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INTRODUCTION AND SUMMARY

LY

Simple random sampling is by far the most commonly
used method of sampling in surveys. It 1s simple, operation-
ally convenlent and gives equal chance of sslectlon for all
the units in the population. When, however, the units vary
considerably in gize, as 1s often éha case, simple random
gampling doss not take intc account the possible importance
of larger units in the population, Under such circumstances,
without forogoing the operational convenience of simple random
sampling, it is desirable to use suxiliary information, such
as sizo of unit, at the estimation stage, for obtalning more
efficlent estimators of the population value in the sensae of
giving estimators with smaller atandard errors. Two examples
of such estimation procedures are the *Ratlo and Regression'
mathods of estimation,

The two classical ratio sstimators are the ratio of
means estimator yg = Zh X or eguivalently the weighted

X and the

in - . Xqr
mean of tha ratios estimator r,X = £ 4 4

=g

meen of ratios estimator y, = 'z"n X, wl‘n:-;“;.a»1 "3; and %, are the
- semple means, rn, the mean of individual ratios r = _é in the
sample énd X 1s the known population mean of the auxiliary

variable x. Both the estlimators are known to be blased. The
latter 1s not even consistent., An exact expression for the

bias in y, is availeble which does not depend upon ths sample
size n. Since the unweighted mean T, may be seriously biased

if r tends to be larger (or smaller) for large x than for swall x,
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estimator yp i likely to be more biased then the astimator
VR based on the weighted mean Ty. No exact expression for
the bias in }R is avalilablej however, for samples of moderate
size, from populations in which tha linear regression of

y on x passes near the orlgin, ard in which the coefficlent
of variation of x is not too large, the blas in yp 1e
negligible, But the problem how large the sample should be
to make the bias negligible has not yet besn solved satisfac-
torily for all types of populations,

The classical regression estimator is obtained by
evaluating the least squares line of bost fit y = S'rn*bn( X-%p)
at the point X, giving ?’lr = }n-i-bn('i-?:n) as a regression
estimator of the population mean, where b, is tho sample
roegression coefficlent of y on x, Except when the true regress-
ion line passes through the origin, the regression estimq.tor
is less biascd, end more preoise, than the ratio eatimator}a.
On the other hand, the ratic estimator iz mors easily calculated.

Tha availeble bims expressions aend variance formulas
for both the regression estimator }11_ and the ratio estimator
¥g are only approximate; the epproximations assuming the semple
aize n to be sufficiently large. For small samples nothing is
-kmvm about ths nature of their blas and precision. This
situation has led the resecarch workers in the flsld to explora
ways and means of obtaining 'Ratio and Regression type!
estimators, which are either completely free from bias or
gubject to a smallar biag than the customary ones.

In this connection Quencuille (1986) has suggested a
technique of reducing the blas in the ratio estimator yg.
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By splitting e sample of sige dn at random into two sub-samples
of sizes n each, he has considered a weighted average of the
three ratio estimators of the form y_, applied to the total

R
sample and the two sub-samples, where the weights aie chosen

in such & way as to reduce the blas to the order —y 3
lavinars 8ingh (1862) has further investigated tha %echnlque
snd oxamined the optimum sizes for the two sub-samples with
respect to the order of deoerease in bias and the efficlency
of the modified ratic estimator as comparaed to the ordinary
ona. Llurty and Nanjemma (1959) have developed a technique
of estimating the blas of a ratio estimator unblasedly to
any given uegree of approximation and used this estimator of
bias to correct tha ratlo estimator for its blas, thereby
getting an 'almost unbiased ratio estimator!,

Unblased ratiec and regresslon type estimators have
beon evelved in recent years, following two different approachas.
Of tha ratio and regression type, the ratlo type has received
much attention, The first approach consists in getting new
types of unblased ratioc and regression estimators under conmon-
ly udopted sampling schemes. The second approach is to modify
the sempling scheme so as to make the usual ratio estimator
(1.&., Ratio of the unblagad sstimator of the population total
of y to tho unbiascd estimator ¢f the population totel of x
under the original scheme of sampling) unbilased.

Hartley and Rogs (1954) have been the pgineers in tha
group of authors whe tried to obtain unbiasaed sstimators undsr
the commonly sdopted sampling schemes. In simple random sampling

without replacement, they have given an slegent expression for



the blas in y,, ond on unblesed estimator of that blas,
thereby arriving at en unbiased ratio- estimator
_ - (N-1)n - ==
Ypo & T X + (y - T .
T n N(n-1) n = Fa'n

Robson (1857) has derived the exact formula for its varilance,

’

and an unblased estimator of the variance. In large samples,
more simple estimators of the variance of 3;, and an extensive
discussion of the relative efflclsencles of estimators }R, 37'”
and Sr"r have been given by Goodman and Hartley (1988),
Sukhatme (1262) has obtailned a generalized form of
?L for multistege designs, A double sampling version of
":};., in which the unknown population mean of x is replased
by the sample mean of x based orn a larger proliminary
sample, without dlsturbing the property of unblasedness, has
been given by Sukhatme (1062) together with a eomparison of
its large semple efficlancy with the double sampling versions
of ¥y and }r‘ Joso Nieto Pascual (1961) considers, in a
stratified population, a !'saparate’ unbiased ratio estimator
which 1s a straight forward generalization of 3};., and 8
'combined' unblasad ratic estimator, the latter being based
on a slightly diffarent sampling scheme, The schome for the
combined estimator consists in drawing K independent stratified
samples, each sample containing one unit selected at random
from each of ths strata. 1In large samples, he has obtalned a
comparison of the combined unblassed estimator with the usual
combined biased estimator and aleo & comparison of the separate

Hertley end Ross unbiased estimator with the usual separate



blased estimator.

Hickey (1858) has putrorward‘ﬁ gensral theory for
constructing ‘'unblased ratio and regression type' estimators
in simple random gampling without raeplacement , using
information on the population means of several suxliliary
variates. For & sub cless of his general class of gstimators
he has obtained non-negative unblased estimators of the
varience. No attempt has, howaver,besn made to investigate
the va?iance of the propossed class of unblased estimators,

¥illiems (1861, 1963) has considered & hypothetical
two stage sampling scheme, in which at the first stage, one
of the possible §2§%a of the whole population into s mutually
exclusive and e;haustive groups of size ; each (i.e. popula-
tion size K = i?) is selected at random, followed by the
selection with equal probability without replacement of k of
tho groups. For a given split of the population and a random
selection of the groups, conditionally he has obtalined a
general class of unbiased ratic and regression type estimators.
In sctual usage the groups are obtained by spiitting a simple
random sample wlthout replacement of size n from the whole
population, but not by splitting the populetion itself. The
same principle is extanded to obtalined unbiased estimators
in multistage designs, as also to obtaln a ‘combined’
unblased estimator in stratified populations, He has also
discussed the unblesed estimation of estimator varlance and
the precislon of the regresslon typs estlmators.

The underlying principle in the approach of a second
group of authors in evolving unbissed ratio type estimators
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gtems from the follewing considarations. If GS &nd.ﬁs are
unblased estimators of the population totals Y and X, based
on the gth sample selgctad with any given sampling design,
then the ratic estimator R = :ﬁ will be unbiased for the
ratio R = Y/X, 1f the design 1sX§o changed that P,, the

probability of selecting the sth

sample 1s preporticnal to
~ th
RaPé-where P} 1s the protability of selecting 5§9p? semple

578 1

in the original sampling design, i.e. if Py =
further P4 1s same fer all s, then Pg should ve mede propor-
tlonal to Xz to make the ratio estimator unblased.

Thus in the case of simplo random gempling without
replocement tha ratio gﬁ of the sampls means would be
unblased for the population ratio if the original sampling
design 1s modificd so os to make the proteblility of seleeting
the sth sample proportional to (Eh)e, or in other words ‘
proportional to the total size of the cample., Lehirl (1881),
Lidguno (1862) and Sen (18652) have independently given sampling
procedures for obtaining a sampla with probebility proportional
to its total size, BHased on these precedures of seleetion,
ues Raj (1v54) has given modified sampling aschemes appropriate
té unistage, stratified, multistege and multiphase designs in
the case of simple random sampling without replacement, whioh
oliminate the blas of the usual ratlo estimator,

Murty, Nanjamma and 8ethi (1268) have given modifica-
tions of many of the sslection procedures, commonly adopted

in practice, which while retaining the form of the usual blagsed
ratio-estimator, make them unbiasad, The method suggested by
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them conslsts essentially in selecting the first unit with
probability proporticnal %o the auxiliary variate, and the
remaining units in the sample according to the original
sampling scheme, Indead the method is very elegant and
provides eaaslly calculable unbiased estimators of the sampl-
ing variances also, but ita utility is limited in prectice

ag it asgumes the knowledge of all the x values in the populs~
tion, in which case a better sampling design can be formulated.
Recontly Pathak (1864) has shown that if in these modified
sempling schemes a sufficlent statistic is available and if
the ratio estimator does not dapend upon the sufficient
statistic, 1t cen be uniformly improved by Reo-Blackwell
thaeorem. This result has been used by him in deriving un-
blasod ratio estimetors, better than the ratio estimators
given by Hurty, Nanjamma and Sethi.

Tho presant investigation 1s a critical study of
Lickey's unbimsed ratio and regression type estimators.
Section 1 deals with the unblased estimation of the variance
of Mickey's sstimator in its goneral form, BSection 2 is
concerned with the investigation of the precision of Mickey's
unblased ratic type estimators, utilisying information on a
single auxiliary verisblej and a comparison of their efficiency
with the usual blased ratio sstimator'§a in large samples. In
gection 3 an attempt is mads to obtain & large sample formula
for the variance of the unbiased regression type estimators
based on & single suxiliary variable; and to compare their
effloclency with the usual bilased regression estimator and the
corrasponding Mickey's ratio type estimators. 8ection 4 is a



study of the unblased ratio type estimators based on two
auxiliary variables in respect of thelr precision, in

large samplas, and thelr relative efficiency compared with
the Olkin's weighted and biased ratio estimator. Section §
deals with tho development of Mickey's principle to obtain
unblased ratio and regression type estimators in two-phase
sampling. It also includes the unbiased estimation of

their varlances and a discusalon of their large sample
efficiency compared with the usual blased ratioc and regress-
ion epotimators in two-phasa sampling. In Section 6 separate
and combined unblased ratio type estimators, based on
Mickey's principle, are given for stratified simple random
sampling without replacement togethsr with the unblased
estimation of their variance. Finally, Soction 7 gives some
numarical rosults concerning the performance of ths unbiased

ratio typo estimators with respact to the ususl biasad ratio
estimators.



1. UNBIASED ESTIMATION OF ESTIMATOR VARIANCE

Mickey's ‘unblased ratio and regresslion estimators!'
are particular cages of general class of unblased estimators,
developed hy him, A brief account of the sampling frame,
sempling design, and the construction procedure of thes general
clags of estimators 1s necessary to outline the results of
this 8Section.

Mickey'p unblased astimators

Lot the finite population'or slze N be represented

by a set of (p+l) component vectors

(yj, X131 X34y sesesascey ‘pg)' 381,28 10 ceeren g,
where Xj, Xgjeees, x, are p suxiliary variables with known
population means X3, X3y seesesy Xp. Tho problem 1s to
estimate the unknown population mean Y of the variable y
under study. For this purpose, a simple random sample of
8ize n 1s solected (without replacement) from the populaticn.
Lat ¥, and Xq, 451,2,.....,p denote the sample means,

Given this sample, for any choice of m of the sanple
elemants, m<n, the remaining n-m elemants constitute a
§imple random semple of size n-m from the finite population
of l--m alemants derived by excluding the selectsd m gleoments
from the given population. Let g represent the m sample
elcmonts 80 chosen out of the given sample and &y(zp), 1=1,2,...,p
denote some Known real valued funotions of the observations gzp.
Further let ¥y, and %3, 121,2,....,p, be the means of the

observations zp.
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Now define -
- = n-y- - ms;m -‘i - n;i - m-iim
Yo -
n+m n-o + *in-m —
N - oy, Z, - o
am ?u_m q\ N - o [] xi“.m = N - ’ 151'2'00 ,p.

Further let U, dsnote the statistic given by

- 4 -
Un ® Ypem - éaj,(‘m)(‘in-m'iw-m’ oo (1.2

' Then, if E(Uy/m) denotes the conditional expectation for a

glven sat gy, wa have

B(Uy/m) = ¥y o

( R-m) Uy,
Consequently, if Tm T :m m ’ .o (1.2).
then B(Tm/m) ~ = Y

Henco unconditionally also Ty provides an unblased estimator
of the populatio;: mean ¥,

The estimator T, which can also be written in the
following equivalent forms:

-— P - o Ne ¥
Tp = ¥y~ E:la-j.(zm)(xi-xi) - E-({-—-i} ' ym-y- Zal(zm)(xm.xi) '
¢ n-m
(1_')
N~

((nm;n A- ?ag( Zm) (xi-x,)_/ j

a(N-n) Zaa( ) (xgm-Xy) (1.4)
R{n<m) ‘o
= (2.)X4 + / - o
:L:na-i X1 N(n-m) d gai( Zm) Xy

(N- - & -
—mn—i%?;-/;m - é?j,(zm) tunj (1.8)
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is hersaftoer called Mickey's unblased gstimator, in its
general formj meaning thersby Mickey's unblased estimator
Tp with arbitrary coefficient functions a,(z)),1=1,2,..,p.

Hare zp may ba taken as the observations on the first
m draws of the sample of slze n or as any subsample of sigze m
from the given sample, Thus a genaral class of unblasad
estimators cen be obtained by taking weighted averages of
estimators of the form Tpm, applied to all possible permutations
of the sample elaments, Of particular intersst is the estimator
T;, obtained from T, by averaging over all possible permutations.
This is so because the unordered sample plays the role of a
sufficlent statistic and by an application of Rao-Blackwell
theorem it follows that the varisnce of 'r,; is never greater than
that of Tp.

Mickey has obtained unblaged Ratio end Regrassion typc;
estimators as particular cases of the estimstor Ty in its general
form, by a proper cholce of the coefficlent functions aj(zy),
2] .2,..0,3D,

Unblased Ratlo type estimators

For example, when information on only one auxiliary
varieble i avallable, the choice a{zm) = ¥yu / Xm = Ry, applied
to the form (1.5) of Ty, provides an unblasaed ratio type
estimator Tlm given by

;
Tm © Rmid-%%/';-}?{m;j .o (1.6)
Averaging over all possible permutations, we obtain the more

efficient unblased ratic type estimator T;m given by



. * >
o (N-m)n /o _p= . .
T ® Bak * e [5-83/, . (1.7)

»
whers Ry 1s the average of Ry over all permutatilons.

Unblased Regression type astimators

'H\. -
2 (yy-Ym)xy

With the cholce a(zy,) % G =
“ “g(!;-'im)a
J

N

the usual linoar rogression cocefficient based on the
obgervations zn, oxpression (1.3) for Ty yields a regression

typo ostimator Tg, given by

/ bm(x-ﬁ)j mw o) /;m-y-bm(xm-x)] (1.8)

Averaging over all permutations we obtain

(N- ) 1 (‘Tﬂ) - -
A-hm(x-x) _/ 'fn m’;u S bo(Xg®, (1.9

n,
ml

where r;m is ths avarage of bpy over all permutations.

The present section deals with the unblased estima-
tion of the variance of Mickey's unblased estimators Tpm and
';m, in their genearel form.

Unbiased estimator of the variancge of ‘i'm

Prom the well known formula, connaecting variance,
with the conditional expectation and conditional variaence,

wa have

(
V(Tg) = E cvcrm/mn +v (Bcr /mn

—( Z‘(N-mwm*ngym / j




= ‘i;;;f E /;wm/w_]

P
= i% E V(-J;n.m - g{ﬂ-i(Zm)-x.in.m/ m)]. (1.10)

from the definition (1.1) of Uj.
Now we obagrve that .
i’:—m ® Ynem * f.{;ﬂ-i(zm)xtnvm
is the srithmetic mean of the obaerva.tions

y; B 5’1 - éai(zm)x“,

madae on the n-m sample elements whiech are obtained by axelud.
ing zn from the given sample of sige n, Purther, since for
a given choice of 2m, the remaining n-m sample elements
constitute a random sample from the derived population of

size N-m, it can be seen that & non-vo unbiaged estimator of

V G / o
is provided by

(R-m)(g:;ﬂni s-ﬁ'.n-m y m=1,2,...,n-3 (1.11)

. 2 2
he
where % nem —y E (.‘f; AR

the summation being taken over the remaining n-m sampe oloments,.
Consequently, from (1,10) and (1.1l), a non-ve unbiased esti-

mator of the variance of Ty is given by

mn-m

K3(n-m)" “"m'
(1.12)
This estimator holds good for all values of m less than

n except for m = n-1l, in which case there is only one observe-

tion of the type yi . Further it can be geen that the

’
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reliability of the Est.V(Ty) is more for small values of

m than for the choices of m near to the total sample size

2

By 88 Byypm

is based on n-m-1 degrees of fresdoa,

Unblased estimator of the varlance of T;

8ince for a given sample of size n, E(Ty / n)s 'r;,
we have
© .
V(Zy) = E(T, - To)o ¢ V(IL.

a- .
Avez;\ging over all the possible (3) estimators of the form
T, will therefore give

ey o
AWy = B _;_(}‘i)(?m - T,;)a + V(To). (1.13)
@) 3)

From this it follows that en unblased estimator of the

variance of 'r; is given by

-

Est, V(Tp) = _;_Z[Eat.\!(‘rm) - (Tg -~ T2 7,  (1.14)
n
m) J
whare Bet.V(Tg) iz provided by (1.12) .'

Particular casas

For the ratio type eatimators Tlm and 'r;m, from
(1.12) and (1,14) unbiassed estimators of the variance are
provided by

n-m
Bst. V(Typ) = Nen)(Nem), L Zﬂyj-yn-mﬁﬂm(x;-xn.m)
J

NB(n-m) (n-m-
(1.18)

2

7



"
. 1 VEst. V(T
and Bst. V(Tyy) = —)Bat.V(Tyy)
m
% - {N-m)n ")21%} w2 (1.18)
~ @ - BT L) Ry '

n
(@)
-]
For the regression type estimators Tom ard Ton,
unbiased estimators of tho variance are given by

"Mm-m 8
= hat -m) - - - -.- -
Bat, V(Tgy) -%ﬁ%é)L Gy Z[(ya Vnem) ~bul %3 -Xn-n).7
? (1,17
@ .
and Bst. V(Tpy) = -5 £ Bst.V(Tan) = (Top- To)® 2 (1.28)

@
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2. PRECISBION OF RATIO TYPE ESTIMATORS WITH ONE AUXILIARY VARIAELE

Goodman and Hartloy (1968) have investigated, in
large semples, the relative effleclencles of the ratio type
estimators yR = -gi‘l'— X, ¥, = X,

n h 4
3. TRl 5D, Gad S 4

of which ths first two are blased sstimators and the third an
unblased estimator of ¥, Thay hava shown that in large seamples
the estimator };. is more efficient than yg, if and only if the

slope of the regression line of y on x is closer to

o y:
T = .LZ__.... than to the population ratic R = Y /X% .
p | 3 X4 -

In this section, we shall investigate the relative
efficiencles of Mickey's unbiased ratio type gstimators:

= —-— - n —_—— - -—
Tin ® Ry X +% (y - BRg x) (2.1
» . _ N~ Y - ° 'i)\ 2.3)

with respect to the conventionsl biamsed ratio estimator yg,
for large samplas.

¥e shall first obtain the varisnce of Ty, in large
samples, for m sufficiently large and compare it with the
veriance of the usual blased ratio estimator yg. After this
an exprassion for the variance of ‘l‘;m, in large samples,
will be derived. It will be seen that considerable simplifica-

10n

tion 1s offected in the large sample variance express of TIm
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when elther m is small as compered to n or when m is suffi-
ciently large. From the practical point of view these two
cases are most important as in these two cases only computation
of the sstimator T;m and of the unblased estimator of 1its
variance, giv_en in seotion 1, 1s most convenient. Finally,
assuming the population to follow & bivariate normal distri-
bution, we shall further investigate the varlances of 'i'm

and T

im
of T;.m with respect to yg.

s when m 1s largej and discuss the relative efficiency

Variance of T 1m for large m

To derive an expression for the variance of the
estimastor ‘I‘m in large samples for m sufficlently large, the
rasults of the following lomma will be useful,

Lemmas- In simple random samples (without replacement) of
slze n from a bivarlate finite population of N pairs (xy, ¥3)
1“1'2,0000 ,N,

CoV(x, aﬁ) = Kpay  Mo3» COVG.sBx) B Kn,ﬂ Migs

Cov(x, 85y) = Kum Mz, Covl¥ys,) = Ky Mgy

where X and y are the sample means, X and ¥ ars the population

means ,

8 L =2 T (2.5 (.3
'sx = n:J;i Z(xi-x) ’ sxy o .;1%3 Z(xi-X)(yi-y) ’

N . N o, . =8
Mo =i 2 xDP, pag = = 2 DD,
(331

.
eel




Pal = -ﬁ—i(yi"?)atxi:i) and

—

/-1 - n-a in-ag j

Proofi- Without loss of generality, in the evaluation of

these covariances, one may assume the population means X and Y

to be zeros.

Then
Cov(y.sa) = Ern%l) B ( $Y1 § i "—;@)83 _/
sk B /zz;;(zyi ?ym)-— %i’x’a": 4 gﬁ"m j
= ?x%?:i) /- .B.;?l(c lgyix% +oa_§:;y1x§ )— caZyixixJ--n-;%ixJ!z
where, o =—ﬁ-- C, = H}%‘ﬁ%‘ and cg n%;'
Thus

-~ 8 20 8ag )
Cov(y,sy) nT_-l) _.f.*:l. (oqN pyg=eol M) + e — N jiyg- — Niulf/

o - =3 - ~
%n,8 P1gs where K = / T ol _.‘amyz)_” N-1Y(N=2 ./

Putting x = y in this result we have Cov(Xx, si) = Kn N /.103.

Now

- ('YL " "
Cov(x.a“) T_Tn T (%xl) Eixiyi _ (:‘:xi‘)l(fﬁi) 3]

-



"M a mn — l T -
zn.(_ﬁéx)ﬂ /- n;l (Eajxiar 1"%?,1333’ J) szaﬁf 3

i

R | {x x3y3 - : Sf_xixjyk
n i i B T _]

303
* wer/ - ~Beiogfl fyg=eghl pyg) + N paam 5 8P /
“ Knpﬁ Pia*
Similarly Cov(y,s,)) = Ky yfh. Q.5.D.

We now proceed to dsrive V(T;,).

8ince Ty, results from Ty, in its general form, by
putting p = 1 and a (zp) = R, we have from (1,10) Section 1,

V(Tyg) = —-‘i‘ﬁ%)g— E /;(}'n.m-ﬂn; Xy 7/ 0 j

e _(H-m)(N-n) 2 2 - |
NB(I::_m) E/B- N.m,y * o sﬁ-m.x % Bn-n I ]
- ) (3.3) )

2 g
where BN_m’y s sﬁ-m,x and Bﬂ-m, xy BTe tho mean sums of squares

and mean sum of products in the derived population of size N-m,

- - 8 2
Urite y, = Yoy, %y = Xteg, Sfi.m,x = 85*%3 o0 By.p xy"Sxy*eqs
whare 6?,'8‘3 and By, are the meen sums of squares and mesan

sum of products in the population of sige N, and
Ele)) "= Eley) =E(ey) = Eley) =0

o ‘
E(Gi) = %{f—- Sy E(eg) th— Bi. and B(e ep)= _..._g___;m By
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Also E(ejeg) = Cov(yp, Bﬁ-m,ii)-

- - T 2
® Nmm Cov (Yy.m, 8% o ,x)

"B - R;m Kﬂ«-m,h} Bias from the lemma

N
— c (IR Mo

Sirilarly
E(eges) = ~ roiyRce) /o8
Ble1od) - by [
and Eegeg) = =~ __° ja - (2.4)
(B-1) (§-2)

Now in the formula (2.3) ,to evaluate the term E(RE Sfm x)
wo assume that m 1s sufficiently large, and write

@ -
B(Rp 8Fom,x) = B2 8§ 3[1 °1)3(1+ 281 ij
_ g 20y ey Beg ae
-~ - stxg 1"‘-—."‘——2)(1'—:—— 3)(1 j
| ¥ X
- 8 E/ir 201 203, %,20% Ia%
T ¥ & W %
dege a 8e
s, "1, 27y .. (2.6)
b S o

negleoting oxpactations of cublc and highsr powers in a'8,

Substituting the expected values from (3.4) in (2.8), we
obtain, to the order of approximation 1l/m,
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a Moa Mg
(68 o, = 6} /0 e o e g
X
(2.6)

3 8 3 g8 , =2 -
where Cy = s/? €, = B8x/X andCy =8gy/WX.
Proceeding on similer lines, to ths same order of approximation,
1t can be saeen that

5 ) = Bogy/ 1o femcd 12 [2
eP-m,xy ""'[ (€ - Gyl (N-l)(H-B)(XBnyB )_/

(2.7)

Substituting the results (2.6 and (3,7) in (2.3) and
simplifying, we obtaln

vz, )e ?B_ginm;n)_ (Covc ac,y)(1+...:@_4:)+31ﬂ--"al<c -c,y) 7

-3 mﬁ%ﬂ%ﬁﬂ-—,—[ﬁr Mz | Fc@)-a( Faz. .ﬁf_j

(2.8)

If the finite population corrsction factor is negligibdle,

then V(T,y) simplifies to
o
[ z 2 2
V(T 3m) [c o2 -acw)(l-r_a_) + _ﬁ. (Cx. = Cxy) / (2.9)

Bfficioncy of TM for large m

In large semples from a large population, the variance
of the usual blased ratio estimator yp is given by
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viyg) = ¥ (cg + aﬁ - 2:.'.”). (2.10)

n

A comparison of (2.9) and (2,10) clearly shows that,
when m is large and the finite population corrsction factor ‘
is negligible, the unblased ratio eetimator T, 1s less
efficient ‘tham the usuel blassd vatio estimator yg.

Also from (2.10), we can write

A . _B
VT = n~m m{ n~m)

where A and B are constants indepandent of m} which indleates

that V(Tjn) increases as m inereases from n/2 to n-1, Thus
in large populations, with a sufficiaently large sample, effi-
clency of Tlﬂ! goes down a8 the cholce of m is made elosar and
closar to the totsl sample size n.

It may be noted that Typ is mainly dependent on the
unblased estimator of the mean of the derived populat.ton'
and that this unbinsed estimator is based on the derived sample
of size n-m, HNow as the cholice of m 1s made neareor and nearer
to the total sample size n, the size of the derived sample
Gecraases and congequently the precision of the unblased
estimator of the derived population ia likely to decrease.
This may be one ¢f the reasons for the deorsase in the
efficlency of Ty, 88 m approaches the totel sample size n,
in large populations,

Verisnce of T}m in large samples

Putting k = ._(%.E_ﬁl_%___, from the definition (2.3)
of T;m » We have




28
viel ) = BB vpe® v i@ vy

+ BKX Cov(¥, Ra)-2KX Cov(Ry, ¥ Rp)-2k° Cov(F,% Ry).
(8.13)

. - - ) L]
Now write ¥ = J+e;, % = X+eg and By = ¥y + e3,

N
where By = _&_g R;. the sumoation being taken over all the
(a)
possible semples;

g0 that E(Gg_)“ 3‘63}”3(83)':0
V(ep)= V(¥), V(eg) = V(X), V(eg) = V(Ry)
- - - - v
and Cov(ejpp)= Cov(y,t), Cov(ey,eg) = Cov(y,Ry),Covleg,ag)=Cov(x,Rm}

—

Negleoting expectations of ténms in a'® of order 3 or more,

va have than

V(X By =V(Bp X + eé Z+ap Ry + egey)
2% viag) + Tig V(R) + 2% Ry Cow(®, By (2.13) -

S4milarly, to the same order of approximation,

CoviBs, & B* X v(ED) + By Cov(x, B, (3.18)
and

- @ - - -
Cov(y,x Ry) = X Cov(y,Ry) + By Cov(7,X). (2.18)

Using (2.12), (8.13) and (4,14) in (2.11), wa obtain
vl = KV + PR V@ + (k-1 2B(r]) -2, cov(F, D)

-2k(k-1)E Cov(¥,Bp)+ak(k-1X Ty cov(x, R
(2.18)
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*
Expression (2.18) provides %the variance of Ty in large
samples for any m lass than n,

Efficiency of 'I‘;m for emall m, in large samples

Assume that m is sosmall as compared to n, so that

K = Jﬁ?‘_ + wBwo =1, Then, from (3.18), we hava

n~m
V(TI = V(5 + B v(® - 2 By cov (7.8, (2.18)
N-n 1 S ¥) -R "']a
"ﬁﬁ"'."i"’ [(.v,- )-Rg(xy-X) 7. (2.17)

In large ssmples, the corresponding expression for the
variance of the usual blased ratio estimator yp is given by

- - 8
V(ya) = %nﬂo-r:}i— [(YJ-?)-R(xJ-X)J. (2.18)

Thus (2,17) and (2.18) show that Ty is more
procise then ¥y, in large samples for m small compared to n,
if and only if the iines Y+ 'ﬁm(xd-'f) fits the values yj more
clogely than the line Rxyj in other words, if the slope of ()
the regression line of y on x is closer %o Ry = _é-.. Rm"—ﬁ-zﬂm

G- @

than to the population ratio Re= ¥ / X.

In particular, when msl, T}; =, , the Hartley and
Ross unbiased estimator and Ry = —%—i_lyj/xa = ‘rp, so that
we arrive at the conclusion of Goodman and Hartley (i958) that
V. 18 more efficient then ¥g, in large samples, if and only if
the slope of the regression lina of ¥y on x is closer to ?p
than to R.
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Efficlency of T3y, for large m

To obtain the variance of the estimator T’im for m
sufficiently large, we further evaluate the terms V(R;) '
Cov(y, R;) and Gov{.'i,R;) occurring inthe large sample
variance aexpression {(2.15) of the estimstor T;m. In their
evaluation we suppose that torms of orderl/mn or Zl/n2 ean
be neglected.

We have

V(R)) = B/ V(Ryn) 7 + V/E(Ry/n) 7.

But since E(Ry/n) =  Bm,

V(By) = V(By) = B/ V(Ry/n) 7

N~ 8

1

a3, 2 2
- B n=m__ ey + oo - Ze
ng Rn(y X v)

- -0 pB(p2 o2 '
2 .g.ﬁxl.n(cy-oc,-acw), (2.19)

- 2 8 =2 2 2 : -
Here sg. si, and Bxy Tepresent the mean sums of squares and

sun of produots in the sampls of sige n,
Proceeding on similar lines with the help of the formuala:

Cov(Vpmy Ry) = EL Cov(ym, Ry/n) 7+ Cov/ E(Fy/n), B(By/n)7,

it can ba shown that
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P » " -
Cov(¥, RD) ¥ B RY(CH - Cypp). (2.20)

Again, by a similar argument, to tho seme order of epproxi-

mation, we have

Cov(X, Rp 2 LB B (Cgy - €. (2.21)

Using the results (2.19), (3,20} and (2.21) in
(2.15) and obaerving that By = R when m is sufficiently
large, we obtain, to the order of approximation I/n,

viTy,) - g PGk - o). (@22

Thias shows that, in large samplaes to the order of
approximation 1/n, when m is sufficiently large, the unbiased
ratio estimator 'r‘im and the conventional bimsed ratic estimator

'y'a are of equal preclsion,

V(Tyy) and V('I’;m) when m is large,
a iBivariate n ] ulati -

Assuming that the population is large and follows
a bivariate normal diatribution, the variances of the estimators
Tyn @nd T;m are obtained here to the order of approximation
/w2, In this sense the results, obtained here, may be
considered as improved approximations over the corresponding
results of adove.

It has been shown by Sukhatme (1854) that in random
samples of size n from a large populatlon, following a
bivariate normal distribution, the expected value, the

variance and the msan square error (M.8.B,) of the usual
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biased ratio estimator yp, to the order of approximation

1/n®, are given by
E(Fw) = ¥ /1:_%.(02 - Cry) (1n-8cd) _/ (2.29)

V(yg) = ?%_ﬁ wi-acxy) (%* cﬁ) + ;g '(ci- c,;y)_a_/
(2.24)

and
-\ . 2_.28_ 1.3 8. .86 o 8

M.8.8.(¥g) = BL (cy eco-2c (= *—g-cd) ‘;Ecci Coey) 7
(2.25)

For the finite population of sige N, the effect will be
approximately to write N-n/Nn for n in the sbove expressions.

Variance of T}E

From (3.3), we have
1 a 2 -
VT =k BBy ¢ o 68 m,z - B Syp 2y 2
(2.26)
when the finite population correction factor is assumed to

be negligible,
How since in samples from & bivariate normal population

the sample means are independently distributed of the ssmple

variances and covariances, from (2.26) we obtain

VT = ke /85 B(EDIES - 2(RyB, 7 (2.27)

Also, based on the results (2.23) and (2.24), to the
order of approximation J/ma, we have
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B(Rg) = R/ 1+ g- (cxa-_,y)(l«% ci)_? (2,28)
2
and E(RD) = V(Ra) + /[B(R0)7
. 6
w RS/ 1+ :f(ci‘cxy"" = (c2 -G‘y)a-f
6 .8 2,2 2
8 (03 gk o 2+ FeD(cockaey) 7.
" | (2.29)

gubstituting (2.28) and (2.29) in (2,27), we have, after a
bit of simplification,

g Va 4
vy =k (cBecd-acy) (10-%e g’_‘.)

m(ci-cwﬁ({f-* mg c,ﬁ)j (2.30)

. Expression (2.30) provides the variance of the
unbiaged ratio estimator Tjm, to the order of approximation
J/ma, in semples }g‘om a large bivariate normal populaetion.

Variance of T;.m

8ince V(Tym) = B/ V(Tip/n) 7+ VTS,

we have V(T;m) e V(Ty) - B/ (X-5)2 V(Ry/n) 7, (2.81)

= LM—N"
where k N{n-m)

Consequently to svaluate (V(T;m) to the order of approximation
l/mz, we need to evaluate:

B/ (X-x%)2% V(Rg/n)_7 (2.32)
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to tho order 1/u? and use it in the formula (2.81) along
with the result (2.30) for V(Ty,).

Now taking inte account the finite population correc-
tion and applying the formula (2.24) for V(Ry/n), we have

— (
B/ (%-1m)8 V(Ry/n)./ = %m}-@[igam&ia) R,a,( (c?;tc%-?.cxy) (1+3£t:mm°2)

. )
o BB s (29

2
whare Ry, c?,cx y and Cgy rafer to the total sample of sige n.

46

8ince wo are intgrested in ovaluating exprassion
{2.32) to the order :\jma only, the expectations of terms
with coefficient (__%9_)2 in the above equation caen be
replagced by the corresponding population terms. Thus the
contribution of torms with coefficient (-%éi"i-)a to (2.82) is
given by

-l 32 2 2,.2,.2 2 2
0 - -
6 = Yo(-BzB) (k-7 BCH(C, 4 -2C, ) 48(Cy ~Cxy) ' 7.(2.83)
Now to obtain the contridbution of the other termm
pom 5/ X2k TRy (o +of - 20 )7 (2.34)

of the R.H.§8. of (2.33), the expected value is evaluated
hers to the order 1/n. 8ince we have assumed a large
bivariate nomel population,; in this evaluation we take
N-n/Nn < 1/n and observe that the sample means y and X
are distributed independently of the sample mean squeres
af, a.nd ai and the sample mean sum of products Bxye
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Thus term by term, to the order )/n we have

s od) = B3l 7

Bl o) = wleg/1e Adcd 2002 - ac ) 7
B(RG o) = Riog [1+ 3 (6ch -acy) 7

B(F Rae) = XRici /Ay 7

B(x Rgcxa) e XR Cﬁ [11-% (|;;§’r *aci -scm)J

E(x Rﬁoxy) = %8P Cxy £ 1{.5%(3::?: o

B Eag) = 85
E'.(Eznzei) = TR 33 L1+ l(cg«racx-acn) 7
and tinally,

BREE exy)= ERC, /3¢ 30k - cpp) 7

Making use of these results in (2,34) and simplifying,
wo obtain the contribution H of the terms with ecoefficlent
(_%g_z_) as given by

E = Tz..B_.. n [lcecg-ac,, 3 ((k-na«r ik—'@ c;)

+ ggk-lnzgk-gg‘ (ci_cn)a‘.?
(2.385)
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Thus to the order of approximation-i/a®, we have
Expression (3.32) = G+ H (2.38)
Now we observe k = -..-.H.- — 5 in a

large population end use the results (£.30) and (2.86) in
the formula (2.31) to obtain

g 4

( Cy 2Cy )
rrm® - ?2 2 _ v ¢ X +

+(-&+.&.¢£‘i§_¢_.)'( -c.8 /.
n2 mn 22 (n-m) ci Xy j

el

Expraession (2,37) provides the varlance of T';m , to the

order of approximation J/ma, -An semples from a largs bivariate
normal population, |

Efficlency of Ty

We¢ now compars the variance of T;m given by (2.37)
with the M.8.B. of ¥ given by (2.25).

Thus o
_ 2 ( ac® )
M.8.E.(Fg) -WT1;) = ¥ /(-cg +c3-20 ) (-n%- - )c’;

S

o - _z._z. (8 x Cx?7

(8,38)
From this 1t follows that T3 is more efficient than F if
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2 ¢ un. /" 2f(nm) | _p(pon)(Sm-an) 7,
12n
= min-m) (dm-2n) (2.39)
— nd

-~

In particular for the cholces m = n/2,
m = 8n/4 and m=n-1, the conditions are obtained below.
Numarically for n=1l00 the upper bounds for cﬁ are also

given.
m Upper bound for cﬁ For n = 100
n/e n/96 = 1,04
3n/4 /266 = 2.74
n-1 {n-1) (3n-6)/12n8 = 0.24

In fact, for a large semple and & choige of 'm!
near to the total sample size wa have approximately

-

min-m)(8m-2n) = 0.25.
12n°

Thus in large samples, for a cholece of m sufficiently
near to the total sample size, sz will be more efficlient
than Jg if ¢2 ¢ 0.5,
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REGHESS ION TYPE EST IMATORS
XL, YARIABLE

Mickey's unbiased regression type estimators,
utilizing information on 6n1y one auxiliary variable,
are Tgy and Tan, given by (1.8) and (1.9)of Section 1.
For each m, T?&n is never legs efficignt than Top, applied
to any partioculer permutation of the sample elements., Among
the unblased regression type estimators Tém, computationally
the cholce m=n-l1l ylelds the most feasible eatimator T;(n-l)‘
for it is possible to exprees T,E(n-l) in an alternetive

forms:

L

e T " ' -
Toney = £ ¥0 X7 -%;—'! Ve JZbeJ - nxb'_7, (3.1

where bJ' is the value of the regression coefficlent if the
Jth sample élement is ocmitted

3(xg-x) (y4-¥) - B (x4-3)(y3-Y)

(i.e. s) tﬁ"’ s (3.8)

s’
. =8 _ n -8
;(xi x) =1 (xj - X)

and be L j,: g0
The present investigation of the efficlency, confined
to this most important practical case, shows that, to the

order of approximastion 1/n, 'r;(n_n is as efficlent as tho
usual biased regression estimator y,, given by

31" = }'b(;"‘i)y




where b is the sample regression coeffiglant,
The same result, though not formall; established here,
18 9xpected to held good for sufficlently large m, since
a corresponding result has been obtalned in Section 2 in
tha case of Mickey's unbiaaéd ratio type estimators
Ty and the usual blased ratio estimator yg. It 1s interest-
ing that this result leads to tha conclusion that in large
semples, for sufficiently large m, Mickey's unblaged
re_'grasaion type estimators TZ»m are never less efficlent than
the unbiased ratio type estimators T';'fm. since it 18 known
that in large samplex the usual regression estimator §1r
is nevar less efficient than the usual ratio estimatoi
Vo

We now formally establish that V(T3(n.1)) = Vim),
to the order of approximation l/n.

>
Variance of Tg(n.3)

Reglecting the finite population correction factor,

wo have
Tan-ny = T - my, ,
where T = F-b(x-X) (3.3)
and ., = }% ?Z(x: - ;)b’d’ the (3.4)

sample ecovariance batwesen

xjandbs.

Hence V(T;(n-l) ) = V(T')+V(myq) - 2 Cov(T', my).
(3.5)
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In the i’ollowing we shall evaluate V(T*) to ¢he order 1/n,
and show that V(my;) and Cov(P', m);) are at least of order
3/n,

To eovaluate V(Tf) » W8 write

Tt = T-(b'- B) (x - X), ‘ (3.6)
Whar‘ 7 a -i - BG - i) ? (3-’)
and B 1s the population regression coefficlent of y on x.

Then, since T is unblased for the population mean ¥, we have
2 - - 8
V(T') = E(T-¥) +B / (tvB) (x-X)_7
- 2 -
- B(BYBY(X-X)_7 - 28 £ (T-T)(b-B)(x-%)_7. (3.8)

Now we ghow that all the terms except the first one
on the R.H.8. of equation (3.8) are of order /n2,
For this, we note that

B(r-D2 = oY, BT - D = on D),
BG-X? = o), 5z -0* = o) (3.9)
B -8)2 = oY, BE-B? = o(nD), (3.10)

where 0(n"1) and 0(n"2) indicate that the terms sre of order
/n and 3/nd respectively. l

Resulta (3.9) follow from the fact that T and x
are arithmatic means, based on a simple rendom semple of

slze n, without replacement. Also, since

B(bjy - B)® = B(y - 892 + B - n)?
%e have
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B® - % /£ B -B)°
= O(n"l),

tﬁ' being the regression ¢oefficlent based on a simple
random sample of siga n-1l. '
Thus B(b' - B)8 = o(n~h),
Similarly it can bo shown that
EE -8 = onB),

To show that the three terms except the first one
on the R.H.S. of aquation (3.8) are of order /n®, we
repeatedly make use of the ingqquality

¢
Bluw) / [B(@)yB(vd 7 (3.11)

whore u and v are any two random variables having finite

sacond moments.

2
Thus B/ (3'-B)(x-X)_7 / [ &(® -m)d E('x’-":i)".?i

- \ .
=/ 0on™®) 0(n"B)_7 from (3.9)
and (3.10),

_ _ 2
Hence B/ (B'-B)E-X).7 = 0o(n9) (3.18)

Agaln, since

B/ (81 -B) G-X)7 /e -5t EGHE T

LI AN

[o(n'l) O(n'l)J* from(3.9)
and (3.10)’ )

wo obtsin

- - 2 . -
/[ 5(5'-B) (2-X)_7 = on"d, (3.13)
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- - - ( -2 _%

Also B/ (T-D)(b'-B)(x-X).7 £ [E(B'-B)2 B((?-11(X-T)) 7
£ [ﬁ(b'-B)J* [E('r.‘?)%(x-x)

= /Jo(n~1) 7 [0(::'4)_7 £rom (3 9)

= o(n"/B),

But expectatiomnsof products and ratios of arithmetlie

means must have integer orders. S0 it follows that
B/ (2-¥)(b'-B) (x-X)_/ = 0(n"2), (8.24)

Congequently from (3.8), (3.12),.(3.13) and (3,14) we obtain
wr) = B2« on™), (3.15)

Returning to equation (3.5), it remains to evaluate V(m;;) and
Cow(T', my7).

Using the large sampls theory, it can be shown that
V(myy) = a
(myy 2 ( pgg = p13), (3.16)
where u2g8 and M11 are tha parent central moments of the
Joint distribution of xj and b&.-

Now if B! denotes the population value corresponding

to bs, we have

By 8% = otnd and B(b} -8 = o(n"3),

(3.17)
Hence P = E[(bj-B')(xlvf)_? R
{  Teopsn? sa07

%
= L on"l) 7 from (3.17).
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2 -1
Thus }411 = o(n ™) - (3.18)

Again
2
Paawe[(bs-n')(xn-'x”aj y4 [B(bj-n')"ﬂ(x,-i)‘_?ﬁ

t
s [0o(n"3) 7 grom (3.17).
Thus Pz e On"d) (8.10)

Consequently from (3,16}, (3.18) and (3.18) we bhave
V(myy)) = 0(n"d), (3.20)

Also from (3,.15) and (3.20) by an application of the formula
(3.11), it 1s easy to ses that

Cow(T'y, m3y) [/ O(n'a/ 2,

But since m;y and T' are bullt up as arithmetic
maans of products and ratios or‘arithmetio means , Cov(T' ,m;,)
must have an integer order. Thus

Cov(T', myy) =  0o(n"2), (3.21)
Now from (3.58), (3.18), (8.,20) and (3.21) it follows that

V@py) = B(T- D2+ on?),

= v(y)+B3 V(3)-2B Cov(¥,X)+0(n"2),
(s.22)
From this it 1a concluded that, to the order of

-
approximation 1/n, Ty(pn.3) end the usual biased regression
estimator y;, are of equal preeision.
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4. BFFICIENCY OF RATIO TYPE ESTIM
TTH T80 AUXILIARY VARIABLES

When information on two suxiliary variables x] and
X3 is avallable, for the oholce

Ym Im
ai(gy) = — = Rp(xy) end aglep) & —n © Rp(xg?,
m Xon

the unbiased estimator T, expressed in the form (1.5)
provides an unblased ratio-type estlimator:

Tlm(xl'xa) 2 Tlm(xl)* T]m(xa) + N(;_m -ﬁ'm - N-zn_mi 3'

(4.1)
where Tip(xy) = Bplxp%; « SEBD [F- mytxyE; 7
(4.2)

and  Typlxg) = Ru(x)Xp + BB /0 F-R(x)%p 7
(4.3)
are the unblased ratio type estimators odbtained by using
information on %, and xg separately.
Averaging Tinlx,,Xg) over all permutations of the
scwple elemsnts, we have the other unbliased ratio type

estimator

Ph(x1,%y) © Tim(xy) + Ty (x) - F (4.4)
whore Tin(x)) = Ry(xp¥y + 0 [T - Ri(x)F, 7
(4.8)
and  Tia(xg) = Rpxg¥p + Bomd [ J-(xp)%a 7.
(4.6)

For any m less than n, T;m (x3,xg) i3 never less
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efficient than Ti,(xy,%5), In this segtion we shall discuss
the relative efficiency of the estimator T}, (x3,x3) with
rospact to Olkin's woighted ratio ostimator in large samples
for the two casesi

(1) o 4o small as compared to n and (i1) m 1s sufficiently
large. Also we shall investigate, whon m is sufficiently
large, whether there is an increase in precision by using
TIn(x),xg) instead of Tin(xy) or TI (xg).

Olkin's woighted Ratio estimator

When information on two auxiliery variables xz; and
25 is availeble, the weighted ratio astimator, suggested by
Olkin (1888), 1s given by

where ?Rl = XX, ¥y = ~¥ X3,

¥, = v(‘;}aa) - °°v(3nlt -’:“a)

(4.8)
Vg, - a,)
and Wy = vC“;R:m) _ CWGRJ.' 332} . (4.9)
v('irnl - 'a'raa)

The estimator 'frw is bilased but consistent. The large sample

variance of ¥y is given by.

V(¥ = V(¥y- WiR,X;- WRoXp), (4.10)
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where R, = Y/X,and Ry = ¥/ ;.

Variance of T;m (x4,%5) in large samples

From (4.4), we have

y[ ?;m(xl.xav e v/ T;mhtz) . 'va T;m(Xg) 7
+ 20ov/ T3 (20) T3 (2p) TH(F)

- 8Cov/ ¥,P1p(xy)_7-2Cov/ ¥ ,T;zn( xg) 7,
(4.11)
Now from result (2.15) of Bection 2, to the order of approxi-
mation i/n,

V[ rn(x) 7 = VR V(R -0 v/ R (x) 7

<8Ry (x1)Cov(¥ %1 -Bk(k-DX Cov/F JBxy) 7

+2i(-DE,R _(xg)Cov/ Ty B(x0) 7, 121,38,
(4,18)

.m‘
whare . k = nemy

Proceading on similar lines as in the derivation of
V[T;m(xi)J, it can be seen that,

cévz2 TIm(%y) ,'r;'m(xa)J a k%(?)*kgﬁm(xl)-ﬁm(xglcov(ilﬁa)

_ + (k-1)% %3 cov/ R;,(xl) ,R;(xa)_?
- !cgﬁm( x1)Cov(y,x1) -k-zﬁm( xg) Cov(y ,X3)
- k(k-1)Xcov/ ¥Ra(x1)_7
- k(k=-L)Xg Cov/ 7,Rm(x2) 7

-




+k(k- DX Ry (x9)Cov/” 33,Ry(xp) 7
+ie(k-1)X ;R (xg)Cov/” 'ia.ﬂ;(xl)_? (4.18)

8imilarly, to the o;-der of epproximation 1/n, for i= 1,8,

we have

Cov/” F X 5m(x1)T = KV(F) -Khg(x4) Cov(F ) ~(k-DR Cov/F Byl xy) 7
' (4,14)

Substituting in (4.11) for the various texms from (4.12),

(4.13) and (4.14) and simplifying we have

VT m(x3,%9) 7 = (2k-DBVHES B Ry (k1) $EoRy(x0).7
+(x-220/" TRe(xy) «»‘iaa;cxa)j
- 2x(2k-1)/ Rn(x1)Cov(¥,X3)+Rp(x5)Cov(y,xa) 7
- 2(k-1)(2k-1) éiﬁ:ov[ ?,B;(n)J +
Zaton,” 35507}
. 2&(?-1) E‘El'ﬁm(:l)cov[ X1,R0(22) 7
+ XoRu(xg)Cov/ Xg,Fplxa) 7
+ X3Rn(x5)Cov/ Xg,Rp(x)). 7
+ 'iaﬁm(xl)’mv[‘ X1 Ra(xg)_7 i. (4.18)

Expression (4.15) provides the variance of Tim(xl,xa) s to the
order of approximation 1/n, for any m lees than n.

BEfficiency of T‘Jm (x3,%5) for small m, in large samplaes

When m i3 small as compared to n, k aﬁ:ﬁi‘l-.ﬁ* 1 and

congequently the varisnce expression (4.15) reduces to

-
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V[T;m(xl,lg)_] = V[ y - 'ﬁm(xl)'il - ﬁm(!a)ia _,7. (4.16)

A comparison of (4.10) and (4.18) shows that, when m is
small as compared to n, Tfm(xl,xg) is more efficient than
Olkin's biased estimator ¥,, if and only if the plane

Y+ ﬁm(xl) [xu-il T ﬁm(xa) [xaj-iaj fits the
values ¥, more closely than the plane

¥+ Wlnl [xu - -il_? + Waaa [133 - .i2"7 = wlﬂl‘xu""W2BQx23!

where ¥, and V¥, are the optimum weights given by (4.8) and
(4.9).

Efficiency of sz(xl,:a) for large m

From result (2.18) of section 2, when m 1s large, .
te tho order of approximation 1/n,

L

. _
V[Rm (x3) 7 = 'iAE /. v('§)+nfv(§1)-331 COV("'y'.'ii)_Z i=1,8,
i

(4.17)
8imilarly
Cov/ Rg(x)) ,R:,(xaﬁn :—1; /- V(¥)+ RiRoCov(X, 4Xg)-R1CoV(T,%;)
X1%3
~RoCov(y ,'ia)j. (4.18)

Again from result (8.20)of seotion 2, we have

Cov/ ¥.Bp(xy)/ = --21—"-[ V(¥ Ry Cov(Xy, ¥) 7, 11,2,
1 (4.19)
From rasult (3.21), we have
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cov /[ ;1. R;‘n (x4) 7 = "'%" [31 CO"I(;:; ,}) - R,_EV(Ei) _7,i=1,.2.
N 4.20)
8imilarly, it can be seen that

Cov/ %3 ,B;,(xd)_? a .?% Ve Ry Cov(xy, ¥) -a? Cov(xy ,xy) 7
forifl. (4.81)

Making use of the rasults (4.17) to (4.21) in (4.15) and

observing that in this case Rg(X,) ¥ Ry, we obtain on simpli-

fication,

s V/ ¥ RX, - Rox,, 7. (4.22)
v [1Y, (xy02) 7 1) et

Now from (4.10) and (4.22), we have

VL5 7L T ilxy xp) e W 20w (T Rg) -V () 7
Wy 2R Cov(¥ X)) -RV(3p) 7
+W1¥%,/ 2RyRaCov(Xy,Xs) -Ralv (xy) -Rlv (;ia)J
~2RyRoCov(X; ,Xg) .

From this it follows that T3, (x3,xg) is more efficient,
equally efficient or lass efficient than Olkin's estimator
according as

B/ W Cyx *WeCyy +(WyW3-DCxyxp 7 7 Wy( 1+w3)c§1+w3(1+w1)c§8
(4.23)
where 2 = 8§, / X§, ete.

Inequality (4.23) 1is difficult to interpret, However,

if wa asgsume

3 = c% = i andoy .

’




then Wy, = Wy = 1/2  and (4.23)_reduces to tho
inequality

Cx
exy?z 3 E;- (l’*fw) N

where (g, is the correlation between an auxiliary variable
and the principle variable y and ?m is the correlation
between Xy and xa.

Thus for sufficiently large m, under tha conditions
8 2
Cxy © °§3 = Gy Cyzy = Cyzz® Cyxo
T;m(x;_,xa) is more precise or equally precise or less preoise
than Olkin's estimator according as

bo % 4 -S2 _gie ). (4.24)

Since the welights W and Wg, used in Olkin's eatimator,
are determined by mffﬁ.miaing the variance of wl's?nl * wﬁ?ﬂg

with respact to Wl and Wg, gubjeéct to the condition Witig = 13
for any comdbination of the weights other than the optimum
combination the variance of wl}'al + Wa‘-';’aa i8 more than

the variance of Olkin's estimator, Thus, in particular asince
w, = 1, Wy = O,gives 331, the introduction of a new
suxiliary veriable always rasults in obtaining a more precise
ratlo estimator.

But in Mickey's unblasged ratio type estimators,
L ]
Tim(x),xg) is not constructed as the optimum welghted average of
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'I'Em(xl) and T'im(xa)_, but 45 forwad simply as
Tin(xgsxg) =  Tiplxy) + TI(z)) - 7.

As such, we cennot say without any reservation that
sz(x}*,xg) always provides a more efficient estimator
L
than Typ(x4) or Tlm(xﬁ) .
In fact, when m is sufficlently large, we have

according as

a2

2
Thus, in particular, when c§1 (:2,‘2 = Cx and Cg.y = Cy y ny,
Tlm (x3,23) 1s more precise or equally precise or less precise

than ?Jm(xl) according as
Cx )
G 7 ¥ —— (1+2 0y, (4.28)
Yy

This result shows the nesd for caution in introducing a new
auxillary variable in the case of Mickey's unblesed ratio
type estimators.

Fyrom (4.24) and (4.285) it follows that, when m is
suffiolently large, and Ca, = 3, = 3, Gpy = Cxoy = Cxy,
'r;m(xl,xa) is more precise than 01k1n's estimators as well

as T;m(xl), iz

Cx Cx
vV Max, %'-—_--(hPJ t ——(1+2 §,)
exy e C'y ) 12/ cy 12 j

b 4
= 3 T, G Ci2). (4.30)
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is given to

in order to
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In the following, a table of values of the function

y

e

¢

ses bow mueh the correlation (,, ehould be

(1+ (Jla) for differant values aof (_z;..; and f’m
¥y

make an efficlient use of the estimator T;m(xl.xa).

\\\ Qm}

(_é!_ . go.lo 0.20 0.30 0.40 0,60 0.76

¥

0.26 :o.zoe 0.225  0.244 0.263 0.281  0.328
3

0.80 : 0,413 0.450 0.488 0.526 0.863  0.656
H
}

0.76 : 0.619 0.675 0.731 0.788 0.844  0.984
$
|

1.00 H 0.825 00900 0.975 nok.‘ NOA. "NOA.
: ,
| |

* N.A.~ denotes that the value is not
cdmiasible, beling greater then 1,



6, BXTENSION TO DOUBLE SAMPLING

In constructing the general cless of unbiased
estimators, Mickey has assumed that the population means
of all the auxillary varlables are known., When, howsver,
the population moans of the auxiliary variables are not
known in advance, using the tachnique of ‘double sempling',
we shall develop in this section a general class of unblasged
estimntors of which ‘unbiased ratio and regression type'
estimators are special cases. This section also glves
unbiased estimators of the variance of the proposed esti-
mators and a discussion concerning the efficlency of un-
biased ratio and rogression type estimators.

Preliminaries ¢
o -
Consider a finite population/size R, repreeented by

the set of (p+l) vectors:

(yjl K149 X233 evocecey xpj) 3= 1,8, eoeey N,

Let & simple random sample of size n' be drawn without replace-
ment from the population and obaervatlons be made on all the
auxiliary charascteristics. Let x{, i=1,2,....,p, represent
the means of the auxlliary varlables, based on ths sample of
size n'. HNow lst a sub-saemple of gize n be drawn with equal
probabilities without rsplacement fyom the sample of size n!
to observe the variable y under study. Further, lat y and

%y 4°1,3,..,.,p, denote the means based on the sub-sample.
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For any choice of m of the sub-sample elements (gzgy),
suppose }m and —iim (i=1,2,00.4¢+.,p) are-the means based on
Zn. Let ay(zy) be some known real valued functions of zp.
Further, define

- -— bl | -
. -m - nXy = OXqg - n'xy-mxym
Yn-o® nyn-mym' Xip-m = .""'L,;r v ANl X3 o i

1 = 1,2..-0:---,9-
Finally, let

- P - -
Upa ®  Ypem -Zai(r,nuxm_m-x;n._m), (6.1)
L=y ’
N W » AnomUpgwyn (5.2)
. n'

A general elass of unbiasad estimators

-

By an argument similar to the one used in section 1,
it can be shown that,

B (TM/ m,n') = -Y" 1

where ¥' 1s the meari based on the sample of size n',

Consequently B (Tpy) = B(¥') & ¥, the population mean,

Thus

(n'em)U__ +myqy

de = =

- v - am ] - - Ls - -
= ¥ - 281(sg) (xg-x])- %ﬁl‘-} L Vu-y- 28 () (Rypyxy) 7

(6.3)

« 5 fuGeEp

' - & - -t
- ig—,a':):g) L Y- ii;au,l(z,,,)(11;;;--::3,)_7 (6.4)
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? - - P -
= %ai(sm)x;* {%‘(y— Yoy(eg)E)

; 1 .P; -
) n?;;lt-‘m? - gf‘i(”m)xim)s {6.B)

18 an unbiased estimator of ths population mean Y.

Now a general class of unblssed estimators mey be
constructed by including all estimatorg of the form Tpg,
applied to all possible permutations of the sub-sample
elements and weighted aversges of such estimators. Of all
the astimators of the olass, Toq, obteined as versge of
the estimators Tpy, aprlied to all the possible pormutations
of the sub-gample elements, 15 of more interest since the
variance of T;u 1s never greater than the variance of T 4.

It may be noted that, by putting n' = N in (5.3),
(8.4) and (5.8), we obtained tha general class of unbiased
estimators given by Mickey (1989).

i atlo 0
When information on only one asuxiliary variable is
taken, for the choice a(sg) = Ry = Im / Ty m / n-1,
we obtain the unbiased ratio type estimators, given by

Ting = R A "n?';fm (y=RpX) (6.6)
» . -
sod  Tigg = Rgx' + SRcmld GoRgD, (6.7

whare R;, is the aversge of R;, taken over all the permutations
of the sub-semple elements.
In particular, when m = 1, R; = %

-

"'x"n, and

L

p}:s
M|
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* T DR (V- T
Tia = Tpx e AREUB G- TH). (6.8)

The estimator Ty14 18 & modified form of Hartley and Ross
unbiaced ratio estimetor and has been studled by Sukhatme
(1062),

Unblased Regraession type estimators

Using information con only one auxiliary variable,
with the choice a(zgy) = Yy, we obtain the unblesed
regression type estimators given by,

Toma = L I-0p(%-XN7- PO [ G y-on(Gn-0) 7 (6.9)
and )

Ty = y-bm(x-x')_7+ mnl-n) 1 Xy~ X .
omd £ y-op(E-x) 7+ g (g)zbm(xm X, (6.10)
whare by is the regresslion coefficient based on zm and b is the

average of Dby over all permutations of the sub-sample elements.

Egstimation of variance of Ty

We have
V(Tmg) = B V(Tpg / 0').7 + V/ B(Tge / 0ty 7

= B V(Tpy / 07 + V(¥ (6.11)

From result (1.13) of saction 1, a non-negative unbiased

estimator of V(Tpy / n') is given by

m-"ri
{pl-ndiniem) | ___ 1 3. )-% - a
n'2(n-m) (n-n-1) JZ[ (7y-Yn-m)- L4l 5 (x13-Xynem) 7

(5.12)

where the summatlion is taken over all sub-sample olements
excluding gm.



53
Algo & non-ve unbiased estimator of VG'), based

on sub-gample elements only, is glven by

-n! 8
Bph) | z(y, -7e . (5.13)

From (6.11), (5,12) ami (6.13), it follows that a non-ve
unbiased estimator of the varia.nce of Tmq 18 pmvmed by

Est.V(Tyy) = S8inlniom), n_m_zfyd F o) - Zai(zm)(x“-xiw)

n'8(n-m)

Ne a
+ @D, 3 z(yj - (5.19)

Estimator of the variance of 'rm

Following on similar lines, as in single-phase
sampling , section 1, it can be shown that an estimator of

the variance of Tpy 18 given by

(o) .
Est.V(Tgad = Z-L S [BstV(Tng) = (Ty - Tag)27, (6.15)
m
where the summation is taken over all the possible () esti-

mators of the form Tog for a given sub-gample.

Efficiency of Ratic type estimstors T;md -

¢4 S;Rd denotes the usual biased ratio estimator,

Y. x', in double sampling, then to the order of approximation

i

1/n, we have
T 1 . 2 =0t 2
V(Fga) = (d - =) (85 « B8 53 - ams )+ B, 63,

(6.18)
Also wo can write
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VT = B V(Tipa / n0T 4 VL BTy / 0.7
s B/ V(TIng / 07 + V3V, (6.17)

Now from rasults (2.16) and (2.22) of seotion 2, to the
order of approximation 1/n, we have

Vg RN SR S SR TC NS -
' whan m is smallj (8.18)

; a
s (o - a_p(sg,n.m%: 8%,n1BRnt gy ni)y
when m i3 sufficiently large;
(5.19)

Yy

%Wy e Bxy

where  Ba,nr = E(Rg/n'), Rar =Lt ,
xl

and aa ' sa’n; , and 8xy,n' 8re the mean sums of squares
and gum of products based on the sampla of size n'.

In this case, from (6,17) and (5.18) to the order l/n,
we have

V(T3 ) = (Lo 2 B(f 9B noog 0t~y nragy )
+ V(¥
2 8 = g
= (-3 (54T By ~2Bn Byp)+(2 -1)s,
where Ry = B(Rp). (8.20}

In particular, when m=l, estimator 114 is & medified
form of Hartley and Ross unbiased estimator and its variance
is gliven by -
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where

Neglecting the finite population correction factor,
Sukhatme (1963) has given ths veriance of T;J.d in the forms:

~B -
VPl = b (e T og - SRy
- - 2
+ %-;2"1-% (,—% + 8ry X0y *8ry B(2x Aﬁg (6.282)
where
AX = X - E' Ara P - -i.ﬂ’

2
q-gev(y). ax = Vix), ci“y/ e Gov(y,x) and @, = Cov(r,x).

——

vhen the finite population correotion factor is
ignored, it can bs easlly shown that expressions (5.31) -
and (8.82) are identical by making use of the identity

Oxy 5*"’:-30—% +Xa; + B( Bx an), (8.83)

The advantege of the forw (8.81) and in general (8.20)
is that 1t is sasily cokparable with the variance of the
biased ratio estimator ypa, given by (56.16), PThus a comparison
of (6.18) and (5.20) shows that the unbiased ratioc estimator
‘1‘1;1 s more efficient than the biased ratio estimator yp,,
if and only 1if the populauon regression coefficient of y on

x is nearer to Em ‘(:') Bm thsn to the population ratio

R=Y/X.



Case 11) m is suffigiently ;mg

In this case from (6.17) and (6,18), to the order

of approximation 1/n, we have

VTina) = GGt RrBGeR R 63 -2y agy 0+, )

2 2 - 8
= (.l!‘.. - .l%) (&5 +r® 85 -2R sxy)ﬂ%; .%..)By . (6.24)

Results (5.16) and (5.24) establish that, when m is suffi-

»
clently large, T4 1s-as efflolent as the blased ratlo
estimator YRa*

Efficiency of Regression type estimators %

_In doudble sampling, the usual bisged regression
estimator is given by jﬁ’d =y+b(x~-x'), wvheres b
is the rsgression coefficient based on the sud-sample of
size n, '

Alsc it ig known that, to the order of approximation
i/n,

- 1. 2
ARG b DRCLES LW ¥

xy) * G -288,

(5.28)
where B is the population regression cosfficient.

F?r the unbiased regression estimator T;md wo write

V)  * B [V(Tapa / 007 +V [B(Tag / a0 7.

Hore substituting for V (Témd / n') from the results of
section 4, we have, when m is sufficiently large, to the order
i/n,

VTgma) = BT R0 GE nod, o ni-ab oy 007
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= (AL sy el - mms WL - 3188,
(6.26)
where b,: 1s the regression coefficlent based on the
sample of slgza n',
Thus from (5.25) and (5.26) iF follows that, when
- m is sufficlently large, the unbiased regression estimator
T;nﬂ 1s 83 efficient as the biased regression estimator 31“!.
Also a comparison of (6.24) and (5.26) proves that the
unblasad regression estimators Ta;d ara never less safficient
than the unblased ratio estimators T;muﬁ when m 1s sufficiantly
large.
Finally, it 1s interssting to note that the results
concerning the relative efficlency of the unbiassd ratio
and regression estimators with respect to the usual blased
ratlo and regression eatimators, in double sampling, are .

exactly the sams as those obtained in the single-phase
sampling.
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6. APPLICATION TO STRATIFIED POPULATIONS

In this section, a stratified population with one
auxiliary variable is considered, Assuming that the strata
means of the auxiliary variable are known, two sets of
tcombined!' and ‘'separate’ unbiased ratio type estimators
based on a stratified simple random sample, drawn without
replacement , are obtained togethar with unblased estimators
of their precision,

Preliminaries

Let the finite population of asigme N be divided into
L strata with Ky units in the h®l gtratum, for b= 1,8,....,L.
Let (ypg, Xpy) denote the observations on the principle veriable
y end the suxiliary variable x for the 1%D unit in the n*P
stratun., BSuppose ¥, and X mpresent the h%P x
Defina the population means ¥ = Z:Ph Yp anda X = Y Py Xy,
where Py, = Ny/N. -

Let a simple random semple of slze np be drawn without
replecement from the hP stratum (h=1,2,...,L) with Znh = n,

stratum means..

Further, let yh and xh denote the means based on the sample

grom tha h*® stratun ana 5 = -]'—anyh, x = --Znh Xy, be the

means based on the total straufled gsample.

Suppose zm, 1{on [ ny-1, reprosent aset of
my, elements, chosaen out of the np sample elements from the
th
h

|
stratum, with > mp = m. Based on the set Zay s 1ot 'S'rmh
hay

and ;mh represent the meens and Ry, the ratio ¥, /'imh.
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Further, let, ;= —d my, ¥, % =2 m, %, 80d
By = ;m / ;m‘
Fipnally, define

Rh yh-mb‘ ¥, mh - Hh ?h - mh ‘}mh

Yope my ° oy, - o ’ Yﬂh- @y ° Ny - oy !
and = - -
' Rp XpeTy Xy, Ny Ry, - oy Xy
’-‘nh -mp = ? iﬂh‘mh " :
By - @y Ny - o

Separate unblassed ratioc type sstimators

As usual, a separate unblased ratio typs estimator
1s formed by estimating the strata means ¥y (h = 1,3,...,L)
with the help of unblased ratic typi/ gstimators within
different strata. -

For the h*® stratum mean ¥),» Mickey's unblased ratio

type estimators are given by

T]mh = Bm, %p + N (i) L ¥y - Bmpy Xh 7
. (6.2)
T‘ [ I (Nh-mh)nh o - -7
= + -
ard T amn By, Xp, T L Yy - Ry 3In 7,
e o}
Consequently L
Ti(e) ° th Timp (6.3)
.
» L &
and ?Jm(s) = %Ph ?lmhl _ (6.4)

provide separate unblased ratio type estimators for the

population mean Y.
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]

Now since my elements of the n, sample elements
can be chosen in (;ﬁ) ways, for a given stratified random

L
nth
sample, we have E\(Wh) estimators of the form 'rm( 8)*

Averaging over all such qstimators aleo we obtaln

Ifr i\
kot "k »
1.
np, ZTm(o) = Tin(s) »
\ (mh)

hey

As the stratified random sample plays the role of
»
a sufficlent statistic, from this 1t follows that Ty, .,
is never less efficlent than Ty;(y),

Combined unblased ratio tgpe astimators

—_—

Following Mickey's principle, we mow obtain combined
unblased ratio type estimators.
For this we define

( )
% n_m( )’h=1|a’....'L'
and L - L - -
U = hzqhy Bpemp © Bl %Qh( Bty "X Npy - mh)J ’
(6.5)
whore By -y,

Qn =
H-m

Now since the sampling fwithin diffaorent strata is
independent, for a given set zp, the n),-my, elemsnts, obtained
by excluding ths get Bmh from the ny sample elemsnts of the
nth stratum, constitute a simple random sample without )
replacement from the Ny - m), elements of nth stratum, (h=1,3,,.,L

Consequently, for a glven set zp, we have
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L - L - L -
B(Up / @) = 2Qn EGny-my, /8) Aol 208 Gnyompy/a) - 7O Ty 7
hey il Hl

= Qn Yﬂh-mhs

NY - ®mY, :
- . (6.6)
N-m
Thus
Tip(e) = 5 “ﬁ*m}m (6.7)

is conditionally and hance uncoﬁdlﬁonally unbiased for the
population mean Y.

Substituting for U, from (6.5) in (6.7), it can be seen that
the combined unbissed ratio type astimator*ﬁ’m(c) 1is also givsn
by

Tim(e) ® FBn X +-§-Z¢r 1) (GnyemyFo Top-mp)» (6.8)
Aversging over all the possible ;ﬁ: (@R)estimators of

the form Typcays for a given stratified random sample wa
obtain the combined undbiased ratio type estimator

» ! ! R)
s Lo .
Tun(e) = i omy T (6.9)

which 1s never less efficient than Typ(q),

Further, Af for & given m, the my (h=l,2,...,L) are

80 chogen that Nh - @y < gonstant, (1.e.) Np-mp = _Nem |
oh = En np - mp n-m
then Ty,(,) and i'lm(o) assume simpler forms given by

Tim(e) = Bpk + %i%‘;’:a’}-[ ¥-Bpx 7, (6.10)

and

. * s (g-mg[?-a; %7 (6.11)
Tlﬂ(ﬂ) = am * = !




) §
£ (oo
where R; ( )Zﬂm

It is interestin_g to note that estimators (8,10)
and (6.11) are remarkebly similar in form to the unbiased
ratio type estimators, based on an unstratified random
sample of sige n, Further, in proportional allocation
(1,e, when ny = nPy), for a given m, the condition

In-%y o _HB_ gy gatisfied if the cholce of my is
np - Ty n-m

also proportional to Pp (i.e,, m; = mPy),

Thus in proportional allocation for the choice
B, = uPp, estimators (€.10) and (6.11) provide combined
unbiased ratio type ostimators,

Estimation of variance

Wo first give unblagsed estimstors of ths variano'o of
the separate ratio type estimators and then obtain unbiased
estimation of the variance of ths combined estimators.

!

(1) Separate unblased ratio type estimatore

From result (1.16) of gection 1, a non-ve unblased
estimator of the variance of Mickey's unbiesed rauo type
eatimator Tlmh in the hm stratum is given by
(Np=tip) iy =) "R
(np-my,) N§ Tnh-mh- 1) £ Fna-Faping) —

L

BSt.V(T IIBh) =

excapt for the cholee my T (6.13)

(oo -
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Conseqguently, & non-ve unbiased estimator of

the variance of the ssparate unblased ratio type estimator
Tm( g) is provided by

Est.V(T (o)) = Zp"' E8t.V(T1y) - (6.13)
hey

Also, since for a given stratified random sample,
E[?lm(a) /%’hn 1’2..0030'1’-7 = ;mca)
an unbiased egtimator or the variance of the separate unbliased
ratio type eatimator Tlm( s) 1e given by
k‘-i (““-

Est V(T — . - - 2
gt.V( lm(a))éj‘ (=) Est.V(T?(a)) (Tang) = Pam(a)) 7 (6.24)

e

(11) Combined unbiased ratio ¢

agtimato

To obtain a non-ve unbingsed estimater of the variance

of the combined ratio type estimator Tim(q), we note that

V(Tig(oy? = B V(Typ(o) / m 7 +V [B(Typ(qy/m) 7

.(H;..gl.a B /[ v(Uym)_/, from (6.7)
-2 L 3= -
= LK;SL B [.%:\Qh V(Ynh - mp~ Bm !nh-mh/m)J:
from (6,56), (6,16)
Now, clearly, a non-ve unbiased estimator of

VG,,.h -my " Hm 'inh - my / m) 1s provided by
- M

(fp=n) (Npezp) cnh-mh-’TZ[’ na-fuXnt) ~Opp o lenh-mh]
(6.16)

exqept for the choice my = np - 1,
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Consequently from (6,16) apnd (6.16), a non-ve
unbtased astimator of Tm) 1s given by

-
(8p-np,) (Rp-mp) . /;ht"amxhi) wﬂh"mh Rm‘nh-mhj
.8 -
N®(ny~mp) {nn"mh

k:! i (6017)

Agalin, eince for a given stratified random sample,

o
B Typey / My Bel484eesei ik 7 2 Ty

an unbiaged estimator of the variance of f;m(e) is provided

by }?\:(:\n‘\
i »
Est.V[Tm(c)J = T nh. Bat.V(Tyme)) = (Fimo)- Tlm(e))y
Mt (mh)

(6.18)



7. NBERICAL EXAMPLES

The theoretiocal investigation of the efficiency of
Mickey's unblased ratio and regreasion type estimators
presented many difficult problems in view of the complexity
of the estimatorsthemselves and in fact no theoretical
appraisal of their performance in small samples hag been
possible. Bven the verification of the results, obtained
in respect of thelir efficlency in large semples, involves
heavy computations and is possible only with the help of the
electronic computer, Alsc one of the interasting prodlems
8till remained unsolved 1s the beshaviour of thesa agtimators
for increasing values of 'm', .In this section, however, 8
fow numerical examples have baeaen taken up in thase directions
for the unblased ratio type estimators, Unless extensive .
comparisons are made, no general conclusions ¢an dbe drawn
regarding their performance in smsll samplesj for increasing
values of m; etec, N

The first oxample demonstrates the construotion of an
exact unblased estimator of the varlance of Hartley and Ross
estimator, as has been suggested by ths results (1,15) and
(1;15) of section 1, for a sample of sige 9. In the second.
example, a sample of sise 15 has been taken to obtain consistant
estimators of the variance of the unbiased ratio type astimators
Tim (@ = 1,2 and 8), with help of the result (3.16) of seotion 8.
In the third example, a sample of size 100, with known popula-

tion coefficients of variation and covariation, is taken up
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‘ to study the varlance of T;m, £ér the cholics of m ranging
from 75 to 99, with the help of the bivariate normal
approximation formula (3,37) of section 2., Finally, an
artificlal stratifled population consisting of 3 strata,
given by Cochran (II editjon, page 178), has been conslder-
ed to study ths efficiency of thes combined unbiased ratie
type estimator T;.:L(c) of sectlen 6,

Example I3

The data for this examples oome from a simple random
semplo of sige 9, drawn without replacement from the h
21 villages of the Venkatagiri Taluqg in Nellore distriot
in order to study the ylelid and cultivation practices of
Lime, 1In Table 7.1, y3 mpmsel}}f,_WB nucbsr of bearing
trees and x4 the area (in aores) reported initially under
Lims, for ths Jth village, The problem is to estimate the

average number of bearing trees per village in Venkatagiri

stratum,
~ Table 7.1

Bampled village No. of bearing Arga (in acres)

s &0 4 4
A M S #

Code number troes (ya) reported
initially
1 291 .60
2 163 2.98
3 78 - 7.08
4 £61 5.36
5 1308 13.80
6 504 6,89
7 1403 16,81
8 1703 - 12.63
)

864 6.68
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Population size N = 91 Population mean of x # X = 11,731
Semple size e 9 ny = y(n) = 6259, aores.
ox = x(n) = 76.17 s?r = 568677.76

&  =21,7 sxy = £528.21

M.8.B.(yg) = 10104,
where, ¥p 1o the usual biased ratio estimator,

Table 7.2

Illustration of computation for unbiased estimator of the
‘variance of Hartley and Ross estimator Til specified by
, (1.18) of section 1, (m=l)

Y By ;n‘ T }\?\y’ﬂ “%ﬂx‘j }r%‘xjy; ?&&-%&)_ggmat.V(Tn)
=1, 61.06a 2700.36 72255628 787.108 7i868.11 - 661760 8008
8, b56.264 3053.00 7283640 809.826 72716.86 526468 19016
3. 11.064 128.30 73041256 768.836 73647.8) 36686977 83871
4, 48,694 237,11 7242038 789.7992 71788.76 812798 20842
6. 96.444 0301.45 06615008 636,370 65620.71 147794 10456
6. 76.480 6584P.19 7066193 776.101 €9876.35 23483 13978
7. 83.462 6965.01 6341800 635.963 49613.88 1208 12610
8. 134.838 18181.20 4410000 659,012 §1688.82 2011627 7016
9, ©7.535 ©813,08 ‘7003283 786,267 70050.99 171183 10308

By =—&FRm = .88,

_é_f_mt.vcrn) = 18467, (X - Ak

- .8 4 an
(2o 3 )21 (r,-Ry) “=6100.

[ ]
Est.V(T31) = 16467 - 6100 = 10357,
Estimated relative effliciency of Hartley and Ross

unblased estimator with respect to y, is, therefore, given
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10104 »
by — o 100 &8 §7,668., T.1 iz hence preferable in
1 7 x 100 % 1% 8 " _P

view of its property of unbiasedness.

Bxample I1I _

The data for this examplemt; based on & almple
random semple of size 18, drawn without replacemsnt from
the population oi‘ 21 villages of example I. Uizbiased ratio
type estimators T;m, m= 1,3 and 8 are compared with
¥ by caloulating consistent estimstes of thair variance,
obtained from the formula (2,16) of section B.

Table 7.3

1 : X
Sampled village | No. of bearing Area reported
Code mumber i Trees(¥y) initielly (3:3)

€98 6.18

1
2 1403 ' 16,81
3 873 8.78
4 218 8.34
5 558 4.60
6 78 7.05
7 1302 13.50
8 871 7,06
9 0 5,01
10 1502 13.50
11 201 5.60
12 307 13.54
13 1063 13,23
14 168 8,60
16

1470 14,77
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For this sample Rp = 74.806, R; = 70,810
»

R, = 72,843, By = 73.620

—

Also o8 = pgozes, § = 20.706
sxy " 1896.94, by = 91.613,

whera, b ia the sample regression coefficlent,
. Using the formula (2,16) of section 2, for emall
valuaes of m, .a consistent estimate of the variance of

L
Tim 18 given by
Bat. V(T ) = Bpt. V(Y)+ Ry Bat.V(x)-2R, Bet.Cov.(¥,x).

Also 8 consistent estimate of the varliance of Ea is given by

Est.V(Ty) =  Bet.V(¥) + RS Bst.V(X)-2R, Bot.Cov.(¥,3).
/

Consequently, eince in this oxample
nAR;'LR;LRgAAbna B
we expact the 1r_sequality
Bot.V(F,) £ Bst.v(Tyy) £ Est.V(Tyg) & Bet.V.(T];).
Table 7.4 gives the estimztes of the variance and the relative
efficiencies compared to .-';R .
Tadle 7.4

o

Estimator | Betimate of the variance I Relative efficlency

i 8470,898 100.00
Hartley end Ross Ty 5647.148 96,87
»
654, .
T2 5654.,387 08,48

33 6521.4563 90.08
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Although the unbiased estmiators '‘are all lass
officient than the blased estimator, thelr varilance 1s
not significantly more than that of '§R. Thus they compare
satiafaoctorily with }R' from the point of view of efficiaency.
On the other hand computation of the bia.a.ed estimtor is
the sasiest. Among the unbiased estimators, T1g s the
best from the point of viaw of efficlency, but its computa-
tion 1s relatively 4Qiffiocult. For thie particular example,
for increasing values of m from below, there iz an increase
in the effigiency of the unblased estimator.

Example IIX

The data for this oxample are taken from page 171,
second of Cochran's *Sampling Techniquses'. From m
census of all the 2010 ferms in Jefferson County in respact
of the acreage under the corn corop (y) and the total acreage
(x) of the farm, the following are the population msans
snd the cocefficlents of variation and covariation.

¥ = =630, X 117.88
¢ = o0.896886,C3 =  0.653924,

Cxy = 0.472071.

A simple random sample of slge 100 18 sssumed to be
drawn from this population., The bivariate normal approxima-
tions (3.2B) and (2.37) of section 2, are calculated respect-
ively for the M.5.E, of ¥y, and the variance of sz, m ranging
from 76 to 89. Tﬂe variances together wigh tho relative
efficienclies are tabulated in Table 7,5.
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Table 7.6
Eatimator M.8.B,./variance Ralative efficiency

YR 36.7587 100,000

(™

Tlm m= 76 35,8648 101,089

»

80 36,3862 101,086
856 36.8910 101.048
20 35,4014 101,018
28 86,4383 100,915
99 36,7189 100,114

The results show a steady decrease in the efficlency
of Tim as © increases from %‘rtﬁ/aa. although the decrease
is not quite significant. For all m ranging from 75 to 99,
T3n 1s more effisclent than yp, although once again ths
ggin in efficiancy is not significant. The results confirm
that to the first order of approximation, when m is guffi.

olently large, *r;m 45 as efflcient as the blased ratio
estimator ¥g.

Example IV

In this example, an artificial stratified population
of 3 gtrata, constructed by Cochran (%:1\.11, page 178), 1s
considered, UEsach stratum contalns 4 units out of which 2
units are selected at random without replacement., Thus the
allocation of the total sample size n=6 is proportional to
the strats sizes ¥p (h=1l,2 and 3), The population was
constructed in such a way that (a) Rp varies markedly from
stratum to stratum, thue favouring a seperate ratio
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estimator, and (b) the ratio estimator within each
stratum is badly blased., The cholce of my is equal to 1
in oach stratum, so that the averaged *seporate' and
'eombined! unbiased ratio type estimators for the
population total Y are respectively given by the separate
Hortley and Ross estimator N Tjs . of (6.4) and the
combined unbiased ratio type estimator N Tlg(,) of (6.11).
Five methods of astimating the population total

are compared.

L
1, 8imple expansion T S Ny T
hel
8. The combined blased : (¥ / X)X.
ratio estimator

3, The geparate bdlased
ratio ostimator

L
=1

.

4. The separate Hartley 3 Tiacg) ©f (6.4)
and Ross unbiased -—
ratio estimator

8. The combined unbiased s T;B(c) of (6,11).
ratio type estimator

There are 6° = 216 possible samples. The blases

and varlances are exact, since all possible samples are taken

into account,

Table 7.6
A small artiflicial population
Etratum
I 11 111
y x y X b 4 x
2 2 2 b 3 1
3 ) 6 4 ? 3
4 6 ") 8 9 4
11 30 24 283 28 12

Rh 00 625 1: lll 3.800



‘Table 7.7 -
Results for the differant astimatorsg of ¥

Method Verlance {Blasl?® M.8.%,
8imple expansgion .e 820.3 0.0 8320.3
Combined bissed ratio .._ 262 .8 €.6 269.3
Separate biaged ratlo .. 85.9 24.1 60.0
8oparate Hartley and Ross 153.6 0.0 163,86
Combined unblased ratio 148.4 0.0 148 .4

Irrospective of the extreme conditions, the contri-
bution of tha (bias)a to the mean square error of the combined
biaged ratio estimator 1s trivial, Because of coneiderable
variation in Ry, the seperate biased ratio estimator is
ouch more accurate than the combined biamsed ratio sstimator,
but it is badly biased. Tha Hartiey end Ross saparate
unbiased ratio astimator is suparior to the combinsd blasged
ratio estimator, bBut inferler to the combined unblased ratlo
gotimator as well ag ¢0 the separate blased ratlo eatimator,‘
as judged by the M,8,E, of the latter. The combined unbiased
ratio estimator is more efficlent than any other estimator
excopt the separats blased ratio estimator.

Cochran hag included sgparate Lahiri unbiased ratio
astimator also in the comparisons, but i{n tho suthor's view
it i5 not comparablo as it is basad entirely on a different

probabllity sampling schems, The five sstimators compared hera

arg all bdsed on stratified simple random sempling without

replacement.
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