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I.NTFODUC'l'ION AND SUMMARY 

' 
Simple random sampling is by f~r the most commonly 

used method of sampling in surveys. It is simple, operation­

ally conye~ient and gives equal chance of selection for all 

the units in the population. When, however, th& units vary 

considerably in size, as is often the case, simple random 

sampling does not take into account the possible importance 

ot larger units in the population. Under such circumstances, 

without torogoing the operational convenience of simple random 

sampling, it is desirable to use auxiliary information, such 

as size of unit, at the estimation stage, for obtaining more 

efficient estimators of the population value in the sense of 

giving estimators with smaller standard errors. 'fwo examples 

of such estimation procedures are the 'Ratio end Regress~on• 

methods of estimation. 

The two classical ratio esti.m!ltors are the ratio of 

- 'n -means estimator Yn = -=- X or equivalently the 119ighted 
Xn _ _ rf. x1ri -

mean of the ratios estimator rw X = ~ X and the 
- - - X:t .!1 -mean of ratios estimator Yr = r

0 
X 1 where y0 and Xn are the 

y 
. sample means t ro, the mean of ind1 vidual ratios r = - in the 

X 

sample Snd X is the known population mean of the auxiliary ... 
variable x. Both the estim_a.tors are known to be biased. 'l'he 

latter is not even consistent. An exact expression for the 

bias in Yr is available which does not depend. upon the sample 

size n. Since tbe unweishted mean rn ma.y be seriously biased 

if r tends to be larger (or smaller) for large x than tor small x, 



estimator Yr is likely to be more biased than the estimator 

Ya bo.sed on the weighted mean r_.- No exa.ot expression for 

the bias in Ya is available; however, for samples of' moderate 

size, from populations in which the linear regression of 

y on x passes near tho origin, and in which the coefficient 

of' variation of x is not too large, the bias in Ya is 

negligible. But the problem how large the sample should be 

to make the bias negligible has not yet been solved satisfac­

torily for all types of populations. 

The classical regression estimator is obtained by 

evaluating tho least squares line of best fit y = Yn +bn( x-'Xn> 

at the point X, giving 'Y1r = Yn +bn(X·'in> as a regression 

estimator of the population mean, where bn is tho sample 

regresaion coefficient of y on x. Except when the true regress­

ion line passes through the origin, the regression estim~tor 

is leu biased 1 and more precise, than the ratio estimator Ya· 

On the other hand, the ratio estimator is mora easily calculated. 

The ayailable bias expressions and variance formulae 

for both the regression estimator Y.1r and the ratio estimator 

Ya are only approximate; the approximations assuming the sample 

size n to be sufficiently large. For small samples nothing is 

known about the nature of their bias and precision. This 

situation has led the research workers in the field to explore 

ways and moans of obtaining 1 Ratio and Regression type 1 

estimators, which are either completely free from bias or 

subJect to a smaller bias than the customary ones. 

In this connection Quenouille (1956) has suggested a 

technique of redUo1ng tbe bias 1n the ratio estimator Y.R. 
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By splitting a sample of size Jn at random into two sub-samples 

of sizes n each, he has considered a weighted average of the 

three ratio estimators of the fonnyR' applied to the total 

sample and the t..m sub-samples, where the weights are chosen 
l 

in such a way as to reduce the bias to the order --g • 
n 

~avino.ra. Singh ( 1962) has further investigated the technique 

and examined the optimum sizes for the two sub-samples with 

respect t0 the order of decrease in bias and the efficiency 

of the modified ratio estimator as compared to tho ordinary 

one. !Jurty and Nanjamma ( 1959) have developed a technique 

of esttruating the bias of a ratio estimator unbiasedly to 

any given aegree ~t approximation and used this estimator of 

bias to correct tha ratio est~tor for its bias, thereby 

getting an 'almost unbiased ratio estimator'. 

Unbiased ratio and regression type estimators have 

beon evolved 1n recent years, following two different approaches. 

Of thA ratio and regression type, the ratio type has received 

much attention. The first approach consists 1n getting new 

types of unbiased ratio and regression estimators under common­

ly adopted sampling schemes. The second approach is to modify 

thA sampling scheme so as to make the usual ratio estimator 

(i.e,, Ratio ot the unbiased estimator of the population total 

ot y to tho unbiasod eatimator ot the population total ot x 

under the original scheme oi' sampling) unbiased. 

Hartley and Ross (1954) have been tho ~neers in the 

group of authors who triad to obtain unbiased estimators under 

the co!illlonly adopted sampling schemes. In simple random sampling 

without replacement, they have given an elegant expression i'or 



the bias in Yr• o.ncl on unbio.sed estimator of that bias 1 

thereby arriving at an unbiased ~tio-estimator 

N(n-1) 

4 

Robson ( 1957) bas do rived the exact formula for its variance 1 

and on unbiased estimator of the variance. In large samples, _, 
more simple estLmators of the variance of Yr and an extensive 

-discussion of the relative efficiencies of estimators Ya 1 Yr 

and y1 havo been given by Goodman and Hartley (1958). 
r 

Sukhatme (1962) has obto.1nod a generalized. form ot _, 
Yr for multistage designs. A double sampling version of 
-I Yr• in which the unknown population mean of x is replaced 

by the sample mean of x based on a larger proliminary 

sample, without disturbing tho property of unb1asedness 1 has 

been given by Sukhatme (1962) together with a comparison o~ 

its large sample etrioiency with the double oampling versions 

of Ya and y r' Joso Nieto Pascual ( 1961) considers, 1n a 

stratified population, a 'separate' unbiased ratio estimator _, 
which is a stra1ght,...torwa.rd generalization of Yrt and a 

'combined' unbiased ratio esttma~or 1 tho latter being based 

on a slightly different sampling scheme, The achome tor the 

combined estimator consists 1n drawing K independent stratified 

samples, each sample containing one unit selected at random 

from each of the strata. In large samples 1 he has obtained a 

comparison or the combined unbiased estimator with the usual 

combined biased estimator and aleo a comparison of the separate 

Hartley and Ross unbiased estimator with the usual separate 
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biased estimator. 

J.Uckey (1959) has putf'orwarci a BOneral theory for 

constructing 'unbiased ratio and regression type' estimators 

in simple random eBlllpling without replacement, using 

information on the population maans of' several auxiliary 

variates, For a sub class of his general class of estimators 

he hna obtained non-negative unbiased estimators of the 

variance. No attempt has,ho~~ver,beon made to investigate 

tho variance of the proposed class of unbiased est1matora • . 
Williams (1961, 1963) hall considered a hypothetical 

two stage sampling scheme, in which at tho first stage, one 
SPLi~ 

ot the possible ~ of' the whole population into a mutually 
n exclusive and exhaustive groups of size _ each (i.e, popula-

ns .lc 
t1on size N c --) is selected at random, followed by the 

k 
selection with equal probability without replacement of k o~ 

tho groups. For a given split of the population and a random 

selection of the groups, conditionally he has obtained a 

general class of unbiased ratio and regression typo estimators, 

In actual usage the groups are obtained by splitting a simple 

random sample without replacement of size n from the whole 

population, but not by splitting the population itself, The 

same principle is extended to obtain~ unbiased estimators 

1n multistage designs, as also to obtain a 'combined' 

unbiased estimator in stratified populations. He has also 

discussed the unbiased estimation of estimator variance and 

the precision ot the regre~sion type estimators. 

The underlying principle in the approach of a second 

group of authors in evolving unbiased ratio type estimators 
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1\ 1\ 
stems f'rom the f'ollowing considerations. If v 

5 
and. 7:.

5 
are 

unbiased estimators of the population totals Y and X, based 

on the sth sample selected uithAa.ny given sampling design, 
1\. y 

then the ratio estimator R = ~ will be unbiased for the 
X 

ratio R ~ Y/X, if the design is Ho changed that P51 tha 

probability of selecting the sth sample is proportional to 
1\ th 
B8P~- where P~ 1a the probability of selecting tbe ~ uample 

XsPs 
in the original sampling design, i.e. if P8 = X • I~ 

further, P ~ is same for all o, then P 8 should be made pro por-
A 

tional to X6 to make the ratio estimator unbia.sed, 

Thus in the case of s1mplo random oampling without 

replacement the ratio !!! of the aampl~ means v;ould be 
"Xn 

unbiased for the population ratio if the original sampling 

design is modified so as to make the probability of selecting 

tho s th sample proportional to Gn> 
8

, or in other 1110rds 

proportional to the total size of the oample. Lahiri ( 1951), 

fuidtuno (1952) and Sen (1952) have independently given sampling 

procedures for obtaining a sample with probability proportional 

to its total oize, Ba9ed on these procedures of selection, 

ues Raj (~54) has given modified sampling schemes appropriate 

to unistage 1 stratified, multistage and multiphase de~ign~ in 

the cusg rf simple random sampling without replacement, which 

eliminate the bias of the usual ratio est1ma.tor, 

Murty 1 NanjtmiD.la and Sethi ( 1959) have given modifica­

tions of many of tho selection procedures, commonly adopted 

in practice, which,while retaining the form of the usual biased 

ratio-estimator, make them unbiased. The method suggested by 
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them consists essentially in selecting the first unit with 

probability proportional to the auxiliary variate, and the 

remaining units in the sample according to the original 

sampling scheme. Indeed the method is very elegant and 

provides easily calculable unbiased estimators or the sampl­

ing variances also, but ita utility is limited in practice 

as it assumes the knowledge of all the x values in the popula­

tion, in which case a better sampling design can be fo~ulated. 

Recently Pat hale ( 1964) has shown that if 1n these modified 

sampling schemes a sufficient statistic is available and if 

the ratio est~tor does not depend upon the sufficient 

ntntistio, it can be uniformly improved by Reo-Blackwell 

theorem. This result has been used by him in deriving un­

biaaod ratio est1ms.tora, better than the ratio estimatora 

given by Murty, NanJamma and Sethi, 

The prosent investigation io a critical etudy of 

Uickey's unbiased ratio and regression type estimators. 

Section l deals with the unbiaaed estimation of the variance 

of Yiokey' o ost1ms.tor in its general form. Section 2 is 

concerned with the inveat1gation of the precision of Mickey's 

unbiased ratio type estimators, ut111axing infonne.tion on a 

single auxiliary variableJ and a comparison of their efficiency 

with the usual biased ratio estimator Ya in large samples. In 

section 3 an attempt is made to obtain a large sample formula 

!or tho variance of the unbiased regression type estimators 

baaed on a single auxiliary variable; and to compare their 

efficiency with the usual biased regression est~tor and the 

corresponding Mickey's ratio type estimators. Section 4 is a 



study of the unbiased ratio type estimators based on two 

auxiliary variables in respect of their precision, in 

8 

large aampleo, and their relative efficiency compared with 

tho Olkin 1 s weighted and biased ratio estimator. Section 5 

doals with tho development of Mickey's principle to obtain 

unbiased ratio and regression type estimators in two·phase 

sampling. It also includes the unbiased estimation of 

their variances and a discussion of their large sample 

efficiency compared with the usual biased ratio and regress­

ion eotima.tors in two-phase sampling. In Section 6 separate 

and combined unbiased ratio type estimators, based on 

Ulckey•a principle, are given for stratified simple random 

sampling without replacement to~ethar with the unbiased 

ootima.tion of their variance. Finally, Section 7 gives some 

numerical roaults concerning the performance of the unbiased 

ratio typo est~tora with reepect to the usual biased ratio 

estimators. 
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l. mmiAsED ESTIMATION OF ESTIMATOR VARIANCE 

Mickey's •unbiased ratio and regression estimators' 

are particular caseo of general class of unbiased estimators, 

developed by him. A brief account of the sampling frame , 

sampling design, and the construction procedure of the general 

class of estimntoro is necessary to outline the results of 

this Section. 

M1ckav'a unbiased eatimators 

Lot the finite population of aise N be represented 

by a aet of {p+l) co111ponent vectors· 

(yJ t XlJ t JtaJ t • • • • • • •• t Xp~) t Jal 12 1 • •• ••• • 1N 1 

where x1 , X:;p• ••• 1 xp are p auxiliary variables with known 

population lll9Wl8 xl t Xa I •••••• I Xp• The problam ia to 

estimate the unknown population mean Y of the variable y 

undor otudy. For this purpose, a simple rando111 sample of 

size n 1s solected (without replacement) from tbe population. 

Lot y 1 and i 1 1 1=1,2, ••••• 1p denote the sample means. 

Given this sample, tor any choice of 111 of the sample 

elements 1 m"'-n 1 the retnaining n-m elements constitute a 

silllpla random sample of size n-111 frolll the finite population 

ot 1~-m elements derived by excluding the selected 111 elements 

fro111 the given population. Let ~ represent the m sample 

elCillOnta so chosen out of the give.n eample an4 ai(Zzn) 1 1=1 12 1 ••• 1p 

denote some known real valued functions ot the observations ~· 

i'urther let Ymt and "i1m, 1~1,2, •••• ,p 1 be the means of the 

observations l!(n. 
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Now define 

-ny- tDYm 

I! - m 

tfl-ui. "i I:L m H-m ., 
Hii-uiiim 
-..----· i=l,2 ••• ,p. 

N- m "' Q - m 

Further let Um denote the statistic given by 

• • 

Then 1 it E(~/m) denotes the conditional expectation for a 

given set Bm 1 1116 have 

E(t1a/m) = YN~ 

Consequently, if '1' "' m 

then E ('l'm/m) - "' 

(N-m)Um~m 

N • • • 

(l.l) 

(1.2). 

Henoo unconditionally al.so 'l'm provides an unbiased estimator 

of the population mean 'Y: · 
The estimator 'I'm which can also be written in the 

tollow!ns equlval.ent fo:rms• 

p ' ra1 ( sm> <"itm-ii> ' 
{sl I 

(1:3) 

(1.4) 

(1.6) 
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is hereafter called Mickey's unbiased ~st~tor, in its 

general form; meaning thereby Mickey's unbiased estimator 

1
10 

with arbitrary coefficient functions ai(~),i=l,2 1 •• ,p. 
Hare Zm UJtJ¥ be taken as the observations on the first 

m dro.ws of the sample of size n or as any subse.mple of she m 

from the given sample. Thus a general class of unbiased 

estimators can be obtained by taking weighted averages ot 

estimators ot the form Tm 1 applied to all possible permutations 

of the sample elements. Of particular interest 18 the estimator 

• T10 obtained from Tm by averaging over all possible permutations. 

This is so because the unordered sample plays the role of a 

sufficient statistiq and by an application, of Rao-Blaclcwell 

the~rem it follows that the va.rUill;e of rr: is never greater than 

tha.t of Tm• 

Mickey has obtained unbiased Ratio end Regression type 

estimators as partiou~ar cases of the estimator Tm in its general 

form, by a proper choice .of the coefficient functions at(am), 

i=l,a, ••• ,p. 

Unbiased Ratio tYpe estimators 

For example 1 when information on only one auxiliary 

variable is available 1 the choice a( Zzn) = Ym / 'im = Rm, applied 

to the f'orm (1.5) of '1'm 1 provides an unbiased ratio type 

estimator 'l' lm given by 

I 
0 

';r (N•m)n ;: -J. 
Tlln = ~ + L Y - Rmx • 

N(n-m) 
•• ( 1.6) 

Averaging over a.ll possible permutations, we obtain the more 

• efficient unbiased ratio type estimator 'l' lm given by 



• .. RmX + (N-m)n h -~_l, 
N(n-m) • • ( l. 7) 

• where Rm is the average ot Rm over all permutations. 

Unbiased Regr.ession type esttmators 
"1'1\ 

L.(y4-Ym>:x: 
cJ ~ "'bzn, 

"'r<x3-'!m)2 
• 

With the choice a(~) 

J 

the usual linear regression coefficient based on the 

observations Zm• expression (1.3) for 'l'm yields a regression 

type estimator 'f2m given by 

'-. -: J m(N-n) J: - - - J 
'1' 2m "' L Y - bzn(:x-.~~:) - (n-miN L Ym·Y·'bm(:zm-:x> ( 1.8) 

Averaging over all permutations we obtain 

• /:.. • J m(N-n) l (:,) - -
!.,_ == L 'Y-bm<i-i> + ( )N • - L bm( :~rm·x) • 

..... n-m (n' 
m• 

(1.9) 

• where ~ is the average of bm over all permutations. 

The present section deals with the unbiased estima­

tion crt the variance of lliokey'e unbiased estimators 'l'm and . ' 

~mt in their general form. 

Unbiased estimator of the variance of 'l'm 

Prom the wll known formula, connecting variance 1 

with the conditional expectation and conditional variance, 

• have 

= 
( ) 

E (V('l' rr/m)) 
( ) 

( y 
+ v (B(Tm/m)} 

( ) 

= 
-( 7(N-m)Um~m I J ) 

E (V£- N m ) 
( ) 



= (N-m)2 E fv<Um/m)_j 
N2 

= (N-m)S S fv<'Yn-m • ±ai(flm)Xin-m/ m)J • it! •. , 
from tho definition (l.l) of vm. 

Now we obasrve that 
p 

Y~-m = Yn-m • ~1ai<~>itn-m 
1s the arithmetic maan of the observations 

I 
y~ 

• 

l3 

( 1.10) 

made on the n-m sample elements which are obtained by exclud• 

ing 8m from the given sample ot size n. Further, since for 

a given choice ot zm, the remaining n-m sample elements 

co~st1tute a random sample from the derived population of 

size N-m 1 it can be seen thnt a non-ve unbiased est~tor of 

V <Y~-m I m) 

1s provided by 

N-n 
(N-mHn-m) 

where 

s~• ,n-m 1 m=1 12 1 ••• 1n-2 

'11-'W\ 

"\ ' -• a 4- (y~ - Yn-m> 1 

,J 

( 1.11) 

the suumat1on being taken over the remaining n-m samP& elemants. 

Consequently 1 from ( 1.10} and ( l.ll} 1 a non-ve unbiased esti­

mator of the variance of Tm is Jiven by 

Est.V(Tm>= .(N-_!l)p~_:-m). l fl<y~-Yn-m>· Zai(3rrJ.)(Xij.-'iin-m>} 
.N2(n-m) n-m-1 . <'I 

- J ( 1.12) 

This estimator holds good for all values of m leas than 

n except for m = n-1 1 in which case there is only one observa­

tion of the type Yj
1 

• Further it can be seen that the 
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rel1a.b111ty of the Est. V('l'm> is more for small values of 

m than for the choices of m near to the total sample size 

n, as s2, is baaed on n-m-1 degrees of freedom. 
y ,n-m 

• Unbiased estimator of t;he varlanc~;~ ot 'l'm 

• Since tor a given sample of sh:e n, S('l'm I n>= Tm• 

we have 

V('l' m> 
• 2 • 

'" E('l'm - 'I'm> + V('l'm) • 

o.. . n 
Averg1ng over all the possible (Dj) estimators oi' the form 

" 
'l'm will therefore give 

~ @ •2 
..1.'[V<Tm> = B J_ L (Tm • T~p) 
~) C!) 

• + V(Tm) • 

From this it follows that an unbiased estimator of the 

• variance ot 1~ is given by 

'1\•TI\ • Est. V(Tm) ~r • a.., = + LL Est.V(Tm> - (Tm - 'l'm> J, 

Cm) j 

where Bat. V(Tm> is provided by ( 1.12). 

Pp:tlcular oases 
• 

( 1.13) 

( 1.14) 

For the ratio type estimators T lm and T lm' from 

( l.l2) and ( 1.14) unbiased estimators ot the variance are 

provldod by 



• and Est. V('l';am) a 

0 
For the rQgression type estimators 'l'Bm and Tam, 

unbiased estimators ot the variance are given by 

15 

(1.16) 

~-~ a 
Est. V('fam) .. ~~(g!l~-m) ·cnJ_

1
) y<:vr'Yn-ml-bm<xr'in-m>J 

J ( 1.17) 

• and Est. V('l'am) .. 

-



a. PRF.CISIOU OF RATIO 'tYPE ES'l'IUA'l'ORB WITH ONE AUXILIARY VAlUABLE 

Goodman and Hartley (1968) have investigated, in 

large samples, the relative efficiencies of the ratio type 

estimators 'Ya = ~ x, 'Yr = r i, 

and y' .. r I+ (N-l}n 
r N(n-1) <Y-r 'i>' 

of which the first two are biased estimators and the third an 

unbiased est1me.tor of Y. They haw shown that 1n large samples 

the estimator y~ is more efficient than 'Ya, 11' and onlY 1t the 

slope of the regression line of y on x 1s closer to 

~ y~ 

r c "*-"- than to the popule.tion ra.tio R = V / i . p .. f.::. ll4 --
J ,, "' 

In this section, we shall investigate the relativ~ 

efficiencies of Mickey's unbiased ratio type estimators; 

'1' ,_ .. 1\n i + <~-m) n <Y - Rm i> 
..... N n-m) (2.1) 

• • - - • - 'II 

T,_ c .Rm X + .i.!:i=!!!lD (y - Ra, X) 
- N\n-:;uiJ 

ca.a> 

with respect to the conventional. biased ratio est1lllator "Ya, 
tor large samples. 

We shall first obtain the variance of Tlm, in large 

samples, form sufficiently large and compare it with the 

variance of tho usual. biased ra.t1o estima.tor Ya· After this 

• an expression for the variance of 'l' lm' in large samples, 

will be derived. It will be seen that considerable simplif1ca-
,on • 

tion is otfeoted in the large sample variance express" of 'l'lm 
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when either m is small as compared to n or when m is autf1• 

oientlY large. From the practical point of view these two 

cases a.re most important as in these two oases only computation 

• of the estimator Tlm and of the unbiased estimator of its 

variance, given 1n section 1 1 is most convenient. Finally, 

assuming the population to follow a bivariate normal distri­

bution, we shall ~urther investigate the variances of T J.m 

andT~, when m is large1 and discuss the relative efficiency . -of 'l'lm with respect to YR• 

Variance of T lm for large m 

'l'o derive an expression for the variance of the 

est1ma.tor 'i' ~ 1n large sampl-es for m sufficiently large 1 the 

results of the following lemna will be useful. 

Leoma•- In simple random samples (without replacement) of 

size n from a bivariate t1n1te population of N pairs (xi, Yi) 

covCi, a~) .. 
.. 

- 2 f03, Cov(y 
1 
sx) 

Cov<Y,s~ = lCa,N f2lt 

where i and y are the sample manns 1 X and l are the population 

means, 

L 

foa =+ 

1 



fa1 .. 

rr .. .. rl - n-3 - a~n-2~ 7 
-n," L -1i n(N .. l> n N-l(N-2) _/. 

l8 

Proofa- Without loss of generality, in the evaluation of 

these co variances.._ one mey assume the population means X and Y 
to be zeros. 

ca = n<n-ll and c .. 
NO~-l) 3 

'l'hUs 

Cov<Y ,S:> = n(n:l)['. n~l (c1N fUJB·egN ~12) + 
2

~ 

Putting x = y 1n this result we have Cov<'i, s:) = ~,N foa• 

-' 
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a 1tn ,N fl2• 

81m1larl.y Cov(y ,sxy> = Kn 
1
N fla1· Q.E.D. 

tre now proceed to derive V(Tlm). 

Since 'l'lm results :from Tm, 1n its general f'o~, by 

p~tt1ng p a l and a (Zm) = ~-we have from (1.10) Section 1 1 

V('l'Jm) = (.N--m)B E lYe-: .JL i I m·>J N2 L • ~n-m·~ n-m 

CN-m> CN-n> 
N2 (n-m_) 

si.m,x·~ sa.m,xr_)7, 
(2.3) 

a a 
where SN-m,y 1 BN-m,x and SN-m, xy are the mean sums ot squares 

and mean sum ot products in the derived population of she· N-m. 

\Jrite Ym = i+el' 'im = !•ea, sl-m,x = s!+ea and aN-m,xy=Sxy+e4, 

a a 
where s

1
,- S:x and Sx;y are the mean sums of squares and. mean 

sum of prpduots in the population of size N, and 

E(e
1
) ,. E(e

2
) = E(e

3
) = E{e4) a 0 

E(e~) = tm e~, B(ei>= ~ s~, and B(e1ea>= N·m s....,. 
Nm -



.. -
-

S1milarly 

E(oaes> .. -
E(~le4) .. -

and E ( ege4) = 

so 

__,N:;..;.:m...__ Cov <iN-m, S~-m,x) 

_N==.;;;::.m::-._ ltn-m ,N p12 , from the lemma 

N fos -' (N-l)(N-2) 

N fal , {N-l) (N-2) 

N 
fJ2. • 

(N-l)(N•2) 
(2.4) 

Now in the fol'lllUla (2.3) ~valuate the te:nn E(~ 8~-m,x> 
we assume that m is sufficiontly large 1 and write 

•• (2.6) 

neglecting expectations of cubic and higher powers 1n e• 8 • 

Substituting the expected values from (2.4~ in (2.5)• we 

obtain, to the order ot approxilne.t1on l/m, 
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where 

N-m 
Niil 

2 1 -B rv-
a Bx ~ and C:xy = B:xyl' YX • 

Proceeding on similar lines, to the same order of a.pprox1ma.t1on, 

it can be seen that 

E(R sN-m,,.,.) = R S,.v r l+ fj-m (Ca - C )+ N ( fllP:. f!Bl)_l 
"'llr - ...,'f. Nm X xY (N-l)(N-2) is "25 xy xy 

Substituting the results (2.6)and (2.7) in (2.3) and 

s11llpl1fying , we obtain 

V('l' )a y2 ~-mHN-n) /(c2~a-2C )(1+. N-m 
Jm (n-m) L ' Y x xY Nm 

(2. 7) 

2 '!·m~u~-n> . r.:A P12 JUos Pal JUJa 
- N(N- )( -2_l(t1-m) L fr(y - X )-R( y - r:.J -

It the finite population correction fa.otor 1s negligible, 

then V('l' 1m> s1mpl1t1es to 

Bft1oienoy of 'l'lm for la.rge m 

(2.8) 

In large samples from a. large population, the variance 

of the usual biased ratio estimator 'Ya 1s given by 
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,a 2 .-2 
n (Cy + Gi - acx;y>. (2.10) 

A comparison of (2.9) and (2.10) clearly shows that, 

when m is large and the finite .population correction factor 

is negligible, the unbiased ratio esttmator Tlm 1s less 

eff1oient·than the usual biased Tat1o estimator yR. 

Also from (2.10) , we can write 

V(Tlm) D ...A. + ~B~::"'I""-n-m m(n-m) 

where A and B are constants independent of mJ which indicates 

that V(~lm) increases as m increases from n/2. to n-l. 'l'hue 

in large populations, with a sufficiently large sample 1 effi­

ciency of 'l' l1ll goes down -ati the choice of m is made closer and 

closer to the total sample size n. 

It lila¥ be noted that '1'1m is mainly dependent on the 

unbiased estimator of the mean of the derived populat1on 

and t~t this unbiased estimator is based on the derived sample 

of siza n-m. Now as the choica of m 1s made nearer and nearer 

to the total sample size n, the size of the derived sample 

decreases and consequently the precision of the unbiased 

esttmator of the derived population is likely to decrease. 

This may be one of the reasons for the decrease in the 

efficiency of T 1m as m approaches tha tot !ill sample size n '· 

1n large populations • 

• Variance of T lm in large samples 

~'::i-:{V.::""':~:~)--• from the definition (2.2) Putting k a 

• of T1m 1 we bave 
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V('t~ ) = Xi v(a;)+k8 vG>+ ~ V(~i 

~,__., - • ,_17 • - • 2 - A • + t~.u. Cov(y 1 8m) •Bu. C:Ov( ~ t X J:\n) ·SIC Cov(y 1X 1\n) • 
(2.11) 

eo that E(e1>=E<ea)DB(e3)=0 

V(e1>= V(y) 1 V(oa> = v<'i>, V(sa> = v<n:> 

Neglecting expectations of M~s 1n o •s of ordel' a or more, 

._have then 

V(i ~) = V{Bm X + ea X+Qa Bm + eaea> 
-

-:: x2 v<-a:> + S: v(i> + ai 1\a Cov(i, a:) (2.12) 

8 1m1la.rly, to the same order of approximation, 

Cov(S:, x S:>:::- X V(a!) + 1\n Cov(i, a:) 1 (2.13) 

and 

Cov(y ,i S:> a X Cov(y ,S:> + -'i\n Cov(y ,i) • (2.14) 

Using (B.l2), (2.13) and {B.l.4) 1n (a.ll.), 'IIQ obtain 

V('l'lm) = k2v(i> + ~ v<i> + <~·1>2 X2v<~>-at2J\n eov<'Y,i> 
~ - • :::t • 

-2k(lit-l).r.. Cov(y,Rm)+Blt(ll-l).r.. 1\n Cov(i, lfh:) 

<a.:un 



• Expression (2. JJS) provides the variance of. 'l'lJn 1n large 

samples for anym less than n • 

• Efficiency of 'l'lm for small m, 1n large samples 

24 

Assume that m is so smal.l as compared to n, so that 

k = _H~_ • ..!l:- -=: 1. Then, from {2.16), we have --rr- n-m 

V{'l'~) = vG;:> ... a: v<'i> - 2 'Rm Cov <'Y,i>, 

= ~-n • ..J:... ~l"<YJ·'Y>-'Rm<xri>f. 
n N-l (...!. 

J=l 

(2.16) 

(2.17) 

In large samples 1 the corresponc:\1ng expression tor the 

variance of the usual biased. ratio estimator 'Ya 1s given by 

(2.18) 

• 'l'hus (2.17) and (2.18) show that Tlm is more 

precise t~an 'Y8 , 1n large samples form small compared to n, 

it and only 1f the line Y+ 'iim<xrl> fits the values y~ p10re 

closely than the line RxJ J in other words, if the slope of (~) 

the regression line of y on x is closer to i\n =±~a:= rG) LRm 
Cn) 'm 

than to the populAtion ratio R = Y I i. 

e - I 
In particular, when m=l, '1' 11 = yf' , the Hartley and. 

Ross unbiased estimator and Rm D + t.y lXJ a rp 1 SO that 

we arrive at the conclusion of Goodman and Hartley (1958) that 

-' -Yr is more efficient than Ya 1 1n lArge samples 1 if and onl;v if 

the slope Of the regression line of y on X 1s closer to rp 

than to R. 



• Eff1c1ency of TJ.m for la.rge m 

• To obtain the variance of the est1ma.tor TJ.m tor m 
• auttic1ently J.ar..ge 1 we further evaluate the terma V(l\n), 

- . - . Cov(y 1 If.al) anti Cov(x ,Bm) occurring lnthe lat'le sample 

• variance expression (2.15) of the estimatorTJ.m• In their 

evaluation we suppose that terms of orderJ/mn or J/n2 can 

be neglected., 

We have 

But since E(Ru/n) "' a:, 
• V(!lm) • V(Bzn) _:_ g, CV<Rrr/n>J 

-;: :~m a2(~ + c~ - 2Cxy> 

-- (2.19) 

wherefln c 7/i, c~ = a}j2
, ~ .., .~r~ and oq= a~xi. 

Bere a~, a:, end axy represent the mean aums of squares and 

sum of products in the sample of abe n. 

Proceeding on similar lines with the help of the tormulaa 

it can be shown that 



(2.20) 

Again, by a. similar argument, to the same order of appro x1-

mt1on, we have 

- . Cov(x, RnJ) ~ .Ji:D Ri (C...., - C~) • 
Nn ..., 

(2.21) 

Using the results (8.19) 1 (2.20) and (8.21) 1n 

(2.15) and observing the.t Hm ::: R when m 1s sufficiently 

large, we obta1n, to the order of appro:dmation l/n 1 

• V(T 3Jn) "' U·n ~ (~ +C~ • 2Cxr)• (2.22) 
Nn . 

Thia shows tha.t, in large samples to the order of 

approximation l/n' when m is suf'ticlently J.a.l.ge, the unbiased 

ratio estimator T~ end the conventional biased ratio estimator 

-YR are of equal precision. 

V(Tlm) and V('l'!m> when m 1s large, 
in a. l8fit 'Bivariate normal' population 

Assuming that the populat\on is large and follows 

a. bivariate normal. distribution, the variances of the estimators 
• • '1' liD and T 1m are obtained here to the order of approximation 

l,laiJ. In this sense the results, obtained here, ~ be 

considered as improved a.pprox1mat1ona over the corresponding 

results of above. 

It has been shown by Sl.lkbatme ( 1954) the.t in random 

samples of size n f~ a large population, following a 

bivariate nol'Uial. distribution, the expected value, the 

variance and the mean square error (M.S .B.) of the usual 
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0 
() 

J) 
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biased ratio estima.tor 'Ya 1 to the order of o:pprox1ma.t1on 

l/n2 , are given by 

E(Ya) 
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v<'Ya> • va./c~ -.c~-2cxy> <~i) c!> + ~ .<c!-c~>~ 
(2.24) 

i'or the finite population of size N 1 the ettect will be 

approximately to write N•n/Nn tor n in the above expressions. 

Variance ot T 1m 

l?rom (2.3) 1 we have 

(2.26) 

when the finite population correction factor is assumed to 

be nealigible. 

Row s1noe in samples from a bivariate nonral population 

the sample IIIGBllB are independently distributed. ot the sample 

variances and cova.riances, from (2.26) we obtain 

Also, baaed on the results (2.23) and (2.24), to the · 

order of a.ppros1ma.t1on l/rz!., we have 
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as 

• a Cl+ :- <cx2-~Hl+! c:>J (2.28) 
2 

,. V(Bm) + f'B(Rm)J 

-..·a2fl+ ~<~-cxy>+.; <C: -cx;y> 2+ 
Dl 

Subet1tut1ns (2.28) and (2.29} 1n (2.27), • ha'll1t 1 atter a 

bit of e~plit1cation, 

. ~;; , ca 304 
V('l'lm) a~ (C~+C~·SCxy)(l+ m X+~ X ) 

+acc2 c -'~..t.+-Lc2>_7 ..; ~ ·m rrfi ·X 
(2.30) 

. Expression (2.30) provides the var1811Ce of the 

unbiased ratio estimator 'l'Jmt to the. order ot approximation 

~m2 , in samples t~m a larse bivariate normal population • 

• Var1anoe ot 'l'lm 

alnce V('l' liD> 

V(T;.) 

• E[''v('llilin>J+ V('l'!_m) , 

= vC'l'Jm) - mC<l-lii>2 V(Rg/n>J, (2.31). 

• ~N-m)n 
N(n-m) • 

• Consequently to evaluate CV('l'Jm) to the ordel' of approximation 

~uP 1 we need to evaluate a 

(2.3a) 
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to the order 1/rrfl and use it in the formula (2.31) along 

with tho result (2.30) for V(Tlzn). 

Now taking into account the finite population correc­

tion and applying the- formula (2.24) for V(Rmfn) , we ba.ve 

E.{"<i-ki)2 V(Ra/p.>J = fj;m~aiif+fi2)~~(o~+~-2cxyH1+~) 
(2.33) 

where Bat c~,0:i3 , and oxy refer to tho total sample of size n. 

Since we a.re interested in evaluating expression 

(2.32) to the order l/m2 only, the expectat1ons of terms 

with coefficient ( n-m >2 in the above equation can be 
lllll 

replaced by the correspond!~ population terms. Thus the 

contribution of terms with coefficient ( n-m >2 to (2.82) is 
nm 

given by 

Now to obtain the contribution of the other term 

(2.34) 

of the R.H.s. of (2.33), the expected value is evaluated 

hero to the order l/n. Since we ha.ve assumed a. large 

bivariate normal population 1 in this evaluation we take 

N-zv'Nn ::- l/n and. observe that the sample means y and i 
are distributed independently of the sample mean squares 

2 . 2 
Sy and SX and the sample mean sum of products Sxy• 
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Thua term by term 1 to the order Vn we have 

(- a a E X ftiicy) = 

Mek' ng use of these rasults in (2.34) and simplifying 1 

we obtain the contribution H of the terms with coefficient 

( D: ) aa given ey 

H = 

(2.35) 
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Thus to the order of appro:dmat1on_::.l/m2, we have 

Expreesion (2.32) • Q + B (2.36) 

Row we observe k • N-m ..A­
N • n-m "'" ...!!- in a n-m 

larl• population and uae tba reaulta (2.30) and (2.3ti) in 

the tonnula (2.81) to obtain 

'V('l'~ ) • 

2 4 
_2r~ 2 < Oz3Cx > rL < +ex - ac....;> c ..1.. + --,r•~ > 

- n n- m (n-m) 

c · a > . 7 
+ ( .\ +_a_+ l2Cx . )(~ _ C.,..)a_/. 

n"' mn m2<n-m) ..., 

(2.37) 

• Expreaaion (2,37) provides the variance of Tlm , to the 

order of approxlme.tlon l/m2 , -1n aamplea from a lar&e bivariate 

normal popula.tio~ • . -­
Etf'1ciency of 'l' ;~m 

• We ,now compare the variance of Tlm 1iven by (2.87} 

with the M.S.E. ot Ya siven by (8.26). 

(2.38) 

• Vrom this 1t follows that 'l'lm ts more efficient than ia if 



c2 L Min. r am2(n-m) 
x L · 3n2 ' 

= m(n-m) ~6m-2n) 
l2nS 

m(n-m).(5111-2D2 7 
-=~~12~n~a~=u----~ , 

• 

In particular for the choices m = n/2 1 

111 = Sn/4 and m=n-l, the conditione are obtained below. 

Numerically for nP100 the upper bounds for ~ are also 

siven. 

32 

111 
2 

Upper bound tor Cx For n = 100 

n/3 n/96 .. 1.04 

3n/4 71'1/256 = 2.74 

n-1 = 0.24 

In fact, for a large sample and a choice ot 1m' . 

naar to the total sample she we have appro:dmately 

m'n-m) (5m-2nl .. 
12n2 

o.2s. 

'l'bue 1n large samples, for- a choice ot m eutt1olently 

• near to the total sample she 1 'l'lm will be more efficient 

than in it ~ t.. o.ao. 



• 
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W.okey' s unbiased regreallion type estimators 1 

utilizing into:nnat1on on only one auxiliary variable 1 

• are Tam and Tam, given by (1,8) and (l.9)ot Section l. 

83 

i'or each m, T?m is never leas efficient than 'l'2m 1 applied 

to any particular permutation of the sample elements. Among 

• the unbiased regression type estimators '1'2111 1 computationally 

• the choice m=n-1 yields the moat feasible eat1mator'1'a(n-l)l 

for it is possible to expresa T?cn-1) in an alternative 

fOl'Jill 

-• 
'f' B(n-l) 

- -. -- "''\ ' "' £ y-b <x-xU' - 11::.D f L.x4b• 
Nn · ., " J 

• nxb
1J 1 (3,1) 

I 
where b~ is the value of the regreuion coefficient it the 

~th sample element is omitted 

(i.e. ,> ~· • (3.2) 

-· b= 

The present inveat1aat1on of the efficiency, confined 

to thia most important practical case, shows that, to the 

order of approximation l/n, Ta<n-l) 1B aa efficient aa the 

usual biased regression eat1matory1r given by 

• y - b (i - i>' -



whero b is the aample regres~on coe!f1oient. 

The same result, though not formally established hare, 

is expected to hold good tor sufficiently large m, since 

a corresponding result bas been obtained in Section B in 

the case of Mickey's unbiased ratio type estimators . -T lm and the usual- biased ratio estimator Ya· It is interest-

ing that tbla result leads to the conclusion that in large 

samples, tor sufficiently J.arse m, lUckey's unbiased 
• • 

~iression type astlmators Tan are never less ettio1ent ·than 

the unbiased ratio type estimatora Tim, since it 18 known 

that in large aamplea the usual regression estimator ylr 

is never less efficient than the usual ratio estimator 

• We now formally eatablish that V('l'a<n-1)) • V('Jr) , 

to the order ot approximation l/n • 

• Variance ot 'l':a(n-l) 

Neglecting the finite population corre.ction factor, 

we have 

• 
's<n-1) • 

where i'' • 
and mll "' 

• Hence V('l'a<n-1))_ • 

T' - mll' 

- -, - -y - b (x - X) (3.3) 
.. '1'\. -
n ~ (x~ - x)b'~, the (3.4) 

J 
sample covariance between 

V(T • )+V(m11> - 2 Cov('l'', mJi • 

(3.5) 
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• 
In the following we shall evalUate V('l' 1·) to tbe order 1/n, 

en4 ahow that V(m11) en4 Cov('l' 1 , m11> are at least of order 

l/~. 

To evaluate V(T 1 ) , we write 

.. 
• 

f-(b 1 - B) <i - X) I 

y - B(i -X) 1 

(3.6) 

( 3·1) 

en4 B 1s the population recreaaion coeft1o1ent of y on x. 

'!'hen, since '1' ia unbiased for the population mean i, we bave 

V(f 1 ) 
a _ (i ... 2 

"' E('l'-Y) +_E £(bt-B") x-x>J 

- a ~ 
•£E(b!.B)(i-i)J - 2B f'"<T-!)(b-B)(i-i>J. (3.8) 

Now w ahow tbat all the terms except the first one 

en the R.H.6. ot equation (3.8) are of order l/n2 • 

P'or this 1 we note tbatl 

E(T-Y) 2 = O(n-1) 1 E(T - Y)~ • O(n-2), 

E (i •X)B • O(n•l) 1 E(i - if~ • O(n •B) 

and E(b1·B)
2 

• O(n-l) 1 E(b1 • B)~ • O(n-2), 

(3.9) 

(3.10) 

where O(n-1) and O(n-2) indicate that the terms are of order 

1/n and l/n2 respectively. 

Ruulta (3.9) follow trom the fact that T and i 
are arithmetic means, baaed on a simple random aample of 

she n, without replacement. Also, since 

E(bJ - B)
2 

We have 

• 
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L -

~· being the regression coefficient based on a simple 

random sample of she n-1. 

Thus !1(6• - B)8 .. 

Similarly it can be shown that 

E(b' - B)4 a O(n-8). 

To show that the three te~ except the first one 

on tbe a.B. s. ot equation { 3. 8) are ot order- l/n2, we 

repeatedly make use of the ifl4quali ty 

E( uv) L -
where u and v are any two random variables having t1n1te 

secoD$1 moments. 
2 

Thus Et"<li•-B)(i-i>J £: 

.. 

(3.11) 

- -'3 2 Bence E£'(b'-B){x-A)J a (3.Ja) 

Aga1n 1 sinoe 

Bf'(i5•-B)('i-il7 L CE<'6• -B>2 E<i-i>2J* -
.. 

we obtain 

r, - - Ja 1.. E(b' -B) (x-i) "' (3.13) 
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r ~ - ) - ->J L r; - 2 ( ~ _ ~ ) 2Ji Also B4 (T•.t)(b 1-B (x-X 4 B(~'-B) E(('l'•~;J(X•A.)) -
L Cs<'b•-B>~ £s<T-Y>"zci-x>4J* -
• £ocn-l>.;J*Co<n-4>Jc from (3.9) 

and (3,10) 1 

• O(n·3/2) • 

.B).lt expectat1omot products and ratios of arithmetic 

meana must have intecer orders. So it follow' that 

EC<T-'?)('6• -B) <i-i>J • O(n-2). {3.14) 

Consequent;Ly from (3.8), (3.12) 1.-(3,18) and (3.14) we obtain 

V(T') • (3.15) 

Returning to equation (3.5) , it remains to evaluate V(m11> and 

Cov(T I ' mu> • 

Osinc ths lar&e nmple theoey, it can be shown that 

V(mu> • 
where }-122 and fU are the parent central moments of the 

Joint diatr1bution of XJ and b~ •. 

(3.16)-

Now it B 1 denotes the population value corresponding 

to bJ, we have 

Hence 

E(bl ·B 1 )
2 • 

fll • E["(bj-B') (xJ·i>J 

1: 

"' 

(3.17) 

rs(bj·B 1 )
3 

E(xj·i>
2Jt 

* £ocn-l>J from <~.17). 



Thus .. 

Thus .. 

['E<bl-B') 4.g(x3-i>4J* 

~O(n-2>J* from (3.17). 

O(n-1) 
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(3.l8) 

<3.19) 

Consequently from (3.16) 1 (3.l8) and (3.19) we have 

V(IJ,Iu> .. (3.20) 

Also from (3.15) and (3.20) by an application of the formula 

(3.11), it is easy to see that 

Cov('1' 1
1 mu) t_ O(n·3/ 2). 

But since m11 and. '1' 1 are bull t up as arithmetic . 
means of products and ratios of arithmetic means 1 Cov('T' ,m11> 

must have an integer order. 'l'hus 

Cov('l' I • mu) = O(n-2). (3.21) 

Now from (3.5), (3.15), (3.20) and (3.21) it follows that 

= 
= V(Y)+Ba V(i)-2B Cov(y 1i)+O(n-2). 

(3.22) 

Prom this it 1s concluded that 1 to the order of 
• approximation l/n, Tg(n-l) and the usual biased regression 

estimator Ylr are of equal precision. 
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When intonnation on two auxiliary variables Xl and 

za 18 available, for the choice 
- -Ym Ym 

al(Zzn) ., - = a.n<xl) end Ba(Zzn) = 
"illll 

.. Bzn<Xg>' 

the unbiased estimator Tm expressed in the form 0,.5) 

provides an unbiased ratio-type est~atora 

(N-m) n 
N(n-111') 

(4.1) 

where 'l'lm(x1) = "' (x1)il + (N-m)n LY- 1\n(Xl)il J 
·m N(n-m) 

(4.2) 

(N-m)n f y-R (x.Ji J 
N(n•m) ·m a a 

(4.3) 

are the unbiased ratio type estimators obtained by using 

information on x1 and xa separatelY. 

Averagitlg ·T lmh:1 ,x8 ) ovor all permutations of the 

sample elements, we have the other unbiased ratio type 

estimator 

'fimlxl•Xa' 
• where Tlm(x1> 

. . -
• 'l'~(x1> + 'l'1m <xa> - y (4.4) 

a S:<x1>i1 + .Ll!=mlD L Y - n:<x1>i1 J Nril-iiiJ . 
(4.6) 

a a•m<Xg~ia + Af~~lY f 'Y-~(J:g)Xa J. 
(4.6) 

• For ant m less than n, TJm (xl,za) is never less 

-y, 
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etf1ciant than '1lm{x11Jea). In this ues:.t1on we shall discuss 

the relative efficiency of the eot1mator Tim Cx1 1za> with 

respect to Olkin's weighted ratio estimator in large samples 

tor the two cases• 

(1) m 1o small ao compared to n and (ii) m is suttio1ently 

l..arBe'. Also we shall investigate 1 when m is sufficientlY 

largo 1 whether there is an 1norease 1n precision by using 

• • • Tlm(x1 ,xa) 1nstea4 ot 'l'Jtn(x1> or TJJn(J:a). 

Ol.ldn1 s weighted Ratio estimator 

\i'hen 1ntoX!IIIlt1on on t"WO auxil1e.ry variables Xl and 

Xa 1s available, the weighted ratio estimator, suggested by 

Olk1n ( 1958) , is given by 

-Yw 

.._ 
where Ya 

' 1 

wl 

and 

.. 

.. 

.. vGa.} - Cov<Yal, yl'\t) 

V(yR • ia ) 
l 2 

(4,7) 

(4.8) 

V(ia ) - Cov<iR 1 YR_) 
l l -~ • (4.9) 

V(yRl. yfta) 

The estimator Yw is biased but consistent. 'l'he J.e.rge sample 

vari~e of Yw 1s given bY-

(4.10) 
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.. 

.. Variance of 'llm (x1 ,xa> in large samples 

From (4.4) , we have 

vf T~Cx1> J...v L T~<:xa> J 

,.r;. • J -+ 2Cov, '1' lm<x1> , 'l' 1m<:xa> +V(y) 

- BCovl"Y',Tim<x1>J-2covfY,'l'~(x2>J. 
(4.11) 

Now from resuU (2.lfi) of Section a, to tha ol"'iar of approxi-

mat1on l/n, 

where 
.-

+21t(!t·l>'it'i\n<xt>Covl" "i1 ,a;<xt>J,, 1=1,2, 

=~ ~ 
~· 

• (4.12) 

Proceeding on similar lines as in the derivation of 

Vl"T~(x1>J, it can be seen that, 

c6v!r.~cx1> ;rrm<:xa>.7 "' ~c2v<Y>•t2-Rm<x1>1\n<xa>eovc'i1,ia> 
_ + (k-1)2.ilia Covf'~<xl) ,S:<x2>J 

- k:Siim<xl)Cov(y ,i1> -~<xs> CoveY ,i2> 

- k(k•l)i1cov£ y,a:(xl>J 
- - "' - k(k•l)Xa Covl:' y,Rm(x2lJ 



+k(k-l)i2i\n<x1>covC "il,,a:<xa>J 

+k(k:-l)i1i\n<x:a>eovC i~a.a:<x1>J 

-

(4.13) 

81m1J..4U'ly 1 to the order of approxima.tion l/n 1 for i• 1 12 1 

we have 

CovC y 1'1'~(xi>J = lcV<Yl-k1\a<xi)Cov(y,itl•(k-l)i1cov£Y,a:<x1)J 

(4.14) 

subaUtut~ng in (4.lll for the v~ioua terms trom (4.12) 1 

(4.13) and (4.14) 8nd a1mplU'y1ng 1n1 have 

v["'l'~(xl,xa>J • (2k·l>2v<Y>~C ii':Rm~~~>+'iai\nCxa>J 

+(lt-l)2v£ xla;<xl)+iaS:<xa>J 

- 2k(2k-l)C i\n<x1>cov(y 1"i1>+1\n<x:a>covcY,'ia>J 

(_ .r- • J • 2(1t-l)(2lc-l) ~l.lC:ov, Y ,Rzft(Xl) + 

iacov[" y 1a:<x:a>J~ - ) 

+ Sk(~·l>~1'fimcx1>cov.{' il,a:,cx1)J 

+ i 2lim<Za>covl" "i2 1(<x:s>.7 

+ iii\n<:xg>eov[" ia ,S:<x1>J 

+ ia'iiua<x1>'covC ileS:.<xa>J ~. (4.lS) 

Expression (4.16) .provides the variance or 'l'!m<xl,xa) 1 to the 

order of approx1ma.t1on l/n 1 tor any m less than n • 

• Etticiency of '1'1m Cx11x2 > tor small m1 1n large samples 

Wben m is smal.l as compared to n, k = N:,m • ..!!.. ~ l and 
•• n-m 

consequently the variance expression (4.15) reduces to 
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A comparlaon ot (4.10) and (4.16) ohows that 1 Vlhen m is 

• small as compared to n, Tlm(x1 ,xa> is more efficient than 

Ol.k1n1 s biased estimator Ywt 1t and only it the plane 

Y + iim<x1> fx1J-i1 J + "Rm<xa> LXg~-iroJ tits the 

values y ~ more closely than the plane 

where w1 and 118 are the optimum weights given by (4.8) and 

(4.9). 

From result (2.19) of section a, when m is large, 

to tho order ot approximation l/n 1 

.. 

S1milarly 

eovC(< Xl) .S:<:xal7 .. -::---! V(y)+ RlRaCov(il,'ia> -RlCov(y ,"il> 
x1ia 

-RaCov<Y •Xa) .J. ( 4 .18) 

Again trom result (a.ao) of section a 1 we have 

(4.19) 

From nnn.tlt (3.21) 1 we have 



.. 

Similarl,y, it can be seen that 
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• R12v(i1) J, icl12. 

'(4.20) 

2 - - J -R~ Cov(xi,x~) 

forj;l. ~. (4.21) 

Making use of the results (4.17) to (4.21) in (4.15} and 

obse:rving that in this case i\n<s1> -;::- Ri, we obtain on s1mpl1-

ticat1on1 

(4.,22) 

Now from (4 •. 10) and (4.22) 1 we have 

v£i,.J-vfT~(xl•Xal7.. "~2ft;aCov<Y,ia>-9<i:a>J 

•waf"aa1cov(y ,i1> -a~<i2>J 

+WlWaC'2R1RaCov('ij,Xa) -R~V (x1) -.tW<ia>J 

• From thla it tollowa that Tlm <x11x2> 1s more ett1c1ent 1 

equallY efficient or lass efficient than Olk1n1 s estimator 

according aa 

2LW1C7Xa+WaC7:1l•(w1w2-l>Cx1x2 J ~ W1(l+W2>~1+Wa(l+Wl)c2XS 
(4.23) 

Inequalit7 (4.23) is difficult to interpret. Howevtr1 

it we auume 



; 

I 

then w1 = Wg "' l/2 

inequality 
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and (4.28)_~educes to the 

where esy is the correlation betWGen an auxiliary variable 

and the principle variable y and ~12 1s the correlation 

between x1 and xa. 

Thus tor euftic1ently large m1 under the conditions 

.. Cyx ' 

T~(x1 1x2> is more precise or equallY precise or less precise 

than Olkin's estimator according as 

(4.24) 

!ff9!t on th:J"J!!ionJ!y introducing _ n __ a.uxlli ___ @§ 

Since the weights W1 anct Wg, used in Ollt1n1s estimator, 

are determined by minimising the va.rinnce of wiin
1 

+ "aYna 

with respect to Wl and Wg 1 eub~eot to the condition W1+Wg • 11 

tor any combination of the weights other than the optimum 

- -combination the variance of w1ya1 + w2yaa 1a more than 

the variance of Olltin' s estimator. Thus 1 in, particular since 

w1 .. 1 1 w2 • O,g1ves ia
1

• the introduction of a new 

auxiliary variable al.wa3's results in obtainina a more precise 

ratio estimator. 

But in Mickey• s an biased ratio type estimators 1 

• 'l'JJn(Xl 1Xg) is not constructed as the optimum we1ghted average of 
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-... - y • 

As sucb, we oanaot 88¥ without an.v reservation t!lat 

Tlm<x1 ,:xa> alW8¥a prov14ea a mre effichnt est1ma.tor 

than •r*lJD(X"J.) or '1' ~(xa) • 
In fact 1 when m 1s sufficiently large • we have 

- - o. 

'lhWI I in particular, when ~1 .. c2xa ... e~ and CxJ7 ... ex y'"' Cxyt 
• 2 

'l'Jm (xl•Xa> h more preo1ae or equally precise or lese preciae 

• than 'flm(x1) aocordilll as 

(4.28) 

'fhia reault ahowa the need for caution in introducinc a new 

auxiliary variable in the case ot lUckey's unbiased 'ratio 

type estimators. 

Prom (4.24} and (4.25) it follows that 1 when m 1s 

eutficlently large, and. e;1 • e~ = c~, Cx
1
y a exaY = exY, 

• 'l')m(Xl 1%2) 1s more preoise than Olkin 1s estillla.tora aa well 

• aa Tlm(x1>, U 

• 

Max. /t ~X (l+ E'l2) I * 
'c Y ·-

x 
t -a- < 1 • e12> • 

y 

ex 
Cy (1+2 f12> _l 

(4.30) 
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In the following , a table of val.ues of the function 
c 

!- ..!.. (1+ 
cy 

~ ex 
el2) tor different values at < ) and el2 

. dy 

1s given to see. ho\V IIIUCh the correlation elCY should be 

• 1n order to make an efficient use of the estimator Tlm<x1 ,x2>. 

' ' ' ~ ' ... ,, 
c 

0.26 

0.50 

0.76 

1.00 

e121 
I 
1 o.lO 0.20 o.ao 0.40 o.ao 

, I '-.., 

I 
I 0.206 0.225 0.244 0.263 0.281 
I 
I 
I 0.413 0.450 0.488 0.625 0.663 
• • 
' 0.619 0.675 0.731 0.788 0.844 
I 
a 
I 0.826 0.900 0.9?5 N.A.• N.A. 
I 

• lf.A.• denotes that the value 1s not 
a.dmiasible , be1ng greater than l. 

0.75 

0.328 

0.656 

0.984 

N.A. 
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6. "SXTENSION '1'0 OOUBl...B SAMPLING 

\ 

In aonstruc1:1fl8 the general. class of unbiased 

estimator& 1 IUakey has assumed that the population means 

of all the auxiliary variables are known. When 1 however 1 

the population means of the auxiliary variables are not 

known in advance, using the technique of 'double sampling • , 

we ahal.l develop 1n this section a general class of unbiased 

estimators of which 'unbiased ratio and regression type 1 

. 
estimators are special cases. 'l'bis section a.lao gives 

unbiased estimators of the variance of the p~posed esti­

mators and a discussion concerning the efficiency of un­

biased ratio end regression type estimators. 

Preliminariu 
ot 

Conalder a finite population/she R 1 repruented by 

the set of (p+l) veotcrsa 

3= 1,a, •••• , N. 

Let a simple random sample of abe n• be drawn without replace­

ment from the population and observations be made on all the 

-. auxiliary characteriatloa. Let xi• i•l,a, •••• ,p, represent 

the means of the auxiliary variables, based on the sample of 

size n'. Now let a sub-sample of size n be drawn with equal 

prob!W1lit1es 1!11thout replacement from the sample of size n' 

to observe the variable y under study. l1urther, let y and 

'ii 1=1 ,a, .... 1p 1 denote the means based on the sub-sample. 
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For any choice of m ot the sub-sample eleQ~ents (11m> 1 

suppose Ym and itm (i=l 12 1 •••••• 1p) are-the means based on 

Zm• Let a1(Zm) be some known real valued functions ot Bm• 

Further.J ~tine 
- ny-mym 
y • 1 Xin-m '" n-m n-m 

i u 1,a, ••••••• ,p. 

Finally 1 let 

umd • 
p 

Yn-m- ~~(J1n)(Xin-m-i~Fl'-m>, (5.1) 

(n'·m>flmd'tDim • (5.2) 
. n' 

A general class of unbiuad eat1mators 

By an argument similar to the one u~ed in section 11 
~--it can be shown that 1 

E ('l'md I m,n•) "' y' I 

where y' 1& the mean based on the sample of aize n 1 • 

ConsequentlY E ('l'llld) a tt<Y•) . Iii y I the popuiation mean. 

'l'hua 

.. 
( n I -m) UI!Jd +uiYm 

n• 
f l' 

'Y - Lai<.sm><it·ip- rn•-n> f 'Y.m.:Y- L•1<11n><itm-i1>J .,, n-m> n' hi 

(5.3) 

(5.4) 
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.. 
(S.fl) 

1a an unbiased estimator ot the population mean Y. 

Now a general claSB ot unbis.aed est1maton may be 

constructed by inclu<1ina all eatimators of the form 'l'JDd, 

applied to all possible permutations of the sub-sample 

elements and niahted. averages ot such estimators. Ot all 
• OM. 

the estimators ot the class, '!'ud• obtELined as average ot 
" the estimators Tmd• applied to all the possible permutations 

of the sub-sample elements, iS of more interest since the 

variance or T~ is never greater than the variance of 'i'mc1• 

It may be noted that, by putt1ns n' = N in (5.3), 

(5.4) and (5.6), we obtained the general claas of unbiased 

estimators given by 111ckey ( l969). 

Qpbiaaed ratio tip! eat1matora 

When info11Jlation on only one au:Jt1l1ary variable 1B - -taken, for the choice a(Sza) • Rm • Ym I :fu!, ~ m L n-1, -
we obtain the unbiased ratio type estimators, siven by 

'1' ,_. • R -;, + (n' -m)~ <'Y-Rm'i> 
......,. "lZr n•(n-m (6.6) 

• &.rid. 'l' lmd .. (6. 7) 

• where ~ 1s the averqe ot Bzo, taken over all the permutations 

ot the sub-sample elaments. 

In particular, when m • 1, a: = ~ ~.tt_ • "ion, and 

j ZJ 
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(6.8) 

•• The estimator T1111 is a modified form of Hartley and Ross 

unbiased ratio estimator and has been studied bySukhatme 

(l962). 

Unbiased Regression type estimators 

Using information on onlY one auxiliary variable 1 

with the choice a(ztn) a 'bm 1 we obtain the unbiased 

regression type estimators given by, 

= £Y'-bm<i-i• >J- f~~~;R~ £ "Ym·'Y·bm<'im-i>J ca.e> 
(~) 

..!. '£ b,n(Xzn•X) 1 (5.10) 
~) 

whe:r0 bm is the :r0gression coefficient based on r..m and b! ls the 

average of bm over all permutations of the sub-ssmple ele.ments. 

Estimation of variance of Tmd 

We have 

V('l'ma> = Efv<Tilld. I n'>J + v£ E(T~ In') J 

(5.11) 

From result (1.12) of section 1 1 a rum-negative unbiased 

estimator of V(T~ In') lo given by 

.~ p a 
(n-m:l) z;=L<Y3·Yn-m>· ~~t<Zm> <xir'itn-~J, 

J (5.12) 

(n' -nHn 1 -m) 
• n•B(n-m) 

where the sUilll'llat1on h taken over all sub-sample elements 

excluding sm• 
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Also a non-vo unbiased est_imator of vG•) 1 based 

on sub-sample elements on!y 1 is given by 

"1l 
(N-n') 1 ~ (yc _ y)S 
Nn• • -1 L- " n- . 

J 

(5.13) 

From (6.11) 1 (5.l2) and (5.13) 1 it follows that a non-ve 

unbiased estimator of the variance of TIDd 1s provided by 
"11,-'W\. p • 

Eet.V(T-o) "' (n'-nl<n'-m) • 1 ~~y -Y ..ml• r&J.(Zm)(xi~-iin-m) 
....,. n •2(n-m) (n-m-l . . J n ,., 

'Y\ 
J 

+ (N-n•>. --l.. "<Y _ y)a 
Nn' n-1 ~ J 

J 

• Estimator of the variance of Tmd 

(5.14) 

Following on similar lines, as in single-phase 

sampling 1 section 1, 1t can be shown that en estimator of 

• the variance of 'l'.Qld 1s given by 

(~) . 
Bst.V(T~i c: + L,f'sst.V(Tmd) • ('l'md - 'l'md>2J 1 (5.15) 

(m) 
where the a\.llrlll&.tion 1s taken over al.l the possible (~) est1-

' 
mators of the fo:zm Tmd. for a given sub-sample. 

Efficiency of Ra.tlo type estimators '1'~ 

If yRd denotes the usual biased ratio estimator, 

..i. 'i•, in double sampling 1 then to the order of approximation -X 

l/n 1 we have 

vc'Ya4> a ( ~ - n+-> (S~ + R4 si - 2RSxY)+ U~f. s~. 

(6.16) 

Also we can write 
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• • = s["v~'l'~ I n'>J + v["B('l'lmlll n•>J 

= ELV('llm I n 1 >J .; V(y'). (6.17) 

Now from results (2.16) and (2.22) of section a, to the 

order of· approx1ma.t1on l/n, we have-

when m h smalll (6.18) 

= (J... - i)(a! n1•Ri\• s~ n•-BRn1 8 x,y n•> • 
n iif"" "' • • 

when m 1s sutfic1ently l&rgef 

(5.19) ·-where Rm,n• = E(Rqv'nl)' Rn• "'-Z!. ' 
i• 

and ~ ,n 1 , d ,n 1 , and axy ,n 1 are ths mean sums of squares 

and fum of products based on the sample of size n' • 

~ase 1) m 1a !!!!!Bll as oompart4 to D 

In this case, from (5.17) and. (5.18) to the order l/n, 

we have 

V( 'l~) 

where Rm "' E(Rm). (8.20) 

• In particular, when m=lt estimator '1'114 is a modified 

form of Hartley and Ross unbiased estimator and 1ts variance 

is given by 



where 

-
Neglecting the finite population correction factor, 

Bukhatme ( 1962) baa aiven the varie.noe of T~ 1n the forma 

• ...1.(2-22-
V('llld) • n cry• ra "x - a~~ 

(6.22) 

where 

AX a X • i, -Ar • r - r8 , 

a a a-; ... v<y> ' ax • V(x) 1 ~ a Cov(y,x) and~ • Cov(r,x). 

------
When the finite population correction factor ia 

ignored, it oan be easily shown that expressions (5.21) 

and (&.mn are identical. by mak!ng use of the identity 

(15.23) 

'l'he advantage of the form (15.2~) and ln genera.l (6.20) 

1e that it 1e easily colaparable with the variance of the 

biased ratio est1mator YR4 1 given b7 (5.16). Thus a comparison 

ot (6.16) and (6.20) shows that the unbiased ratio estimator . -Tlad is more efficient than the biased ratio astlplator Yf)dt 

1t and only lt the population regression coefficient of y on 
. _l_ ~) 

x 1a nearer to lias • {!) 2_ Bm than to the population ratio 

B .. y I i. 



Cast 11) m 1a auffiolentll l~e 

In thia oase from (5.17) and (5.19) 1 to the order 

of approdmatlon l/n 1 we have 

V(T~) • <t • ~)E(111~ 1nr+a:,, •~,n·-2Bn• 8xy1n 1 )+(~,-j>s~ 

• (A - .!..) (~a +fiA s2 -BR s,...,)+(l..-...l..)a! • (6.24) 
n n• Y :c - n' N "' 

Results (6.16) and (5.24) esteblhh that, when m 1s autt1-
• o1enUy large 1 T lJDd. 1a -as efficient as the biased rat1o 

est1111ator yRd. 

• Etf1o1enoy of Regression type estimators T?Rd 
c ' 

In dol.lble sampli~ 1 the usual biased regreBI1on 

t&timator 1a given by 3tJod • Y + b (X • X1 ) 1 Where b 

is the regression ooeffioltnt based on the sub-sample of 

size n. 

Also it is known that 1 to tbt order of appro.ximat ion 

l/nl 
- -- 1 -..1.. 

V(ylrd) • <n n•, > cs; • a8 s! - aB sx;v>•<-b-+>s~~ 
(5.86) 

where B is the population regression coefficient • 

• F~r the unbiased regreuion est~tor T21Dd we write 

V('l'~) • • 
• B Cv<tallld I n•>J + v £E('1'2md.l n•>J • 

• Here aubatitut1ng for V (T2md I n1 ) from the results of 

section 4 1 we have, when m 1a suftioiently large 1 to tho order 

l/nl 

V('1'~) • B["(~-- ~,)(s~,n•+~, ~~nt•2bn• ':cy,n•>J 

+<!·-+>a~ 
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= (.!..-.1:..) (s2y +Ba s2x - 2B s l+( 1 - 1 >sa 
n n• - xr iii T Y' 

where b0 , is the regresaion coefficient based on the 

sample of size n'. 

(6.26) 

Thus from (5.25) and (5.26) if followa that, when 

m is sufficiently large, the unbiased regression esttmator . -'1'2~01 1s as efficient as the biased regreuion estimator y11'CS. 

Also a comparison of (5.24) and (5.26) proves that the 

• unbiased regresaion estimators '1'2md are never less ettioient 

than the unbiased ratio estimators T~, when m 1s sufficiently 

large. 

~inally, it is interesting to note that the results 

concerning the relative efficiency of the unbiased ratio 

and regression estimators with respect to the usual biased 

ratio and regression estimators 1 in double sampling, are . 

exactly the same as those obtained in the single-phase 

aampling. 
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6. APPLICA'l'lDN 'lO STRATIPIBD POPOLA'l'IONS 

In this section, a stratified population with one 

auxiliary variable is considered. Assuming that the strata 

means of the auxiliary variable are known 1 two sets of 

1 combined • and 'separate 1 unbiased ratio tYPe estimators 

based on a stratified simple random sample 1 drawn without 

replacement 1 are obtained together with unbiased estimators 

of their precision. 

Prel1mlnar1es 

Let the finite population of alae N be divided into 

L strata with Bh units in the bth stratum, for h= l,a·, •••. .L• 

Let (Yhi• xbl) denote the obs~Uons on the principle variable 

y and the auxiliary variable x for the 1th unit in the hth 

stratum. Suppose Yb and ih represent the bth stratum means •. 
L L 

Define the population means Y .. gh Yh and i = S~h ih• 

where Ph a NJIN. 

Let a simple random sample of she nh· be drawn without 
L. 

replacement from the hth stratum (h=l,a, ••• .L) with L.nh an • ... , 
Further 1 let yh and ih denote ·the means based on the sample 

from the hth stratw andy= l...±n~b• i al...tnh 'ih, be the 
n '"' n ~-.,, 

means based on the total stratified sample. 

Suppose ~· l i, m b f:. nh·l 1 represent aset of 

~ elements 1 chosen out of the nh sam~le elements fr.om the 
L-

hth stratum, with rmh .. m. Based on the set .reb. let Ymh 
~., 

and 'imh represent the means and Bmh• the ratio Ymh I "imh• 
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Further. let. Ym a + lllh Ymh. 'im .. + ~ ~ and 

Bm a Ym I Zm• 
PineJ.lY 1 define - -nh Yb·mll Ym &h Yh • 111h Ymh - h -

Ynh- lllb 
.. • Yfth• mh a 

nh- ~ Hb- ~ 

and -
Nh XNh- ~ 'imh nh ~·~ ~h 

- Xrwh-mh a Xnh -mh 
.. 

' nh- mh lfh- ~ 

Separate unb1ased ratio type est~tors 

• 

• 

As usual, a separate unbieaed ratio type estimator 

1s formed by est1ma.t1ng the strata means Yh (h a 1,2, ••• ,I.) 

with the help of unbiased ratio type ~stimators within 

cUfferent strata. 
~/ 

ConsequentlY 
L. 

Tlm(a) '" lYh Tlmb' ... , (6.3) 

• I- • 

and '!' lm( a) • Lph 't lmb • 

"'' 
(6.4) 

provide separate unbiased ratio type estimators for the 

popUlation mean Y. 
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Now since mh elements of the nh_aam~le elements 
Db -cen be chosen in <mh> waya, tor a given strat1t1ed random 

L 

sample, we have 1i(0 h) eatlmatora of the torm'l'l.ID(a)• 
..... lllh 

• 
.. 'l'lm(a) • 

Aa the atratifled randam sample playa the role of 
• a auttioient statistic, from this it follows that Tlm(l) 

is never leas efficient than 'l'lm(a). 

Combined unbiased ratio tYpe eetlmators 

i'ollowinJ lUckey's pr1no1pla, we aow obtain combined 

unbiased ratio type estimators. 

i'or this we define 
( ) 

Zm .. < ~>,h=l,a, •••• ,L, 

and 
Om • ±QhYnh-mh • Raf ±Qh<'inh-altl·XNh• mhlJ • 

~,.,, ,.,, 
\6.5} 

where ---. 
s-m 

Now a1nce the sampling within different strata 1a 

independent, tor a c1ven aet Felt the nh-mh elements 1 obtained 

by excluding the sat llmh from the nh sample elements of the 

hth stratum, constitute a simple random sample without 

replacement from the Nh - ~elements of hth stratum, (bal,a, •• ,L. 

Consequently, for a given set Zmt we ha"lfll 
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.It - a r L. - ~ - _ -, 
£_Qh E(ynh-mh /m) -·'lll'o 2:_Q~(xnh-IIIJ('m>· L...Qh XNh~ 
~q lv1 1.:1 

Qh Yuh-mh' - -NY • •Ym 
----'''---· 

N • m 

(N-m) 11m + mYm 
N 

(6.6) 

(6. 7) 

ia conditionally and hanoe unconditionally unbiased tor the 

population mean Y. 
Subat1tut1ng tor Um from (6.5) 1n (6. 7) , it can be seen that 

tbe combined unbiased ratio type eattmator-f~(o) _is also given 

by ~ - +~< / - -fJm(c) • Bm X + L.:"ffh. IJlh) <:tnh-mh•Rm Xnh-mb) • (6.8) 
\.,,1 

Averaging over all tbe poaa1ble ~ (~t)est1mators o~ 
the form 'flm(o), for a given stratified random sample we 

obtain the combined unbiased ratio type estimator 

• _Jl~~) ' 
flm(c) • t~) L 'l'lm(o), (6.9) 

which 1a never le11 efficient tbah 'i'J.m(o). 

' 
Further, 1t tor a given m, the mh (h=l 12 1 ••• 1J..) are 

ao chosen that Rh • mh =constant, (i.e.) Nh- mh .. N~ 
1 

• nh • mh nb - mh n-m 
then 'l'lm(c) and ~lm(c) assume simpler terms given by 

'flm(o) • Bmi + 'N-m2 ~ N(n-m f 'Y-Rm'iJ, (6.10) 

and 

• S:x 'l·m>J c- • 'i J, (6.11) 
'l~(o) • + y- Rm 

(n-



where 

'· 

t.. ("'),.) 
~~ 'W\Io. 

a: D!. _L(Dh)l:-Rm• 
,..'~. lllh 
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It 1a interesting to note that. eetimn.ton (6.10) 

and (6.11) are remarlta.bl7 similar 1n fo1111 to the unbiased 

ratio type estlma.tora, based on en unstratified random 

sample of alae n. Further, in proportional allocation 

(i.e. when nh .• nPh) t for a s1ven m, the condition 

N-m 
D-Ill 

la satisfied 1t the chOice of mh ia 

'fhua 1n proportional allocation for the choice 

~ • mPh• est1maton (6.10) end (6.11) provide combined 

unbiased ratio ty'pe eetlma.ton. 

Estlmation gt variance 

We tint: give unbiased estimators of the varianoe of 

the separate ratJ.o type eetimatora end then obtain unbiased 

estimation of the-variance of tha combined eat~tors. 

( i) Separate unbiased ratio type estimatoro 

i':rom result (l.:U;) of aeotlon 1, a non•ve unbiased 

estimator of tbe variance of Mickey's unbiased ratio type 

aatlmator 'l'lmh 1n the htb stra~um ia given by 

(Nh-nh}(*b~) ~k-~~ 
Bst • V('l' llzlb) '" • 1 "\ £' (yhl.R.... Xhi) -

(Jlh-lllJt)Ni\ (~-mh·l)L; ·wn 

, 
I 

lj 
' 

I 

II 
I· 
~: 

L ~nh -~ -~Dh-iDb)}, 
emept tor the choice lllh 111 Db -1. (EI.l2) 
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Consequently, a non-ve unbiased estimator ot 

the variance of the separate unbiased ratio type estimator 

1' JJ'II( s) 1a provided by 

I-

.. 2::.,P: Eat.V(Tlmh). 
h•l 

(6.13) 

Also 1 since tor a given stratified rant'lnm sample 1 
' 

• EL"'Tlm(a) lf:b,h • l,a, ••••• ,L J = Tlm(s) 

en unbiased estimator ot the varlance of ths e.eparate unbiased 
• ratio t;vpe estimator Tlm(a) is given by 

1- ("'h.) 
"~' ""!.. . 

Eet.V(Tlm(s)) i ~)Vzst.V('1'1zD(s))•(1',ln$) 
k•t llltl ~/ 

• a 
- 'flm(a)> 'J. (6.14) 

(ii) Combined unbiased ratio type eat1mators 

'l'o obtain a non-ve unbiased estimator of the variance 

of the combined ratio t;vpe estimator 'l'lm(c), we note that 

V('i'lm(o)) • E £--V('l'lm(c) I m) J + V L'S('l'lm(o)lm> J 
2 

a (N.m} E f V(Ua/m)J, trcm (6. 7) 
r(d 

Row, clearly, a non-ve unbiased estimator of 

V(ynh - Wh • 1\n ~h - Wh I m) is provided by 

~""'!.. 
(Nh • nh) 1 :\/; 

{nh•IDJl) (Nh·lllbl • (nb·~-1) tyh1-Rmxhi) 

t 

exqept tor tbe choice lllb = nb - 1. 

2 

·<'Ynh·JIIb·Rm'inh-mh.:J, 

(6.16) 
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ConsequentlY from (6.15) and (6.16) 1 a non-ve 

unbiased estimator off~) 1s given b9' 

Eat.V('l'lm(c)> "' 
1.. 

'\lN:-nh) (Nh-lllb) 

LN (nh·lllb>-

k.: I 

""""rr\ }\. 
• 1 ;)~ ....... )·(i ..... -~ .... ) ~ 
(nh-~-l} C/• 

.. (6.17) 

Again, since for a given strat1f1od random sample, 

'B L 'l'lm(c) I Jl.b, k==l,a, ••••• ,L J .. • 
'l'lm(o) 

an unb1aaed est1ma.tor ot the var1anae of flm(o) 1s provided 

by 

• 2 7 
- ('f lm( o)- 'f lm( c)) J• 

(6.18) 



7. NUM!i:RICAL EX.AIIPl.BB 

The theoretical investigation of the efficiency of 

Mickey' a unbiased ratio and regresalon type est1mators 

presented many difficult pro~lems in view of the complexity 

of the estlmatorathemselves an4 1n tact no theoretical 

appralaal of their performance in small samples baa been 

possible. Even the verification of the results 1 obtained 

in respect of their efficiency 1n large samples, involves 

heavy computations an4 is possible-only with the help of the 

electronic computer. Also one of the interesting problems 

still remained unsolved is the behaviour of these estimators 

for increasing values of 'ml. ~this section, however, e. 
~,-

few numerical examples have been taken up in these directions 

tor the unbiased ratio type est1mators. Unless extensive 

comparisons are ma4e, no general conclusions can be drawn 

regarding their performance 1n small samples1 for 1ncreas1ng 

values of m; etc. 

The first example demonstrates the construction of an 

exact unbiased estimator of the variance of Hartley an4 Ross 

est1mator 1 u. baa been suggested by the results ( 1.15) and 

(1.16) of section 1 1 for a sample of size 9. In the second, 

example, e. sample of size l5 baa been taken to obtain consistent 

estlma.tore of the variance ~f the unbiased ratio type estimators 

• Tlm (m a 1 12 and 3) 1 with help of the result (2.16) of section a. 
In the third example 1 a sample of size 100 1 with known popula­

tion coefficients of variation and covariation, is taken up 



• 
' 

• • to study the variance of 'l'Jm 1 for the choice of m ranging 

from 75 to 99 1 with the help of the bivariate normal 

approximation fol'IIILtla (2.37) of section 2. i'inaJ.ly1 an 

artificial atratified population consisting of 3 strata, 

given by Cochran (II edition, page 179) 1 has been consider­

ed to study the efficiency of the combined unbiased ratio 

• type estimator 'l'U(c) of section 6. 

Example II 

The data tor this example come from a stmplo random 

sample of size 9 1 drawn without replacement from tbe 

91 villages of the Venkatagiri 'laJ.uq in Nellore district 

in order to study the yield and cultivation practices of 

Ltme. In 'l'a.J:)le 7.1 1 Y3 represe~/the number of bear1~ 

trees and x3 the area (in acres) reported. 1n1tial.ly uruier 

Lime 1 for the 3th village. 'l'he problem is to estimate the 

average number of bearing trees per village 1n Venlcatag1ri 

stratum. 
- fa.J:)le 7.1 

l l 
Sampled village I No. of bearing : ~a (in acres) 

Code number I trees (y3) & reported 
& • 1n1tiaJ.lY • 

1 2!i}l 6.60 
2 163 2.95 
a 78 7.05 
4 261 6.36 

6 1302 13.60 
6 604 6.59 
7 1403 16.81 
8 1703 12.63 
9 654 5.68 

' 



a. 
a. 
4. 

5. 

6. 

7. 

B. 

9. 
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Population sise N a 91 Population mean ot x • i = ll. '121 

Sample she riD 9 -ny • y(n) a 6259 1 

acres. 

- a x(n) a 76.17 nll l· = 869677. 75-y 

~ a 21.73 Szy a 2528.21 

M.S.E. (yR) .. 10104, 

where 1 Ya 1s tbe usual biased ratio estimator • 
• 

Table 7.2 

Illustration ot computation for unbiased esttmator of the 
'variance of Hartley and Ross estimator T~, specified by 

( 1.16) ot section 1. (m=l) -

.V(Tu) 

55.864 3053.00 '1283~0 809.826 72716.86 525468 19016 

11.064 128.39 73~125 768.826 72647.81 3666977 33871 

48.694. 2311.11 7242088 789.799 71798.75 812798 20842 

96.444 9301.45 5615005 636.279 55620.71 1"7784 10456 

76.480 5849.19 7056193 775.101 69876.35 23492 13975 

83.463 6965.91 5341800 538.953 49613.28 1208 12610 

134.838 lBlBl.29 4410000 659.012 61688.82 sousa? 70'16 

97.535 9513.08 7003293 786.267 70050.99 l7l.lB3 10298 

~1 a + l)1 c '12.859 1 

-t-t.zst.v<or11> .. lS457, <i - Af~!-1} i > 2-j-L:<a1-~1> 2 .. 6100 • 

• Est.V('fu> = l&l57 - 6100 • 10357. 

Estimated relative eff1c1enoy ot Bartley and Ross 

unbiased estimator witb respect to Ya 1 1s 1 therefore, given 
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by 10104 • 
-- x lDO c 97 .&6)i. i'll is hence preferable in 
10357 . 

view of its property of unbiasedness. 

Bsample II 
01\l. 

'l'he data for this example i.:& based on a almple 

raildom sample of size l5, c1rawn without replacement from . 
the population of 91 villages of example l. Unbiased ratio 

• type estimators Tlm, m = 1,2 and. 3 are compared 'rlith 

iR by calculating consistent est~tes of their variance, 

obtained trom the· formula (2.16) of seot1on a. 

Table 7.3 

Sampled village I No. of bearing Area reported 
Code number 'l' ree rriy ~) 1nit1e.l.1Y (x3> 

l 698 6.18 

a 1403 16.81 

3 813 B. ?a 

4 2l2 6.34 

5 568 4.60 

6 78 ?.05 

7 J.a02 13.50 

a 571 7.05 

9 0 5.01 

10 J.a02 13.60 

11 291 6.60 

l2 307 13.54 
l3 1063 13.23 
14 168 a.eo 
l5 1470 14.17 
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• For this sample 8m • 74.896., R;z. = 70.810 

• 1'ia .. 72.843, a; . .. 73.620 

Also l'· a ·ag6245, 4 = 20.'706 y 

&xy .. l89f3.94 1 bn .. 9l.6l2, 
' I· 

whero, bn 1s ·the sample regression coefficient • 

. Using the formula (2.16) of section a, f~r small 

va.l.ues of m, .a consistent estimate of the variance of 
• Tam 1s given by 

• Est. V('l' im) .... -> •a (i • --Est.V(y + 1\a E..at.V x)·S!lm 'iat,Cov,(y_,x). 

Also a consistent estimate of the variance of iR 1s given by 

Consequently, since 

• n .l R1 

., Bst,V(y~ + ~ I!lst.vCi>-SRn Bst.Cov.(y,i). 
______/ 

in this example . (~ 

L. as L. a! " &. 

we expect the inequality - . . . 
Bst.V(yRLL Bst.V(!13) L Est.V-('1' 12) t.. 8st.V.(T11>. 

'l'able 7.4 g1vea the estimates of the variance and the relative 

eff1c1eno1es compared to 7~ . 
'l'able 7.4 

Estimator l Estimate of the variance I Relative efficiency 

-YR 5470.398 100.00 

• Bartley and Ross '1' n 5647.148 96.87 ,.. 
iS 

6554,887 98.49 

'1'1:, 5621.462 99.08 
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Althol.lgh the unb1:asel! estimators •are all leas 
' 

efficient than the biased eattmator, their variance ia 

not sign1t1cantly more than that of 'Ya. Thus they compare 

aatiataotorily with y8 , from tlle point o~ view of etticienc,y. 

On the other halll1 computation of th.e biased est1ma.tor is 

• the eaaieat. Among the unbiased estimators, '1'·13 is the 

best from the point of view of efficiency 1 but ita computa­

tion 1s relatively difficult. For this particular example, 

for 1ncrea.s1ng values of m from below, there is e.n increase 

in the eftlcienoy of the \Ulb1ased est1mator. 

Ezamplo III 

The d.ata for this exemple are taken from paae 171, 
e.wim. 

second ·,'&lUme of Cochran'JI. Jlfampling Techniques•. From a 

cenaua of e.ll the 2010 farms 1n Jefferson County in respect 

of the acreage under the corn crop (y) and the total acreaae 

(x) of the fa.rm 1 the following are the population means 

and the coeff1c1~nts of variation and covar1at1on. 

• 
• ae.ao, x • ll7.as 

= 
• 

a 
0.896355 1 ex • 

0.47lO?l • 

0.553924, 

A simple random sample of alae 100 1a assumed to be 

c1l'8.1111 from this population. The bivariate normal approx1ma­

t1ons (2.26) and (2.37) of section a, are calculated respect-- . ively for the u.s.E. of Ya and the variance of 'l'Jm, m ransina 
' 

from 76 to 99. 'l'he variances toget.her with the relative 
' 

eff1oieno1ea are tabulated in Table 7.5. 
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!'able 7.5 

Estimator M.8 .E ~/yarianoe Relative efficiency 

Ya 30.7597 100.000 
• 
T.lm,m "' 75 36.3848 101.059 

80 30.3862 l0l.OS6 

85 30.8910 101.042 

90 30.4014 lOl.OJ.a 

95 36.4303 100.915 

99 35.7l89 100.114 

'he reaulta show a steady decrease 1n the eff1o1enoy . / 
ot TJ.m as m increases from ?ttto 99 1 although the decrease 

is not quite a1gnit1cant. ll'or all m ranging from 75 to 99 1 

'1'~ is more efficient than 'ia• although once again the 

gain in efficiency 1a ~t significant. The reaults confirm 

that to the first order of approximation 1 when m 1a sufti· 

• o1ently large 1 T lm 1a as efficient as the biased ratio 

-estimator YR• 

Example IV 

In this example 1 an art1f1o1al. stratified population 
t.l'Y\ 

ot 3 41trata 1 constructed by Cochran (ve.l.II, page 179) 1 1e 

considered. Each stratum contains 4 units out of tdl1ch 2 

units are selected. at random witllout replacement. Thus tbe 

allocation of the total aemp1e size n=e 1a proportional to 

the strata sizes Nb (h=l,a and 3). '!'he population was 

constructed 1n such a way that (a) Rb varies markedly from 

, ' stratum to stratum, thus favouring a separate ratio 
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esti.mntor, and (b) the ra.t1o esUmatol' w1th1n each 

stratum 1s bac'!ly biased. 'l'he Choice of mh 1s equal to 1 

1n each stratum, so that the averaged -t·aepo.ra.te' and 

'combined' unbiased ratio type estimators tor ths 

popUlation total Y are respectively given by tbe separate 
• • lla.rtley and Ross estimator N Tl&(s) of (6.4) and the 

combined unbiased ratio type eet1mator N '~'!ace> of (6.11). 

Five methods of estimating the population total 

are compared. 
L 

1. Simple expansion I Db 'ih· 
k<\ 

a. The combined biased I (y I x)X. 
ratio estimator 

L 

3. The separate biased a L<ih I ib>xb. 
ratio estimator k•\ 

• 4. 'l'he separate Hartley a 'll3(a) of (6.4) 
and .Boas unbiased -
ratio aat1mator 

The combined unbiased 1 • s. Tl3(o) of (6.11). 
ratio type estimator 

'l'bere are e3 a 216 possible samples. 'l'hs biases 

and variances are exact, since all possible samplas are taken 

into account. 

I 

y X 

2 2 

a 4 

4 6 

ll ao 

Rh 0.625 

Table 7.6 

A small artificial population 

stratum 

II III 

y X I y X 

2 l a l 

8 4 ? a 
9 8 9 4 

24 23 25 l2 

l.lll 2.200 



~able 7.7 

Results for the different estimators of Y 

Method Variance 1Biasl2 u.s.m. 

Simple expansion •• aao.a o.o 820.3 

Combined biased ratio • • :asa.a 6.6 269.3 

Separate biased ratio • • 25.9 24.1 60.0 

Soparate Hartley and: Rosa 163.6 o.o l53.6 

Combined unbias~ ratio 142.4 o.o l4S.4 

Irrespective of the extreme conditione, the contrl-
2 butlon of the (bias) to the mean square error of the combined 

biased ratio estimator is trivial. Because ot considerable 

variation in Rb, the separate biased ratio estimator is 

much more accurate than the combined b~ased ratio eat1.mator, 

but 1 t is badly biased. The Bartley- and Rosa separate 

unbiased ratio estimator 1e superior to the combined biased 

ratio est1.mo.tor, but inferior to the combined unbiased ratio 

estimator as well as to the separate biased ratio estimator, 
I 

as Judged by the M.S.E. of the latter. The combined unbiased. 

ra.tlo estilllator is more efficient than any other estimator 

except the separate biased ratio eet1mator. 

Cochran has included. separate Lah1r1 unbiased ratio 

estimator also in the comparisons 1 but in the author' a view 

1t 1o not oomparablo a.e 1t 1s based entirely on a <lifferent 

probability sampling scheme. The five estittlators compared here 

are all based on etratlfled simple random sampling without 

replacement. 
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