
1.	 INTRODUCTION
For an experiment with mixtures, the proportions 

of constituent components are expressed as fractions of 
a mixture and they are consistently non-negative and 

sum to be one always, i.e.0 ≤ xi ≤ 1.0 and 
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1, 2,…, q, where q is the number of components in the 
mixture and xi, i = 1, 2,…, q represents the proportion 
of component i forming the mixture. In mixture 
experiments, it is assumed that the observed response 
depends on the proportions of the ingredients present in 
the mixture and it does not depend on the amount of the 
mixture (Cornell, 2002). More details about mixture 
experiments can be found in Cornell (1973, 1979, 2002 
and 2011). Simplex-centroid designs (Scheffé, 1963) 
are among the most widely used designs of mixture 
experiments.

A simplex-centroid design for q components 
mixture experiment consists of all possible subsets 
of these q components, which are present in equal 
proportions. The design consist of only one full mixture 
blend and that point is represented by the overall 
centroid. The total number of design points of standard 
simplex-centroid design is (2q – 1). These design points 

are obtained as qC1 permutations of (1,0,…,0), qC2 
permutations of (1/2,1/2,0,…,0), qC3 permutations of 
(1/3,1/3,1/3,0,…,0), and so on and so forth, and finally 
the overall centroid of the triangle (1/q,1/q,…,1/q). For 
example, a three-component simplex-centroid design 
consists of 23 – 1 = 7 points (Fig.  1(a)). The design 
points of this standard simplex-centroid are given in 
Fig. 1(b).

Let the functional relationship between observed 
response (η) and the proportions of components x1, x2, 
…, xq be 

η = φ (x1, x2, …, xq) + ε, ε ~i.i.d N (0, σ2)� (1)
A very basic assumption is made that the response 

surface, denoted by the function φ, is a continuous 
function of the xi, i = 1, 2, …, q.

The problem of determining the shape of the 
response surface with the component compositions 
depends on finding the mathematical equation that 
satisfactorily describe the function φ in (1). Due to the 

constraint 
1

q

i
i

x
=
∑  = 1, these polynomial functions are 

different from the usual regression equations.
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To deal with data obtained from mixture 
experiments, Scheffé (1958, 1963) derived the 
canonical polynomial by applying the constraint that 
sum of mixture components proportions adds to one in 
standard polynomial. These polynomials are devoid of 
any intercepts.

Linear: 
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Special cubic: 
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where ε ~ i.i.d N (0, σ2)
The terms present in canonical polynomials can 

be interpreted as usual regression coefficients. The 
coefficients of xi, i = 1, 2, …, q denote the effects due to 
the ith component, whereas the coefficients of xij denote 
the joint effect of the components i and j.

(a)

Points x1 x2 x3

1 1 0 0

2 0 1 0

3 0 0 1

4 1/2 1/2 0

5 0 1/2 1/2

6 1/2 0 1/2

7 1/3 1/3 1/3

(b)

Fig. 1. Three-component 7-point standard simplex-centroid design

When the mixtures of components are strictly 
additive in nature, linear canonical polynomial (first 
degree) is best suitable to represent the surface, whereas 
canonical polynomials of higher degree are being 
used to represent the surface with curvature due to 
non‑linear blending between the pairs of components. 
In this study, we confine ourselves to only quadratic 
and special cubic canonical polynomial.

Augmentation of simplex-centroid designs was 
first introduced by Cornell (1986). An application of 
10-point augmented simplex centroid design can be 
found in Sifaoui (2016). Augmentation is suggested in 
those situations where researcher is fitting a low degree 
(first or second) canonical polynomial but is uncertain 
about the shape of the surface above the simplex region. 
If the number of design points is equal or less than 
the number of parameters in the fitted model, test for 
the significance of the parameters of the fitted model 
cannot be conducted. If the design is augmented with 
extra design points then only it has more number of 
design points than the number of parameters in the fitted 
model. With these more number of design points when 
an experiment is carried out, then test of significance 
of the parameters can be conducted. Classical designs 
position the points at the periphery of the experimental 
space and are potentially ill-adapted to deal with 
irregularities inside the space [Gomes et  al. (2018)]. 
To limit these risks, augmentation of the design may 
be done in the interior of the simplex space. Further, 
more number of the design points from the interior of 
the simplex space can help for better exploration of the 
entire simplex space for the standard simplex-centroid 
designs.

Thus, efforts are needed to be made for obtaining 
suitable ways to augment a standard simplex-centroid 
design so that the testing of significance of the 
parameters can be performed and testing of hypothesis 
that there is no lack of fit of the model being used with 
replicated points can be done.

In this paper, we propose a method of construction 
of simplex-centroid design with augmented points. 
These additional design points help to investigate the 
entire simplex area in a more precise way. D-efficiency 
and G-efficiency per point of the constructed designs 
are also computed to measure their efficacy.
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2.	 METHOD OF CONSTRUCTION OF 
AUGMENTED SIMPLEX-CENTROID 
DESIGNS
A simplex-centroid design for three components 

is characterized by an equilateral triangle. From the 
geometry of triangles, it is known that any equilateral 
triangle can be partitioned into t2 equilateral triangles, 
where t is a positive integer. So the simplex design space 
of a simplex-centroid design for three components can 
be partitioned into t2 equilateral triangles. Centroids of 
these t2 equilateral triangles can be used as augmented 
points of the design. This principle may be used for 
augmentation of standard designs for three-component 
mixture experiments. We illustrate the method of 
construction using two examples.

Example 2.1: Let t = 2. In this situation the whole 
simplex space is divided into t2 = 4 small equilateral 
triangles as shown in Fig. 2. From each of these four 
small triangles, their centroids are obtained to include 
them as augmented design points. One of the centroid 
point is identical with the overall centroid of the triangle. 
Hence, we get three additional points to include as 

additional design points. Now the design becomes a 
ten-point augmented simplex-centroid design. The 
design is depicted by Fig. 2(a) and the design points are 
tabulated in Fig. 2(b).

Example 2.2: Consider t = 3. Then the triangle 
is divided into t2 = 9 smaller equilateral triangles. 
From each of these nine triangles, nine centroid points 
are obtained and they are included in the design as 
augmented points. As none of the centroid is identical 
with the overall centroid of the triangle, all of them 
are included as additional points. Hence, we obtain a 
sixteen-point augmented simplex-centroid design. The 
resultant design is depicted by Fig. 3(a) and the design 
points are tabulated in Fig. 3(b). 

(a)

Points x1 x2 x3

1 1 0 0

2 0 1 0

3 0 0 1

4 1/2 1/2 0

5 0 1/2 1/2

6 1/2 0 1/2

7 1/3 1/3 1/3

8 7/9 1/9 1/9

9 4/9 4/9 1/9

10 5/9 2/9 2/9

11 4/9 1/9 4/9

12 1/9 7/9 1/9

13 2/9 5/9 2/9

14 1/9 4/9 4/9

15 2/9 2/9 5/9

16 1/9 1/9 7/9

(b)

Fig. 3. Three-component 16-point design, a simplex-centroid  
design with 3 components

Augmented simplex-centroid designs for t = 4 and 
5 are given in the Appendix.

(a)

POINTS x1 x2 x3

1 1 0 0

2 0 1 0

3 0 0 1

4 1/2 1/2 0

5 0 1/2 1/2

6 1/2 0 1/2

7 1/3 1/3 1/3

8 2/3 1/6 1/6

9 1/6 2/3 1/6

10 1/6 1/6 2/3

(b)

Fig. 2. Three-component 10-point design, a simplex-centroid  
design with 3 components
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3.	 EFFICIENCIES OF THE AUGMENTED 
DESIGNS
To compare the augmented simplex centroid designs 

with their non-augmented counterpart, D-efficiency 
and G-efficiency are computed. For this purpose, model 
matrix X is obtained for each augmented design for the 
study. Two efficiency measures such as D-efficiency 
per point and G-efficiency per point are calculated for 
each of the augmented and non-augmented designs. 
These measures are given by

D-efficiency = (
1/ p

n
′X X ) × 100 (Hasan et al., 2018)

G-efficiency = p
nd

 
 
 

 × 100

where n denotes the number of points in the design, 
p denotes the number of parameters in the model and 
d denotes the maximum value of var[ŷ(X)] /σ 2 over all 
candidate points. 

Table 1 gives the D-efficiency and G-efficiency 
of augmented simplex-centroid designs for Scheffé 
quadratic model.

Table 1. D-efficiency and G-efficiency of augmented simplex-
centroid designs for Scheffé quadratic model

Total 
design 

points (n)

1/ p′X X D-efficiency
per point(%)

G-efficiency
per point(%)

Non-
augmented

7 + 0 = 7 0.27 3.87 86.36

t = 1 7 + 0 = 7 0.27 3.87 86.36

t = 2 7 + 3 = 10 0.31 3.15 64.51

t = 3 7 + 9 = 16 0.42 2.60 45.90

t = 4 7 + 15 = 22 0.53 2.40 38.61

t = 5 7 + 24 = 31 0.68 2.20 32.32

Both D-efficiency per point and G-efficiency 
per point of augmented designs are decreasing with 
increasing number of design points when Scheffé 
quadratic model is fitted. It seems to be because of the 
term “n” (number of design points) in the denominator. 

But it is also seen that the quantity 
1
pX X′  increases with 

the increasing number of design points. This quantity 
reflects the amount of information being extracted from 
the design. Hence, with additional design points, the 
augmented designs are extracting more information.

In Table 2, we present the D-efficiency and 
G-efficiency of augmented simplex-centroid designs 
for Scheffé special cubic model.

Table 2. D-efficiency and G-efficiency of augmented simplex-
centroid designs for Scheffé special cubic model

Total design 
points (n)

1/ p′X X D-efficiency
per point(%)

G-efficiency
per point(%)

Non-
augmented

7 + 0 = 7 0.12 1.70 100

t = 1 7 + 0 = 7 0.12 1.70 100

t = 2 7 + 3 = 10 0.14 1.38 74.91

t = 3 7 + 9 = 16 0.18 1.13 52.82

t = 4 7 + 15 = 22 0.22 1.01 44.18

t = 5 7 + 24 = 31 0.29 0.93 36.40

While fitting Scheffé special cubic model, results 
similar to fitting Scheffé quadratic model are obtained. 
The quantity 1/ pX X′  increases with increasing 
number of design points but it is comparatively lower 
as compared to quadratic model fitting. D-efficiency 
values are smaller for fitting Scheffé special cubic 
model as compared to fitting Scheffé quadratic model 
for the same design. In contradiction, G-efficiency is 
more for fitting Scheffé special cubic model than fitting 
quadratic model for the same design.

4.	 CONCLUSION
For the standard designs of three-component 

mixture experiments most of the design points are 
spread on the edge of the simplex design space. 
Augmentation of design points helps to explore the 
whole design space more effectively when these 
augmented points are from the interior portion of the 
simplex space. In this article, an easy and systematic 
method for obtaining augmented design points has 
been discussed. 

It is seen that the quantitative value of 1/ pX X′  
increases as the number of design point increases by 
augmenting the standard design with more number of 
points. It implies that more amount information are 
being extracted by augmenting the standard simplex-
centroid design. Again, it is also seen that G-efficiency 
are being reduced with the increasing number of 
augmented design points. This is due to bigger value of 
n in the denominator in the equation. Wheeler (1972) 
recommended that a design with G-efficiency more 
than or equal to 50% may be considered as “good” 
for practical purposes. It is seen that for augmented 
simplex-centroid design for Scheffé quadratic model 
considering up to t = 2 can be called as “good” and for 
cubic model it is up to t = 3. 
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APPENDIX
Augmented simplex-centroid designs
(a) t = 4

Points x1 x2 x3

1 1 0 0

2 0 1 0

3 0 0 1

4 1/2 1/2 0

5 0 1/2 1/2

6 1/2 0 1/2

7 1/3 1/3 1/3

8 5/6 1/12 1/12

9 7/12 1/3 1/12

10 2/3 1/6 1/6

11 7/12 1/12 1/3

12 1/3 7/12 1/12

13 5/12 5/12 1/6

14 5/12 1/6 5/12

15 1/3 1/12 7/12

16 1/12 5/6 1/12

17 1/6 2/3 1/6

18 1/12 7/12 1/3

19 1/6 5/12 5/12

20 1/12 1/3 7/12

21 1/6 1/6 2/3

22 1/12 1/12 5/6

(b) t = 5

Points x1 x2 x3

1 1 0 0

2 0 1 0

3 0 0 1

4 1/2 1/2 0

5 0 1/2 1/2

6 1/2 0 1/2

7 1/3 1/3 1/3

8 13/15 1/15 1/15

9 2/3 4/15 1/15

10 11/15 2/15 2/15

11 2/3 1/15 4/15

12 7/15 7/15 1/15

13 8/15 1/3 2/15

14 7/15 4/15 4/15

15 8/15 2/15 1/3

16 7/15 1/15 7/15

17 4/15 2/3 1/15

18 1/3 8/15 2/15

19 4/15 7/15 4/15

20 4/15 4/15 7/15

21 1/3 2/15 8/15

22 4/15 1/15 2/3

23 1/15 13/15 1/15

24 2/15 11/15 2/15

25 1/15 2/3 4/15

26 2/15 8/15 1/3

27 1/15 7/15 7/15

28 2/15 1/3 8/15

29 1/15 4/15 2/3

30 2/15 2/15 11/15

31 1/15 1/15 13/15


