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Abstract Determination of above ground biomass
(AGB) of any forest is a longstanding scientific endeav-
or, which helps to estimate net primary productivity,
carbon stock and other biophysical parameters of that
forest. With advancement of geospatial technology in
last few decades, AGB estimation now can be done
using space-borne and airborne remotely sensed data.
It is a well-established, time saving and cost effective
technique with high precision and is frequently applied
by the scientific community. It involves development of
allometric equations based on correlations of ground-
based forest biomass measurements with vegetation
indices derived from remotely sensed data. However,
selection of the best-fit and explanatory models of bio-
mass estimation often becomes a difficult proposition
with respect to the image data resolution (spatial and
spectral) as well as the sensor platform position in space.
Using Resourcesat-2 satellite data and Normalized

Difference Vegetation Index (NDVI), this pilot scale
study compared traditional linear and nonlinear models
with an artificial intelligence-based non-parametric
technique, i.e. artificial neural network (ANN) for for-
mulation of the best-fit model to determine AGB of
forest of the Bundelkhand region of India. The results
confirmed the superiority of ANN over other models in
terms of several statistical significance and reliability
assessment measures. Accordingly, this study proposed
the use of ANN instead of traditional models for deter-
mination of AGB and other bio-physical parameters of
any dry deciduous forest of tropical sub-humid or semi-
arid area. In addition, large numbers of sampling sites
with different quadrant sizes for trees, shrubs, and
herbs aswell as application of LiDARdata as predictor
variable were recommended for very high precision
modelling in ANN for a large scale study.

Keywords Above ground biomass . Allometric
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Introduction

Above ground biomass (AGB) is widely considered to
be a key indicator of forest vegetal health and related
seral stages (Brown et al. 1997; Yen 2015; Luo et al.
2017). In spite of the fact that direct measurement of
AGB of a forest area is the most accurate technique with
respect to other ones, it is considerably laborious, time
consuming, and expensive at one end as well as involves
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destructive sampling of trees at the other (Basuki et al.
2009). Besides, legislations of most of the countries
including India do not permit large-scale felling of forest
trees at the present geo-environmental conditions (Datta
and Chatterjee 2012). Alternatively, AGB can also be
indirectly estimated using remotely sensed geospatial
data, which is capable of covering large span of area in
lesser time and cost (Sharma et al. 2013; Ogaya et al.
2015). In this regard, satellite data derived vegetation
indicators had been developed by the scientific commu-
nity in the recent past to classify and monitor vegetation
dynamics (Casanova et al. 1998; Balzarolo et al. 2016).
The Normalized Difference Vegetation Index (NDVI) is
one such frequently used vegetation indicator derived
from satellite data for measuring the photosynthetic
activities at landscape scales and can be effectively used
to estimate AGB and net primary productivity (NPP)
(Nemani et al. 2003; Cho et al. 2007).

The NDVI also effectively responds to the changes in
the amount of green biomass, chlorophyll content and
canopy level water stress (Mutanga and Skidmore
2004). Since, there is an obvious relationship between
forest biomass and vegetation indices, AGB can be
estimated using allometric regression equations involv-
ing NDVI with satisfactory accuracy (Cho et al. 2007).
However, it is not feasible to develop elementary pre-
dictive equations easily and researchers have to use the
most common or hitherto published regression equa-
tions which appear most appropriate to them as per the
needs (Nemani et al. 2003; Mutanga and Skidmore
2004). Few of these equations are either linear, multiple
linear regressions or correlations; and others are curvi-
linear relations like power, exponential or polynomial
functions (Datta and Chatterjee 2012; Chave et al.
2014). However, linear relations are rather rare entities
in ecological modelling and most popularly used func-
tions are the curvilinear ones (Paine et al. 2012). Con-
versely, the concept of artificial neural network (ANN)
was conceived nearly 50 years ago but it is during the
last 20 years that the computational tool for ANN has
been developed to handle practical problems and ac-
cordingly applied extensively in the fields of forestry,
landscape ecology, hydrological modelling, terrain char-
acterization etc. (Dutta et al. 2004; Nefeslioglu et al.
2008). Limited studies also used ANN to determine
forest AGB (Foody et al. 2003; Englhart et al. 2012;
Vahedi 2016). In general, ANN imitates the structure,
information processing patterns and knowledge acqui-
sition processes of the human nervous system. For these

reasons, ANN has emerged as a remarkably powerful
and efficient tool in ecological applications and for data
modelling compared to other conventional regression-
based procedures (Evrendilek et al. 2013; Vahedi 2016).

In the present study, a comparative evaluation of an
ANN-based model to other conventional models of
AGB estimation from remotely sensed data has been
performed taking few districts of Indian states of
Madhya Pradesh and Uttar Pradesh. These districts are
mostly dominated by the dry deciduous forests and
popularly conceived as parts of the Bundelkhand region
of central India (Singh et al. 2013). As per the authors’
knowledge, this kind of ANN-based estimation of AGB
has not been conducted till date for the dry deciduous
forests like that of the selected study area. Considering
this research gap, the prime objectives of this study were
designed as (i) to test the performance of the ANN
model in estimating AGB with respect to field based
measurements and (ii) to compare the performance of
the ANN model with several other frequently used
models in similar studies.

Methodology

Study area

For this study, 6 districts of Madhya Pradesh namely
Guna, Vidisha, Shivpuri, Datia, Tikamgarh, Chhatarpur
and 7 districts of Uttar Pradesh viz. Jhansi, Lalitpur,
Jalaun, Hamirpur, Mahoba, Fatehpur and Banda were
selected (Fig. 1). The entire area falls under the central
highland physiographic zone of India and lies within
23° 00′ N to 26° 30′N latitudes and 76° 30′ E to 81° 30′
E longitudes (Sheikh et al. 2011). The region has sub-
humid to semi-arid bio-climate with mean annual pre-
cipitation varying from 75 cm in the north to 125 cm in
the southeast (Bhattacharyya et al. 2008; Gupta et al.
2014). However, the temporal rainfall distribution is
erratic and concentrated in monsoon months mainly
(Gupta et al. 2014).

Vegetation of the area is dominated by varieties of
dry deciduous forests with interspersed grasslands (Kale
et al. 2004) (Fig. 2). Presence of extreme climatic con-
dition and shallow Vindhyan soils have given rise to dry
teak (Tectona grandis) and dry mixed deciduous forests
(Majumdar 2008). Besides these major vegetation types,
other frequently found ones are open grasslands, open
woodlands with tall grasses and thornywoodlands (Kale
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et al. 2004). In particular, dominating species are
Tectona grandis, Anogeissus pendula, Azadirachta
indica, Dalbergia sissoo, Butea monosperma,
Boswellia serrata, Acacia catechu, Bauhinia
racemosa, Lannea coromandelica, Anogeissus
latifolia, Diospyros melanoxylon, Buchanania lanzan,
Aegle marmelos, Madhuca indica, Terminalia
bellerica etc. (Kale et al. 2004). Some herbs and shrubs

specieswhich can be frequently spotted throughout the
study area areCarissa opaca,Nyctanthus arbor-tristis,
Cassia tora, Lantana camara, Ziziphus nummularia
etc. (Majumdar 2008). As the forests are in low pro-
ductivity belt (NPP wise), they are subjected to biotic
pressure and overexploitation by local people through
shifting cultivation, fires, grazing, lopping etc. (Sarkar
2008). The meager availability of natural resources in

Fig. 1 Location map of the study area

Fig. 2 The types of forest cover of the study area. a Kardhai (Anogeissus pendula) dominated mixed dense forests. b Palas (Butea
monosperma) forests. c Dry deciduous scrub dominated by Khair (Acacia catechu). d Ravine thorn forests
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the area has added more stress to the forests from the
ecological point of view.

Satellite data and processing

Following the aim to develop regression models, which
will serve as functional relationships to estimate AGB
directly from satellite data, this study choose remotely
sensed Advanced Wide Field Sensor (AWiFS) data
(containing 4 spectral bands) of Resourcesat-2 satellite
(spatial resolution 56 m, swath 741 km). The data were
geo-referenced and orthorectified from the end of pro-
ducers (Resourcesat-2 Handbook 2016). The satellite
images (Resourcesat-2, AWiFS, row 55 and path 100)
(acquired on February, 2013) were obtained from Na-
tional Remote Sensing Centre, Indian Space Research
Organisation. The whole image processing was con-
ducted by ERDAS IMAGINE 9.1 software. For further
image corrections, Survey of India (SOI) topographic
maps (sheet no. 54 F, G, H, J, K, L, M, N, O, P; 55 I, M;
63 B, C, D, O) were used as well as 200 ground control
points (GCPs) were identified by a Garmin GPS
(Garmin 276, Garmin Ltd., Schaffhausen, Switzerland).
Nearest neighbor algorithm was used for resampling of
the images (Deb et al. 2014).

The rectified and enhanced images were used for
vegetation index analysis. The most widely used vege-
tation index, NDVI (Datta and Deb 2012) was selected
in this study as it has very high correlation with photo-
synthetically active vegetation (Hao et al. 2011). The
standard equation for calculation of NDVI is as in Eq. 1:

NDVI ¼ NIR−R
NIRþ R

ð1Þ

where, NIR and R stand for reflectance of vegetation in
infrared and red band, respectively.

Field data collection

The sampling design and selection of sample sites were
broadly based on (i) forest density as per Forest Survey
of India (FSI) maps and (ii) NDVI values as per AWiFS
data (ISFR 2011). From the entire study area, total 31
sites were selected with different forest density and
NDVI values. Within each of these sites, four plots of
0.1 ha size (31.61 m × 31.61 m) were selected for
biomass estimation. For plot selection, the coordinates
of the corresponding satellite image pixels were consid-
ered to avoid overlapping of pixels within a single plot.

This resulted in maximum possible coverage of one plot
by one AWiFS pixel. Within each plot, nested two stage
sampling approach was adopted for measurement of
trees (0.1 ha), shrubs (25 m2) and herbs (1 m2). Individ-
ual tree volume was calculated from the collected field
data using site specific tree volume equations available
in the literature of FSI (ISFR 2003). For the trees species
with unknown volume equations, geometric relation-
ships were used to approximate the volume of standing
tree bole (Chen et al. 2007). Biomass of each tree was
then worked out by multiplying with specific gravity
and expansion factor (Gregoire et al. 2016; Mani and
Parthasarathy 2007). Based on the available literature on
field based indirect estimation of biomass of this region,
mean biomass expansion factor (BEF) value of 1.5 was
used for this study (Deb et al. 2016). The AGB of each
plot was calculated by summing the phytomass of all the
plant species (i.e. trees + shrubs + herbs) and then
converting the obtained value per hectare basis.
Geodatabase of AGB production was generated using
ArcGIS 10.1 software.

Above ground biomass simulation from remotely
sensed images

To correlate the spectral signatures of remotely sensed
images with AGB, this study used linear regression as
well as well recognized nonlinear models. Nonlinear
models are the most commonly used tools to estimate
biomass production as tree vegetation generally depicts
nonlinear relationship with spectral reflectance data
(Powell et al. 2010; Lai et al. 2013). Further, nonlinear
models do not require large numbers of ground based
observations on each experimental unit and can be ac-
commodated by biologically meaningful parameters
(Myers et al. 2001; Peek et al. 2002). Previous studies
had established power model as one of the most suitable
for explaining tree biomass as well as for measuring
parameters like diameter at breast height, total tree
height etc. (Whittaker and Marks 1975; Deb et al.
2016). Likewise, exponential model had also frequently
been used for tree biomass estimation in an effective
manner (Heath et al. 1996; Popescu 2007). Following
these, power (y = a∗xb) and exponential (y = a∗ebx)
models were selected as nonlinear model after necessary
log transformation. Here, y is the estimated AGB or
response variable; a and b are regression coefficients;
and x is the spectral reflectance data (e.g. NDVI)
functioning as predictor variable.
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This study further used ANN, which is a nonpara-
metric model and can analyze complex dataset without
making any assumption about them (Kelsey and Neff
2014). The back propagation algorithm was used in this
study to train ANN. It is one of the most successfully
used algorithms to efficiently model numerous types of
technical applications (Erzin and Cetin 2013; Tiryaki
and Aydın 2014). In general, any ANN is consisted of 3
types of layers viz. one input layer, one hidden layer and
an output layer comprising several neurons. The ANN
used in this study was consisted of an input layer with
n co-variates and an output layer with one output neu-
ron. It calculated the function as in Eq. 2:

O xð Þ ¼ f w0 þ ∑
n

i¼1
wixi

� �
¼ f w0 þ wTx

� � ð2Þ

where, w0 denotes the intercept; w = ( w1,w2,…,wn) or
the vector consisting of all synaptic weights without the
intercept; and x = (x1,…, xn) or the vector of all covar-
iates. It calculates the function as defined by Gunther
and Fritsch (2010).

For all the models of this study, 80% of the data were
selected by random sampling and allocated for model
building while the rest 20% were set for validation
following Snee (1977). The models were then tested
based on few reliability statistics including the Akaike
Information Criterion (AIC), Bayesian Information Cri-
terion (BIC), residual standard error (RSE) and coeffi-
cient of determination (R2) (Akaike 1974; Aho et al.
2014). These indices are widely used in natural sciences
(Aho et al. 2014; Burivalova et al. 2014) and have been
expressed as:

AIC ¼ −2 ln l θ̂̂
� �� �

þ 2 p ð3Þ

BIC ¼ −2 ln l θ̂̂
� �� �

þ p ln n ð4Þ

RSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1
�Y−Y ið Þ2=n

q
ð5Þ

R2 ¼ 1−SSres=SStot ð6Þ
where, l θ̂

� �
indicates the likelihood of the sample for

the values estimated from the model parameters; p de-
notes the number of tree parameters estimated; is
overall mean; Yi is individual observation; SSres and

SStot means residual and total sum of squares respec-
tively, and n is sample size.

All statistical analyses and modelling were done
using the R 3.1.3 statistical software package. The
Neuralnet package, which is generally applied for train-
ing multi-layer perceptions in regression analysis, was
used for the present ANN model.

Results

Following the aims of the study, this work considered
plot-wise biomass estimation in ground level within the
study area. At the same time, calculation of the NDVI of
the whole area was done based on the satellite images
(Fig. 3a). The deviation in NDVI values (ranging from 0
to 0.7) over the images indicated variation in vegetation
cover throughout the study area. In general, the darker
colored areas meant higher vegetation covers and vice
versa. Figure 3b represented a comparative scenario of
the observed biomass derived from ground surveys
(indicated by ring diameter) and respective NDVI
values of the selected plots (indicated by colored value).

Correlation of ground data with NDVI values using
linear and nonlinear model

In order to detect a correlation between the field-
estimated AGB and corresponding NDVI values,
Pearson’s product-moment correlation test was used.
According to the p value (< 0.01), the variables were
significantly correlated. The correlation estimate was
0.94 showing potential for satisfactory fitting of the
regression model. Further, taking NDVI values as the
predictor variable and field-estimated AGB as response
variable, linear regression analysis showed positive re-
lationship with a RSE of 37.7 and R2 value of 0.89
(Fig. 4, Table 1).

The field observed AGB and NDVI values were
further used to fit two types of nonlinear models viz. a
power and an exponential model (Fig. 5). The AIC,
BIC, RSE and R2 values of the models were considered
as the determining parameter, where lower AIC and BIC
values were indicated higher quality of statistical models
for a given dataset and vice versa (Aho et al. 2014).
Outcomes revealed that the power model (AIC = 280.4,
BIC = 392.1, RSE = 20.9, R2 = 0.94) as a marginally
better fit than the exponential model (AIC = 294.4,
BIC = 398.9, RSE = 26.2, R2 = 0.90) to explain the
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relationship between NDVI and observed biomass
(Table 1). However, both of these nonlinear models
were found to be considerably better to describe the
relationship of field-estimated AGB with NDVI values
in comparison to the linear regression model as per AIC,
BIC and RSE values (Table 1).

Use of ANN model

This study further considered ANN to fit the NDVI
values (as predictor variable) with the field-estimated
AGB (response variable). The ANN model always has
an advantage to define the required number of hidden
layers and hidden neurons according to the needed
complexity of the problem (Gunther and Fritsch 2010).
In the Neuralnet package of R software, 2 input nodes, 5
hidden neurons, and 4 transfer functions were

accommodated which showed that the training process
required 481 steps until all absolute partial derivatives of
the error function became smaller than 0.01 (the default
threshold). Figure 6 represented the structure of the
trained neural network i.e. the network topology. The
plot included trained synaptic weights as well as all
intercepts. The estimated weight of ANN ranged from
− 1.90 to 2.49. Here the intercepts for the hidden layer
were ranged from − 1.46 to 3.27 and intercept for total
biomass was 0.65.

This ANN was used to plot the NDVI values in a
scatter graph against the observed AGB. The resultant
fit-plot was flexible and closely followed the observed
values (Fig. 7). Here, AGB was calculated in T ha−1

with its scale changed by dividing each value by the
maximum observed value so that the logistic function
could be applied as the activation function. This ANN

Fig. 3 a NDVI map of the study
area. b Comparison of total
observed biomass with NDVI
values
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model had much lesser AIC (32.0), BIC (54.9) and RSE
values (0.007) in comparison to the earlier tested non-
linear models. The R2 (0.98) was also notably higher
(Table 1). These statistics had actually established that
the ANN is a much better model to fit NDVI values with
the field-estimated AGB of the plots.

After establishing the ANN as the best model to fit
NDVI values with field-estimated biomass, this study
applied the NDVI values to predict AGB of those plots
as per ANN. The predicted biomass of the plots were
further compared with the actual observed biomass
(Fig. 8). It showed a high degree of correlation
(r = 0.97, p < 0.01) between the predicted and observed
AGB confirming the validation of the ANN model.

Discussion

This study clearly indicated the potential of satellite
image-derived index to predict forest AGB. Figure 3
shows the similarities in the trend of NDVI values with

the field-measured AGB. However, further research
with different allometric models (including linear, non-
linear and ANN) inferred the considerable superiority of
ANN over the others to establish the relationship of
NDVI values with AGB. Several studies have already
been conducted on applicability of ANN in prediction of
biophysical parameters of forests, considering field-
measured dendometric variables as inputs (Ingram
et al. 2005; Englhart et al. 2012; Vahedi 2016). Howev-
er, usage of NDVI as input nodes in the ANN model to
predict AGB is a rather new approach.

All the models compared in this study have their own
advantages and limitations. It is easy to simulate any
linear model. However, only recent development in
softwares expanded the possibilities of using even tra-
ditional nonlinear models in ecological modelling (Ritz
and Streibig 2008). Fitting a nonlinear model is always
more challenging than linear one but the nonlinear
models are flexible in terms of computing output
(Paine et al. 2012). Contrariwise, using artificial intelli-
gence systems like ANN to model AGB always has the

Table 1 Comparison of statistical parameters viz. Akaike information criterion (AIC), Bayesian information criterion (BIC), residual
standard error (RSE) and coefficient of determination (R2) of the different models

Models AIC BIC RSE R2

Linear 407.8 412.9 37.7 0.89

Power 280.4 392.1 20.9 0.94

Exponential 294.4 398.9 26.2 0.90

ANN 32.0 54.9 0.007 0.98

Fig. 4 Linear relationship of plot
wise NDVI values with field
estimated AGB

Environ Monit Assess (2017) 189: 576 Page 7 of 12 576



possibility of over-fitting and keeping users in dark
about the internal processes (Jain et al. 1996; Liu et al.
2010). Without a coherent mathematical equation, the
output of ANN only has a ‘black box’ topology (Olden
and Jackson 2002). However, the topology differs from
one model to another and can be saved as a digital file in
the computer for later use. In addition, ANN can be
validated satisfactorily to avoid fitting problems by wise

choice of network architecture and sufficient amount of
training and testing datasets. Hence, the role of the
model builder becomes highly imperative here with
the need of noteworthy a priori knowledge on the study
site characteristics and ecological dynamics.

It is to be noted that remotely sensed vegetal reflec-
tance data and subsequently derived indices like the
NDVI are always subject to notable variations under

Fig. 5 Relationship of plot wise
NDVI values with field estimated
AGB as per nonlinear power and
exponential models

Fig. 6 The structure of the
trained neural network used in
this study
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the impacts of atmospheric elements, soil condition, site
and situation, plant phenology, species association and
diversity, natural and quasi-natural disturbances etc. oc-
curring from local through regional to global scales
(Huete and Liu 1994; Gao et al. 2013).Moreover, sensor
characteristics play a pivotal role in derivation of these
sorts of indices (Yoshioka et al. 2012). Possible sources
of errors can also be from misclassification of pixels,
faulty ground truthing, and scales of representation (Lu
et al. 2014). Hence, sufficient precautions should be
taken and externalities should be considered while
assigning these indices as inputs in any model.

Although this study has used NDVI as a predictor or
explanatory variable, there is always a scope of using
any other vegetation index derived from hyper-spectral
geospatial sources to compare for possible better outputs
in ANN. The only criterion for becoming a better pre-
dictor variable is that it should possess greater correla-
tion with the output layer of ANN in reality, i.e. AGB in
the present context. Even, modifying the architecture of
ANN by changing the number of input nodes, hidden
layers, and node combinations can lead to better predic-
tive capacity (Lippmann 1987). It was also realized from
the study that application of multiple predictors (viz.

Fig. 7 Relationship of plot wise
NDVI values with field estimated
AGB as per ANN

Fig. 8 Correlation between
observed and ANN predicted
biomass (* indicates statistical
significance at p < 0.01)
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different remote sensing based indices) as input nodes
can enhance the certainty and effectiveness of the
models. The problem of co-linearity does not impart
any notable change in the outcomes of ANN unlike
other traditional linear and nonlinear models. And it is
one of the prime reasons of popularity of ANN over the
traditional statistical methods among the scientific com-
munity (Liu et al. 2010).

Conclusion

This study inferred the capacity of artificial intelligence
like ANN to establish a model to predict forest AGB
from space-borne image NDVI values with greater pre-
cision. It compared ANN with few conventional linear
and non-linear models. Being a pilot scale research, this
study also indicated the pros and cons of using ANN. In
reality, the ANN requires a large amount of input data
for precision in model building in comparison to tradi-
tional models. The only 31 sites in this study might not
be enough for this purpose and more number of sites
should certainly enhance the analyzing potential of the
model. Furthermore, incorporation of LiDAR data can
significantly improve the output quality in ANN. Since,
the primary objective of this pilot study was to develop a
satisfactorymodel of minimum cost for AGB estimation
that can be used with minimum infrastructure and tech-
nical difficulty by the ordinary forest officials and re-
searchers, application of LiDAR data were intentionally
avoided. After critically examining all the existing
techno-economic infrastructure of the study region, the
NDVI-based ANN model developed here can be con-
sidered as an effective one for satisfactory estimation of
AGB in real-time applications.
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