha of N+60 kg/ha of P2O5+40 kg/ha of K2O 
T3 =1/2 x A2 
T4 =A3+60 kg/ha of N as foliar spray 
T5 =60 kg/ha of N through F.Y.M. before sowing 
T6 =2 x A5 
T7 =A3+60 kg/ha of N through F.Y.M. before sowing 
T8 =Farmer's Practice 
  
The data on grain yield per plot in quintals for different treatments is given in Table 4.4: 

 
Table 4.4: Yield of lentil in quintal/plot 

 
Treatments 

Replication 
1 2 3 

1 1.00 1.10 1.60 
2 3.20 5.30 0.80 
3 2.20 1.10 1.60 
4 3.20 3.10 0.50 
5 4.10 3.50 1.50 
6 3.10 1.70 1.40 
7 3.10 2.40 1.60 
8 1.80 0.60 0.50 

 
Analysis of variance was performed on the original data and results are given in Table 4.5.   
From the table one can observe that the treatment effects are not significant at 5% level of 
significance and block effects are  significant at 5% level of significance.  
 

Table 4.5: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 7 12.666 1.809 1.95 0.1367 
Block 2 10.155 5.077 5.46 0.0176 
Error 14 13.010 0.929   
Total 23 35.833    
Average variance for the set of elementary treatment contrasts is obtained as 0.6193333 
 
LMS Method  
We then applied LMS-estimation procedure to the data. The result is presented in Table 4.6. The 
dramatic effect to note here is that the treatment effects are now significant at 5% level of 
significance. 
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Table 4.6: Analysis of variance through LMS (Size of subset is n-2) 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment 7 11.633  1.661  4.11 0.0157 
Block 2 6.375  3.187  7.89 0.0065 
Error 12 4.849  0.404    
Total 21 22.858     
Average variance for the set of elementary treatment contrasts is obtained as 0.2917778 
 
We also applied Cook-statistic to identify outlying observations, if any. It was found that 
observation number 10 and 19 corresponding to second treatment in the second replication and 
third treatment in the third replication respectively are influential. In the final data set these two 
observations are actually deleted. 
 
Example 4.3: An experiment with 10 treatments conducted in the randomized complete block 
(RCB) design with 4 replications at Sugarcane Research Institute, Shahjahanapur, Uttar Pradesh 
to find out the suitable herbicide to control weeds in Sugarcane. (net plot size: 8.00m × 5.40m.). 
The treatment details of the experiments are as follows: 
 
         T0 = Control weeded check 

T1 = Local conventional method 
T2 = Trash mulching 
T3 = 1.0 kg ai/ha of 2,4-D sodium salt and 0.50 kg a.i./ha of gramoxone at 3 weeks of 

planting followed by application of the same at 6-8 weeks of planting. 
T4 = 2.0 kg ai/ha of Atrazine as Pre-emergence spray 
T5 = 1.00 kg ai/ha of 2,4-D sodium salt at 8-10 weeks after planting 
T6 = 2.0 kg ai/ha of 2,4-D (Amine) as Pre-emergence spray followed by spray of the same 

at 8-10 weeks after planting. 
T7 = 2.0 kg ai/ha of Atrazine as Pre-emergence spray followed by spray of glyphosate at 

1.0 kg ai/ha at 6-8 weeks after planting. 
T8 = 1.00 kg ai/ha of arochlor and 1.00 kg ai/ha of atrazine as pre-emergence spray 
T9 = 2.00 kg ai/ha of arochlor as pre-emergence spray 
 

The table below shows the data on yield per plot in kilogram in different treatments: 
 

Table 4.7: Yield of sugarcane in kg/plot 
Treatments  

Replication 
1 2 3 4 

1 2.52 2.77 2.32 2.31 
2 2.82 2.77 2.38 2.14 
3 2.42 2.52 2.44 2.38 
4 2.67 3.69 2.30 2.13 
5 2.50 3.21 1.90 2.51 
6 3.01 3.05 2.46 2.79 
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7 2.65 2.64 2.35 2.21 
8 2.62 2.53 2.47 2.52 
9 2.18 2.47 2.15 2.66 
10 2.57 2.82 2.26 2.35 

 
Analysis of variance was performed on the original data and results are given in Table 4.8.   
From the table one can observe that the treatment effects are not significant at 5% level of 
significance  and block effects are  significant at 5% level of significance.  
  

Table 4.8: Analysis of variance with original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 9 0.637 0.071 1.06 0.4206 
Block 3 1.731 0.577 8.64 0.0003 
Error 27 1.802 0.067   

Total 39 4.171    
Average variance for the set of elementary treatment contrasts is obtained as 0.0335 
 
LMS Method 
We now applied LMS technique by taking subset size as n−2. The result is presented in Table 
4.9. The dramatic effect to note here is that the treatment effects are now almost significant at 
5% level of significance.   
 

Table 4.9: Analysis of variance through LMS (Size of subset is n-2) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 9 0.707 0.0786 2.26 0.0519 
Block 3 1.207 0.402 11.58 <.0001 
Error 25 0.868 0.035   
Total 37 2.782    
Average variance for the set of elementary treatment contrasts is obtained as 0.0182212 
 
We also applied Cook statistic for outlier detection and found that observation 14 and 39 
corresponding to treatment number 4 in 2nd replication and treatment number 9 in 4th replication 
are really influential. Incidentally, in the final data set these two observations are actually 
deleted. 
 
Example 4.4: An experiment with 9 treatments was conducted in the randomized block design 
(RBD) with 3 replications at College of Agriculture, Nagpur To find out the suitable fungicide 
for control of the bacterial blight of sesamum. (net plot size: 3.30m x 2.40m.). The treatment 
details of the experiments are   
  
T1 = 0.3% Copper oxy chloride 
T2 = 0.25% Dithane-m-45 
T3 = 0.25% thiram 
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T4 = Streptocycline-100 ppm 
T5 = T1 + T4 
T6 = T2 + T4 
T7 = T3 + T4 
T8 = Seed treatment with 0.3% Thiram, no foliar spray 
T9 = No seed treatment,no foliar spray 
  
The data on grain yield per plot in quintals for different treatments is given in Table 4.9: 

 
Table 4.9: Yield of sesamum in quintal/plot 

 
Treatments 

Replication 
1 2 3 

1 0.06 0.02 0.04 
2 0.09 0.02 0.02 
3 0.01 0.02 0.02 
4 0.04 0.02 0.02 
5 0.02 0.03 0.08 
6 0.02 0.02 0.01 
7 0.04 0.04 0.02 
8 0.04 0.02 0.01 
9 0.02 0.01 0.01 

 
  
Analysis of variance was performed on the original data and results are given in Table 4.10.   
From the table one can observe that the both treatment effects and block effects are not 
significant at 5% level of significance.  
 

Table 4.10: Analysis of variance with the original data 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 8 0.003  0.00042  1.11 0.4051 
Block 2 0.001  0.00060  1.58 0.2371 
Error 16 0.006  0.00038    
Total 26 0.01074     
Average variance for the set of elementary treatment contrasts is obtained as 0.0002533 
  
LMS Estimation 
For this data, we applied LMS technique by considering size of the subsets as n-1 and as well as 
n-2.  In the following tables, the results are given: 
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Table 4.11: Analysis of variance (LMS with n-1 observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 8 0.0027  0.00034  1.37 0.2855 
Block 2 0.0003   0.00015  0.60 0.5605 
Error 15 0.0037  0.00025  

 
  

Total 25 0.0068     
Average variance for the set of elementary treatment contrasts is obtained as  0.0001725 
 
Observation corresponding to treatment number 2 in 1st replication, that is, the observation 0.09 
is deleted in the final set of observations 
 

Table 4.12: Analysis of variance (LMS with n-2 observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 8 0.00175  0.000218  2.17 0.0974 
Block 2 0.00064  0.000320  3.19 0.0723 
Error 14 0.001408  0.000100    
Total 24 0.003800     
  Average variance for the set of elementary treatment contrasts is obtained as 0.0000714 
 
Observations corresponding to treatment number 2 in 1st replication and treatment number 5 in 
3rd replication, that is, observations 0.09 and 0.08 respectively are deleted in the final set. The 
dramatic change in the analyses is that the treatment effects are now significant. When we 
applied Cook-statistic for detecting outlying observation, if any, we found that only the first 
observation, i.e., observation corresponding to treatment number 4 in 4th replication was found to 
be influential but not the second observation. We also obtained the residuals from LMS fit with 
subset size n-2. Using these residuals we carry out diagnostic for outlier detection and found that 
the above-mentioned two observations are actually influential. This is an interesting example of 
masking. Previously, the second outlying observation was masked and that is why it was not 
detected through Cook statistic. But   LMS fit removes this masking. Therefore robust methods 
are very good tools for detection of outlying observations. 
   
Example 4.5: An experiment with 16 treatments was conducted in the randomized complete 
block (RCB) design with 3 replications at Agricultural Research Institute, Patna, Bihar to 
evaluate mus.rock phos coated urea for N efficiency low land rain fed paddy. The treatment 
details of the experiments are as follows: 

 
T1 = Control 
T2 = 29kg/ha of N as Urea (4splits) 
T3 = 29kg/ha of N as n.c.u (basal) 
T4 = 29kg/ha of N as gyp.c.u (basal) 
T5 = 29kg/ha of N as m.r.p.c.u (basal) 
T6 = 29kg/ha of N as Urea(2splits) 
T7 = 58kg/ha of N as Urea(4splits) 
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T8 = 58kg/ha of N as Urea(2splits) 
T9 = 58kg/ha of N as n.c.u (basal) 
T10 = 58kg/ha of N as gyp.c.u (basal) 
T11 = 58kg/ha of N as m.r.p.c.u (basal) 
T12 = 87kg/ha of N as Urea (4splits) 
T13 = 87kg/ha of N as Urea (2splits) 
T14 = 87kg/ha of N as n.c.u (basal) 
T15 = 87kg/ha of N as gyp.c.u (basal) 
T16 = 87kg/ha of N as m.r.p.c.u (basal) 

 
The data on the grain yield per plot in quintal for different treatments are given in Table 4.13. 

 
Table 4.13: Grain yield per plot in quintal of paddy 

 
Treatments 

Replication 
1 2 3 

1 3.45 3.65 3.7 
2 4.9 3.4 4.4 
3 3.7 3.4 4.05 
4 3.8 3.6 3.8 
5 4.05 3.7 4 
6 3.6 3.75 3.5 
7 3.7 3.7 3.65 
8 4.35 4.4 4.15 
9 3.1 3.9 4.3 
10 4.5 4.8 4.6 
11 4.15 3.65 4.2 
12 3.95 3.45 4 
13 4.45 4.8 4.35 
14 4.1 4.15 4.2 
15 4.15 4.1 4.2 
16 3.2 3.7 3.8 

  
Analysis of variance was performed on the original data and results are given in Table 4.5.   
From the table one can observe that the treatment effects are significant at 5% level of 
significance  and block effects are not  significant at 5% level of significance.  

 
Table 4.14: Analysis of variance with original data 

Source of 
variation 

DF SS MS F Significance 
level 

Treatment 15 5.073   0.338 3.58 0.0014 
Block 2   0.240 0.120   1.27 0.2944 
Error 30 2.834   0.094   
Total 47   8.148    
Average variance for the set of elementary treatment contrasts is obtained as 0.0626667 
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We now applied LMS technique with n-1 observations and result is presented in Table 4.15 
 

Table 4.15: Analysis of variance (LMS with n-1 observations) 
Source of 
variation 

DF SS MS F Significance 
level 

Treatment 15 4.985 0.332 4.479 0.0002 
Block 2 0.249 0.124 1.683 0.2031 
Error 29 2.151 0.074   
Total 46 7.387    
 Average variance for the set of elementary treatment contrasts is obtained as 0.0502104 
Deleted observation correspond to treatment number 9 in the 1st block. Here over all conclusion 
is not changed much. There is also no outlying observation present in the data. Therefore, 
deletion of a clean observation does not affect the analysis severely. 
  
4.5 Discussion 
Least Median of Squares method is a very robust method. Its breakdown point is 50%, the 
highest possible value. In other words, this method can tolerate even a large number of 
discordant observations. This is the reason why this method is very popular in linear regression 
models. Rank deficiency is not  a problem in regression model.  But this is the main hindrance 
for designed experiments. This may be one of the reasons why this method could not make its 
presence felt in the field of design of experiments. Hopefully, present investigation would give a 
new direction towards its application in designed experiments. We have applied this technique to 
a large number of real experiments; examples of some of them are presented in the previous 
section. It is observed that if the data contains outlying observations, then LMS method out 
rightly rejects these outlying observations while selecting the final set. This is an advantageous 
procedure for a contaminated sample. Moreover, if the data set contains masked outliers, then 
LMS method is a very good method for estimating parameter effects that have very good 
statistical properties. Masked outliers cannot be detected through regular diagnostic procedures 
like application of Cook-statistic. Now if the data set does not contain any outlying observation, 
yet LMS method deletes unnecessarily one or two clean observations in the final analysis. Is it a 
correct procedure? Good data analyst may argue that unnecessarily we are loosing some 
information on some of the observations. Certainly this is true. But we do not know, in advance, 
whether the data set contains any outlying observation or having nonnormal errors. Application 
of  LMS method provides a safe guard against such abnormal occurrence. Even if the data set is 
completely “clean”, we may not loose much by deleting one or two “clean” observation as 
observed in the last example. 
 
Like many other robust regression procedures, LMS is also a very good diagnostic tool for 
detection of outlying observations. Residuals obtained from a robust fit are very crucial. These 
residuals play an important role in regression diagnostic, particularly for outlier detection, a 
special branch of study “robust regression diagnostics” has been developed. LMS method not 
only detects outlier, but is also capable of detecting masked outlier as we have seen in the 4th 
example in the previous section. 
  
The main problem of application of this technique to designed experiments is the rank deficiency 
of design matrix. We were in a defensive mode in choosing the size of the subset as n−1 or n−2, 
as we know that most of the block designs, particularly RCB designs are robust against the loss 
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of any two observations, i.e., the design remains connected even after loosing two observations. 
Originally the algorithm for LMS was developed for a subset of p observations, where p is the 
total number of parameters. But in case of designed experiments, we are considering only n−1 or 
n−2 observation for the subset. Definitely this size is very large. One can go on decreasing this 
size, but he or she has to face the problem of disconnectedness.   
 
Intuitively, we can think of relaxing the requirement of connectedness and consider the smallest 
possible subset. That is, one may check all possible subset of smallest possible size and keep 
aside the subsets that are connected. Then applying LMS procedure to these connected subsets, 
one can obtain a good statistical procedure. However, this needs more insights and remains an 
open problem.  
 
It is, therefore, recommended that if one is sure that the data set does not contain any outlying 
observation or not having nonnormal errors, ordinary least square analysis is the best. If, 
however, nothing is known about the data, LMS method with the subset size of n−1 or n−2 can 
always give more statistically valid results as it guards against all possible unusual happenings.  
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APPENDIX 4.1 
 

SAS Code: Robust analysis of designed experiments using LMS-estimation  
 
options ls=72 ps=2500; 
data ran; 
input trt blk oldy; 
datalines; 
 
; 
proc iml; 
 use ran; 
  read all into A; 
   n=nrow(A); 
   ncolA=ncol(A); 
   v=max(A[,1]); 
   intB=max(A[,2]);  
   p=v+intB+1; 
 x1V=j(n,v,0); 
 unit=j(n,1,1); 
 oldy=A[,ncolA]; 
/*Create Delta*/ 
do i=1 to n; 
 x1V[i,A[i,1]]=1; 
end; 
/*Create the matrix for the nuisance factor*/ 
do j=2 to ncolA-1; 
 order=max(A[,j]); 
 D1=J(n,order,0); 
 K=J(intB,intB,0); /*Create the diagonal matrix of block size*/ 
 do i=1 to n; 
  D1[i,A[i,j]]=1; 
  K[A[i,2],A[i,2]]=K[A[i,2],A[i,2]]+1; 
 end; 
 X2b=unit||D1; 
end; 
oldx=x1V||x2b; /*oldx matrix v trt, mean and b blk*/ 
med=j(n,1,0); 
betahat=j(p,n,0); 
y1=j(n-1,1,0);  
x1=j(n-1,p,0);  
y2=oldy; 
x2=oldx; 
newy=j(n-1,1,0); 
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newx=j(n-1,p,0);  
j=0; 
 
do i=1 to n; 
 y2[i,]=j(1,1,0); 
 x2[i,]=j(1,p,0); 
 c=0;  
 do ii=1 to n; 
 
  c=c+1; 
  if ii=i then  
   do;  
    if c < n then 
     do; 
      ii=ii+1; 
      x1[c,] = x2[ii,]; 
      y1[c,] = y2[ii,]; 
     end; 
   end; 
  else  
   do; 
    x1[c,] = x2[ii,]; 
    y1[c,] = y2[ii,]; 
   end; 
 
 end; 
 betahat[,i]=ginv(x1`*x1)*x1`*y1; 
 yhat=oldx*betahat[,i]; 
 resid=oldy-yhat; 
 sqrd_res=resid##2; 
 med[i,1]=median(sqrd_res); 
 y2=oldy; 
 x2=oldx; 
end; 
 
minres=min(med); 
do i=1 to n; 
 if med[i,1]=minres then  
 
 do; 
  beta_est=betahat[,i]; 
  deleted_obs=oldy[i,]; 
 
  c=0;  
  do ii=1 to n; 
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   c=c+1; 
   if ii=i then  
    do;  
     if c < n then 
      do; 
       ii=ii+1; 
       newx[c,] = x2[ii,]; 
       newy[c,] = y2[ii,]; 
      end; 
    end; 
   else  
    do; 
      newx[c,] = x2[ii,]; 
      newy[c,] = y2[ii,]; 
    end; 
  end; 
 end; 
end; 
print deleted_obs beta_est; 
print newx newy; 
newx1v=newx[,1:v]; 
newx2b=newx[,v+1:p]; 
newd=newx[,v+2:p]; 
newunit=J(n-1,1,1);  
newK=J(intB,intB,0); /*Create the diagonal matrix of block size*/ 
newK=diag(newd`*newunit); 
C=(newx1v`*newx1v)-(newx1v`*newx2b)*(ginv(newx2b`*newx2b))*(newx2b`*newx1v); 
Q=newx1v`*newy-newx1v`*newx2b*(ginv(newx2b`*newx2b))*newx2b`*newy; 
tauhat=ginv(c)*Q; 
tss=q`*ginv(c)*q; 
tms=tss/(v-1); 
b=newd`*newy; 
GT=newunit`*newy; 
CF=GT*GT/(n-1); 
bss=(b`*(inv(newk))*b)-CF; 
bms=bss/(intB-1); 
totss=newy`*newy-CF; 
ess=totss-tss-bss; 
ems=ess/(n-p+1); 
FT=tms/ems; 
FB=bms/ems; 
pvalt=1 - probf(ft,v-1,n-p+1); 
pvalb=1 - probf(fb,intB-1,n-p+1); 
print totss tss bss ess; 
print  ems bms tms; 
print pvalt pvalb ft fb; 
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/*Calculation of contrast matrix and the significance of the different contrasts*/ 
p1=j(v*(v-1)/2,v,0);  /*p1 denotes the contrast matrix*/ 
cnt=0; 
conout=j(v*(v-1)/2,4,0); 
do i=1 to v-1; 
 do j=i+1 to v; 
  cnt=cnt+1; 
  t=j-i; 
  p1[cnt,i]=1; 
  p1[cnt,j]=-1; 
  conout[cnt,1]=i; 
  conout[cnt,2]=j; 
 end; 
end; 
contss=j(v*(v-1)/2,1,0); 
do i=1 to nrow(p1); 
p1i=p1[i,]; 
/*Calculation of t statistics*/ 
contst=((p1i*tauhat)`*ginv((p1i*ginv(c)*p1i`))*(p1i*tauhat))/ems; 
conpval=1 - probf(contst,1,n-p-1); 
conout[i,3]=contst; 
conout[i,4]=conpval; 
end; 
run; 
print '  trt vs' 'trt ' ' F Value ' 'Pr > F '; 
print conout; 
quit; 
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Chapter V 
 

Robust Designs Against Presence of Outliers 
 
5.1 Introduction 
Till now, we have discussed detection of outliers and robust methods of analysis of experimental 
data. Another way of minimizing the influence of outlying observations, particularly in  designed 
experiments, is to adopt a design that is insensitive to the presence of outlying observations. 
Such designs are known in the literature, as robust designs. Robustness aspects of design of 
experiments against presence of a single outlier were first investigated by Box and draper (1975). 
The designs considered by them were essentially response surface designs. Gopalan and Dey 
(1976) initiated this study in designs for comparative experiments. Singh et al. (1987) identified 
Row-Column designs that are robust in presence of a single outlier. The robustness criterion, 
they considered, was based on minimization of discrepancy in estimation of error mean squares. 
Later on Bhar and Gupta (2001) proposed a new criterion namely minimization of average Cook 
statistic for identifying robust designs that are robust against the presence of a single outlier. It is 
well known that Cook statistic is very useful for identifying a single outlier. Using this criterion, 
Bhar and Gupta (2001) shown that all the designs that are shown to be robust through 
minimization of discrepancy in the estimation of error variance are also robust as per of 
minimization of average Cook statistic. They have also shown that all E-optimal designs are 
robust against the presence of a single outlier. Sarker (2002) has shown that all nested balanced 
incomplete block designs and balanced binary block designsfor diallel crosses are robust in 
presence of of a single outlier. Sarker et al. (2005) have shown that all those block designs for 
diallel crosses in which a line appears a constant number of times in a block are also robust 
against the presence of a single outlier. They have also established the equivalence of 
minimization of discrepancy in the estimation of error variance and minimization of average 
Cook statistic. Sarker et al. (2005) have shown that all binary balanced treatment incomplete 
block designs are also robust in presence of a single outlier. In earlier chapters, through 
examples, it has been shown that there do exit more than one outlier in experimental data. 
Unfortunately no work seems to have been done on the robustness of designs against the 
presence of more than one outlier.  Therefore, in the present chapter we have developed a 
criterion for identifying robust designs against the presence of two outliers. At first we give in 
brief the results available so far in the literature. 
 

5.2 Some Preliminaries  
Consider the usual general linear model for a block design  
 

                                             (5.1) 

with E(e) = 0 and D(e) = σ2In.  
 

eβDτΔ1y +′+′+µ=
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Here y is n× 1 vector of observations, µ is the general mean, 1 is the column vector of ones, Δ′  is 
the n × v design matrix for treatments, D′ is the n × b design matrix for blocks, τ and β are the 
treatment effects and block effects respectively, e is the vector of random error terms. Also 

11Δ =′ , 11D =′ , rΔ1 = , kD1 = ; where ( )′= vrr ,...,1r and ( )′= bkk ,...,1k are the 
vectors of replications and block sizes respectively. The following relations hold.  

))(( ijn=′= DΔN , rN1 = , k1N =′ , 1k1r ′==′ n , diag=′= ΔΔR ( )vrr ,...,1  and 
diag=′= DDK ( )bkk ,...,1 , where the non-negative integers ijn  denote the number of times 

ith treatment appears in jth block i
j

ij rn =∑ , vi ,...,1=∀ ; j
i

ij kn =∑ , bj ,...,1=∀ . 

The model (5.1) can be written as, 

( ) e
θ
θ

XXy +







=

2

1
21                (5.2) 

where ΔX ′=1 , ( )D1X ′=2 , τθ =1  and ( )′′= βθ µ2 . 

 

Thus from (5.2) we get the reduced normal equations for estimation of the linear functions of 
treatment effects by eliminating the effects of µ and β  as, 

111 θθ QθC =                  (5.3) 

where the matrix τC  and vectors τQ are obtained  as  

ΔΔBBXXCθ ′=′= 111  

ΔByByXQθ =′= 11  

where the matrix B, as given in (2.4), is simplified as  
DKDIB 1−′−= n .                     (5.4) 

 
Single outlier  
Without any loss of generality, we assume that the observation pertaining to the first treatment in 
the first block is an outlier. Then the incidence matrix N can be written as  








 ′
=

0

1
Nf
ε

N   

where f is a (v−1) component (0-1) vector of remaining (v – 1) treatments in the first block, ε is a 
(b−1) component (0-1) vector of incidence of the first treatment in the remaining (b – 1) blocks. 
Now from the definition (2.1) the Cook-statistic for the set of treatment contrasts Pτ  is given by, 

2
1

1
111

1
11

1 ˆ)1(
)()(

σ
τ

−

′′′′′
=

−+−

v
D VyuVuuΔBuCΔBuVuuVuy           (5.5) 
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Another form of 1D is obtained from (2.10) as  

2
12

11
2
1111

1 δ̂
ˆ)1(ˆ)1(

ˆ

σσ −
=

−

′′
=

v
s

v
δD δSuu                          (5.6) 

where 11s is the first diagonal element of the matrix ΔBCΔBS τ
+′=    

again, 111111 BuCΔBuSuu +′′=′= τs . 

Now 1
1

1 )( uDKDIΔΔBu −′−= , on substituting the value of B from (5.4) we get  

1
1

1 )( uDNKΔΔBu −−= = 







−
−
f
11 1

1

k
k

. 

Now we define { } 







−
−

−=
−

f
U

1
)1( 12

1

110
k

kk  

Then 
1

1
11

1
k

ks −
= 00 UCU τ

+′ . 

Thus 1D given in (5.6) can be written as 1D = 2

2
1

00
1

1
ˆ

ˆ

)1(
1

σ
δ

τ UCU +′
−
−

vk
k . If we denote by *

1r and 1t  

the ordinary and Studentized residuals respectively, for the outlying observation, then 

*
1r = 11 ŷy − = Vyu1′  and 

11

*
1

1 ˆ v
rt

σ
= , where 11v is the first diagonal element of the matrix of 

ΔBCΔBBV +′−= τ .                            (5.7) 

Again, 111111 )( uΔBCΔBBuVuu +′−′=′= τv = )1(1
00

1

1 UCU +′−
−

τk
k . 

Thus  we get another form of 1D as  

 1D = 
)1(1

2
1

00

00
−′−

′
+

+

v
t

UCU
UCU

τ

τ .                        (5.8) 

 
5.3 Robustness Against the Presence of a Single Outlier in Designs for One-way 
Elimination of Heterogeneity 
In this section we present the results on the robustness of designs for one-way elimination of 
heterogeneity against the presence of a single outlier. To begin with we define a robustness 
criterion and then find out designs which are robust according to this criterion. 
Consider the linear model of designs for one-way elimination of heterogeneity as given in (5.1).   
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Robustness Criterion ( Bhar and Gupta, 2001) 
Cook-statistic for testing a single outlier can be obtained from (2.8) as    

iD = 
)1(

2

−v
t

v
s i

ii

ii                 (5.9) 

Here, we assumed that the ith observation is an outlier and accordingly the statistic iD  is 
rewritten in (5.9). Now iD can alternatively be written as, 

iD = 
)1(1

2

−− v
t

s
k

k
s i

ii
j

j
ii              (5.10) 

Here we assumed that the ith observation occurs in the jth block and jk is the jth block size. 

Observe that 2
it is an increasing function of iis and 2

it , being a function of residual, is an outlier 

measure. Very high value of 2
it  corresponds to an outlying observation and combining with 

iis as in (5.10) measures the influence of an outlier. An outlier may occur in any of the n 
observations. A design for which the average of Cook-statistic over all possible outliers is 
minimum, may be termed as robust design against the presence of a single outlier. 
 
Average of Cook-statistic 
From (5.10) we get average Cook-statistic D as, 

D = ∑
=





















−−

n

i

i

ii
j

j
ii

v
t

s
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s

n 1

2

)1(1
1                       (5.11) 

Clearly D is a weighted sum of squares of it . D will be minimum when the weights 

ii
j

j
ii

s
k

k
s

1− are 

all equal or in other words, iis are all equal. 

Thus the study of robustness of a design requires the computation of the elements 

iis ; ni ,...,2,1=∀ , the diagonal elements of the matrix S = ΔBCΔB +′ τ . Note that 01ΔB =′ n , 
therefore, τΔB ′ represents a set of treatment contrasts. Since the dispersion matrix of τΔB ˆ′  is 

S2σ , a design will be robust if all the components of τΔB ˆ′  are estimated with the same 

variance. The pth component of τΔB ′  is 
j

i

i
iji n

n
.

ττ ∑− , where pth observation pertains to the ith 

treatment in the jth block and ijn is as described earlier. If the least squares estimator of 
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j

i

i
iji n

n
.

ττ ∑− is ijp , then ijp = 
j

i

i
iji n

n
.

ˆˆ ττ ∑− . Thus the design will be robust if and only if Var 

( ijp ) is a constant independent of i and j. These ideas are used in characterizing robust designs. 

For computing Var( ijp ) the following result is useful. 

Lemma 5.1: Let i
i

il τ∑  be a treatment contrast and i
i

il τ∑ = i
i

iQq∑ , then 









τ∑ i

i
il ˆVar = 

2σ̂∑ i
i

iql  

(i) Designs with proportional frequencies 

Designs with proportional frequencies are characterized by the property 
n
nn

n ji
ij

..= .Then it can 

be shown that 2/)Var( σijp = 
nni

11

.
− . Thus any design with proportional frequencies cannot be 

robust except in the special case where all .in are equal. The robustness of randomized complete 
block (RCB) designs  follows from this. 
 

(ii) Balanced Binary Designs 

For a binary designs ijn = 0 or 1. A balanced design is one which permits estimation of all 
elementary contrasts among the treatment effects with equal variance. It is well known that a 
necessary and sufficient condition for a design to be balanced is that its C-matrix has all the 
diagonal element equal and all the off diagonal elements equal. Let the off-diagonal element of 
the C-matrix of a balanced binary block design be α− . Then it can be shown that using Lemma,  

2/)(Var σijp = 
αvn

n

j

j

.

. 1−
, which is constant if and only if jn. is a constant for all j. Since the design 

is balanced binary, this implies that .in must also be a constant for all i. Hence a balanced binary 
design is robust if and only if it is equi-block sized and equi-replicate, i.e., if and only if it is a 
balanced incomplete block (BIB) design. 
 
(iii)  Partially balanced incomplete block (PBIB) designs with two-associate classes 
Consider a two associate class PBIB design with usual parameters v, b, r, k, iλ , in , i

jkp ( i, j, k = 
1, 2). Details of parameters are available in Dey(1986).  Let D be the class of all 2-associate class 
PBIB designs satisfying the following block structure: 
 

(A): For any treatment i, appearing in the jth block, the number of first associates of treatment i 
occurring in the same block is a constant (say g) independent of i and j. Now on using Lemma, it 
can easily be shown that for a PBIB design  
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2/)(Var σijp = { } ∆+− /)1( 22 gABk  which is constant, where 1221 BABA −=∆ , 

21 )1( λ+−= krA , 122 λλ −=A , 2
12121 )( pB λλ −=  and ))(()1( 2

12
1
111222 ppkrB −−++= λλλ . 

Thus all two associate class PBIB designs having the block structure in (A) are robust. We now 
present some examples of two associate class PBIB designs having the block structure in (A) in 
sequel. 
 
All non-group divisible two-associate PBIB class designs with 0λ2 =   
Since 02 =λ any two treatments which are mutually second associates do not occur together in 
any block. Thus all the treatments appearing in any block are first associates, which gives g = 
k−1, since the block size i fixed. Thus any two-associate class PBIB designs with 02 =λ  
satisfies the block structure in (A). 
 
All semi-regular group-divisible (GD) designs  
It is well known that for a semi-regular GD design, k = cm, where c is an integer and every block 
contains c treatments from each group. We know that treatments belonging to any group are first 
associates. Thus we get g = c – 1. Hence such designs satisfy the block structure in (A). 
 
All triangular PBIB designs satisfying 034 21 =−−−+ )λ()λ( nnr  
It is well known that if in a triangular design, one of the eigen-values of NN ′  matrix is 

0)3()4( 21 =−−−+= λnλnrθ , then 2k is divisible by n and every block of the design contains 
2k/n treatments from each of the n rows of the association scheme. Thus designs satisfy the block 
structure in (A) and clearly for such designs g = (4k/n) – 2. 
 
All latin-square type designs with two-constraints ( 2L ) satisfying 01(2( 21 =−−−+ )λ)λ ssr  

2L  type PBIB designs is based on the latin-square association scheme with 2sv = treatments. 
Further if one of the eigen values of NN ′  matrix is 0)1(2( 21 =−−−+= λs)λsrθ , then k is 
divisible by s and in such case every block of the design contains k/s treatments from each of the 
rows (columns) of the association scheme. Thus such type of designs satisfy the block structure 
in (A) and clearly g = (2k/s) – 2. 
 
Robustness Criterion ( Gopalan and Dey, 1976)) 
Consider the model (5.1) , in the absence of any outlier, an unbiased estimator of 2σ is given by  

)(
ˆ

2
02
mn

R
−

=σ  

where yXXXXyyy ′′−′= −)(2
0R , [ ]DΔ1X ′′= . 

When the ith observation has added to it a quantity c, the bias or discrepancy in estimating 2σ  
through 2*

0R is  
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=  

where ****2
0 )( yXXXXyyy ′′−′= −R  

iceyy +=*  

ie  is a column vector with the  uth entry unity and rest zero, and iia  is the ith diagonal element of 

the matrix XXXXIA ′′−= −)( . 

Now if it is assumed that it is equally likely that c could occur with any one of the n 
observations, the corresponding discrepancies are nddd ...,,, 21 with average, 

ncndd
n

i
i // 2

1
==∑

=
. Thus it is seen that average discrepancy is fixed for a fixed number of 

observations. In order that no unduly large discrepancy in the estimator of 2σ is caused by the 
outlier, it is desirable that id , i = 1, 2, …, n are made as uniform as possible. One measure of 
such uniformity is reflected in the variance of id ’s, given by 

})(/{)/()(Var 224 mnnnmhcd −−=  

where ∑=
i

iihh 2 and iih is the ith diagonal element of XXXXH ′′= −)( .  

For fixed m and n, minimization of var (d) implies that h should be minimized, which in turn 
requires that all iih ’s should be equal. A design for which nnhhh === ...2211  is called a robust 
design against the presence of an outlier. 
 
Utilizing this criterion Gopalan and Dey (1976) obtained identified some designs that are robust 
against the presence of a single outlier. Incidentally it is observed that the designs identified as 
robust using Bhar and Gupta (2001)’s criterion are same as that obtained by Gopalan and Dey 
(1976). 
 
5.4 Robustness Against the Presence of a Single Outlier in Designs for Two-way 
Elimination of Heterogeneity 
In this section we study the robustness of designs for two-way elimination of heterogeneity 
against the presence of a single outlier. We use the same criterion as developed in section (5.3) 
for studying the robustness of such designs. 
  
Robustness Criterion 
The Cook-statistic for testing a single outlier in designs for two-way elimination of heterogeneity 
can be obtained from (2.10) as 

iD = 
)1(

2

−− v
t

hb
h i

iiii

ii                          (5.12) 
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Here, we assumed that the ith observation is an outlier and accordingly the statistic iD  is 
rewritten in (5.12). Where iib is the ith diagonal element of B, iih is the ith diagonal element of the 

matrix H, ΦDΦDDΦΦB −′′−= )( 222 , 1
1

111 )( DDDDIΦ −′′−= n , 1D′ and 2D′ are respectively 
pn× and qn× matrices of full column ranks binary design matrices for rows and columns 

respectively, ΔBCΔBH +
τ′= , Δ′ is an vn× design matrix for treatments and ΔΔBCθ ′=1 . 

Now average Cook-statistic D is 

D = ∑
=


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
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
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)1(
1 .           (5.13) 

Thus we get the same robustness criterion as developed for designs for one-way elimination of 
heterogeneity, i.e., all iih should be equal and, therefore, a design will be robust if and only if all 
the components of τΔB ˆ′  are estimated with the same variance. Now the pth component of 

τΔB ˆ′ is  

ijlp = 
l

i

i
il

j

i

i
iji n

n
n

n
..

ˆˆˆ τττ ∑∑ −−             (5.14) 

where the pth observation pertains to the ith treatment in the jth row and lth column and 
11 ))(( DΔN ′== ijn  be the pv×  treatments vs. rows incidence matrix and 22 ))(( DΔN ′== iln  be 

the qv× treatments vs. columns matrix . Thus any design will be robust if and only if 
)(Var ijlp is a constant independent of i, j and l. 

 
(i) Designs with proportional frequencies 

Designs with proportional frequencies are characterized by the property 
n
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ill nn

1
. . Thus any design with proportional frequencies cannot be robust 

except in the special case where all .in are equal. The robustness of Latin Square Designs (LSD) 
follows from this. 
 

(ii) Balanced Binary row-column designs 
For a binary design the elements of the matrices 1N and 2N are 0 or 1 and the row sizes are q 
each and the column sizes are p each. It is known that a necessary and sufficient condition for a 
design to be balanced is that all the diagonal elements of the C-matrix are equal and all off 
diagonal elements of C-matrix are equal. Let the oo-diagonal element of a balanced binary 
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design be α− . Further we assume that between a row and column λ treatments are common 
which is fixed for all j and l. Then it can be shown that  

2/)(Var σijlp = 
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which is a constant if jn. is a constant for all j and in. is a constant for all i. Since the design is 

binary, this implies that .in must also be a constant for all i. Thus a balanced binary design is 
robust if and only if it is equi-row sized, equi-column sized and equireplicate and having a 
constant.  

 
5.5 Robustness Aspects of Balanced Treatment Incomplete Block Designs 
Sarkar et al.(2003) studied robustness of designs for comparing several test treatments with a 
control. For studying the robustness of designs for comparing several test treatments with a 
control treatment the result cannot be generalized for all the n observations. Therefore, if the 
outlying observation pertain to the control treatment then we take the average value of cook 
statistics over n0 possible values pertaining to control treatment and if the outlying observation 
comes from the test treatments then we take the average value of cook statistics over all possible 
(n− n0) values. Therefore, we can describe the robustness criterion as in case of general block 
designs, i.e, a design is said to be robust in presence of a single outlier if all the diagonal 
elements of the H matrix corresponding to the observations where control treatment appears are 
equal when outlying observation comes from control treatment and likewise a design is said to 
be robust in presence of a single outlier if all the diagonal elements of the H matrix 
corresponding to the observations where test treatments appear are equal when outlying 
observation comes from test treatment.  Where the matrix H is obtained in accordance with the 
H matrix as obtained for block designs. 

  
It is difficult to establish the equal variance of all possible treatment contrasts, therefore, they 
studied the particular case of variance balanced block designs for estimation of test treatments–
control treatment contrasts. A block design is said to be variance balanced for the estimation of 
test treatment versus control treatment contrasts if it permits the estimation of these contrasts 
with the same variance and covariance between any two estimated test treatment versus control 
treatment contrasts is also same. In proper block design set up, such designs have been termed as 
balanced treatment incomplete block (BTIB) designs.   

 
Theorem 5.1. All BTIB designs that are binary with respect to test treatments are robust against 
the presence of a single outlier.  

 
This result has been illustrated with the following example. 
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Example 5.1: Let us consider the following BTIB design with parameters v = 4, b = 4, k = 4, r 
= 3, r0 = 4, λ = 2, λ0 = 3. 

 
Block Treatments 
1 0 1 2 3 
2 0 1 2 4 
3 0 1 3 4 
4 0 2 3 4 
 

Below are given the observations and diagonal elements of the S matrix corresponding to the 
observations of the above mentioned design. 

  
Observation Diagonal element of S matrix 
1 0.2045454 
2 0.2651515 
3 0.2651515 
4 0.2651515 
5 0.2045454 
6 0.2651515 
7 0.2651515 
8 0.2651515 
9 0.2045454 
10 0.2651515 
11 0.2651515 
12 0.2651515 
13 0.2045454 
14 0.2651515 
15 0.2651515 
16 0.2651515 

 
The example clearly shows that the diagonal elements of S matrix corresponding to the 
observations coming from control treatment are equal and also the diagonal elements 
corresponding to the test treatments are equal. 
 

5.6 Robustness  of Block Designs for Diallel Crosses against the Presence of a Single 
Outlier 

In agricultural experiments especially in plant breeding trials, block designs for diallel crosses 
are extensively used. Outlier(s) is (are) likely to appear in diallel cross experiments. The 
difference of block designs for diallel crosses with usual block designs is that in mating designs 
the observations are recorded on the crosses that are made up of two distinct lines whereas the 
experimenter is interested in comparing the contrasts of general combining ability (gca) effects 
of the lines. Therefore, handling of outlier(s) in case of designs for diallel cross experiments is 
not same as that of usual block designs. Hence, there is a need to propose some statistic to detect 
an outlier in diallel cross experiment. Sarker et al. (2005) studied the robustness aspects of 
designs for diallel crosses. Their results are summarized below. 
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Theorem 5.2: All proper binary balanced block designs for diallel crosses are robust against the 
presence of a single outlier. 
 
Theorem 5.3: Randomized complete block designs for complete diallel crosses and block 
designs for diallel crosses obtainable from Family 5 designs of Das, Dey and Dean (1998) are 
robust against the presence of a single outlier. 
 
5.7 Robustness of Nested Block Designs Against the Presence of a Single Outlier 
Heterogeneity in the experimental material is the most important problem to be reckoned with in 
the statistical designing of experiments. In general block designs, the blocking is done to control 
one source of variability in the experimental material. But there are some experimental situations 
where more sources of variations may be present and cannot be controlled by ordinary blocking 
alone. Nested block designs have been developed to deal with the experimental situations where 
one factor of variability is nested within another factor of variability.  
A nested block design is defined as a design with two systems of blocks where the second 
system is nested within the first. To be clearer, let us consider the following experimental 
situations: 
 
Experimental Situation 5.1: In animal experiments, generally littermates (animals borne in 
same litter) are experimental units within a block i.e. litters are blocks. However, animals within 
the same litter may differ in their initial body weight.  Body weight can be taken as another 
blocking factor. Then we have a system of blocks nested within a block. 
 
Experimental Situation 5.2: Consider a field experiment conducted using a block design and 
harvesting is done block wise. To meet the objectives of the experiment, the harvested samples 
are to be analyzed for their content in the laboratory by different technicians at the same time or 
by a technician over different periods of time. Therefore, to control the variation due to 
technicians or time periods, this is taken as another blocking factor.  

As mentioned earlier, the experiments for the above and similar experimental situations should 
be conducted using a nested block design. 
Sarker (2002) studied robustness aspects of nested block designs.  
Definition 5.1: A connected nested block design is said to be sub-block variance balanced if and 
only if all the non-zero eigen values of the corresponding C-matrix are equal.  
Sarker proved the following result. 
Theorem 5.4: All proper nested binary sub block balanced designs are robust against the 
presence of single outlier.  
 
5.8 Robustness of Experimental Designs Against the Presence of More Than One 
Outlier  
 
Recall the Cook-statistic from (2.6) or any k outliers 
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Now by applying the spectral decomposition to SUU′ , we get SUU′ = ΛEE′ , where 
kλλλ ≤≤≤≤ ...0 21 be the eigenvalues of SUU′ ,  ),...,(diag 1 kλλ=Λ and E is orthogonal 

matrix. Then 2ˆ)1(

ˆˆ

σ−

′′
=

v
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δΛEEδ . 

Let *ˆ
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. It can be seen that the elements of *t  are actually Studentized residuals. Thus 

(6.14) can alternatively be written as 
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Robustness Criterion 
A design for which the average Cook-statistic over all possible set of k outliers is minimum, may 
be termed as robust against the presence of k outliers. The average of Cook statistic is given by 
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1 λ            (5.17) 

* This summation is over all possible subsets of size k. 

Here, D is a weighted sum of squares of *t and D will be minimum when the weights, i.e., all 
λ ’s are equal. Thus to show that a design is robust against presence of k outliers, we have to 
show that the eigenvalues of every k ×k matrix SUU′ are same. The computation of eigenvalues 
of every k ×k matrix SUU′ is very difficult for any value of k. We, therefore, concentrate our 
study of robustness for the case of two outliers. 

 

For  k = 2,  D becomes    
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and therefore, average of Cook-statistic for all possible set of 2 observations ( 2Cn in number) 

will become weighted sum of squares of 2
it . This average will be minimum when the weights      

λ ’s are equal for all the sets. Thus the study of robustness of a design requires the computation 
of eigenvalues of each of the 2×2 matrices SUU′ . Then we have the following result. 
 
Theorem 5.5: All binary proper variance balanced block designs are robust against the presence 
of any two outliers. 
Proof: Recall from Chapter 2 that the matrix S is given as BXCXBS 11

1

+′= θ . Now for a block 

design setup DKDIB 1−′−= n , ΔX ′=1 . For a variance balanced block design IC
γθ
1

1
=+ , where 
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γ is the unique eigenvalue of C-matrix. For proper designs matrix K would be some constant × a 
diagonal matrix. Thus each of the 2×2 matrices SUU′  would be same and hence all eigenvalues 
of SUU′ would be same. Hence the result. 
 
Remark 5.1: For more than two outliers, it seems difficult to identify robust designs using 
average Cook-statistic. It may not be possible to derive any condition by which we can show that 
the eigenvalues of every k ×k matrix SUU′ are same. It is,  therefore, needed to search for other 
robustness criteria. Criterion of Gopalan and Dey (1976) may be explored for extending for more 
than one outlier.  
 
5.9 Discussion 
In the present investigation, we have made an attempt to develop test statistic for detection of 
outlier(s) in the experimental data and to identify robust designs against the presence of a single 
outlier or more than one outlier. It may be noted that both the criteria of robustness are dependent 
on design matrix X alone and don’t involve the observation vector y. As a result the value of F-
statistic for studying the significance of treatment effects may get affected in the presence of 
outlier (s) even in case of the designs identified as robust according to the above criteria. 
Therefore, besides detection of outlier (s) and identification of robust designs in presence of 
outlier (s), it is essential to develop some estimation/analytical procedures so that inference on 
the parameters of interest does not change. One way to deal with such situations is to develop 
robust estimation procedure of estimation of treatment contrasts.  These techniques are discussed 
in the third and fourth chapters. However,  one may also think of either deleting the 
observation(s) identified as outlier(s) or carrying out the analysis of covariance. Bhar (1997) has 
shown that the reduced normal equations under the analysis of covariance model or with 
suspected observation(s) deleted from the model are same. Therefore, both the above alternatives 
are same and one may use either of them. This has been illustrated with the help of the following 
example: 
 
Example 5.2: Nigam and Gupta (1979) A manurial trial with six levels of Farm Yard Manure 
(FYM) was carried out in a randomized complete block (RCB) design with four replications at 
the Central Experimental Station, Sagdividi, Junagadh with a view to study the rate of 
decomposition of organic matters in the soil and its synthetic capacity in soil on cotton crop. 
Table 5.1 below shows the data on yield per plot in kg. for different levels of FYM without and 
with one artificially introduced outlier shown in the parenthesis.  
 

Table 5.1: Yield of Cotton in kilogram (kg) 
Level of FYM Replication 1 Replication 2 Replication 3 Replication 4 
1 6.90 4.60 4.40 4.81 
2 6.48 5.57 4.28 4.45 
3 6.52 7.60(10.60) 5.30 5.30 
4 6.90 6.65 6.75 7.75 
5 6.00 6.18 5.50 5.50 
6 7.90 7.57 6.80 6.62 
* The figure in the parenthesis is an artificially introduced outlier. 
 
The results of analysis of variance of the original data are given in the following table. 
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Table 5.2: ANOVA with Original Data 

Source DF Sum of Squares Mean Squares F-value Prob.>F 
Replication 3 6.1212 2.0404 4.36 0.0214 
Treatment 5 15.4483 3.0896 6.60 0.0020 
Error 15 7.0262 0.4684   
Total 23 28.5957    

 
It can be seen that the treatment as well as replication effects are significantly different at 5 % 
level of significance. 
 
An artificial outlier is introduced in the 9th observation. The results of the Analysis of Variance 
in the presence of a single outlier are given as below: 

 
Table 5.3: ANOVA with artificially introduced outlier 

Source DF Sum of Squares Mean Squares F-value Prob.>F 
Replication 3 8.8337 2.9446 2.26 0.1239 
Treatment 5 17.8208 3.5642 2.73 0.0601 
Error 15 19.5837 1.3056   
Total 23 46.2382    

 
It is clear from the analysis that when one outlying observation is there in the data, the mean 
square error has increased approximately 2.8 fold. One can also see that neither the treatment 
effects nor replication effects are significantly different at 5% level of significance. Therefore, it 
follows that inspite of using a robust design against the presence of a single outlier, the inference 
on parameters of interest may change in the presence of outlier(s) in the experimental data. 
 
To remove the effect of outlier, we used the two approaches viz. (i) analysis of covariance (ii) 
deleting the outlying observation. The results obtained from these two approaches are given as 
below: 
 

Table 5.4: Analysis of Covariance in the presence of a single outlier 
Source DF Sum of Squares Mean Squares F-value Prob.>F 
Replication 3 5.5687 1.8562 5.31 0.0118 
Treatment 5 15.7441 3.1488 9.01 0.0005 
Covariate 1 14.6935 14.6935 42.07 <0.0001 
Error 14 4.8902 0.3493   
Total 23 46.2382    
 

Table 5.5: Analysis of Variance with missing data 
Source DF Sum of Squares Mean Squares F-value Prob.>F 
Blocks 3 5.5687 1.8562 5.31 0.0118 
Treatment 5 15.7441 3.1488 9.01 0.0005 
Error 14 4.8902 0.3493   
Total 22 26.2387    
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One can observe that the results with analysis of covariance and by deleting the outlying 
observation are same. It can also be observed that both the treatment effects and block effects are 
significantly different at 5% level of significance. Therefore, these approaches may be able to 
take care of presence of outlier(s) in the experimental data. Therefore, one has to adopt a two 
pronged strategy. First use a design that is robust against the presence of outliers. It will help in 
minimization of average Cook-statistic and discrepancy in the estimation of error variance. 
Secondly use detection and handling of outliers procedures in the analysis of experimental data.  
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Chapter VI 
 

Development of Software 
 
6.1 Introduction 
The problem of outliers in linear regression models can be handled by using several statistical 
packages. These statistical packages are not capable of handling outliers in designed 
experiments. Thus with the development of new methodologies for tackling outliers in designed 
experiments, a user-friendly software for implementing these new techniques is also required. In 
the present investigation a software has been developed for tackling the problem of outliers in 
designed experiments. Various features of this software are discussed in the present chapter. 
  
The software is written in visual C++ language. The software has the following features: 
• It can identify outliers in experimental data.    
• It can directly apply the robust methods of estimation for analyzing the data. Here one has 

two options: M-estimation (Huber’s function) or LMS method. 
• It has option to analyze the data after deleting the outlying observations.  
 
6.2 Working with the software 

• After clicking the software icon, we will get the opening page like following: 
• It has five tool bars: File, Edit, Analysis, View and Help 

 

 
 

• By clicking the file menu, we will get a page as follows 
• If we want to enter data from the key board, then we click New, otherwise we open an existing file by 

clicking Open 
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• By clicking Open, we get a page as follows: 
• The page is showing two existing files. 

 

 
 

• By clicking LMB1 we get an data file as follows: 
• First column is showing the replication number, second column is the treatment number and third column is 

the response data. 
• Data has to be fed like this only. 
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• By clicking the analysis menu, we get a box for analysis as follows: 
 

 
 

• By clicking ANOVA we get the result window as follows: 
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• By clicking Cook statistics we get Cookstatistic for each observation. 
• This command also gives the AP-statistic and Q statistics for each observation. 
• It also identify the outlying observation; for example it put a star corresponding the outlying observation 

number 27. 
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• If we want delete this observation and reanalyze the data, we have to click the command Analysis without 
outlier 

•  It results into another ANOVA without outlying observations as follows  
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• Finally we opt for the robust analysis of the data. 
• We have to click Robust analysis and get two options, M-estimation and LMS method. 

 

 
 

• By clicking M-estimation we get an ANOVA for M-estimation procedure as follows 
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• By clicking LMS we get The ANOVA obtained through LMS method. 
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Chapter VII 
 

Dissemination Workshop 
 

7.1 Introduction 
In order to popularize the research findings of the project among the end users, a dissemination 
workshop was organized at IASRI on 26th July, 2007. Forty five scientists of NARS participated 
in the workshop. Dr. NN Goswami, former Vice-Chancellor, Chandra Sekhar Azad University of 
Agriculture and Technology, Kanpur was the chief guest. 

 
7.2 Objective of the Workshop 
Dissemination of research findings to the stakeholders is very important for any research project. 
Therefore, a work shop was organized with the following objectives: 
 
• To disseminate the research findings of this project to the stakeholders. 
• To describe the applications of the theory developed in the analysis of data generated from 

designed experiments. 
• To familiarize the participants with the application of the software for analysis of 

experimental data in presence of outliers. 
• To give an exposure to the design resources server. 
• To formalize the recommendations emerging from this workshop. 
 
7.3 Programme of the Workshop 
The participants of the workshop included many eminent scientists actually engaged in the field 
of experimentation and some renowned statisticians from various institutions. Among those who 
participated in the workshop were Dr. NN Goswami, former Vice-Chancellor, Chandra Sekhar 
Azad University of Agriculture and Technology, Kanpur, Dr. Rajendra Prasad, ex-National 
Professor, Indian Council of Agricultural Research, Dr. Aloke Dey, Professor, Indian Statistical 
Institute, Delhi Centre, New Delhi and Dr. SD Sharma, Director, Indian Agricultural Statistics 
Research Institute, New Delhi. Dr. VK Gupta, National Professor and co-investigator of the 
project made a presentation describing the motivation for taking up the project; introducing 
outliers, their presence in the experimental data, and also ways to handle outliers. Dr. Rajender 
Parsad, National Fellow and co-investigator of the project made a presentation on Diagnostics in 
Designed Experiments. Through real life examples, he demonstrated that the assumptions of 
normality and homogeneity of error variances may be violated due to presence of outliers in the 
experimental data. Dr. LM Bhar, Principal Investigator gave comprehensive presentation on the 
salient findings of the project.  
 
In brief the following salient achievements of the project were presented: 
 
7.3.1 Identification of Outliers(s) 
One statistic that has strong intuitive appeal for identification of outliers is the Cook distance. 
This measure was introduced in the context of linear regression wherein it measured the squared 
distance between the estimated parameters using the full set of data and the estimated parameters 
obtained after deleting an observation. The distance is obtained for all the observations by 
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deleting one observation at a time. The observation giving the largest distance may be tested for 
being an outlier.  Although Cook-statistic has strong intuitive appeal, its application to designed 
experiments is not straight forward. Therefore, Cook statistic is suitably modified for making it 
applicable for detecting outliers in designed experiments.   
 
Cook-statistic, however, has a limitation that it is not capable of handling the problem of 
masking (the effect of an outlier is suppressed by the presence of another outlier). If one applies 
single outlier detection procedure, both the outliers may remain undetected. In the context of 
regression analysis, Pena and Yohai (1995) developed a statistic that takes care of the masking 
effect and also enables one to detect outliers.  In the present investigation, this statistic has been 
appropriately modified for designed experiments. This statistic takes care of the masking effect. 
 
The modified test statistic was used to detect outliers in experimental data obtained from 
Agricultural Field Experiments Information System (AFEIS), IASRI, New Delhi. Mainly those 
experiments were selected for detection of outliers which were found having data with non-
normal and/ or heterogeneous errors as identified in another investigation namely A Diagnostic 
Study of Design and Analysis of Field Experiments. At least one outlier is detected in 372 
experiments out of 579 tried. This confirms the presence of outliers in the experimental data. 
 
7.3.2 Robust Methods of Analysis 
Once outlier(s) has/have been detected then the next question is, “what do we do with the 
outlier(s)?” One commonly used practice is to remove the outlier(s) and analyze the remaining 
data. But every observation generated contains some information about the parameters of interest 
and a lot of resources are spent on its collection. Therefore, we need to develop robust methods 
of estimation of parameters of interest.  For application to designed experiments various M-
estimation procedures like Huber’s function, Andrew’s function etc. have been modified by 
changing their tuning constants. Actually, for each M-estimation method, a different objective 
function is used and these objective functions are bounded by some constants known as tuning 
constants. Determination of these constants is subjective and depends on the type of data being 
analyzed as well as the experience of the analyst. A new objective function that determines 
weights for the observations using Cook-statistic has been proposed.    
 
Least Median of Squares (LMS) method has been modified for application in designed 
experiments.  
 
Robust methods of estimation available in the literature as well as modified methods have been 
applied to the real life experimental data. The application of these methods improves the 
credibility of the inferences drawn. 
 
7.3.3 Robust Designs 
A new criterion based on modified Cook statistic for identifying robust designs against presence 
of more than one outlier has been developed. Using this criterion, all binary variance balanced 
block designs have been shown to be robust against the presence of two outlying observations.   
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7.3.4 Software Developed 
Graphic user interface based software has been developed for analyzing experimental data in the 
presence of outlying observations. The software has the following features: 
• It can identify outliers in experimental data.    
• It can directly apply the robust methods of estimation for analyzing the data. Here one has 

two options: M-estimation (Huber’s function) or LMS method. 
• It has option to analyze the data after deleting the outlying observations.  
 
After the presentation Dr. Aloke Dey gave his remarks on the project and the findings. He was 
appreciative of the efforts made in this project. He also felt that the findings of the project should 
be published in reputed journals. The findings of the project were well received by the 
statisticians as well as the experimenters. 
 
Dr. Rajender Parsad demonstrated ‘Design Resources Server’ designed and developed by 
National Fellow and National Professor at IASRI. This server is available at Institute’s web site 
at www.iasri.res.in/design. Participants appreciated the usefulness and importance of this server 
for strengthening the status of experimentation in NARS. 
 
During discussions, it was felt that before analysis of the experimental data, one should check for 
the presence of outlying observations. If outliers are found, appropriate measures should be taken 
as discussed in the workshop. Dr Madhuban Gopal was very appreciative about the workshop 
and felt that dissemination workshops should be organized more frequently.  
 
7.4 Recommendations of the workshop 
7.4.1 Roust Designs 
• An experiment, in any field of agricultural sciences, should be conducted using designs that are 

robust against the presence of outlier(s). It is known that all binary, balanced block designs, 
many two-associate class partially balanced incomplete block designs, variance balanced row-
column designs that satisfy the property of adjusted orthogonality, nested balanced incomplete 
block designs, proper binary balanced block designs for diallel crosses are robust against the 
presence of a single outlier. Binary balanced block designs have also been shown to be robust 
against the presence of two outliers. Therefore, the experimenters should adopt these designs 
for their experimentation whenever outliers(s) are suspected in the data to be generated. In 
some experimental data sets, more than two outliers may also be present. There is, therefore, a 
need to investigate the robustness of designs against the presence of two or more outliers in the 
experimental data by suitably defining appropriate criteria of robustness.   Efforts should be 
made to evolve new robustness criteria, if required. 

• Two criteria of robustness viz. minimization of average Cook-statistic and minimization of 
variance of discrepancy or bias in the estimation of error variance are equivalent in the 
presence of a single outlier. It would be of interest to study if this holds for more than one 
outlier case also!  

 
7.4.2 Analytical Techniques for Outliers 
• Before analyzing the experimental data, the data should always be subjected to diagnostic 

checks for the validity of assumptions involved in the analysis including the presence of 
outliers.   If no outlier is detected, one should go ahead with usual analysis with the original 
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data. On the other hand if an outlier is detected, then further probing is required. Serious effort 
should be made to ensure that there are no transcription errors or human error. The actual 
randomized layout of the design should also be looked into to locate for trends among the 
observations arising from nearby plots. If the extreme observations are due to human error, 
then non-statistical appropriate checks should be applied for its correction. If the experimenter 
is satisfied that the outlying observation(s) is(are) not due to transcription or recording errors, 
then the usual analysis of data may be carried out after deleting the outlier(s) or adopting 
analysis of covariance on the original data by defining pseudo-auxiliary variables.  

• It may not always be desirable to delete any observation that is detected to be outlying because 
every observation contains useful information, more so when it is a true realization from the 
distribution from which other observations have come. In such a situation, robust methods of 
estimation of parameters of interest may be employed.  Some of the robust methods of 
estimation useful in case of experimental data are M-estimation and Least Median of Squares 
(LMS). Application of M-estimation needs some special skills since it involves tuning 
constants. A proper choice of these constants gives efficient results. If it is known that the data 
contains only one or two outlying observations, then one can apply LMS method.  

• For block size two Cook statistic and other statistics cannot be applied to detect outliers 
because of some mathematical problems. Therefore, some efforts are required for development 
of the procedure of detection of   outliers in the experimental data generated from block 
designs with block size two.    

• Several test statistics have been developed for detecting the outliers. But for the situation when 
more than one outlier is present in the data, the null distribution of the test statistic is not 
known. In such a situation, it is not possible to test the null hypothesis regarding the outlier 
presence. Simulation studies may be carried out to obtain the null distribution of the test 
statistic.  
 

7.4.3 Multi-response Experiments 
• Many experiments are conducted in NARS in which several responses are observed from a 

given experimental unit.  Such experiments are known as multi-response experiments. 
Outlier(s) in multi-response experiments is/ are likely to appear. In the multi-response 
experiments the problem of outliers has not been studied in the literature.  The problem is  
difficult in the sense that the outliers in multi-response experiments have to be defined 
appropriately. It may happen that the entire response vector is an outlier. It may also happen 
that the sub-vector of responses is an outlier but the whole response vector is not. This is the 
problem concerning a single outlying response vector. The problem becomes more difficult 
when there are more than one outlying response vectors. Hence, there is a need to make some 
serious efforts to develop test statistic for detecting outlying response vectors.  For handling of 
outlier(s), robust procedures of estimation of treatment contrasts in the presence of outlying 
response vector(s) needs to be developed.  

• Designs for multi-response experiments that are robust in presence of outlier(s) need to be 
identified. 
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Summary 

An outlier in a set of data is an observation (or an observation vector) that appears to be 
inconsistent with the remainder of the observations in that data set. Occurrence of outlier(s) is 
common in every field in which data collection is involved. In agricultural experiments, 
outlier(s) is/are likely to appear in the experimental data due to disease and or insect-pest attack 
on some plots in the field, or due to unintentional heavy irrigation on some particular block(s) or 
plot(s) of the experiment. Outlier(s) may creep in due to transcription errors. Presence of such 
abnormally high or low observations may cause a deviation from the assumptions particularly 
those of normality and homogeneity of observations. It is, therefore, important to detect the 
presence of outlier(s) along with deviations from these assumptions and suggest remedial 
measures.   
 
The problem of outliers has been studied extensively in linear regression models. Approaches to 
study of outliers are generally divided into two broad categories: (i) to identify the outlier(s) for 
further study and (ii) to accommodate the possibility of outlier(s) by suitable modifications of the 
models and or method of analysis. The first approach relates to detection of outlier(s) while the 
second one relates to the study of robust methods of estimation of parameters that minimize the 
influence of outlier(s) on inference concerning parameters. A number of test statistics have been 
developed to detect outliers in linear regression models. Among them Cook-statistic is a widely 
used statistic. Other important test statistics for detection of outlier(s) are AP and Qk-statistic. M-
estimation procedure is a very powerful robust method of estimation used in linear regression 
model. In M-estimation a function of errors is minimized to obtain parameter estimates, unlike 
least squares method where sum of square of errors is minimized. Each observation gets different 
weights for estimating parameters where as in the usual procedure of least squares all 
observations get equal weights. This function is called objective function. A good number of 
objective functions such as Huber’s function, Andrew’s function etc. are now available.  Another 
procedure of robust estimation of parametric function is Least Median of Squares (LMS) method 
wherein median of the errors is minimized to obtain the parameter estimates. 
 

Though, the general set up of an experimental design is that of a linear model, yet detection and 
testing of outlier(s) and application of robust methods in experimental designs need special 
attention because (i) the design matrix does not have full column rank (ii) interest is only in a sub 
set of parameters rather than whole vector of parameters. Not much research appears to have 
been done on detection of outliers and robust methods of estimation in designed experiments. 
The available test statistic and robust procedures of estimation cannot be applied directly to this 
situation.   
One can, however, instead of taking post experimental remedial measures, take pre-experimental 
measures by adopting a robust design for experimentation. A robust design is insensitive to the 
presence of outlying observations in the sense that the inference problem on linear function of 
treatment effects is not affected by the presence of outliers in the experimental data.   However, 
this study is so far confined  to identify robust designs against presence of a single outlier. 
 
 With this view in mind the present study has been taken to investigate thoroughly the problem 
of outliers in designed experiments. Both detection and accommodation of outliers have been 
considered in the present investigation. Problem associated with outliers has been discussed with 
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some examples in the first chapter. A thorough review of the subject is also presented in the first 
chapter along with the scope of the present investigation. The practical utility of the present 
investigation is also discussed in this chapter. 
 
Detection of outliers in designed experiments has been considered in the second chapter. For 
detecting outliers in designed experiments Bhar and Gupta (2001) provided three statistics viz., 
Cook-statistic, AP-statistic and Qk-statistic. These statistics are applied to real experimental data 
taken from Agricultural Field Experiments Information System (AFEIS), IASRI. It has been 
found that many of these experiments contain outliers. Actually these experimental data were 
investigated for the presence of any kind of problems like non-normality or heterogeneity of 
error variance under a project entitled ‘A diagnostic study of field experiments’ conducted at 
IASRI. Based on the normality and homogeneity of errors, these data were grouped into several 
groups like non-normal and heterogeneous error variance etc. Statistics for detecting outliers 
were applied to these data sets. The results obtained is summarized in a table. Once outlier(s) are 
identified, next question may arise what to do with these outliers? One way to handle outliers is 
to simply discard the observations. The second way is to perform an analysis of covariance by 
taking one as the value of the covariate for the outlying observation and zeros for the rest of the 
observations. Both types of analysis for those experiments where outliers were found were 
carried out. Outlier detection method has been illustrated with an example. 
 
The detection of influential subsets or multiple outliers is more difficult, owing to masking and 
swamping problems. Masking occurs when one outlier is not detected because of the presence of 
others, swamping when a non-outlier is wrongly identified owing to the effect of some hidden 
outliers.   Pena and Yohai (1995) proposed a method to identify influential subsets by looking at 
the eigenvalues of an ‘influence matrix’. This matrix is defined as the uncentred covariance of a 
set of vectors which represent the effect on the fit of the deletion of each data point. This matrix 
is normalized to have the univariate Cook (1979) statistics on the diagonal. This method has been 
modified for application in designed experiments and procedure for identifying the influential 
sets has been discussed. The proposed method has been illustrated with an example. 
 
   
Another way to tackle the problem of outliers is to perform a robust analysis of the data. A 
robust procedure tries to accommodate the majority of good data points. Bad points, lying far 
away from the pattern formed by the good ones. Among robust procedures, M-estimation 
method is most widely used. In the third chapter the concept of M-estimation is introduced and 
then applied to designed experiments. Generally, in M-estimation an objective function (a 
function of errors) is minimized to obtain the parameter estimates.  There are many objective 
functions of M-estimation for linear regression model available in the literature. Some of these 
objective functions are discussed in the present chapter and their applicability to designed 
experiments has been explored. Most of these objective functions involved some tuning 
constants. The efficiency of the M-estimation procedures depends upon how best these tuning 
constants are selected. For application to designed experiments the appropriate values of these 
constants have been proposed. For testing the hypotheses appropriate robust testing procedures 
are available in the literature. Some of these procedures have been discussed in this chapter.   
The existing objective functions have been modified by suitably choosing the constants. A new 
objective function has been proposed.  The proposed function is based upon Cook-statistic and, 
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therefore, addressed the basic requirement of design of experiments. All these functions along 
with the newly developed function have been illustrated with some examples. 
 
In chapter 4 another robust method of analysis of data viz.  Least Median of Squares (LMS) 
method has been introduced. The concept of this method as it is developed from linear regression 
model context is presented in this chapter.  It is well known that least squares (LS) model can be 
distorted even by a single outlying observation. The fitted line or surface might be tipped so that 
it no longer passes through the bulk of the data. In least square method sum of square of errors is 
minimized to obtain the parameter estimates. It known that sum is not robust. In contrast to sum, 
in LMS method median of the square errors is minimized to obtain the parameter estimates. 
Fitting an LMS regression model poses some difficulties. The first is computational. Unlike least 
squares regression, there is no formula that can be used to calculate the coefficients for an LMS 
regression.  Rousseeuw (1984) has proposed an algorithm to obtain LMS estimator. However, 
this algorithm cannot be applied directly in designed experiments. This method has been 
appropriately modified for application in designed experiments and illustrated with some 
examples. 
 
There is yet another way of minimizing the influence of outlying observations, particularly in  
designed experiments is to adopt a design that is insensitive to the presence of outlying 
observations. Such designs are known in the literature, as robust designs, robust in the sense that 
the outlying observation does not have any impact on the estimation of parameters. Robustness 
of experimental designs against missing observations or any other disturbance has been studied 
extensively in the literature. There is a little work on robustness against outliers is available in 
the literature. Moreover, this study is confined to the presence of a single outlier. In the present 
chapter this study has been extended for more than one outlier. A general criterion for identifying 
robust designs against the presence of any t outliers has been developed in this chapter. 
However, identification robust designs using this criterion is mathematically intractable. 
Therefore, this criterion has been applied to identify robust designs that are robust against the 
presence of any two outliers. It has been found that  all binary proper variance balanced block 
designs are robust against the presence of any two outliers. 
 
The problem of outliers in linear regression models can be handled by using several statistical 
packages. These statistical packages are not capable of handling outliers in designed 
experiments. Thus with the development of new methodologies for tackling outliers in designed 
experiments, a user-friendly software for implementing these new techniques is  required.  A 
software has been developed for analyzing experimental data in presence of outliers. Various 
aspects of this software have been discussed in the 6th chapter. 
The report is concluded with a summary. 
 
Under this study, a dissemination workshop was organized on 26th July, 2007 at IASRI. Many 
renowned personalities working both in the field of statistics and field experimentations from 
different parts of the country have participated in this workshop. Salient achievements of the 
study have been discussed in the workshop. A number of recommendations and suggestions 
emerged from the discussion. These are presented in the 7th chapter.  
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